Ansys 热分析教程
《热分析ansys教程》课件

05
热分析优化设计
优化设计的基本概念
01
优化设计是一种通过数学模型和计算机技术,寻找满足特定条 件下的最优设计方案的方法。
02
优化设计的基本概念包括目标函数、设计变量、约束条件和求
解算法等。
热分析优化设计是针对热学问题,通过优化设计来提高产品的
03
热性能和降低能耗。
ANSYS优化设计的步骤
定义设计变量
网格质量检查
对生成的网格进行检查, 确保网格质量良好,没有 出现奇异点或扭曲。
边界条件的设置
确定边界条件
根据分析对象的实际情况,确定合适的边界条件,如温度、热流 率等。
设置边界条件
在ANSYS软件中,将确定的边界条件应用到几何模型上。
验证边界条件
对设置的边界条件进行验证,确保其合理性和准确性。
04
傅里叶定律
热量传递与温度梯度成正比,即热流密度与温度梯度 成正比。
牛顿冷却定律
物体表面与周围介质之间的温差与热流密度成正比。
热力学第一定律
能量守恒定律,表示系统能量的增加等于传入系统的 热量与系统对外界所做的功之和。
热分析的三种基本类型
稳态热分析
系统达到热平衡状态时的温度分布。
瞬态热分析
系统随时间变化的温度分布。
网格划分问题
网格划分不均匀
在某些区域,网格可能过于密集,而 在其他区域则可能过于稀疏,这可能 导致求解精度下降或求解失败。
网格自适应调整问题
在某些情况下,ANSYS可能无法正确 地自适应调整网格,导致求解结果不 准确。
网格划分问题
手动调整网格
手动调整网格密度,确保在关键区域有足够的网格密度。
使用更高级的网格划分工具
ansys热分析教程

时间步大小说明 (续)
培训手册
HEAT TRANSFER 6.0
在瞬态热分析中大致估计初始时间步长,可以使用Biot和Fourier数。 Biot 数 是无量纲的对流和传导热阻的比率:
Bi h Dx K
其中 D x是名义单元宽度, h是平均对流换热系数,K 是平均导热系数。 Fourier 数 是无量纲的时间(Dt/t ) , 对于宽度为D x 的单元它量化了热传导 与热存储的相对比率:
热传导基础
对流
• 对流引起的热通量由冷却牛顿定律得出:
培训手册
HEAT TRANSFER 6.0
q* h f (TS TB ) heat flow rat eper unit area bet ween surface and fluid Where, h f convect ive film coefficien t TS surface t emperat re u TB bulk fluid t emperat re u
涉及到相变的分析总是瞬态分析。
March 30, 2002 Inventory #001445 2-17
瞬态分析前处理考虑因素
除了导热系数 (k), 还要定义密度 (r) 和 比热 (c ) 。 稳态分析和瞬态分析对明显的区别在于加载和求解 过程。
培训手册
HEAT TRANSFER 6.0
* MASS71热质量单元比较特殊
• 对流一般作为面边界条件施加
TB
Ts
March 30, 2002 Inventory #001445 2-5
热传导基础
热力学第一定律
热分析(ansys教程)

1. 对流边界条件:需要提供对流 系数、流体温度和表面传热系数 等信息。
3. 初始条件:确保初始温度等初 始条件设置合理,不会导致求解 过程不稳定。
求解收敛问题
•·
1. 迭代方法:选择合适的迭代方 法,如共轭梯度法、牛顿-拉夫森 法等。
2. 松弛因子调整:根据求解过程, 适时调整松弛因子,以提高求解 收敛速度。
稳态热分析的步骤
建立模型
使用ANSYS的几何建模工具创建分析对象 的几何模型。
后处理
使用ANSYS的后处理功能,查看和分析结 果,如温度云图、等温线等。
网格化
对模型进行网格化,以便进行数值计算。 ANSYS提供了多种网格化工具和选项,可 以根据需要进行选择。
求解
运行求解器以获得温度分布和其他热分析 结果。
电子设备散热分析
研究电子设备在工作状态下的散热性能,提高设备可靠性和 使用寿命。
