2018年高中数学第1章立体几何初步1.2.3直线与平面的位置关系课件6苏教版必修2
近年高中数学第1章立体几何初步第二节点、直线、面的位置关系1平面的基本性质及推论习题苏教版必修2(

2018高中数学第1章立体几何初步第二节点、直线、面的位置关系1 平面的基本性质及推论习题苏教版必修2编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2018高中数学第1章立体几何初步第二节点、直线、面的位置关系1 平面的基本性质及推论习题苏教版必修2)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2018高中数学第1章立体几何初步第二节点、直线、面的位置关系1 平面的基本性质及推论习题苏教版必修2的全部内容。
平面的基本性质及推论(答题时间:40分钟)*1。
(福州检测)下列说法正确的是________。
①三点可以确定一个平面②一条直线和一个点可以确定一个平面 ③四边形是平面图形④两条相交直线可以确定一个平面*2.(扬州检测)经过空间任意三点可以作________个平面.**3.(1)三条直线两两平行,但不共面,它们可以确定______个平面。
(2)共点的三条直线可以确定________个平面. *4。
(宿迁检测)空间中可以确定一个平面的条件是________.(填序号) ①两条直线;②一点和一直线;③一个三角形;④三个点 **5。
(梅州检测)如图所示的正方体中,P 、Q 、M 、N 分别是所在棱的中点,则这四个点共面的图形是________。
(把正确图形的序号都填上)**6。
(福建师大附中检测)三个平面把空间分成7部分时,它们的交线有________条. **7。
证明:两两相交且不共点的三条直线在同一平面内.**8. 如图所示,已知四面体ABCD 中,E ,F 分别是AB ,AD 的中点,G ,H 分别是BC ,CD 上的点,且HCDHGC BG=2。
高中数学第1章立体几何初步1.2点、线、面之间的位置关系1.2.4第二课时两平面垂直课时作业苏教版

2018-2019学年高中数学第1章立体几何初步1.2 点、线、面之间的位置关系1.2.4 第二课时两平面垂直课时作业苏教版必修2编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2018-2019学年高中数学第1章立体几何初步1.2 点、线、面之间的位置关系1.2.4 第二课时两平面垂直课时作业苏教版必修2)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2018-2019学年高中数学第1章立体几何初步1.2 点、线、面之间的位置关系1.2.4 第二课时两平面垂直课时作业苏教版必修2的全部内容。
1。
2.4 第二课时两平面垂直[学业水平训练]1。
已知PA⊥矩形ABCD所在的平面,如图所示,图中互相垂直的平面有________对.解析:∵DA⊥AB,DA⊥PA,AB∩PA=A,∴DA⊥平面PAB,同理BC⊥平面PAB,AB⊥平面PAD,DC⊥平面PAD,∴平面AC⊥平面PAD,平面AC⊥平面PAB,平面PBC⊥平面PAB,平面PDC⊥平面PAD,平面PAB⊥平面PAD,共5对.答案:52.如图,四面体P—ABC中,PA=PB=错误!,平面PAB⊥平面ABC,∠ABC=90°,AC=8,BC=6,则PC=________.解析:取AB的中点E,连结PE,PA=PB,∴PE⊥AB.又平面PAB⊥平面ABC,∴PE⊥平面ABC,连结CE,所以PE⊥CE.∠ABC=90°,AC=8,BC=6,∴AB=2错误!,PE=错误!=错误!,CE=BE2+BC2=错误!,PC=PE2+CE2=7.答案:73.若P是△ABC所在平面外一点,而△PBC和△ABC都是边长为2的正三角形,PA=错误!,那么二面角P—BC-A的大小为________.解析:取BC的中点O,连结OA,OP(图略),则∠POA为二面角P-BC-A的平面角,OP=OA=3,PA=错误!,所以△POA为直角三角形,∠POA=90°.答案:90°4。
苏教版必修2数学课件-第1章立体几何初步第3节空间几何体的表面积和体积教学课件

栏目导航
合作探究 提素养
栏目导航
棱柱、棱锥和棱台的侧面积和表面积 【例 1】 正四棱锥的侧面积是底面积的 2 倍,高是 3,求它的 表面积. 思路探究:由 S 侧与 S 底的关系,求得斜高与底面边长之间的关系, 进而求出斜高和底面边长,最后求表面积.
