中考数学模拟试题14

合集下载

北师大版九年级中考数学模拟考试试题(含答案)

北师大版九年级中考数学模拟考试试题(含答案)

九年级中考数学模拟试卷(满分150分 时间120分钟)一.单选题。

(共40分) 1.√25等于( )A.5B.﹣5C.±5D.25 2.下列正面摆放的几何体中,左视图是三角形的是( )3.据推算,全国每年减少10%的过度包装纸用量,那么可排放二氧化碳3 120 000吨,数3 120 000用科学记数法表示为( )A.3.12×106B.31.2×105C.312×104D.3.12×1074.下列平面直角坐标系内的曲线中,既是中心对称图形,又是轴对称图形的是( )5.如图,下列结论正确的是( )A.b -a >0B.a+b <0C.|a |>|b |D.ac >0(第5题图) (第9题图)6.计算x+1x-1x 的结果是( )A.1B.xC.1x D.x+1x 27.不透明袋子中装有10个球,其中有6个红球和4个白球,它们除了颜色其余都相同,从袋中随机摸出1个球,是红球的概率是( ) A.15 B.25 C.35 D.3108.在平面直角坐标系中,一次函数y=kx-1的图象向上平移2个单位长度后经过点(2,3),则k的值是()A.1B.﹣1C.﹣2D.29.如图,在△ABC中,AB=AC=2BC=4,以点B为圆心,BC长为半径画弧,与AC交于点D,则线段CD的长为()A.12B.1 C.43D.210.二次函数y=﹣x2+2x+8的图像与x轴交于B,C两点,点D平分BC,若在x轴上侧的A点为抛物线的动点,且∠BAC为锐角,则AD的取值范围是()A.3<AD≤9B.3≤AD≤9C.4<AD≤10D.3≤AD≤8二.填空题。

(共24分)11.因式分解:m2-4= .12.如图,是由7个全等的正六边形组成的图案,假设可以随机在图中取点,那么这个点取在阴影部分的概率是.(第12题图)(第13题图)13.如图,一个正方形剪去四个角后形成一个边长为√2的正八边形,则这个正方形的边长为.14.已知m是关于x的方程x2-2x-3=0的一个根,则m2-2m+2020= .15.学校食堂按如图方式摆放餐桌和椅子,若用x表示餐桌的张数,y表示椅子的把数,请你写出椅子数y(把)与餐桌数x(张)之间的函数关系式.(第15题图)(第16题图)16.如图,在△ABC中,AB=AC=15,点D是BC边上的一动点(不与B、C重合),∠ADE=∠B=∠α,DE与AB交于点E,且tan∠α=34,有以下结论:①△ADE∽△ACD;②当CD=9时,△ACD与△DBE全等;③△BDE为直角三角形时,BD为12或214;④0<BE≤5,其中正确结论是(填序号)三.解答题。

2014年中考数学模拟试题

2014年中考数学模拟试题

2014年中考数学模拟试题(满分120分 时间120分钟)一.选择题(每小题3分,共30分)1.-8的相反数是A .8B . -8C .81 D .81 2.中国航母辽宁舰是中国人民海军第一艘可以搭载固定翼飞机的航空母舰,满载排水量为67500吨.这个数据用科学记数法表示为A .6.75×104B .67.5×103C . 0.675×105D .6.75×10-43.下列运算正确的是( )A .2a +3b = 5abB .a 2·a 3=a 5C .(2a) 3 = 6a 3D .a 6+a 3= a 94.如图,AB ∥CD ,CE 平分∠BCD ,∠DCE=18°,则∠B 等于 A .18° B .36° C .45° D .54°5.上图是一个几何体的三视图,这个几何体的名称是A .圆柱体B .三棱锥C .球体D .圆锥体6.在“大家跳起来”的乡村学校舞蹈比赛中,某校10名学生参赛成绩统计如图所示. 对于这10名学生的参赛成绩,下列说法中错误的是A .众数是90B .中位数是90C .平均数是90D .极差是157.已知两圆的圆心距为4,两圆的半径分别是3和5,则这两圆的位置关系是A. 内含B. 内切C. 外切D. 相交8.如图,在平面直角坐标系中,以O 为圆心,适当长为半径画弧,交x 轴于点M ,交y 轴于点N ,再分别以点M 、N 为圆心,大于21MN 的长为半径 画弧,两弧在第二象限交于点P .若点P 的坐标为(2a ,b+1),则a 与b 的数量关系为A. a=bB. 2a+b=﹣1 C .2a ﹣b=1 D .2a+b=19.如图,一次函数与反比例函数的图象相交于A 、B 两点,则图中使反比例函数的值小于一次函数的值的x 的取值范围是A .x <-1B .-1<x <0或x >2C .x >2D .x <-1或0<x <2第4题图 第5题图第6题图第13题图3215122=-+-x xx 第一个“上”字 第二个“上”字 第三个“上”字 10.一个大烧杯中装有一个小烧杯,在小烧杯中放入一个浮子(质量非常轻的空心小圆球)后,再往小烧杯中注水,水流的速度恒定不变,小烧杯被注满后水溢出到大烧杯中,浮子始终保持在容器的正中间。

2014年中考数学模拟试题

2014年中考数学模拟试题

绝密☆启用前试卷类型:A二○一四年枣庄市2014级初中学业考试数 学 模 拟 试 题注意事项:1.本试题分第Ⅰ卷和第Ⅱ卷两部分.第Ⅰ卷为选择题,36分;第Ⅱ卷为非选择题,84分;全卷共6页,满分120分.考试时间为120分钟.2.答卷前,考生务必将自己的姓名、准考证号、考试科目和试卷类型涂写在答题卡上,并把答题纸密封线内的项目填写清楚.3.第Ⅰ卷每小题选出答案后,必须用2B 铅笔把答题卡上对应题目的答案标号(ABCD)涂黑.如需改动,先用橡皮擦干净,再改涂其它答案.4. 第Ⅱ卷必须用黑色(或蓝色)笔填写在答题纸...的指定位置,否则不计分. 第Ⅰ卷 (选择题 共36分)一、选择题:本大题共12小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一 个均计零分. 1.下列计算错误的是A .-(-2)=2 B=.22x +32x =52x D .235()a a = 2.如果a<b<0,下列不等式中错误..的是 A. ab >0 B. a+b<0 C.ba<1 D. a-b<0 3.已知⎩⎨⎧-==11y x 是方程32=-ay x 的一个解, 那么a 的值是(A) 1 (B) 3 (C) -3 (D) -1 4. 下列交通标志是轴对称图形的是A. B. C. D.5.如果三角形的两边分别为3和5,那么连接这个三角形三边中点,所得的三角形的周长可能是A .4B .4.5C .5D .5.56.如图,将三角尺的直角顶点放在直尺的一边上,130250∠=∠=°,°, 则3∠的度数等于A .50°B .30°C .20°D .15°1 23第6题第12题7 A .点PB .点QC .点MD .点N8.如图,四个边长为1的小正方形拼成一个大正方形,A 、B 、O 是小正方形顶点,⊙O 的半径为1,P 是⊙O 上的点,且位于右上方的小正方形内, 则∠APB 等于A .30° B.45° C .60° D .90°9.如图,已知直角三角形ABC 中,斜边AB 的长为m ,40B ∠=,则直角边BC 的长是A .sin 40mB .cos 40mC .tan 40mD .tan 40m10.如图所示,把一长方形纸片沿MN 折叠后,点D ,C 分别落在D ′,C ′的位置.若∠AMD ′=36°,则∠MNF ′等于(A )144° (B )126° (C )108° (D )72°11.如果关于x 的一元二次方程x 2+px +q =0的两根分别为x 1=2,x 2=1,那么p ,q 的值分别是(A )-3,2 (B )3,-2 (C )2,-3 (D )2,3 12.已知二次函数2(0)y ax bx c a =++≠的图象如图所示,则下列结论:0ac >①;②方程20ax bx c ++=的两根之和大于0;y ③随x 的增大而增大;④0a b c -+<,其中正确的个数是 A .4个 B .3个C .2个D .1个第Ⅱ卷 (非选择题 共84分)二、填空题:本大题共6小题,满分24分.只要求填写最后结果,每小题填对得4分.13.有4张背面相同的扑克牌,正面数字分别为2,3,4,5.若将这4张扑克牌背面向上洗匀后,从中任意抽取一张,放回后洗匀,再从中任意抽取一张,这两张扑克牌正面的数字之和是3的倍数的概率是 .14.化简:22x y x y x y ---=________. 15.用一个半径为6,圆心角为120°的扇形围成一个圆锥的侧面,则圆锥的高为 .16.要使式子a有意义,则a 的取值范围为________________. (第9题)CM第10题第8题第7题17.不等式组:⎪⎩⎪⎨⎧<--≤-1213)34(2125x x x 的整数解是 .18.如图,△ABC 中,∠C=900,点D 在AC 上,已知∠BDC=450,BD =210,AB =20,则∠A = .三、解答题:本大题共7小题,满分60分.解答时,要写出必要的文字说明、证明过程或演算步骤. 19.(本题满分6分)如图9,在8×8的正方形网格中,△ABC 的顶点和线段EF 的端点都在边长为1的小正方形的顶点上. (1)填空:∠ABC =___________,BC =___________;(2)请你在图中找出一点D ,再连接DE 、DF ,使以D 、E 、F 为顶点的三角形与△ABC 全等,并加以证明.20.(本题满分8分)根据我市统计局发布的2012年国民经济和社会发展统计公报中相关数据,我市2012年社会消费品销售总额按城乡划分绘制统计图①,2011年与2012年社 会消费品销售总额按行业划分绘制条形统计图②,请根据图中信息解答下列问题:(1)图①中“乡村消费品销售额”的圆心角是 度,乡村消费品销售额为 亿元; (2)2011年到2012年间,批发业、零售业、餐饮住宿业中销售额增长的百分数最大的行业是 . (3)预计2014年我市社会消费品销售总额达到504亿元,求我市2012~2014年社会消费品销售总额的年平均增长率.2011年2012年第18题第19题21.(本题满分10分)在△ABC中,∠BAC=45°,AD⊥BC于D,将△ABD沿AB所在的直线折叠,使点D落在点E处;将△ACD 沿AC所在的直线折叠,使点D落在点F处,分别延长EB、FC使其交于点M.(1)判断四边形AEMF的形状,并给予证明.(2)若BD=1,CD=2,试求四边形AEMF的面积.22.(本题满分8分)一艘轮船向正东方向航行,在A处测得灯塔P在A的北偏东60°方向,航行40海里到达B处,此时测得灯塔P在B的北偏东15°方向上.(1)求灯塔P到轮船航线的距离PD是多少海里?(结果保留根号)(2)当轮船从B处继续向东航行时,一艘快艇从灯塔P处同时前往D处,尽管快艇速度是轮船速度的2倍,但快艇还是比轮船晚15分针到达D处,求轮船每小时航行多少海里?(结果保留到个位,参考数据:1.73 ).AB CD第21题第22题23.(本题满分9分)如图所示.P 是⊙O 外一点.P A 是⊙O 的切线.A 是切点.B 是⊙O 上一点.且P A =PB ,连接AO 、BO 、AB ,并延长BO 与切线P A 相交于点Q . (1)求证:PB 是⊙O 的切线; (2)求证: AQ ·PQ = OQ ·BQ ; (3)设∠AOQ =α.若cos α=45.OQ = 15.求AB 的长24.(本题满分9分)如图,在平面直角坐标系中,O 是坐标原点,点A 的坐标为(-4,0),点B 的坐标为(0,b )(b >0). P 是直线AB 上的一个动点,作PC ⊥x 轴,垂足为C .记点P 关于y 轴的对称点为P '(点P '不在y 轴上),连结PP ',P 'A ,P'C .设点P 的横坐标为a . (1)当b =3时, ①求直线AB 的解析式; ②若点P'的坐标是(-1,m ),求m 的值;(2)若点P 在第一象限,记直线AB 与P'C 的交点为D . 当P'D :DC =1:3时,求a 的值;_ P _ B 第23题25.(本题满分10分)在平面直角坐标系中,已知抛物线经过A(4,0),B(0,一4),C(2,0)三点.(1)求抛物线的解析式;(2)若点M为第三象限内抛物线上一动点,点M的横坐标为m,△AMB的面积为S.求S关于m的函数关系式,并求出S的最大值;(3)若点P是抛物线上的动点,点Q是直线y=-x上的动点,判断有几个位置能使以点P、Q、B、0为顶点的四边形为平行四边形,直接写出相应的点Q的坐标.绝密☆启用前二○一四年枣庄市2011级初中学业模拟考试数学参考答案及评分意见评卷说明:1.选择题和填空题中的每小题,只有满分和零分两个评分档,不给中间分.2.解答题每小题的解答中所对应的分数,是指考生正确解答到该步所应得的累计分数.本答案中每小题只给出一种解法,考生的其他解法,请参照评分意见进行评分.3.如果考生在解答的中间过程出现计算..错误,但并没有改变试题的实质和难度,其后续部分酌情给分,但最多不超过正确解答分数的一半,若出现较严重的逻辑错误,后续部分不给分.一、选择题:(本大题共12小题,每小题3分,共36分)二、填空题:(本大题共6小题,每小题4分,共24分)13.165 ; 14.x+y ; 15.24 ; 16.a ≥ -2且a ≠0; 17.-1、0 ; 18.30°三、解答题:(本大题共7小题,共60分) 19. (本题满分6分)(1)135ABC ∠=°,BC = ····················································· 2分(2)(说明:D 的位置有四处,分别是图中的1234D D D D 、、、.此处画出D 在1D 处的位置及证明,D 在其余位置的画法及证明参照此法给分)解:EFD △的位置如图所示. ··················································· 3分证明:FD BC == ··························································· 4分9045135EFD ABC ∠=∠==°+ ···················································································· 5分 2EF AB ==EFD ABC ∴△≌△ ·············································································································· 6分20.(本题满分8分)(1)72,70 (2)批发业(3)设2011~2013年社会消费品销售总额的年平均增长率为x , 据题意得:()50413502=+x()44.112=+x2.01=x 2.22-=x (舍去) 答:2011~2013年平均增长率20% 21. (本题满分10分) 解:(1)∵AD ⊥BC△AEB 是由△ADB 折叠所得 ∴∠1=∠3,∠E=∠ADB=090,BE=BD, AE=AD又∵△AFC 是由△ADC 折叠所得∴∠2=∠4,∠F=∠ADC=090,FC=CD ,AF=AD ∴AE=AF---------------------------------------------2分 又∵∠1+∠2=045,4321MFEDCBA∴∠3+∠4=045∴∠EAF=090--------------------------------------3分∴四边形AEMF 是正方形。