06 热分析的常见问题与解决 方案
网格划分问题
网格划分是热分析中重要 的一步,如果处理不当, 可能导致求解精度和稳定 性问题。
•·
1. 网格无关性:确保随着 网格数量的增加,解的收 敛性得到改善,且解不再 发生大的变化。
03 稳态热分析
稳态热分析的基本原理
01
稳态热分析是用于确定物体在稳定热载荷作用下的温度分布。在稳态条件下, 物体的温度场不随时间变化,热平衡状态被建立,流入和流出物体的热量相等 。
02
稳态热分析基于能量守恒原理,即流入物体的热量等于流出物体的热量加上物 体内部热量的变化。
03
稳态热分析通常用于研究物体的长期热行为,例如散热器的性能、电子设备的 热设计等。
热分析的基本原理基于能量守恒定律,即物体内部的能量变化应满足能量守恒关系。
《热分析ansys教程》课件

汽车发动机热分析
总结词
汽车发动机热分析用于研究发动机工作过程中的热量传递和热应力分布,以提高发动机 效率和可靠性。
详细描述
发动机是汽车的核心部件,其工作过程中会产生大量的热量。通过热分析,工程师可以 了解发动机内部的温度分布和热应力状况,优化发动机设计,提高其燃油效率和耐久性
。
建筑物的温度分布分析
热分析的基本原理
热分析是研究温度场分布、变化 和传递规律的科学,其基本原理 包括能量守恒、热传导、对流和 辐射等。
热分析的应用领域
热分析广泛应用于能源、动力、 化工、机械、电子等众多领域, 涉及传热、燃烧、材料热物性、 电子器件散热等方面。
热分析的常用软件
ANSYS是国际上最流行的热分析 软件之一,具有强大的建模、网 格划分、加载、求解和后处理功 能,广泛应用于工程实际和科学 研究。
模拟系统在稳定状态下温度分布和热流密 度的计算方法
总结词
适用于研究系统在稳定状态下的热性能和 热量传递机制。
详细描述
稳态热分析用于计算系统在稳定状态下温 度分布和热流密度,不考虑时间因素,只 考虑热平衡状态。
详细描述
在稳态热分析中,系统的温度分布和热流 密度不随时间变化,因此可以忽略时间积 分效应,简化计算过程。
施加边界条件和载荷
根据实际情况,为模型的边界施加固 定温度、热流等边界条件,以及热载 荷。
求解和结果查看
选择求解器
根据模型的大小和复杂程度,选择合适的求解器进行求解。
结果后处理与查看
查看温度分布、热流分布等结果,并进行必要的后处理,如云图显示、数据导 出等。
03
热分析的常用方法
稳态热分析
总结词
COMSOL Multiphysics
ansysworkbench热分析教程

ansysworkbench热分析教程6-1本章练习稳态热分析的模拟,包括:A. ⼏何模型B. 组件-实体接触C. 热载荷D. 求解选项E. 结果和后处理F. 作业本节描述的应⽤⼀般都能在ANSYS DesignSpace Entra或更⾼版本中使⽤,除了ANSYS Structural提⽰:在ANSYS 热分析的培训中包含了包括热瞬态分析的⾼级分析KT T QT –在稳态分析中不考虑瞬态影响–[K] 可以是⼀个常量或是温度的函数–{Q}可以是⼀个常量或是温度的函数上述⽅程基于傅⾥叶定律:固体内部的热流(Fourier’s Law)是[K]的基础;热通量、热流率、以及对流在{Q} 为边界条件;对流被处理成边界条件,虽然对流换热系数可能与温度相关在模拟时,记住这些假设对热分析是很重要的。
热分析⾥所有实体类都被约束:–体、⾯、线线实体的截⾯和轴向在D esignModeler中定义热分析⾥不可以使⽤点质量(Point Mass)的特性壳体和线体假设:–壳体:没有厚度⽅向上的温度梯度–线体:没有厚度变化,假设在截⾯上是⼀个常量温度但在线实体的轴向仍有温度变化唯⼀需要的材料特性是导热性(Thermal Conductivity)Thermal Conductivity在Engineering Data 中输⼊温度相关的导热性以表格形式输⼊若存在任何的温度相关的材料特性,就将导致⾮线性求解。
对于结构分析,接触域是⾃动⽣成的,⽤于激活各部件间的热传导–如果部件间初始就已经接触,那么就会出现热传导。