所以 S 侧=3×12×(20+30)×DD′=75DD′. 又 A′B′=20 cm,AB=30 cm,则上、下底面面积之和为 S 上+S 下 = 43×(202+302)=325 3(cm2).
栏目导航
由 S 侧=S 上+S 下,得 75DD′=325 3, 所以 DD′=133 3(cm), 又因为 O′D′= 63×20=103 3(cm), OD= 63×30=5 3(cm),
错点)
运算核心素养.
3.会求简单组合体的体积及表面积.(难点)
栏目导航
自主预习 探新知
栏目导航
1.柱体、锥体、台体的体积
几何体
体积
柱体 锥体
V 柱体= Sh (S 为底面面积,h 为高), V 圆柱= πr2h (r 为底面半径) 1
V 锥体= 3Sh (S 为底面面积,h 为高), V 圆锥= π3r2h (r 为底面半径)
栏目导航
台体
V 台体= 13h(S+ SS′+S′) (S′,S 分别为上、下底面面 积,h 为高),V 圆台= 13πh(r′2+rr′+r2) (r′,r 分别为上、 下底面半径)
思考:柱体、锥体、台体的体积公式之间的关系. 提示:V=Sh―S′―=→S V=13(S′+ S′S+S)h―S′―=→0 V=13Sh.
栏目导航
[解] 如图所示,设 SE 是侧面三角形 ABS 的高,则 SE 就是正 四棱锥的斜高.
高中数学第1章立体几何初步1.2.2空间两条直线的位置关系讲义苏教版必修2

1.2.2 空间两条直线的位置关系1.空间两直线的位置关系2.公理4及等角定理(1)公理4:平行于同一条直线的两条直线互相平行. 符号表示:⎭⎪⎬⎪⎫a ∥b b ∥c ⇒a ∥c .(2)等角定理:如果一个角的两边和另一个角的两边分别平行并且方向相同,那么这两个角相等.3.异面直线的判定及其所成的角 (1)异面直线的判定定理提示:(1)异面直线的定义表明异面直线不具备确定平面的条件.异面直线既不相交,也不平行.(2)不能把异面直线误认为分别在不同平面内的两条直线,如图中,虽然有a α,b β,即a 、b 分别在两个不同的平面内,但是因为a ∩b =O ,所以a 与b 不是异面直线.(2)异面直线所成的角①定义:a 与b 是异面直线,经过空间任意一点O ,作直线a ′∥a ,b ′∥b ,我们把直线a ′和b ′所成的锐角(或直角)叫做异面直线a ,b 所成的角.②异面直线所成的角θ的取值范围:0°<θ≤90°.③当θ=π2时,a 与b 互相垂直,记作a ⊥b .1.思考辨析(1)如果a ⊥b ,b ⊥c ,则a ∥c .( )(2)如果a ,b 是异面直线,b ,c 是异面直线,则a ,c 也是异面直线.( ) (3)如果a ,b 相交,b ,c 相交,则a ,c 也相交. ( ) (4)如果a ,b 共面,b ,c 共面,则a ,c 也共面. ( )[答案] (1)× (2)× (3)× (4)×2.已知棱长为a 的正方体ABCD A ′B ′C ′D ′中,M ,N 分别为CD ,AD 的中点,则MN 与A ′C ′的位置关系是________.平行 [如图所示,MN 12AC ,又∵ACA ′C ′, ∴MN 12A ′C ′.]3.已知AB ∥PQ ,BC ∥QR ,∠ABC =30°,则∠PQR 等于__________.30°或150° [∠ABC 的两边与∠PQR 的两边分别平行,但方向不能确定是否相同,所以∠PQR =30°或150°.]4.已知a ,b 是异面直线,直线c ∥直线a ,则c 与b 的位置关系是________. 