2024年上海市田家炳中学特色课程班中考第十四次模拟数学试题

2024年上海市田家炳中学特色课程班中考第十四次模拟数学试题

2024年上海市田家炳中学特色课程班中考第十四次模拟数学试题一、单选题1.北京冬奥会和冬残奥会赛会志愿者招募工作进展顺利,截止2020年底,赛会志愿者申请人数已突破960000人.将960000用科学记数法表示为( ) A .49610⨯B .49.610⨯C .59.610⨯D .69.610⨯2.不等式组24010x x +>⎧⎨-≤⎩的解集在数轴上表示正确的是( )A .B .C .D .3.“母亲节”前夕,某商店根据市场调查,用3000元购进一批盒装花,上市后很快售完,接着又用5000元购进第二批这种盒装花.已知第二批所购花的盒数是第一批所购花的盒数的2倍,且每盒花的进价比第一批的进价少5元.设第一批盒装花每盒x 元,可列方程为( ) A .3000500025x x =⨯+ B .3000500025x x ⨯=+ C .3000500025x x =⨯- D .3000500025x x ⨯=- 4.如图,在矩形ABCD 中,12,9AB BC ==,顺次连结各边中点得到菱形1111D C B A ,再顺次连接菱形1111D C B A 各边中点,得到矩形2222A B C D ,再顺次连接矩形2222A B C D 各边中点,得到菱形33333,A B B C D ⋯,如此下去,四边形20242024202420242024A A B C D 的面积等于( )A .2024272 B .272023C .2022272 D .2720215.甲、乙两个质点分别在两个并排直轨道上运动,其速度随时间的变化规律分别如图中a 、b 所示,图线a 是直线,图线b 是抛物线,30t -时间内图线a 、b 与横轴围成的面积相等,抛物线顶点的横坐标为2t ,下列说法正确的是( )A .30t -时间内甲、乙的位移大小不相等B .20t -时间内甲、乙的位移大小之比为3:2C .10t -时间内乙的平均速度大于甲的平均速度D .20t -时间内甲的加速度一直小于乙的加速度6.对于整式222323521,,x x x x ++---+,在每个式子整体前添加“+”或“-”,先求和再求和的绝对值,称这种操作为“和绝对”操作,并将操作结果记为Q ,例如()()22232352168Q x x x x x =++---+-+=+,下列相关说法正确的个数是( )①至少存在一种“和绝对”操作,使得操作后的化简结果为常数;②若有一种“和绝对”操作Q 的化简结果为24x k -+(k 为常数),则1x ≤-或1x >; ③在所有的“和绝对”操作中,将每次操作化简结果的最小值记为M ,则M 的最大值为154. A .0B .1C .2D .3二、填空题7.计算)22= .8.正十边形的中心角的余弦值为 9.若关于x 的分式方程4733m x x x-+=-- 有增根,则m 的值为 . 10.从1~10个数字任抽取2个,乘积为奇数的概率为11.如图,在梯形ABCD 中,AD BC ∥,AC 与BD 相交于点O ,如果32BC AD =::,那么ADC ABC S S :△△的值为____________.12.将两个完全相同的菱形按如图方式放置,点D 在边BF 上,BG 与CD 相交于点E ,若,BAD CBE αβ∠=∠=,则α,β的等量关系式为.13.如图,在Rt ACB V 中,90ACB ∠=︒,D ,E ,F 分别为AB ,AC ,AD 的中点,若14AB =,则EF =.14.如图1是一款可升降篮球架,支架AB ,CE ,GF 的长度固定,A ,D ,G 为立柱AH 上的点,AH ⊥地面,篮板BC ⊥地面,GF AH ⊥,0.6AD BC ==米, 2.3DH =米,若改变伸缩臂FF 的长度,则AB ,CD 可绕点A ,D 旋转来调整篮筐的高低.如图2,当60GDE ∠=︒时,可测得篮筐的固定点C 距离地面为2.9米,则支架CD 的长为米.降低篮筐高度如图3,连结BF 交CD 于点O ,BF 平分ABC ∠,2AB OB =,此时篮筐的固定点C 离地面的距离为米.15.如图,边长为6的正方形ABCD中,M为对角线BD上的一点,连接AM并延长交CD于点P.若PM PC=,则AM的长为.16.如图,在矩形ABCO的顶点A,C分别在x轴,y轴的正半轴上,D,E为BC的三等分点,作矩形BEFG使点G落在AB上,反比例函数kyx=(0x>)的图象同时经过点D,F.若矩形BEFG的面积为3,则k的值为.17.如图,点A,B,C在圆上,若弦AB则ACB∠的度数是.18.如图1两张等宽的矩形纸片,矩形纸片EFGH不动,将矩形纸片ABCD按如图2方式缠绕:先将点B与点重合,再依次沿FG、H对折,点A、C所在的相邻两边不重叠、无空隙,最后AD边刚好经过点G .若8AD =,5EH =,则GD 长为三、解答题19.已知2360x x --=,先化简:2113x x x x+--+,再求它的值 20.若实数a b c ,,满足a b c b c a a c b c a b +-+-+-==,求()()()a b b c a c abc+⋅+⋅+的值.21.在如图所示的平面直角坐标系中,有一斜坡OA ,从点O 处抛出一个小球,落到点33,2A ⎛⎫⎪⎝⎭处.小球在空中所经过的路线是抛物线2y x bx =-+的一部分.(1)求抛物线的解析式; (2)求抛物线最高点的坐标;(3)斜坡上点B 处有一棵树,点B 是OA 的三等分点,小球恰好越过树的顶端C ,求这棵树的高度.22.某电子屏上下边缘距离为9cm ,点P 在电子屏上的运动路线如图中虚线所示,当运动至点M 时达到最高点,此时距左边缘2cm ,之后的运动时间为s t ,点P 是下落过程中某位置:水平方向继续以速度cm/s v 向右运动,竖直方向与电子屏上边缘距离为cm d ,d 由两部分组成:1d 为常数,2d 与t 的平方成正比,且有表格中的数据.(1)用含t 的代数式表示d ,直接写出最高点M 的坐标;(2)若2v =,用t (2t >)分别表示点P 的横坐标x 、纵坐标y ,求y 与x 之间的关系式; (3)甲、乙两点从左边缘不同位置出发,均能达到最高点M ,若乙点比甲先出发ms ,2v =甲,1v =乙,在两点下落过程中,若某时刻甲恰好处于乙正上方,且距离不小于1.2cm ,直接写出m 的最小值.23.在边长为10的菱形ABCD 中,对角线AC BD 、相交于点O . 过点O 作直线EF 分别交DA BC 、的延长线于点E F 、,连接BE DF 、.(1)判断四边形EBFD 的形状,并说明理由; (2)若EF CD ⊥于H ,求证:2OC CH BC =⋅ (3)若EF CD ⊥于H ,:1:4CH DH =,求OH 的长度.24.在Rt ABC △中,90BAC ∠=︒, 点P 在线段BC 上,12BPD ACB ∠=∠,PD 交BA 于点D ,过点B 作BE PD ⊥,垂足为E ,交CA 的延长线于点F .(1)如果45ACB ∠=︒,①如图1当点P 与点C 重合时,求证: 12BE PD =; ②如图2,当点P 在线段BC 上,且不与点B 、点C 重合时,问: ①中的“12BE PD =”仍成立吗请说明你的理由;(2)如果45ACB ∠≠︒,如图11,已知·AB n AC = (n 为常数),当点P 在线段BC 上,BE 且不与点B 、点C 重合时,请探究BEPD的值(用含n 的式子表示),并写出你的探究过程. 25.已知,AB 为O e 的直径,BCD △内接于O e ,CD 交AB 于点E ,BC BE =.(1)设:tan ABD ∠为x ,cot ABC ∠为y ,求:y 关于x 的函数解析式及其定义域;(2)如图2,点F 在弧AC 上,连接AD ,AF ,DF ,45ADF ∠=︒,点G 在DF 上,连接BG ,若CDF ∠=ABG ∠,求:AFBG的值; (3)如图3,在(2)的条件下,点H 在弧AF 上,连接AH ,BH ,BH 分别交AF ,DF 于K ,Q 两点,AH HQ BK +=,若FQ OB =,11OE =,若DG 为OB 和m 的比例中项,求m 的值.。