–如果部件间初始就没有接触,那么就不会发⽣热传导(见下⾯对pinball的解释)。
–总结:–Pinball区域决定了什么时候发⽣接触,并且是⾃动定义的,同时还给了⼀个相对较⼩的值来适应模型⾥的⼩间距。
如果接触是Bonded(绑定的)或no separation(⽆分离的),那么当⾯出现在pinball radius内时就会发⽣热传导(绿⾊实线表⽰)。
Ansys热分析教程(全)

章节内容概述
• 第7章-续 – 例题 6 - 低压气轮机箱的热分析
• 第 8 章 - 辐射 – 辐射概念的回顾 – 基本定义 – 辐射建模的可选择方法 – 辐射矩阵模块 – 辐射分析例题 - 使用辐射矩阵模块进行热沉分析,隐式和非隐式方 法。
• 第 9 章 - 相变 – 基本模型/术语 – 在 ANSYS中求解相变 – 相变例题 - 飞轮铸造分析
传导
• 传导的热流由传导的傅立叶定律决定:
q*
=
− Knn
∂T ∂n
=
heat
flow
rate
per
unit
area
in
direction
n
Where, Knn = thermal conductivity in direction n
T = temperature
∂T = thermal gradient in direction n ∂n
• 负号表示热沿梯度的反向流动(i.e., 热从热的部分流向冷的).
q*
T
dT
dn
n
对流
• 对流的热流由冷却的牛顿准则得出:
q* = hf (TS − TB ) = heat flow rate per unit area between surface and fluid
Where, hf = convective film coefficient TS = surface temperature TB = bulk fluid temperature
• 第 6 章 - 复杂的, 时间和空间变化的边界条件 – 表格化的热边界条件 (载荷) – 基本变量 – 用户定义的因变变量
章节内容概述
ansys workbench热分析教程

6-1A、几何模型B、组件-实体接触C、热载荷D、求解选项E、结果与后处理F、作业6、1•本节描述得应用一般都能在ANSYS DesignSpace Entra或更高版本中使用,除了ANSYS Structural•提示:在ANSYS热分析得培训中包含了包括热瞬态分析得高级分析K T ﻮ)]{T }=Q T )}– 在稳态分析中不考虑瞬态影响– [K] 可以就是一个常量或就是温度得函数– {Q}可以就是一个常量或就是温度得函数• 固体内部得热流(Fourier’s Law)就是[K]得基础;•热通量、热流率、以及对流在{Q} 为边界条件;•对流被处理成边界条件,虽然对流换热系数可能与温度相关•在模拟时,记住这些假设对热分析就是很重要得。
–体、面、线•线实体得截面与轴向在DesignModeler中定义•热分析里不可以使用点质量(Point Mass)得特性•壳体与线体假设:–壳体:没有厚度方向上得温度梯度–线体:没有厚度变化,假设在截面上就是一个常量温度• 但在线实体得轴向仍有温度变化• 唯一需要得材料特性就是导热性(Thermal Conduc tivit y) • Therm al Condu cti vity 在 Engineeri ngData 中输 入• 温度相关得导热性以表格 形式输入若存在任何得温度相关得材料特性,就将导致非线性求解。
… 材料特性 Training Manual• 对于结构分析,接触域就是自动生成得,用于激活各部件间得热传导 B 、 组件-实体接触 Training Manual–如果部件间初始就没有接触,那么就不会发生热传导(见下面对pinball得解释)。
–总结:–Pinball区域决定了什么时候发生接触,并且就是自动定义得,同时还给了一个相对较小得值来适应模型里得小间距。