相交或异面 [a ,b 是异面直线,直线c ∥直线a ,因而c 不平行于b ,若c ∥b ,则a ∥b ,与已知矛盾,因而c 不平行于b .]①两条直线无公共点,则这两条直线平行;②两条不重合的直线若不是异面直线,则必相交或平行;③过平面外一点与平面内一点的直线与平面内的任意一条直线均构成异面直线; ④和两条异面直线都相交的两直线必是异面直线. (2)a ,b ,c 是空间中三条直线,下列给出几个说法: ①若a ∥b ,b ∥c ,则a ∥c ;②a ∥b 是指直线a ,b 在同一平面内且没有公共点;③若a ,b 分别在两个相交平面内,则这两条直线不可能平行.其中正确的有__________.(填序号)思路探究:根据空间两直线位置关系的有关概念及公理4进行判断.(1)② (2)①② [(1)对于①,空间两直线无公共点,则可能平行,也可能异面,因此①不正确;对于②,因为空间两条不重合的直线的位置关系只有三种:平行、相交或异面,所以②正确;对于③,过平面外一点与平面内一点的直线和过平面内这点的直线是相交直线,因此③不正确;对于④,和两条异面直线都相交的两直线可能是相交直线,也可能是异面直线,因此④不正确.(2)由公理4知①正确;由平行线的定义知②正确;若α∩β=l ,a α,b β,a ∥l ,b ∥l ,则a ∥b ,③错误.]空间两直线的位置关系为相交、平行、异面,若两直线有交点则为相交,若两直线共面且无交点则为平行,若以上情况均不满足则为异面.1.如图所示,正方体ABCD A 1B 1C 1D 1中,判断下列直线的位置关系: ①直线A 1B 与直线D 1C 的位置关系是________; ②直线A 1B 与直线B 1C 的位置关系是________; ③直线D 1D 与直线D 1C 的位置关系是________; ④直线AB 与直线B 1C 的位置关系是________.①平行 ②异面 ③相交 ④异面 [直线A 1B 与直线D 1C 在平面A 1BCD 1中,且没有交点,则两直线平行,所以①应该填“平行”;点A 1,B ,B 1在一个平面A 1BB 1内,而C 不在平面A 1BB 1内,则直线A 1B 与直线B 1C 异面.同理,直线AB 与直线B 1C 异面,所以②④都应该填“异面”;直线D 1D 与直线D 1C 显然相交于D 1点,所以③应该填“相交”.]1.如图所示,在四棱锥P ABCD 中,底面ABCD 是平行四边形,若E ,F ,G ,H 分别为PA ,PB ,PC ,PD 的中点.那么四边形EFGH 是什么四边形?为什么?[提示] 平行四边形.因为在△PAB 中, ∵E ,F 分别是PA ,PB 的中点, ∴EF 12AB ,同理GH 12DC .∵四边形ABCD 是平行四边形,∴ABCD ,∴EFGH ,∴四边形EFGH 是平行四边形.2.如果两条相交直线和另两条相交直线分别平行,那么由等角定理能推出什么结论? [提示] 这两条直线所成的锐角(或直角)相等.【例2】 如图所示,在正方体ABCD A 1B 1C 1D 1中,E ,F ,E 1,F 1分别为棱AD ,AB ,B 1C 1,C 1D 1的中点.求证:∠EA 1F =∠E 1CF 1.思路探究:解答本题时,可先证明角的两边分别平行,即A 1E ∥CE 1,A 1F ∥CF 1,然后根据等角定理,得出结论.[证明] 如图所示,在正方体ABCD A 1B 1C 1D 1中,取A 1B 1的中点M ,连结BM ,MF 1, 则BF =A 1M =12AB .又BF ∥A 1M ,∴四边形A 1FBM 为平行四边形, ∴A 1F ∥BM .而F 1,M 分别为C 1D 1,A 1B 1的中点,则F 1MC 1B 1. 