2014年九年级第二次中考模拟考试数学试题

2014年九年级第二次中考模拟考试数学试题

①ABE②J ③(第8题)2014届九年级第二次中考模拟考试数学试题(全卷满分150分.考试时间120分钟)一、选择题(本大题共10小题,每小题3分,共计30分,在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确的选项的字母代号填涂在答题卡相应位置上) 1.16的平方根是( ▲ ).A .-4B .4C . ±4 D.±42.南海是我国固有领海,它的面积约为360万平方千米,360万用科学记数法可表示为( ▲ ).A .3.6³102B .360³104C .3.6³104D .3.6³1063.计算(-ab 2)3的结果是( ▲ ).A .ab 6B .-ab 6C .a 3b 6D .-a 3b 64. 一个长方体的主视图和左视图如图所示(单位:cm ),则其俯视图 的面积是( ▲ )cm 2.A .12B .8C .6D .165. 已知3是关于x 的方程x 2-5x +c =0的一个根,则这个方程的另一个根是( ▲ ) .A .-2B .2C .-5D .6 6.不等式组221x x -⎧⎨-<⎩≤的整数解共有( ▲ ) .A .3个B .4个C .5个D .6个 7.已知二次函数y =ax 2+bx +c 的图象如图所示,则下列结论:①c =2;②b 2-4ac >0;③2a +b =0; ④a +b +c <0.其中正确的为( ▲ ). A .①②③ B .①②④ C .①② D .③④8.如图,图①、图②、图③分别表示甲、乙、丙三人由A 地到B 地的路线图(箭头表示行进的方向) .其中E 为AB 的中点,AJ >JB .判断三人行进路线长度的大小关系为(第4题)A .甲<乙<丙B .乙<丙<甲C .丙<乙<甲D .甲=乙=丙9.如图,点P 在y 轴正半轴上运动,点C 在x 轴上运动,过点P 且平行于x 轴的直线分别交函数4y x =-和2y x =于A 、B 两点,则三角形ABC 的面积等于( ▲ ) . A .3B .4C .5D .610.如图,从边长为a 的大正方形纸板中挖去一个边长为b 的小正方形后,将其裁成四个相同的等腰梯形(如图甲),然后拼成 一个平行四边形(如图乙).那么通过计算两个图形阴影部分的 面积,可以验证成立的公式为( ▲ ) . A .222)(b a b a -=- B .2222)(b ab a b a ++=+ C .2222)(b ab a b a +-=-D .))((22b a b a b a -+=- (第10题)二、填空题(本大题共8小题,每小题3分,共计24分.不需写出解答过程,请把答案直接填写在答题卡相应位置.......上) 11.实验初中初三年级22个班中,共有团员a 人,则实验初中初三平均每班的团员数是 ▲ .12x 的取值范围是 ▲ . 13.分解因式a 3-2a 2+a = ▲ .14.如图,已知点A (1,2)在反比例函数y =k x的图象上,观察图象可知,当x >1时, y的取值范围是 ▲ .(第9题)(第15题)´(第16题)GF CBA DE15.如图,将正五边形ABCDE的C点固定,并依顺时针方向旋转,若要使得新五边形A´B´C´D´E´的顶点D´落在直线BC上,则至少要旋转▲ °.16.如图,在等腰梯形ABCD中,AE是梯形的高,将△ABE沿BC方向平移,使点A与点D 重合,得△DFG.若∠B=60°,当四边形ABFD是菱形时,ABBC的值为▲ .17.如图,以BC为直径的⊙O与△ABC的另两边分别相交于点D、E.若∠A=70°,BC=2,(2)小刚在最近的一次数学测试中考了93分,从而使本学期之前所有的数学测试平均分由73分提高到78分,他要想在下次考试中把本学期平均分提高到80分以上(包含80分),下次考试他至少要考▲ 分.三、解答题(本大题共10小题,共96分,请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)19.(1)(6分)计算(212-13)⨯6.(2)(6分)已知x=2011,y=2012,求222254x xy yx xy++-÷54x yx y+-+2x yx-的值.20.(6分)解方程x2x-1+111-2x=2.21.(8分)甲、乙两人玩一个转盘游戏.准备如图三个可以自由转动的转盘,甲转动转盘,乙记录指针停下时所指的数字.游戏规定,转动全部三个转盘,指针停下后,三个数字中有数字相同时,就算甲赢,否则就算乙赢.请判断这个游戏是否公平?说明你的理由.(第21题)22.(8分) 安定广场南侧地上有两个大理石球,喜爱数学的小明想测量球的半径,于是找了两块厚10cm 的砖塞在球的两侧(如图所示),他量了下两砖之间的距离刚好是60cm ,请你算出这个大理石球的半径。