• 如果接触就是Bonded (绑定得)或no sepa ration (无分离得),那么当面出现在 pinball radi us 内时就会发生热传导(绿色实线 表示)。
热分析(ansys教程)

2-D Solid
PLANE55 PLANE77 PLANE35
3-D Solid
SOLID70 SOLID90 SOLID87
3-D Shell
SHELL57
Line Elements LINK31,32,33,34
19.11.3.2 划分网格(续)
材料属性
必须输入导热系数, KXX 如果施加了内部热生成率,则需指定比热 (C) ANSYS提供的材料库 (/ansys57/matlib)包括几种
Convection
19.11.4 施加载荷计算(续)
d、热流密度 热流密度也是一种面载。当通过单位面积的热流率已
知或通过FLOTRAN CFD计算得到时,可以在模型 相应的外表面施加热流密度。如果输入的值为正, 代表热流流入单元。热流密度也仅适用于实体和壳 单元。热流密度与对流可以施加在同一外表面,但 ANSYS仅读取最后施加的面载进行计算。 Command Family: F GUI:Main Menu>Solution>-Loads-Apply>Thermal-Heat Flux
③定载荷步选项 对于一个热分析,可以确定普通选项、非线性选项以
及输出控制。 a. 普通选项 ·时间选项:虽然对于稳态热分析,时间选项并没有实
际的物理意义,但它提供了一个方便的设置载荷步 和载荷子步的方法。
Command: TIME GUI: Main Menu>Solution >-Load Step OptsTime/Frequenc> Time-Time Step/ Time and Substps
Command Family: D GUI:Main Menu>Solution>-Loads-Apply>-Thermal-
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Ansys 热分析教程密度Kg/m3lbm/ft3DENS比热J/Kg-℃BTU/lbm-oF C焓J/m3BTU/ft3ENTH二、传热学经典理论回顾热分析遵循热力学第一定律,即能量守恒定律:●对于一个封闭的系统(没有质量的流入或流出〕式中:Q——热量;W——作功;——系统内能;——系统动能;——系统势能;●对于大多数工程传热问题:;●通常考虑没有做功:,则:;●对于稳态热分析:,即流入系统的热量等于流出的热量;●对于瞬态热分析:,即流入或流出的热传递速率q等于系统内能的变化。
三、热传递的方式1、热传导热传导可以定义为完全接触的两个物体之间或一个物体的不同部分之间由于温度梯度而引起的内能的交换。
热传导遵循付里叶定律:,式中为热流密度(W/m2),为导热系数(W/m-℃),“-”表示热量流向温度降低的方向。
2、热对流热对流是指固体的表面与它周围接触的流体之间,由于温差的存在引起的热量的交换。
热对流可以分为两类:自然对流和强制对流。
热对流用牛顿冷却方程来描述:,式中h为对流换热系数(或称膜传热系数、给热系数、膜系数等),为固体表面的温度,为周围流体的温度。
3、热辐射热辐射指物体发射电磁能,并被其它物体吸收转变为热的热量交换过程。
物体温度越高,单位时间辐射的热量越多。
热传导和热对流都需要有传热介质,而热辐射无须任何介质。
实质上,在真空中的热辐射效率最高。
在工程中通常考虑两个或两个以上物体之间的辐射,系统中每个物体同时辐射并吸收热量。
它们之间的净热量传递可以用斯蒂芬—波尔兹曼方程来计算:,式中为热流率,为辐射率(黑度),为斯蒂芬-波尔兹曼常数,约为5.67×10-8W/m2.K4,A1为辐射面1的面积,为由辐射面1到辐射面2的形状系数,为辐射面1的绝对温度,为辐射面2的绝对温度。
由上式可以看出,包含热辐射的热分析是高度非线性的。
四、稳态传热如果系统的净热流率为0,即流入系统的热量加上系统自身产生的热量等于流出系统的热量:q流入+q生成-q流出=0,则系统处于热稳态。
在稳态热分析中任一节点的温度不随时间变化。