而C 1B 1BC ,∴F 1M ∥BC ,且F 1M =BC . ∴四边形F 1MBC 为平行四边形, ∴BM ∥F 1C .又BM ∥A 1F , ∴A 1F ∥CF 1.同理取A 1D 1的中点N ,连结DN ,E 1N ,则A 1NDE , ∴四边形A 1NDE 为平行四边形, ∴A 1E ∥DN .又E 1N ∥CD ,且E 1N =CD , ∴四边形E 1NDC 为平行四边形, ∴DN ∥CE 1,∴A 1E ∥CE 1.∴∠EA 1F 与∠E 1CF 1的两边分别对应平行. 即A 1E ∥CE 1,A 1F ∥CF 1, ∴∠EA 1F =∠E 1CF 1.运用公理4的关键是寻找“中间量”即第三条直线.证明角相等的常用方法是等角定理,另外也可以通过证明三角形相似或全等来实现.2.如图,已知棱长为a 的正方体ABCD A 1B 1C 1D 1中,M ,N 分别是棱CD ,AD 的中点.(1)求证:四边形MNA 1C 1是梯形; (2)求证:∠DNM =∠D 1A 1C 1. [证明] (1)在△ADC 中, ∵M ,N 分别是CD ,AD 的中点, ∴MN 是△ADC 的中位线.∴MN 12AC .由正方体性质知,ACA 1C 1, ∴MN 12A 1C 1,即MN ≠A 1C 1.∴四边形MNA 1C 1是梯形. (2)由(1)可知MN ∥A 1C 1, 又因为ND ∥A 1D 1,而∠DNM 与∠D 1A 1C 1均是直角三角形的锐角, ∴∠DNM =∠D 1A 1C 1.11111111DB 1与EF 所成角的大小.思路探究:先根据异面直线所成角的定义找出角,再在三角形中求解.[解] 法一:如图(1),连结A 1C 1,B 1D 1,并设它们相交于点O ,取DD 1的中点G ,连结OG ,A 1G ,C 1G ,则OG ∥B 1D ,EF ∥A 1C 1,(1)∴∠GOA 1为异面直线DB 1与EF 所成的角或其补角. ∵GA 1=GC 1,O 为A 1C 1的中点. ∴GO ⊥A 1C 1.∴异面直线DB 1与EF 所成的角为90°.法二:如图(2),连结A 1D ,取A 1D 的中点H ,连结HE ,HF ,则HE ∥DB 1,且HE =12DB 1.(2)于是∠HEF 为异面直线DB 1与EF 所成的角或补角.设AA 1=1.则EF =22,HE =32, 取A 1D 1的中点I ,连结IF ,IH ,则HI ⊥IF , ∴HF 2=HI 2+IF 2=54,∴HF 2=EF 2+HE 2.∴∠HEF =90°,∴异面直线DB 1与EF 所成的角为90°.法三:如图(3),在原正方体的右侧补上一个全等的正方体,连结DQ ,B 1Q ,则B 1Q ∥EF .(3)于是∠DB 1Q 为异面直线DB 1与EF 所成的角或其补角.设AA 1=1,则DQ =22+1=5,B 1D =12+12+12=3,B 1Q =12+12=2,所以B 1D 2+B 1Q 2=DQ 2,从而异面直线DB 1与EF 所成的角为90°.求两条异面直线所成角的步骤(1)恰当选点,用平移法构造出一个相交角. (2)证明这个角就是异面直线所成的角(或补角).(3)把相交角放在平面图形中,一般是放在三角形中,通过解三角形求出所构造的角的度数.(4)给出结论:若求出的平面角是锐角或直角,则它就是两条异面直线所成的角;若求出的角是钝角,则它的补角才是两条异面直线所成的角.3.如图所示,在空间四边形ABCD 中,AB =CD ,AB ⊥CD ,E ,F 分别为BC ,AD 的中点,求EF 和AB 所成的角.