中考仿真模拟测试《数学试题》含答案解析

中考仿真模拟测试《数学试题》含答案解析

数学中考综合模拟检测试题学校________ 班级________ 姓名________ 成绩________一.选择题(共10小题)1.20160的值为( )A. 0B. 1C. 2016D. ﹣20162.如图是一个正方体被截去两个角后的几何体,它的俯视图为( )A. B. C. D.3. 如图,已知AB∥CD,∠DFE=135°,则∠ABE的度数为【】A. 30B. 45C. 60D. 904. 若一个正比例函数的图象经过A(3,﹣6),B(m,﹣4)两点,则m的值为( )A. 2B. 8C. ﹣2D. ﹣85.下列计算结果正确的是( )A. 6x6÷2x3=3x2B. x2+x2=x4C. ﹣2x2y(x﹣y)=﹣2x3y+2x2y2D. (﹣3xy2)3=﹣9x3y66.如图,在△ABC中,∠B=30°,∠C=45°,AD平分∠BAC交BC于点D,DE⊥AB,垂足为E.若DE=1,则BC的长为()A. 2+2B.23+C.32+D. 37.将直线21y x =+向下平移个单位长度得到新直线21y x =-,则的值为( ) A.B.C.D.8.如图,矩形ABCD 中,AB 3=,BC 4=,EB//DF 且BE 与DF 之间的距离为3,则AE 的长是( )A.7B.38C.78D.589.如图,已知o OBA 20∠=,且OC=AC 则∠BOC 的度数是( )A. 70°B. 80°C. 40°D. 60°10.已知二次函数的与的部分对应值如下表:-1 0 1 3 -3131下列结论:①抛物线开口向下;②其图象的对称轴为;③当时,函数值随的增大而增大;④方程有一个根大于4.其中正确的结论有( )A. 1个B. 2个C. 3个D. 4个二.填空题(共4小题)11.在实数117,-(-1),3π, 1.21,313113113,5中,无理数有______个.12.若正六边形的边长为3,则其面积为_____.13.如图,在平面直角坐标系xOy中,四边形ODEF和四边形ABCD都是正方形,点F在x轴的正半轴上,点C在边DE上,反比例函数kyx=(k≠0,x>0)的图象过点B,E,若AB=2,则k的值为________.14.如图,已知正方形ABCD的边长为8,点E是正方形内部一点,连接BE,CE,且∠ABE=∠BCE,点P 是AB边上一动点,连接PD,PE,则PD+PE的长度最小值为_____.三.解答题(共11小题)15.先化简,再求值:22211111a aa a a⎛⎫-++÷⎪-+⎝⎭,其中2a=.16.计算:8﹣(12)﹣1﹣|21-|17.如图,已知线段AB.(1)仅用没有刻度直尺和圆规作一个以AB为腰、底角等于30°的等腰△ABC.(保留作图痕迹,不要求写作法)(2)在(1)的前提下,若AB=2cm,则等腰△ABC的外接圆的半径为cm.18.如图,在Rt△ABC中,∠ACB=90°,CD是AB边上的中线,过点B作BE∥CD,过点C作CE∥AB,BE,CE相交于点E.求证:四边形BDCE是菱形.19.阅读对人成长的影响是巨大的,一本好书往往能改变人的一生,每年的4月23日被联合国教科文组织确定为”世界读书日”.蓝天中学为了解八年级学生本学期的课外阅读情况,随机抽查部分学生对其课外阅读量进行统计分析,绘制成两幅不完整的统计图.根据图示信息,解答下列问题:(1)求被抽查学生人数,课外阅读量的众数,扇形统计图中m的值;并将条形统计图补充完整;(2)若规定:本学期阅读3本以上(含3本)课外书籍者为完成目标,据此估计该校600名学生中能完成此目标的有多少人?20.数学实践小组想利用镜子的反射测量池塘边一棵树的高度AB.测量和计算的部分步骤如下:①如图,树与地面垂直,在地面上的点C处放置一块镜子,小明站在BC的延长线上,当小明在镜子中刚好看到树的顶点A时,测得小明到镜子的距离CD=2米,小明的眼睛E到地面的距离ED=1.5米;②将镜子从点C沿BC的延长线向后移动10米到点F处,小明向后移动到点H处时,小明的眼睛G又刚好在镜子中看到树的顶点A,这时测得小明到镜子的距离FH=3米;③计算树的高度AB;21.我们知道,海拔高度每上升1千米,温度下降6℃.某时刻,吉首市地面温度为20℃,设高出地面x千米处的温度为y℃.(1)写出y与x之间的函数关系式;(2)已知吉首市区最高峰莲台山高出地面约965米,这时山顶的温度大约是多少℃?(3)此刻,有一架飞机飞过吉首市上空,若机舱内仪表显示飞机外面的温度为﹣34℃,求飞机离地面的高度为多少千米?22.四张卡片,除一面分别写有数字2,2,3,6外,其余均相同,将卡片洗匀后,写有数字一面朝下扣在桌面上,随机抽取一张卡片记下数字后放回,洗匀后仍将写有数字的一面朝下扣在桌面上,再抽取一张. (1)用列表或画树状图的方法求两次都恰好抽到2的概率;(2)小贝和小晶以此为游戏,游戏规则是:第一次抽取的数字作为十位,第二次抽取的数字作为个位,组成一个两位数,若组成的两位数不小于32,小贝获胜,否则小晶获胜.你认为这个游戏公平吗?请说明理由. 23.如图,AB 是⊙O 的直径,点C 、E 在⊙O 上,∠B =2∠ACE ,在BA 的延长线上有一点P ,使得∠P =∠BAC ,弦CE 交AB 于点F ,连接AE .(1)求证:PE 是⊙O 切线;(2)若AF =2,AE =EF =10,求OA 的长.24.在平面直角坐标系中,抛物线()2y ax bx c a 0=++≠与轴的两个交点分别为A(-3,0)、B(1,0),与y轴交于点D(0,3),过顶点C 作CH⊥x 轴于点H. (1)求抛物线的解析式和顶点C 的坐标;(2)连结AD 、CD ,若点E 为抛物线上一动点(点E 与顶点C 不重合),当△ADE 与△ACD 面积相等时,求点E 的坐标;(3)若点P 为抛物线上一动点(点P 与顶点C 不重合),过点P 向CD 所在的直线作垂线,垂足为点Q ,以P 、C 、Q 为顶点的三角形与△ACH 相似时,求点P 的坐标.25.问题提出(1)如图①,在矩形ABCD 中,AB=2AD ,E 为CD 的中点,则∠AEB ∠ACB (填”>”“<”“=“); 问题探究(2)如图②,在正方形ABCD中,P为CD边上的一个动点,当点P位于何处时,∠APB最大?并说明理由;问题解决(3)如图③,在一幢大楼AD上装有一块矩形广告牌,其侧面上、下边沿相距6米(即AB=6米),下边沿到地面距离BD=11.6米.如果小刚的睛睛距离地面的高度EF为1.6米,他从远处正对广告牌走近时,在P处看广告效果最好(视角最大),请你在图③中找到点P的位置,并计算此时小刚与大楼AD之间的距离.答案与解析一.选择题(共10小题)1.20160的值为( )A. 0B. 1C. 2016D. ﹣2016 【答案】B【解析】【分析】根据零次幂直接回答即可.【详解】解:20160=1.故选:B.【点睛】本题是对零次幂的考查,熟练掌握零次幂知识是解决本题的关键.2.如图是一个正方体被截去两个角后的几何体,它的俯视图为( )A. B. C. D.【答案】A【解析】【分析】找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中.【详解】解:它的俯视图为.故选A.点睛:本题考查了三视图的知识,俯视图是从物体的上面看得到的视图.3. 如图,已知AB∥CD,∠DFE=135°,则∠ABE的度数为【】A. 30B. 45C. 60D. 90【答案】B【解析】∵∠DFE=135°,∴∠CFE=180°-135°=45°.∵AB∥CD,∴∠ABE=∠CFE=45°.故选B.4. 若一个正比例函数的图象经过A(3,﹣6),B(m,﹣4)两点,则m的值为( )A. 2B. 8C. ﹣2D. ﹣8【答案】A【解析】试题分析:设正比例函数解析式为:y=kx,将点A(3,﹣6)代入可得:3k=﹣6,解得:k=﹣2,∴函数解析式为:y=﹣2x,将B(m,﹣4)代入可得:﹣2m=﹣4,解得m=2,故选A.考点:一次函数图象上点的坐标特征.5.下列计算结果正确的是( )A. 6x6÷2x3=3x2B. x2+x2=x4C. ﹣2x2y(x﹣y)=﹣2x3y+2x2y2D. (﹣3xy2)3=﹣9x3y6【答案】C【解析】【分析】根据整式运算依次判断即可.【详解】解:A、6x6÷2x3=3x3,故选项A错误;B、x2+x2=2x2,故选项B错误;C、﹣2x2y(x﹣y)=﹣2x3y+2x2y2,故选项C正确;D、(﹣3xy2)3=﹣27x3y6,故选项D错误;故选:C.【点睛】本题是对整式乘除的考查,熟练掌握积的乘方,单项式乘多项式及单项式除以单项式运算是解决本题的关键.6.如图,在△ABC中,∠B=30°,∠C=45°,AD平分∠BAC交BC于点D,DE⊥AB,垂足为E.若DE=1,则BC的长为()A. 2+2B.23+C.32+D. 3【答案】A 【解析】 【分析】如图,过点D 作DF ⊥AC 于F ,由角平分线的性质可得DF=DE=1,在Rt △BED 中,根据30度角所对直角边等于斜边一半可得BD 长,在Rt △CDF 中,由∠C=45°,可知△CDF 为等腰直角三角形,利用勾股定理可求得CD 的长,继而由BC=BD+CD 即可求得答案. 【详解】如图,过点D 作DF ⊥AC 于F ,∵AD 为∠BAC 的平分线,且DE ⊥AB 于E ,DF ⊥AC 于F , ∴DF=DE=1,在Rt △BED 中,∠B=30°, ∴BD=2DE=2,在Rt △CDF 中,∠C=45°, ∴△CDF 为等腰直角三角形, ∴CF=DF=1,∴22DF CF +2, ∴BC=BD+CD=22+, 故选A.【点睛】本题考查了角平分线的性质,含30度角的直角三角形的性质,勾股定理等知识,正确添加辅助线,熟练掌握和灵活运用相关知识是解题的关键.7.将直线21y x =+向下平移个单位长度得到新直线21y x =-,则的值为( ) A.B.C.D.【答案】D 【解析】 【分析】直接根据”上加下减”的原则进行解答即可.【详解】解:由”上加下减”的原则可知:直线y=2x+1向下平移n 个单位长度,得到新的直线的解析式是y=2x+1-n ,则1-n=-1, 解得n=2. 故选D .【点睛】本题考查的是一次函数的图象与几何变换,熟知函数图象平移的法则是解答此题的关键. 8.如图,矩形ABCD 中,AB 3=,BC 4=,EB//DF 且BE 与DF 之间的距离为3,则AE 的长是( )A. 7B.38C.78D.58【答案】C 【解析】 【分析】如图,过点D 作DG BE ⊥,垂足为G ,则GD 3=,首先证明AEB ≌GED ,由全等三角形的性质可得到AE EG =,设AE EG x ==,则ED 4x =-,在Rt DEG 中依据勾股定理列方程求解即可. 【详解】如图所示:过点D 作DG BE ⊥,垂足为G ,则GD 3=,A G ∠∠=,AEB GED ∠∠=,AB GD 3==,AEB ∴≌GED ,AE EG ∴=,设AE EG x ==,则ED 4x =-,在Rt DEG 中,222ED GE GD =+,222x 3(4x)+=-,解得:7x 8=, 故选C .【点睛】本题考查了矩形的性质、勾股定理的应用、全等三角形的判定与性质,依据题意列出关于x 的方程是解题的关键.9.如图,已知o OBA 20∠=,且OC=AC 则∠BOC 的度数是( )A. 70°B. 80°C. 40°D. 60°【答案】B 【解析】 【分析】先根据等腰三角形得出OAB ∠的度数,再证的AOC ∆是等边三角形,最后根据圆周角定理求解即可. 【详解】连接OA ,∵o OBA 20∠=,OB OA = ∴o OAB=OBA 20∠∠= ∵AC OC =且OC OA = ∴AOC ∆是等边三角形 ∴6OA 0C ∠=︒∴BA OA OAB 60204=0C C =-︒-∠︒=∠∠︒ ∴=2=80BOC BAC ∠∠︒ 故选B.【点睛】本题主要考查了等腰三角形的性质,等边三角形的判定及性质,圆周角定理,正确作出辅助线证出AOC ∆是等边三角形是解本题的关键.10.已知二次函数的与的部分对应值如下表:-1 0 1 3-3 1 3 1下列结论:①抛物线的开口向下;②其图象的对称轴为;③当时,函数值随的增大而增大;④方程有一个根大于4.其中正确的结论有( )A. 1个B. 2个C. 3个D. 4个【答案】B【解析】【详解】解:根据二次函数的图象具有对称性,由表格可知,二次函数y=ax2+bx+c有最大值,当x=033 22 +=时,取得最大值,可知抛物线的开口向下,故①正确;其图象的对称轴是直线x=32,故②错误;当x>32时,y随x的增大而减小,当x<32时,y随x的增大而增大,故③正确;根据x=0时,y=1,x=﹣1时,y=﹣3,方程ax2+bx+c=0的一个根大于﹣1,小于0,则方程的另一个根大于2×32=3,小于3+1=4,故④错误.故选B.考点:1、抛物线与x轴的交点;2、二次函数的性质二.填空题(共4小题)11.在实数117,-(-1),3π1.21,3131131135中,无理数有______个.【答案】2【解析】【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【详解】在所列实数中,无理数有π3,5这2个,故答案为2.【点睛】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.12.若正六边形的边长为3,则其面积为_____.【答案】273 2【解析】【分析】根据题意画出图形,由正六边形的特点求出∠AOB的度数及OG的长,再由△OAB的面积即可求解.【详解】解:∵此多边形为正六边形,如图:∴∠AOB=3606︒=60°;∵OA=OB,∴△OAB是等边三角形,∴OA=AB=3,∴OG=OA•cos30°=3×3332∴S△OAB=12×AB×OG=12×3×332934∴S六边形=6S△OAB=6×9342732.2732;【点睛】此题主要考查正多边形的计算问题,关键是由正六边形的特点求出∠AOB的度数及OG的长.13.如图,在平面直角坐标系xOy中,四边形ODEF和四边形ABCD都是正方形,点F在x轴的正半轴上,点C在边DE上,反比例函数kyx=(k≠0,x>0)的图象过点B,E,若AB=2,则k的值为________.【答案】6+25【解析】详解】解:设E(x,x),∴B(2,x+2),∵反比例函数kyx=(k≠0,x>0)的图象过点B. E.∴x2=2(x+2),115x∴=+,215x=-(舍去),()2215625k x∴==+=+,故答案为625+14.如图,已知正方形ABCD的边长为8,点E是正方形内部一点,连接BE,CE,且∠ABE=∠BCE,点P 是AB边上一动点,连接PD,PE,则PD+PE的长度最小值为_____.【答案】134.【解析】【分析】根据正方形的性质得到∠ABC=90°,推出∠BEC=90°,得到点E在以BC为直径的半圆上移动,如图,设BC的中点为O,作正方形ABCD关于直线AB对称的正方形AFGB,则点D的对应点是F,连接FO交AB于P,交⊙O于E,则线段EF的长即为PD+PE的长度最小值,根据勾股定理即可得到结论.【详解】解:∵四边形ABCD是正方形,∴∠ABC=90°,∴∠ABE+∠CBE=90°,∵∠ABE=∠BCE,∴∠BCE+∠CBE=90°,∴∠BEC=90°,∴点E在以BC为直径的半圆上移动,如图,设BC的中点为O,作正方形ABCD关于直线AB对称的正方形AFGB,则点D的对应点是F,连接FO交AB于P,交半圆O于E,则线段EF的长即为PD+PE的长度最小值,OE=4,∵∠G=90°,FG=BG=AB=8,∴OG=12,∴OF=22F0G G+=413,∴EF=413﹣4,∴PD+PE的长度最小值为413﹣4,故答案为:413﹣4.