稳态热分析的能量平衡方程为(以矩阵形式表示)式中:为传导矩阵,包含导热系数、对流系数及辐射率和形状系数;为节点温度向量;为节点热流率向量,包含热生成;ANSYS利用模型几何参数、材料热性能参数以及所施加的边界条件,生成、以及。
五、瞬态传热瞬态传热过程是指一个系统的加热或冷却过程。
在这个过程中系统的温度、热流率、热边界条件以及系统内能随时间都有明显变化。
根据能量守恒原理,瞬态热平衡可以表达为(以矩阵形式表示):式中:为传导矩阵,包含导热系数、对流系数及辐射率和形状系数;为比热矩阵,考虑系统内能的增加;为节点温度向量;为温度对时间的导数;为节点热流率向量,包含热生成。
六、线性与非线性如果有下列情况产生,则为非线性热分析:①、材料热性能随温度变化,如K(T),C(T)等;②、边界条件随温度变化,如h(T)等;③、含有非线性单元;④、考虑辐射传热非线性热分析的热平衡矩阵方程为:七、边界条件、初始条件ANSYS热分析的边界条件或初始条件可分为七种:温度、热流率、热流密度、对流、辐射、绝热、生热。
八、热分析误差估计•仅用于评估由于网格密度不够带来的误差;•仅适用于SOLID或SHELL的热单元(只有温度一个自由度);•基于单元边界的热流密度的不连续;•仅对一种材料、线性、稳态热分析有效;•使用自适应网格划分可以对误差进行控制。
第三章稳态传热分析一、稳态传热的定义稳态传热用于分析稳定的热载荷对系统或部件的影响。
通常在进行瞬态热分析以前,进行稳态热分析用于确定初始温度分布。
稳态热分析可以通过有限元计算确定由于稳定的热载荷引起的温度、热梯度、热流率、热流密度等参数二、热分析的单元热分析涉及到的单元有大约40种,其中纯粹用于热分析的有14种:线性:LINK32两维二节点热传导单元LINK33三维二节点热传导单元LINK34二节点热对流单元LINK31二节点热辐射单元二维实体:PLANE77八节点四边形单元PLANE35三节点三角形单元PLANE75四节点轴对称单元PLANE78八节点轴对称单元三维实体SOLID87六节点四面体单元SOLID70八节点六面体单元SOLID90二十节点六面体单元壳SHELL57四节点点MASS71有关单元的详细解释,请参阅《ANSYS Element Reference Guide》三、ANSYS稳态热分析的基本过程ANSYS热分析可分为三个步骤:•前处理:建模•求解:施加载荷计算•后处理:查看结果1、建模①、确定jobname、title、unit;②、进入PREP7前处理,定义单元类型,设定单元选项;③、定义单元实常数;④、定义材料热性能参数,对于稳态传热,一般只需定义导热系数,它可以是恒定的,也可以随温度变化;⑤、创建几何模型并划分网格,请参阅《ANSYS Modeling and Meshing Guide》。
2、施加载荷计算①、定义分析类型●如果进行新的热分析:Command: ANTYPE, STA TIC, NEWGUI: Main menu>Solution>-Analysis Type->New Analysis>Steady-state●如果继续上一次分析,比如增加边界条件等:Command: ANTYPE, STA TIC, RESTGUI: Main menu>Solution>Analysis Type->Restart②、施加载荷可以直接在实体模型或单元模型上施加五种载荷(边界条件):a、恒定的温度通常作为自由度约束施加于温度已知的边界上。
Command Family:DGUI:Main Menu>Solution>-Loads-Apply>-Thermal-Temperature热流率作为节点集中载荷,主要用于线单元模型中(通常线单元模型不能施加对流或热流密度载荷),如果输入的值为正,代表热流流入节点,即单元获取热量。
如果温度与热流率同时施加在一节点上则ANSYS读取温度值进行计算。
注意:如果在实体单元的某一节点上施加热流率,则此节点周围的单元要密一些,在两种导热系数差别很大的两个单元的公共节点上施加热流率时,尤其要注意。