[解] 如图所示,取BD 的中点G ,连结EG ,FG . ∵E ,F ,G 分别为BC ,AD ,BD 的中点,AB =CD , ∴EG 12CD ,GF 12AB .∴∠GFE 就是EF 与AB 所成的角或其补角. ∵AB ⊥CD ,∴EG ⊥GF , ∴∠EGF =90°. ∵AB =CD ,∴EG =GF , ∴△EFG 为等腰直角三角形,∴∠GFE =45°,即EF 和AB 所成的角为45°.1.本节课的重点是会判断空间两直线的位置关系,理解异面直线的定义,会求两异面直线所成的角,能用公理4和等角定理解决一些简单的相关问题.难点是求异面直线所成的角.2.本节课要重点掌握的规律方法(1)判断两条直线位置关系的方法.(2)证明两条直线平行的方法.(3)求异面直线所成角的解题步骤.3.本节课的易错点是将异面直线所成的角求错.1.分别在两个相交平面内的两条直线间的位置关系是( )A.平行B.相交C.异面D.以上皆有可能[答案] D2.若空间两条直线a和b没有公共点,则a与b的位置关系是________.平行或异面[若直线a和b共面,则由题意可知a∥b;若a和b不共面,则由题意可知a与b是异面直线.]3.空间中有一个∠A的两边和另一个∠B的两边分别平行,∠A=70°,则∠B=________.70°或110°[∵∠A的两边和∠B的两边分别平行,∴∠A=∠B或∠A+∠B=180°,又∠A=70°,∴∠B=70°或110°.]4.如图,已知长方体ABCDA′B′C′D′中,AB=23,AD=23,AA′=2.(1)BC和A′C′所成的角是多少度?(2)AA′和BC′所成的角是多少度?[解](1)因为BC∥B′C′,所以∠B′C′A′是异面直线A′C′与BC所成的角.在Rt△A′B′C′中,A′B′=23,B′C′=23,所以∠B′C′A′=45°.(2)因为AA′∥BB′,所以∠B′BC′是异面直线AA′和BC′所成的角.在Rt△BB′C′中,B′C′=AD=23,BB′=AA′=2,所以BC′=4,∠B′BC′=60°.因此,异面直线AA′与BC′所成的角为60°.。
高中数学第1章立体几何初步1.2-1.2.3直线与平面的位置关系课件苏教版必修2

题型 1 直线与平面的位置关系
[典例 1] 下列命题中正确的命题的个数为_______. ①如果一条直线与一平面平行,那么这条直线与平 面内的任意一条直线平行; ②如果一条直线与一平面相交,那么这条直线与平 面内的无数条直线垂直;
③过平面外一点有且只有一条直线与平面平行; ④一条直线上有两点到一个平面的距离相等,则这 条直线平行于这个平面. 解析:对于①,直线与平面平行,只是
第1章 立体几何初步
1.直线与平面的位置关系: (1)直线 a 在平面 α 内:直线 a 和平面 α 有无数个公 共点,记作 a⊂α;
(2)直线 a 与平面 α 相交:直线 a 和平面 α 有且只有 一个公共点,记作 a∩α=A;
(3)直线 a 与平面 α 平行:直线 a 和平面 α 有 0 个公 共点,记作 a∥α.
题型 6 直线与平面所成角 [典例 6] 如图所示,在正方体 ABCD-A1B1C1D1 中,求 A1B 与平面 A1B1CD 所成的角. 分析:本题只需要找出(或作出)A1B 在平面 A1B1CD 上的射影即可,但图形中没有现成的,所以可以连接 BC1 与 B1C 即可作出.
解:如图所示,连接 BC1 与 B1C,相交于点 M, 连接 A1M,则 BC1⊥B1C. 因为 A1B1⊥平面 BCC1B1, BC1⊂平面 BCC1B1, 所以 A1B1⊥BC1. 因为 A1B1∩B1C=B1,
线进行过渡.
证明:连接 AN 交 α 于点 Q,连接 OQ,PQ,如图所 示.