【点睛】本题考查了正方形的性质和勾股定理,构直角三角形是解题的关键.三.解答题(共11小题)15.先化简,再求值:22211111a aa a a⎛⎫-++÷⎪-+⎝⎭,其中2a=【答案】21aa+,322【解析】【分析】先对括号内第一项因式分解同时将除法化为乘法,然后利用乘法分配律进行计算,再把结果相加,最后把a 的值代入计算即可.【详解】原式=2(1)1()(1) (1)(1)aaa a a-++ +-=11aaa+ -+=21aa+,当2a=时,原式=2(2)12+=322.16.计算:8﹣(12)﹣1﹣|21-|【答案】2﹣1【解析】【分析】先化简二次根式和绝对值,计算负整数幂,然后再计算得出结果即可.【详解】解:原式=22﹣2﹣(2﹣1)=22﹣2﹣2+1=2﹣1.【点睛】本题是对实数运算的考查,熟练掌握二次根式化简及负整数幂运算是解决本题的关键.17.如图,已知线段AB.(1)仅用没有刻度的直尺和圆规作一个以AB为腰、底角等于30°的等腰△ABC.(保留作图痕迹,不要求写作法)(2)在(1)的前提下,若AB=2cm,则等腰△ABC的外接圆的半径为cm.【答案】(1)见解析;(2)2.【解析】【分析】(1)以AB为边作等边三角形DAB,再以DB为边作等边三角形DBC,然后连接AC,则△ABC满足条件;(2)利用△ABD为等边三角形可确定等腰△ABC的外接圆的半径.【详解】解:(1)如图:△ABC为所求;(2)∵△ABD和△BCD为等边三角形,∴DA=DB=DC=AB,∴等腰△ABC的外接圆的半径为2,故答案2.点睛:本题考查了作图-复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了圆周角定理.18.如图,在Rt△ABC中,∠ACB=90°,CD是AB边上的中线,过点B作BE∥CD,过点C作CE∥AB,BE,CE相交于点E.求证:四边形BDCE是菱形.【答案】见解析【解析】【分析】先证四边形BDCE是平行四边形,再证CD=BD,即可证明是菱形.【详解】证明:∵BE∥CD,CE∥AB,∴四边形BDCE是平行四边形,∵∠ACB=90°,CD是AB边上的中线,∴CD=BD,∴平行四边形BDCE是菱形.【点睛】本题是对菱形判定的考查,熟练掌握菱形的判定是解决本题的关键.19.阅读对人成长的影响是巨大的,一本好书往往能改变人的一生,每年的4月23日被联合国教科文组织确定为”世界读书日”.蓝天中学为了解八年级学生本学期的课外阅读情况,随机抽查部分学生对其课外阅读量进行统计分析,绘制成两幅不完整的统计图.根据图示信息,解答下列问题:(1)求被抽查学生人数,课外阅读量的众数,扇形统计图中m的值;并将条形统计图补充完整;(2)若规定:本学期阅读3本以上(含3本)课外书籍者为完成目标,据此估计该校600名学生中能完成此目标的有多少人?【答案】(1)详见解析;(2)432.【解析】【分析】(1)由阅读量为2本的人数及其百分比求得总人数,总人数剑气其他阅读数量的人数求得3本的人数,继而用阅读3本的人数除以总人数可得m的值;(2)用总人数乘以样本中阅读数量为3、4、5本人数所占的比例即可得.【详解】解:(1)被调查的学生人数为10÷20%=50人,阅读3本的人数为50﹣(4+10+14+6)=16,所以课外阅读量的众数是3本,则m%=1650×100%=32%,即m=32,补全图形如下:(2)估计该校600名学生中能完成此目标的有600×1614650++=432(人).【点睛】此题考查了条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.20.数学实践小组想利用镜子的反射测量池塘边一棵树的高度AB.测量和计算的部分步骤如下:①如图,树与地面垂直,在地面上的点C 处放置一块镜子,小明站在BC 的延长线上,当小明在镜子中刚好看到树的顶点A 时,测得小明到镜子的距离CD =2米,小明的眼睛E 到地面的距离ED =1.5米; ②将镜子从点C 沿BC 的延长线向后移动10米到点F 处,小明向后移动到点H 处时,小明的眼睛G 又刚好在镜子中看到树的顶点A ,这时测得小明到镜子的距离FH =3米; ③计算树高度AB ;【答案】树的高度AB 为15米 【解析】 【分析】设AB =x 米,BC =y 米,先证△ABC ∽△EDC ,得到1.52x y =,再证△ABF ∽△GHF ,得到101.53x y +=,从而求出x 的值即可.【详解】解:设AB =x 米,BC =y 米, ∵∠ABC =∠EDC =90°,∠ACB =∠ECD , ∴△ABC ∽△EDC ,∴AB BCED DC =, ∴1.52x y =, ∵∠ABF =∠GHF =90°,∠AFB =∠GFH , ∴△ABF ∽△GHF ,∴AB BFGH HF =, ∴101.53x y +=, ∴1023y y +=, 解得:y =20, 把y =20代入1.52x y =中得201.52x =, 解得x =15,∴树的高度AB 为15米.【点睛】本题是对相似三角形的综合考查,熟练掌握相似三角形判定及相似比是解决本题的关键.21.我们知道,海拔高度每上升1千米,温度下降6℃.某时刻,吉首市地面温度为20℃,设高出地面x千米处的温度为y℃.(1)写出y与x之间的函数关系式;(2)已知吉首市区最高峰莲台山高出地面约965米,这时山顶的温度大约是多少℃?(3)此刻,有一架飞机飞过吉首市上空,若机舱内仪表显示飞机外面的温度为﹣34℃,求飞机离地面的高度为多少千米?【答案】(1)y=20﹣6x(x>0);(2)这时山顶的温度大约是14.21℃;(3)飞机离地面的高度为9千米【解析】【分析】(1)根据等量关系:高出地面x千米处的温度=地面温度-6℃×高出地面的距离,列出函数关系式;(2)把给出的自变量高出地面的距离0.965km代入一次函数求得;(3)把给出的函数值高出地面x千米处的温度-34℃代入一次函数求得x.【详解】解:(1)由题意得,y与x之间的函数关系式y=20﹣6x(x>0);(2)由题意得,x=0.965km,∴y=20﹣6×0.965=14.21(℃),则这时山顶温度大约是14.21℃;(3)由题意得,y=﹣34℃时,代入y=20﹣6x得,﹣34=20﹣6x,解得x=9km,答:飞机离地面的高度为9千米.【点睛】本题考查了一次函数的应用,比较简单,读懂题目信息,理解随着高度的增加,温度降低列出关系式是解题的关键.22.四张卡片,除一面分别写有数字2,2,3,6外,其余均相同,将卡片洗匀后,写有数字的一面朝下扣在桌面上,随机抽取一张卡片记下数字后放回,洗匀后仍将写有数字的一面朝下扣在桌面上,再抽取一张.(1)用列表或画树状图的方法求两次都恰好抽到2的概率;(2)小贝和小晶以此为游戏,游戏规则是:第一次抽取的数字作为十位,第二次抽取的数字作为个位,组成一个两位数,若组成的两位数不小于32,小贝获胜,否则小晶获胜.你认为这个游戏公平吗?请说明理由.【答案】(1)14;(2)这个游戏公平.【解析】【分析】(1)将所有可能的情况在图中表示出来,再根据概率公式计算可得;(2)计算出和为大于32和不大于32的概率,即可得到游戏是否公平【详解】解:(1)画树状图如下:由树状图知共有16种等可能结果,其中两次都恰好抽到2的有4种结果,所以两次都恰好抽到2的概率为14.(2)这个游戏公平.因为P(小贝获胜)=P(小晶获胜)=12.【点睛】本题考查的是游戏公平性的判断.判断游戏公平性就要计算每个事件的概率,概率相等就公平,否则就不公平.23.如图,AB是⊙O的直径,点C、E在⊙O上,∠B=2∠ACE,在BA的延长线上有一点P,使得∠P=∠BAC,弦CE交AB于点F,连接AE.(1)求证:PE是⊙O的切线;(2)若AF=2,AE=EF10,求OA的长.【答案】(1)见解析;(2)OA=5【解析】【分析】(1)连接OE,根据圆周角定理得到∠AOE=∠B,根据圆周角定理得到∠ACB=90°,求得∠OEP=90°,于是得到结论;(2)根据等腰三角形的性质得到∠OAE=∠OEA,∠EAF=∠AFE,再根据相似三角形的性质即可得到结论.【详解】解:(1)连接OE ,∴∠AOE =2∠ACE ,∵∠B =2∠ACE ,∴∠AOE =∠B ,∵∠P =∠BAC ,∴∠ACB =∠OEP ,∵AB 是⊙O 的直径,∴∠ACB =90°,∴∠OEP =90°,∴PE 是⊙O 的切线;(2)∵OA =OE ,∴∠OAE =∠OEA ,∵AE =EF ,∴∠EAF =∠AFE ,∴∠OAE =∠OEA =∠EAF =∠AFE ,∴△AEF ∽△AOE , ∴AE AF OA AE=, ∵AF =2,AE =EF 10∴OA =5.【点睛】本题考查了相似三角形的判定和性质,等腰三角形的判定,切线的判定,正确的作出辅助线是解题的关键.24.在平面直角坐标系中,抛物线()2y ax bx c a 0=++≠与轴的两个交点分别为A(-3,0)、B(1,0),与y 轴交于点D(0,3),过顶点C 作CH⊥x 轴于点H.(1)求抛物线的解析式和顶点C 的坐标;(2)连结AD 、CD ,若点E 为抛物线上一动点(点E 与顶点C 不重合),当△ADE 与△ACD 面积相等时,求点E 的坐标;(3)若点P 为抛物线上一动点(点P 与顶点C 不重合),过点P 向CD 所在的直线作垂线,垂足为点Q ,以P 、C 、Q 为顶点的三角形与△ACH 相似时,求点P 的坐标.【答案】(1)2y x 2x 3=--+,(-1,4) (2)(-2,3),31711722⎛⎫-+-+ ⎪ ⎪⎝⎭,,31711722⎛--- ⎝⎭, (3)(-4,-5),(23-,359) 【解析】分析】 (1)将A(-3,0)、B(1,0)、D(0,3),代入y=ax 2+bx+3求出即可;(2)求出直线AD 的解析式,分别过点C 、H 作AD 的平行线,与抛物线交于点E ,利用△ADE 与△ACD 面积相等,得出直线EC 和直线EH 的解析式,联立出方程组求解即可;(3) (3)分两种情况讨论:①点P 在对称轴左侧;②点P 在对称轴右侧.【详解】(1)设抛物线的解析式为2y ax bx c(a 0)=++<,∵抛物线过点A(-3,0),B(1,0),D(0,3), ∴93003a b c a b c c -+=⎧⎪++=⎨⎪=⎩,解得,a=-1,b=-2,c=3,∴抛物线解析式为2y x 2x 3=--+,顶点C(-1,4);(2)如图1,∵A(-3,0),D(0,3),∴直线AD 的解析式为y=x+3,设直线AD 与CH 交点为F ,则点F 的坐标为(-1,2)∴CF=FH,分别过点C 、H 作AD 的平行线,与抛物线交于点E ,由平行间距离处处相等,平行线分线段成比例可知,△ADE 与△ACD 面积相等,∴直线EC 的解析式为y=x+5,直线EH 的解析式为y=x+1,分别与抛物线解析式联立,得25x 23y x y x =+⎧⎨=--+⎩,21x 23y x y x =+⎧⎨=--+⎩,解得点E 坐标为(-2,3),⎝⎭,⎝⎭; (3)①若点P 在对称轴左侧(如图2),只能是△CPQ∽△ACH,得∠PCQ=∠CAH, ∴PQ CH 2CQ AH==, 分别过点C 、P 作x 轴的平行线,过点Q 作y 轴的平行线,交点为M 和N ,由△CQM∽△QPN, 得PQ PN QN CQ MQ CM===2, ∵∠MCQ=45°,设CM=m ,则MQ=m ,PN=QN=2m ,MN=3m ,∴P 点坐标为(-m-1,4-3m),将点P 坐标代入抛物线解析式,得()()2m 12m 1343m -++++=-,解得m=3,或m=0(与点C 重合,舍去)∴P 点坐标为(-4,-5);②若点P 在对称轴右侧(如图①),只能是△PCQ∽△ACH,得∠PCQ=∠ACH, ∴PQ AH 1CQ CH 2==, 延长CD 交x 轴于M ,∴M(3,0)过点M 作CM 垂线,交CP 延长线于点F ,作FNx 轴于点N , ∴PQ FM 1CQ CM 2==, ∵∠MCH=45°,CH=MH=4∴MN=FN=2,∴F 点坐标为(5,2),∴直线CF 的解析式为y=111x 33-+, 联立抛物线解析式,得211133x 23y x y x ⎧=-+⎪⎨⎪=--+⎩,解得点P 坐标为(23-,359), 综上所得,符合条件的P 点坐标为(-4,-5),(23-,359).【点睛】本题考查了二次函数的综合应用以及相似三角形的应用,二次函数的综合应用是初中阶段的重点题型,特别注意分类讨论思想的应用.25.问题提出(1)如图①,在矩形ABCD 中,AB=2AD ,E 为CD 的中点,则∠AEB ∠ACB (填”>”“<”“=“); 问题探究(2)如图②,在正方形ABCD 中,P 为CD 边上的一个动点,当点P 位于何处时,∠APB 最大?并说明理由;问题解决(3)如图③,在一幢大楼AD 上装有一块矩形广告牌,其侧面上、下边沿相距6米(即AB=6米),下边沿到地面的距离BD=11.6米.如果小刚的睛睛距离地面的高度EF为1.6米,他从远处正对广告牌走近时,在P处看广告效果最好(视角最大),请你在图③中找到点P的位置,并计算此时小刚与大楼AD之间的距离.【答案】(1)>;(2)当点P位于CD的中点时,∠APB最大,理由见解析;(3)410米.【解析】【分析】(1)过点E作EF⊥AB于点F,由矩形的性质和等腰三角形的判定得到:△AEF是等腰直角三角形,易证∠AEB=90°,而∠ACB<90°,由此可以比较∠AEB与∠ACB的大小(2)假设P为CD的中点,作△APB的外接圆⊙O,则此时CD切⊙O于P,在CD上取任意异于P点的点E,连接AE,与⊙O交于点F,连接BE、BF;由∠AFB是△EFB的外角,得∠AFB>∠AEB,且∠AFB与∠APB 均为⊙O中弧AB所对的角,则∠AFB=∠APB,即可判断∠APB与∠AEB的大小关系,即可得点P位于何处时,∠APB最大;(3)过点E作CE∥DF,交AD于点C,作AB的垂直平分线,垂足为点Q,并在垂直平分线上取点O,使OA=CQ,以点O为圆心,OB为半径作圆,则⊙O切CE于点G,连接OG,并延长交DF于点P,连接OA,再利用勾股定理以及长度关系即可得解.【详解】解:(1)∠AEB>∠ACB,理由如下:如图1,过点E作EF⊥AB于点F,∵在矩形ABCD中,AB=2AD,E为CD中点,∴四边形ADEF是正方形,∴∠AEF=45°,同理,∠BEF=45°,∴∠AEB=90°.而在直角△ABC中,∠ABC=90°,∴∠ACB<90°,∴∠AEB>∠ACB.故答案为>;(2)当点P位于CD的中点时,∠APB最大,理由如下:假设P为CD的中点,如图2,作△APB的外接圆⊙O,则此时CD切⊙O于点P,在CD上取任意异于P点的点E,连接AE,与⊙O交于点F,连接BE,BF,∵∠AFB是△EFB的外角,∴∠AFB>∠AEB,∵∠AFB=∠APB,∴∠APB>∠AEB,故点P位于CD的中点时,∠APB最大:(3)如图3,过点E作CE∥DF交AD于点C,作线段AB的垂直平分线,垂足为点Q,并在垂直平分线上取点O,使OA=CQ,以点O为圆心,OA长为半径作圆,则⊙O切CE于点G,连接OG,并延长交DF于点P,此时点P即为小刚所站的位置,由题意知DP=OQ=,∵OA=CQ=BD+QB﹣CD=BD+AB﹣CD,BD=11.6米, AB=3米,CD=EF=1.6米,∴OA=11.6+3﹣1.6=13米,∴DP=米,即小刚与大楼AD之间的距离为4米时看广告牌效果最好.【点睛】本题考查了矩形的性质,正方形的判定与性质,圆周角定理的推论,三角形外角的性质,线段垂直平分线的性质,勾股定理等知识,难度较大,熟练掌握各知识点并正确作出辅助圆是解答本题的关键.。