此外,尽可能使用热生成或热流密度边界条件,这样结果会更精确些。
Command Family: FGUI:Main Menu>Solution>-Loads-Apply>-Thermal-Heat Flowc、对流对流边界条件作为面载施加于实体的外表面,计算与流体的热交换,它仅可施加于实体和壳模型上,对于线模型,可以通过对流线单元LINK34考虑对流。
Command Family: SFGUI:Main Menu>Solution>-Loads-Apply>-Thermal-Convectiond、热流密度热流密度也是一种面载。
当通过单位面积的热流率已知或通过FLOTRAN CFD计算得到时,可以在模型相应的外表面施加热流密度。
如果输入的值为正,代表热流流入单元。
热流密度也仅适用于实体和壳单元。
热流密度与对流可以施加在同一外表面,但ANSYS仅读取最后施加的面载进行计算。
Command Family: FGUI:Main Menu>Solution>-Loads-Apply>-Thermal-Heat Fluxe、生热率生热率作为体载施加于单元上,可以模拟化学反应生热或电流生热。
它的单位是单位体积的热流率。
Command Family: BFGUI:Main Menu>Solution>-Loads-Apply>-Thermal-Heat Generat③、确定载荷步选项对于一个热分析,可以确定普通选项、非线性选项以及输出控制。
a.普通选项•时间选项:虽然对于稳态热分析,时间选项并没有实际的物理意义,但它提供了一个方便的设置载荷步和载荷子步的方法。
Command: TIMEGUI: Main Menu>Solution>-Load Step Opts-Time/Frequenc>Time-Time Step/Time and Substps •每载荷步中子步的数量或时间步大小:对于非线性分析,每一载荷步需要多个子步。
Command: NSUBSTGUI: Main Menu>Solution>-Load Step Opts->Time/Frequenc>Time and SubstpsCommand: DELTIMGUI: Main Menu>Solution>-Load Step Opts->Time/Frequenc>Time-Time Step•递进或阶越选项:如果定义阶越(stepped)选项,载荷值在这个载荷步内保持不变;如果为递进(ramped)选项,则载荷值由上一载荷步值到本载荷步值随每一子步线性变化。
Command: KBCGUI: Main Menu>Solution>-Load Step Opts-Time/Frequenc>Time-Time Step/Time and Substpsb.非线性选项•迭代次数:本选项设置每一子步允许的最多的迭代次数。
默认值为25,对大数热分析问题足够。
GUI: Main Menu>Solution>-Load Step Opts-Nolinear>Equilibrium Iter•自动时间步长:对于非线性问题,可以自动设定子步间载荷的增长,保证求解的稳定性和准确性。
Command: AUTOTSGUI: Main Menu>Solution>-Load Step Opts-Time/Frequenc>Time-Time Step/Time and Substps •收敛误差:可根据温度、热流率等检验热分析的收敛性。
Command: CNVTOLGUI: Main Menu>Solution>-Load Step Opts-Nolinear>Convergence Crit•求解结束选项:如果在规定的迭代次数内,达不到收敛,ANSYS可以停止求解或到下一载荷步继续求解。
Command: NCNVGUI: Main Menu>Solution>-Load Step Opts-Nolinear>Criteria to Stop •线性搜索:设置本选项可使ANSYS用Newton-Raphson方法进行线性搜索。