2014中考数学模拟试题及答案

2014中考数学模拟试题及答案

2014中考数学模拟试题及答案1.本试卷共8页,共五道大题,25道小题,满分120分。

考试时间120分钟。

2.答题纸共8页,在规定位置准确填写学校名称、班级和姓名。

3.试题答案一律书写在答题纸上,在试卷上作答无效。

4.考试结束,请将答题纸交回,试卷和草稿纸可带走。

一、选择题(本题共32分,每小题4分)下面各题均有四个选项,其中只有一个是符合题意的.1.的绝对值是A. B. C. D.2. 2014年2月14日从北京航天飞行控制中心获悉,嫦娥二号卫星再次刷新我国深空探测最远距离记录,达到7 000万公里,这是我国航天器迄今为止飞行距离最远的一次“太空长征” .将7 000万用科学记数法表示应为A. B. C. D.3.下列立体图形中,左视图是圆的是4. 小月的讲义夹里放了大小相同的试卷共12页,其中语文5页、数学4页、英语3页,她随机地从讲义夹中抽出1页,抽出的试卷恰好是数学试卷的概率是A. B. C. D.5. 如右图所示,AB∥CD,点E在CB的延长线上.若∠ABE=70°,则∠ECD的度数为A.20°B.70°C .100° D.110°6. 下列正多边形中,内角和等于外角和的是A.正三边形B.正四边形C.正五边形D.正六边形7. 小贝家买了一辆小轿车,小贝记录了连续七天中每天行驶的路程:第1天第2天第3天第4天第5天第6天第7天路程(千米) 43 29 27 52 43 72 33则小贝家轿车这七天行驶路程的众数和中位数分别是A.33, 52B.43,52C.43,43D.52,438.如图,点在线段上,=8,=2,为线段上一动点,点绕点旋转后与点绕点旋转后重合于点 .设= ,的面积为 . 则下列图象中,能表示与的函数关系的图象大致是A. B. C. D.二、填空题(本题共16分,每小题4分)9.若二次根式有意义,则的取值范围是.10. 分解因式:.11.为了测量校园水平地面上一棵树的高度,数学兴趣小组利用一组标杆、皮尺,设计了如图所示的测量方案.已知测量同学眼睛、标杆顶端、树的顶端在同一直线上,此同学眼睛距地面1.6 ,标杆长为3.3 ,且,,则树高.12.如图,在平面直角坐标系中,已知点的坐标为(1,0),将线段绕点按顺时针方向旋转,再将其长度伸长为的2倍,得到线段;又将线段绕点按顺时针方向旋转,再将其长度伸长为的2倍,得到线段,…,这样依次得到线段,,…,.则点的坐标为;当( 为自然数)时,点的坐标为.三、解答题(本题共30分,每小题5分)13.计算:.14.如图,, ,直线经过点,于点,于点.求证: .15. 解分式方程:.16. 已知,求的值.17.在“母亲节”到来之际,某校九年级团支部组织全体团员到敬老院慰问.为筹集慰问金,团员们利用课余期间去卖鲜花.已知团员们从花店按每支1.5元的价格买进鲜花共支,并按每支5元的价格全部卖出,若从花店购买鲜花的同时,还用去50元购买包装材料.(1)求所筹集的慰问金(元)与(支)之间的函数表达式;(2)若要筹集不少于650元的慰问金,则至少要卖出鲜花多少支?18.如图,在平面直角坐标系中,点为坐标原点,直线分别交轴、轴于、两点,,且、的长分别是一元二次方程的两根.(1)求直线的函数表达式;(2)点是轴上的点,点是第一象限内的点.若以、、、为顶点的四边形是菱形,请直接写出点的坐标.四、解答题(本题共20分,每小题5分)19. 如图,在四边形中,,,,连接,的平分线交于点,且.(1)求的长;(2)若,求四边形的周长.20. 2014年春季,北京持续多天的雾霾天气让环保和健康问题成为人们关注的焦点.为了美丽的北京和师生的身心健康,某校开展以“倡导绿色出行,关爱师生健康”为主题的教育活动.为了了解本校师生的出行方式,在本校范围内随机抽查了部分师生,将收集的数据绘制成下列不完整的两种统计图.请根据统计图提供的信息,解答下列问题:(1)m = ;(2)已知随机抽查的教师人数为学生人数的一半,请根据上述信息补全条形统计图,并标明相应数据;(3)若全校师生共1800人,请你通过计算估计,全校师生乘私家车出行的有多少人?21. 如图,点是以为直径的圆上一点,直线与过点的切线相交于点,点是的中点,直线交直线于点 .(1)求证:是⊙O的切线;(2)若,,求⊙O的半径.22. 阅读下面材料:如果一个三角形和一个平行四边形满足条件:三角形的一边与平行四边形的一边重合,三角形这边所对的顶点在平行四边形这边的对边上,则称这样的平行四边形为三角形的“友好平行四边形”.如图1 所示,平行四边形即为的“友好平行四边形”.请解决下列问题:(1)仿照以上叙述,说明什么是一个三角形的“友好矩形”;(2)若是钝角三角形,则显然只有一个“友好矩形”,若是直角三角形,其“友好矩形”有个;(3)若是锐角三角形,且,如图2,请画出的所有“友好矩形”;指出其中周长最小的“友好矩形”并说明理由.五、解答题(本题共22分,第23题7分,第24题7分,第25题8分)23. 已知关于的一元二次方程有两个不相等的实数根.(1)求的取值范围;(2)当取最小的整数时,求抛物线的顶点坐标以及它与轴的交点坐标;(3)将(2)中求得的抛物线在轴下方的部分沿轴翻折到轴上方,图象的其余部分不变,得到一个新图象.请你画出这个新图象,并求出新图象与直线有三个不同公共点时的值.24.如图1,已知是等腰直角三角形,,点是的中点.作正方形,使点、分别在和上,连接,.(1)试猜想线段和的数量关系是;(2)将正方形绕点逆时针方向旋转,①判断(1)中的结论是否仍然成立?请利用图2证明你的结论;②若,当取最大值时,求的值.25. 定义:如果一个与的函数图象经过平移后能与某反比例函数的图象重合,那么称这个函数是与的“反比例平移函数”.例如: 的图象向左平移2个单位,再向下平移1个单位得到的图象,则是与的“反比例平移函数”.(1)若矩形的两边分别是2 、3 ,当这两边分别增加( )、( )后,得到的新矩形的面积为8 ,求与的函数表达式,并判断这个函数是否为“反比例平移函数”.(2)如图,在平面直角坐标系中,点为原点,矩形的顶点、的坐标分别为(9,0)、(0,3) .点是的中点,连接、交于点,“反比例平移函数” 的图象经过、两点.则这个“反比例平移函数”的表达式为;这个“反比例平移函数”的图象经过适当的变换与某一个反比例函数的图象重合,请写出这个反比例函数的表达式.(3)在(2)的条件下,已知过线段中点的一条直线交这个“反比例平移函数”图象于、两点( 在的右侧),若、、、为顶点组成的四边形面积为16,请求出点的坐标.数学试卷答案及评分参考2014年4月一、选择题(本题共32分,每小题4分)题号 1 2 3 4 5 6 7 8答案 A B D C D B C B二、填空题(本题共16分,每小题4分)题号 9 10 11 12答案 (0,-4),注:第12题第一空2分,第二空2分,写对一个给1分.(不写的取值范围不扣分)三、解答题(本题共30分,每小题5分)13.解:..……………………4分……………………5分14.证明:∵,∴,……………………1分∴,∵,∴,∴.……………………2分在和中,∴≌.…………………4分∴.…………………5分15. 解:…………………2分…………………3分…………………4分经检验,是原分式方程的根. …………………5分16.解:原式= …………………2分== . …………………3分∵,∴ .∴原式= ,…………………4分= . …………………5分17.解:(1) . …………………2分(2)当时,即,…………………3分解得 . …………………4分答:若要筹集不少于650元的慰问金,至少要售出鲜花200支. …………………5分18.解:(1)∵,∴,∴, .∴点的坐标为(3,0),点的坐标为(0,4) .……………2分∵设直线的函数表达式为∴∴∴直线的函数表达式为 . ……………3分(2)点的坐标是(3,5)或(3, ).……………5分四、解答题(本题共20分,每小题5分)19.解:(1)延长交于点 .∵平分,∴ .∵,∴,∴,………1分∴ .∵,∴ . ……………2分∵,∴四边形是平行四边形,∴.………3分(2)过作的垂线,垂足为 .∵,,在中,,∴ . ………………4分∴四边形的周长………………5分20.解:(1)20%;………………1分(2)补全条形统计图如下图:………………3分(3)(人)(人)=480(人)………………5分答: 全校师生乘私家车出行的有480人.21.(1)证明:连接、,∵是直径,∴ . ………………1分∴ . m∵是的中点,∴,∴ . ………………2分∵是⊙的半径,(2)解:∵是的中点,、是⊙O的切线,∴, .∴,………………4分∴ .设⊙O的半径为 .∵∽,∴,∴ . ………………5分∴⊙O的半径为 .22. 解:(1)三角形的一边与矩形的一边重合,三角形这边所对的顶点在矩形这边的对边上. ………………1分(2)2;………………2分(3)画图:周长最小的“友好矩形”是矩形 . ………………4分理由:易知这三个矩形的面积都等于的面积的一半,所以这三个矩形的面积相等,令其为,设矩形,矩形,矩形的周长分别为、、,的边长,,,( ),则,,,∴,而,,∴,即 .同理可证 . ……………5分五、解答题(本题共22分,第23题7分,第24题7分,第25题8分)23.解:(1)由题意,得,∴.∴的取值范围为.…………2分(2)∵,且取最小的整数,∴.∴,则抛物线的顶点坐标为…………………3分∵的图象与轴相交,∴,∴,∴或,∴抛物线与轴相交于,.…………4分(3)翻折后所得新图象如图所示. …………5分平移直线知: 直线位于和时,它与新图象有三个不同的公共点.①当直线位于时,此时过点,∴,即.………………6分②当直线位于时,此时与函数的图象有一个公共点,∴方程,即有两个相等实根,∴,即.………………7分当时,满足,由①②知或.(2)①成立.以下给出证明:如图,连接,∵在Rt 中,为斜边中点,∴,,∴.…………………3分∵四边形为正方形,∴,且,∴,∴.……4分在和中,∴≌,∴.……………………5分②由①可得,当取得最大值时,取得最大值.当旋转角为时,,最大值为 . ………6分如图,此时.……………………7分25.解:(1),∴………………1分向右平移2个单位,再向上平移3个单位得到.∴是“反比例平移函数”.……2分(2)“反比例平移函数”的表达式为 . ……………3分变换后的反比例函数表达式为 . ……………4分(3)如图,当点在点左侧时,设线段的中点为,由反比例函数中心对称性,四边形为平行四边形.∵四边形的面积为16,∴=4,……………5分∵(9,3),(6,2).是的“反比例平移函数”,∴= =4,(3,1)过作轴的垂线,与、轴分别交于、点..设,∴即………………6分∴∴(1,3) ,∴点的坐标为(7,5). ………………7分当点在点右侧时,同理可得点的坐标为(15,). ………8分(注:本卷中许多试题解法不唯一,请老师们根据评分标准酌情给分)。

2024年山东省济南市九年级中考数学学业水平考试模拟试题

2024年山东省济南市九年级中考数学学业水平考试模拟试题

2024年山东省济南市九年级中考数学学业水平考试模拟试题一、单选题1.9的算术平方根是( ) A .﹣3B .±3C .3D2.如图所示,由7个相同的小正方体组合成一个立体图形,它的左视图为( )A .B .C .D .3.2020年6月23日,中国第55颗北斗导航卫星成功发射,顺利完成全球组网.其中支持北斗三号新信号的22纳米工艺射频基带一体化导航定位芯片,已实现规模化应用.22纳米=0.000000022米,将0.000000022用科学记数法表示为( ) A .2.2×108B .0.22×10﹣7C .2.2×10﹣8D .2.2×10﹣94.以下是我国部分博物馆标志的图案,其中既是轴对称图形又是中心对称图形的是( )A .B .C .D .5.化简222m n mnm n n m++--的结果是( ) A .m n + B .m n -C .2()m n m n +-D .2()m n m n-+6.如图,在平面直角坐标系中,△ABC 的顶点都在格点上,如果将△ABC 先沿y 轴翻折,再向上平移3个单位长度,得到A B C '''V ',那么点B 的对应点B '的坐标为( )A .(1,7)B .(0,5)C .(3,4)D .(﹣3,2)7.反比例函数()0ky k x=≠图象的两个分支分别位于第一、三象限,则一次函数y kx k =-的图象大致是( )A .B .C .D .8.如图,在莲花山滑雪场滑雪时,需从山脚处乘缆车上山,缆车索道与水平线所成的角为30︒,缆车速度为每分钟40米,缆车从山脚处A 到达山顶B 需要15分钟,则山的高度BC 为( )A .B .C .300米D .1200米9.如图,在ABC V 中,AB AC =.在AB ,AC 上分别截取AP ,AQ ,使AP AQ =.再分别以点P ,Q 为圆心,以大于12PQ 的长为半径作弧,两弧在BAC ∠内交于点R ,作射线AR ,交BC 于点D .若6BD =,则BC 的长为( )A .12B .3C .8D .1010.新定义:在平面直角坐标系中,对于点P (m ,n )和点P ′(m ,n ′),若满足m ≥0时,n ′=n -4;m <0时,n ′=-n ,则称点P ′(m ,n ′)是点P (m ,n )的限变点.例如:点P 1(2,5)的限变点是P 1′(2,1),点P 2(-2,3)的限变点是P 2′(-2,-3).若点P (m ,n )在二次函数y =-x 2+4x +2的图象上,则当-1≤m ≤3时,其限变点P ′的纵坐标n '的取值范围是( )A .22n '-≤≤B .13n ≤'≤C .12n ≤'≤D .23n '-≤≤二、填空题11.因式分解:29a -=12.如图,随机地闭合开关S 1,S 2,S 3,S 4,S 5中的三个,能够使灯泡L 1,L 2同时发光的概率是.13.如图,正方形AMNP 的边AM 在正五边形ABCDE 的边AB 上,则PAE ∠=14.如图,AB 是⊙O 的直径,弦CD ⊥AB 于点E ,⊙Ocm ,弦CD 的长为3 cm ,则阴影部分的面积是 cm 2.15.秤是我国传统的计重工具.如图,可以用秤砣到秤纽的水平距离,来得出秤钩上所挂物体的重量.称重时,秤钩所挂物重为y(斤)是秤杆上秤砣到秤纽的水平距离x(厘米)的一次函数.下表中为若干次称重时所记录的一些数据:x=厘米时,对应的y为斤.其中有一个y值记录错误,请排除后,利用正确数据确定当2416.利用图形的分、合、移、补探索图形关系是我国传统数学的一种重要方法.如图1,点I、点G是矩形ABCD对角线AC上的两点,四边形EBFG和四边形HIJD是两个全等的正方形,然后按图2重新摆放,观察两图,若矩形ABCD的周长是40,面积是88,则NQ=.三、解答题17.计算:()122sin 602tan 6020213-⎛⎫--+-⎪︒-︒ ⎝⎭.18.解不等式组:3(1)25,32,2x x x x -≥-⎧⎪⎨+<⎪⎩①②并写出它的所有整数解. 19.如图,在菱形ABCD 中,E ,F 分别是边AD 和CD 上的点,且ABE CBF ∠=∠,求证:DE DF =.20.为了解本校九年级学生的体质健康情况,朱老师随机抽取32名学生进行了一次体质健康测试,规定分数在75分(包含75分)以上为良好;根据测试成绩制成统计图表.请根据上述信息解答下列问题:(1)本次调查中的样本容量是________,=a ________; (2)补全条形统计图;(3)样本数据的中位数位于________组;(4)该校九年级学生有960人,估计该校九年级学生体质健康测试成绩为良好的有多少人? 21.四边形不具有稳定性,工程上可利用这一性质解决问题.如图是某篮球架的侧面示意图,,,BE CD GF 为长度固定的支架,支架在,,A D G 处与立柱AH 连接(AH 垂直于MN ,垂足为H ),在,B C 处与篮板连接(BC 所在直线垂直于MN ),EF 是可以调节长度的伸缩臂(旋转点F 处的螺栓改变EF 的长度,使得支架BE 绕点A 旋转,从而改变四边形ABCD 的形状,以此调节篮板的高度).已知,208cm AD BC DH ==,测得60GAE ∠=︒时,点C 离地面的高度为288cm .调节伸缩臂EF ,将GAE ∠由60︒调节为54︒,判断点C 离地面的高度升高还是降低了?升高(或降低)了多少?(参考数据:sin540.8,cos540.6︒≈︒≈)22.筒车是我国古代利用水力驱动的灌溉工具,车轮缚以竹简,旋转时低则舀水,高则泻水.如图,水力驱动筒车按逆时针方向转动,竹筒把水引至A 处,水沿射线AD 方向泻至水渠DE ,水渠DE 所在直线与水面PQ 平行;设筒车为O e ,O e 与直线PQ 交于P ,Q 两点,与直线DE交于B ,C 两点,恰有2AD BD CD =⋅,连接,AB AC .(1)求证:AD 为O e 的切线;(2)筒车的半径为3m ,,30AC BC C =∠=︒.当水面上升,A ,O ,Q 三点恰好共线时,求筒车在水面下的最大深度(精确到0.1m 1.7≈≈).23.“中国石化”推出促销活动,一张加油卡的面值是1000元,打九折出售.使用这张加油卡加油,每一升油,油的单价降低0.30元.假设这张加油卡的面值能够一次性全部用完. (1)他实际花了多少钱购买会员卡?(2)减价后每升油的单价为y 元/升,原价为x 元/升,求y 关于x 的函数解析式(不用写出定义域)(3)油的原价是7.30元/升,求优惠后油的单价比原价便宜多少元? 24.【发现问题】小明在学习过程中发现:周长为定值的矩形中面积最大的是正方形.那么,面积为定值的矩形中,其周长的取值范围如何呢? 【解决问题】小明尝试从函数图象的角度进行探究: (1)建立函数模型设一矩形的面积为4,周长为m ,相邻的两边长为x 、y ,则. ()42xy x y m =+=,,即42m y y x x ==-+,,那么满足要求的(x ,y )应该是函数 4y x =与 2m y x =-+的图象在第_____象限内的公共点坐标. (2)画出函数图象 ①画函数 (40y x x=>)的图象; ②在同一直角坐标系中直接画出y x =-的图象,则函数2my x =-+的图象可以看成是函数y x =-的图象向上平移_____个单位长度得到.(3)研究函数图象平移直线y x =-,观察两函数的图象; ①当直线平移到与函数 (40y x x=>)的图象有唯一公共点的位置时,公共点的坐标为_____,周长m 的值为_____;②在直线平移的过程中,两函数图象公共点的个数还有什么情况?请直接写出公共点的个数及对应数值m 的取值范围. 【结论运用】(4)面积为8的矩形的周长m 的取值范围为_____.25.【情境再现】甲、乙两个含45︒角的直角三角尺如图①放置,甲的直角顶点放在乙斜边上的高的垂足O 处,将甲绕点O 顺时针旋转一个锐角到图②位置.小莹用作图软件Geogebra 按图②作出示意图,并连接,AG BH ,如图③所示,AB 交HO 于E ,AC 交OG 于F ,通过证明OBE OAF △≌△,可得OE OF =. 请你证明:AG BH =.【迁移应用】延长GA 分别交,HO HB 所在直线于点P ,D ,如图④,猜想并证明DG 与BH 的位置..关系. 【拓展延伸】小亮将图②中的甲、乙换成含30︒角的直角三角尺如图⑤,按图⑤作出示意图,并连接,HB AG ,如图⑥所示,其他条件不变,请你猜想并证明AG 与BH 的数量..关系.26.探索发现(1)在平面直角坐标系中,抛物线y=ax2+bx+3(a≠0)与x轴交于点A(﹣3,0),B(1,0),与y轴交于点C,顶点为点D,连接AD.①如图1,直线DC交直线x=1于点E,连接OE.求证:AD∥OE;②如图2,点P(2,﹣5)为抛物线y=ax2+bx+3(a≠0)上一点,过点P作PG⊥x轴,垂足为点G.直线DP交直线x=1于点H,连接HG.求证:AD∥HG;(2)通过上述两种特殊情况的证明,你是否有所发现?请仿照(1)写出你的猜想,并在图3上画出草图.在平面直角坐标系中,抛物线y=ax2+bx+3(a≠0)与x轴交于点A(﹣3,0),B(1,0),顶点为点D.点M为该抛物线上一动点(不与点A,B,D重合),_______.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中考数学模拟试题班级 姓名 得分一、 填空题(每空2分,共40分) 1、21-的相反数是 ;-2的倒数是 ; 16的算术平方根是 ;-8的立方根是 。

2、不等式组⎩⎨⎧-+2804<>x x 的解集是 。

3、函数y=11-x 自变量x 的取值范围是 。

4、直线y=3x-2一定过(0,-2)和( ,0)两点。

5、样本5,4,3,2,1的方差是 ;标准差是 ;中位数是 。

6、等腰三角形的一个角为︒30,则底角为 。

7、梯形的高为4厘米,中位线长为5厘米,则梯形的面积为 平方厘米。

8、如图PA 切⊙O 于点A ,∠PAB=︒30,∠AOB= ,∠ACB= 。

9、 如图PA 切⊙O 于A 割线PBC 过圆心,交⊙O 于B 、C ,若PA=6;PB=3,则PC= ;⊙O 的半径为 。

10题图9题图ACDB8题图A11题图B10、如图∆ABC 中,∠C=︒90,点D 在BC 上,BD=6,AD=BC ,cos ∠ADC=53,则DC 的长为 。

11、如图同心圆,大⊙O 的弦AB 切小⊙O 于P ,且AB=6,则阴影部分既圆环的面积为 。

12、已知Rt ∆ABC 的两直角边AC 、BC 分别是一元二次方程06x 5-x 2=+的两根,则此Rt ∆的外接圆的面积为 。

二、 选择题(每题4分,共20分)13、如果方程0m x 2x 2=++有两个同号的实数根,m 的取值范围是 ( )A 、m <1B 、0<m ≤1C 、0≤m <1D 、m >014、徐工集团某机械制造厂制造某种产品,原来每件产品的成本是100元,由于提高生产技术,所以连续两次降低成本,两次降低后的成本是81元。

则平均每次降低成本的百分率是 ( )A .8.5% B. 9% C. 9.5% D. 10%15、二次函数c bx ax y 2++=的图像如图所示,则关于此二次函数的下列四个结论①a<0 ②a>0 ③ac 4-b 2>0 ④ab<0中,正确的结论有 ( ) A.1个 B.2个 C.3个 D.4个16题图16、如图:点P 是弦AB 上一点,连OP ,过点P 作PC ⊥OP ,PC 交⊙O ,若AP =4,PB =2,则PC 的长是 ( )A. 2B. 2C. 22D. 317、为了美化城市,建设中的某休闲中心准备用边长相等的正方形和正八边形两种地砖镶嵌地面,在每一个顶点周围,正方形、正八边形地砖的块数分别是( ) A. 1、2 B. 2、1 C. 2、3 D. 3、2 三、 (本题每题5分,共20分) 18、计算1303)2(2514-÷-+⎪⎭⎫⎝⎛+-19、计算22)145(sin 230tan 3121-︒+︒--20、计算)+()-(+-ab b a ]a b a b b a a [2÷ 21、解方程11-x 1-1-x 22=四、解答题(每题7分,共28分)22、已知关于x 的一元二次方程0)32(22=+-+m x m x 的两个不相等的实数根α、β满足111=+βα,求m 的值。

23、如图,∆ABC 中,∠ABC =∠BAC =︒45,点P 在AB 上,AD ⊥CP ,BE ⊥CP ,垂足分别为D 、E ,已知DC =2,求BE 的长。

P DE BCA24、在一块长16m ,宽12m 的矩形荒地上,要建造一个花园,要求花园所占面积为荒地面积的一半.下面分别是小明和小颖的设计方案.(1)你认为小明的结果对吗?请说明理由. (2)请你帮助小颖求出图中的x(精确到0.1m)(3)你还有其他的设计方案吗?请在图3中画出你所设计的草图,并加以说明.25、如图,1l 、2l 分别表示一种白炽灯和一种节能灯的费用y (费用=灯的售价+电费,单位:元)与照明时间x (小时)的函数图象,假设两种灯的使用寿命都是2000小时,照明效果一样。

(1)根据图象分别求出1l 、2l 的函数关系式;(2)当照明时间为多少时,两种灯的费用相等?(3)小亮房间计划照明2500小时,他买了一个白炽灯和一个节能灯,请你帮他设计最省钱的用灯方法(直接给出答案,不必写出解答过程)。

五、解答题(10分)26、已知:如图,AB 是⊙O 的一条弦,点C 为AB 的中点,CD 是⊙O 的直径,过C 点的直线l 交AB 所在直线于点E ,交⊙O 于点F 。

(1)判定图中CEB ∠与FDC ∠的数量关系,并写出结论; (2)将直线l 绕C 点旋转(与CD 不重合),在旋转过程中,E 点、F 点的位置也随之变化,请你在下面两个备用图中分别画出在不同位置时,使(1)的结论仍然成立的图形,标上相应字母,选其中一个图形给予证明。

六、解答题(共32分,27、28各10分,29题12分)27、阅读下列材料并填空。

平面上有n个点(n≥2)且任意三个点不在同一条直线上,过这些点作直线,一共能作出多少条不同的直线?(1)分析:当仅有两个点时,可连成1条直线;当有3个点时,可连成3条直线;当有4个点时,可连成6条直线;当有5个点时,可连成10条直线……(2)归纳:考察点的个数和可连成直线的条数nS发现:如下表(3)推理:平面上有n个点,两点确定一条直线。

取第一个点A有n种取法,取第二个点B 有(n-1)种取法,所以一共可连成n(n-1)条直线,但AB与BA是同一条直线,故应除以2;即21)-n(n Sn=(4)结论:21)-n(nSn=试探究以下几个问题:平面上有n个点(n≥3),任意三个点不在同一条直线上,过任意三个点作三角形,一共能作出多少不同的三角形?(1)分析:当仅有3个点时,可作出个三角形;当仅有4个点时,可作出个三角形;当仅有5个点时,可作出个三角形;……(2)归纳:考察点的个数n和可作出的三角形的个数nS,发现:(填下表)(3)推理: (4)结论:28、如图:把一个等腰直角三角形ABC 沿斜边上的高线CD (裁剪线)剪一刀,从这个三角形中剪下一部分,与剩下部分能拼成一个平行四边形ABCD (见示意图a )注意:以下探究过程中有画图要求的,工具不限,不必写画法和证明。

探究一:(1)想一想:判断四边形ABCD 是平行四边形的依据是 。

(2)做一做:按上述的裁剪方法,请你拼一个与图a 位置或形状不同的平行四边形,并在图b 中画出示意图。

探究二:在等腰直角三角形ABC 中,请你找出其它的裁剪线,把分割成的两部分拼出不同类型的特殊四边形。

(1)试一试:你能拼得所有不同类型的特殊四边形有 ,它们的裁剪线分别是 。

(2)画一画:请在图c 中画出一个你拼得的特殊四边形示意图。

C BADCB AADCBA(a ) (b) (c)29、已知半径为R 的⊙O '经过半径为r 的⊙O 的圆心,⊙O 与⊙O '交于E 、F 两点. (1)如图(1),连结00'交⊙O 于点C ,并延长交⊙O '于点D ,过点C 作⊙O 的切线交⊙O '于A 、B两点,求OA·OB的值; (2)若点C 为⊙O 上一动点,①当点C 运动到⊙O '时,如图(2),过点C 作⊙O 的切线交⊙O ',于A 、B 两点,则OA ·OB 的值与(1)中的结论相比较有无变化?请说明理由.②当点C 运动到⊙O '外时,过点C 作⊙O 的切线,若能交⊙O '于A 、B 两点,如图(3),则OA ·OB 的值与(1)中的结论相比较有无变化?请说明理由.中考数学模拟试题(4)一、 填空题: 1、21,-21,4,-2; 2、-4<x<10; 3、x>1; 4、32; 5、 2,1.41,3; 6、30º或75º; 7、20; 8、60º,30º; 9、 12,4.5;10、9; 11、9π; 12、π413。

二、 选择题:13、B ; 14、D ; 15、C ; 16、22; 17、A 。

三、 解答题:18、-23; 19、2; 20、b; 21、1x ,2-x 21==(增根)四、 解答题:22、m=-3,舍去m=1; 23、BE=2; 24、(1)小明的结果不对设小路宽xm ,则得方程(16-2x)(12-2x)=16×12/2解得:x 1=2.x 2=12而荒地的宽为12m ,若小路宽为12m ,不符合实际情况,故x 2=12m 不合题意(2)由题意得:4×πx 2/4=16×12/2 x 2=96/π x ≈5.5m答:小颖的设计方案中扇形的半径约为5.5m . (3)25、(1)直线L 1 y l =O.03x+2(0≤x ≤2000)设直线L 2的解析式为y 2=0.012x+20(0≤x ≤2000)(2)当y l =y 2时,两种灯的费用相等 0.03X+2=0.012X+20 解得:x=1000∴ 当照明时间为1000小时时,两种灯的费用相等(3)节能灯使用2000小时,白炽灯使用500小时 26、(1)∠CEB=∠FDC(2)每画-个图正确得1分(注:3个图中只需画两个图)证明:。

如图②∵ CD是⊙O的直径,点C是AB的中点,∴ CD⊥AB,∴∠CEB+∠ECD=90°∵ CD是⊙O的直径,.∴∠CFD=90°∴∠FDC+∠ECD=90°∴∠CEB=∠FDC27、1,4,10,……推理:平面上有n个点,过不在同一条直线上的三个点可以确定一个三角形,取第一个点A 有n种方法,取第二个点有B有(n-1)种取法,取第三个点C有(n-2)种取法,所以一共可以作n(n-1)(n-2)个三角形,但∆ABC、∆ACB、∆BAC、∆BCA、∆CAB、∆CBA是同一个三角形,故应除以6,即6)2-)(n1-n(nSn=。

结论:6)2-)(n1-n(nSn=28、略。

29、(1)连结DB,则∠DBO=90°∵AB切⊙O于点C∵.AB⊥OD,又OD是⊙O’直径,即OA=OB 得OA2=OC·OD=r·2R=2Rr.即OA·OB=2rR(也可证明△OBD∽△OCA)(2)无变化连结00',并延长交⊙O'于D点,连结DB、OC.证明△OCA∽△OBD,得OA·OB=OC·OD=r·2R=2Rr(3)无变化连结00’,并延长交⊙O’于B点,连结DB、OC证出△OCA∽△OBD,得OA·OB=OC·OD.:r·2R=2Rr。

相关文档
最新文档