因为 b∥α,平面 ABN∩α=OQ, 所以 b∥OQ.同理 PQ∥a. 在△ABN 中,O 是 AB 的中点, OQ∥BN,
[变式训练] 3.如图所示,四边形 ABCD 是平行四边形,点 P 是 平面 ABCD 外一点,M 是 PC 的中点, 在 DM 上取一点 G,过点 G 和 AP 作平面 交平面 BDM 于 GH.求证:AP∥GH. 证明:如图所示,连接 AC 交 BD 于点 O,连接 MO,
苏教版高中数学教材必修2

1.2 点、线、面之间的位置关系
直线与平面垂直的判定定理1: 如果一条直线和一个平面内的两条相交 直线垂直,那么这条直线垂直于这个平面. l⊥a
l⊥b
a⊂ l⊥ * 线线垂直 线面垂直
第1章 立体几何初步
b⊂
a∩b=A
苏教版高中数学教材必修2
1.2 点、线、面之间的位置关系
直线与平面垂直的判定定理2: 求证: 如果两条平行直线中的一条垂直于一 个平面,那么另一条也垂直于这个平面.
—— 直线a的垂面;
P —— 垂足.
a⊥,l⊂ a⊥l.
第1章 立体几何初步
苏教版高中数学教材必修2
1.2 点、线、面之间的位置关系
过一点有 无数
条直线与已知直线垂
直;
过一点有且只有一 条直线与已知平面垂 直; 过一点有且只有一 个平面与已知直线垂 直.
苏教版高中数学教材必修2 第1章 立体几何初步
苏教版高中数学教材必修2 第1章 立体几何初步
1.2 点、线、面之间的位置关系
P
A
l
一条直线和一个
平面相交但是不 垂直,称这条直 线为这个平面的斜线; 斜线和平面的交点叫 做斜足;
R
Q
A’
从平面外一点向平面引斜线,点与斜足间的线
段叫做点到平面的斜线段; 过垂足和斜足的直线叫做斜线在这个平面内的
判断:
1.a∥b,b∥c,则a∥c. T
2.a⊥b,b⊥c,则a∥c. F 3.a⊥b,b∥c,则a⊥c. T
苏教版高中数学教材必修2
第1章
立体几何初步
1.2 点、线、面之间的位置关系
直线与平面垂直:
如果一条直线a与一个平面内的任意一
高中数学第1章立体几何初步1.2_1.2.3直线与平面的位置关系苏教版必修

三、直线和平面平行的性质定理 如果一条直线和已知平面平行,经过这条直线的平 面和已知平面相交,那么这条直线和交线平行,简称“若 线面平行,则线线平行”.该定理的实质是由线面平行 推出线线平行,常用于证明线线平行问题.但要谨记 “线”的特殊性——是过已知直线的平面与已知平面的 “交线”.虽然由线面平行,能得到线与平面内的无数 条直线平行,
但并不是和平面内的每一条直线都平行,若直线和 平面平行,则这条直线与平面内的直线的位置关系包括 平行和异面.
四、直线与平面垂直的判定定理 如果一条直线和一个平面内的两条相交直线垂直, 那么这条直线垂直于这个平面. 该定理是证明线面垂直的重要方法,应用时要谨记 “两条相交直线”这一条件.定理体现了“直线与平面 垂直”与“直线与直线垂直”互相转化的数学思想.
六、直线和平面所成的角 直线和平面所成的角包括 0°角、直角、锐角,因此 直线和平面所成角的范围是 0°≤α≤90°.求斜线与平面 所成的角一般步骤:①找出斜线在给定平面内的射影; ②指出并论证斜线与平面所成的角;③在含有斜线与平 面所成的角的三角形中,利用平面几何或三角函数知识 求出这个角.
五、直线和平面垂直的性质定理 如果两条直线垂直于同一个平面,那么这两条直线 平行.即垂直于同一个平面的两条直线平行. 定理的证明运用了“反证法”,同学们要在老师的 指导下完成定理的证明并由此掌握反证法的使用条件及 操作过程.该定理给出了证明线线平行的又一方法.因 此,利用该定理即可以证明线线垂直,也可以证明线线 平行.
(3)直线 a 与平面 α 平行:直线 a 和平面 α 有 0 个公 共点,记作 a∥α.
2.直线与平面平行的判定定理: (1)文字语言:如果平面外一条直线和这个平面内的 一条直线平行,那么这条直线和这个平面平行.该定理 常表述为:“线线平行,则线面平行.” (2)符号语言:若 l⊄α,m⊂α,且 l∥m,则 l∥α.
苏教版必修2数学课件-第1章立体几何初步第2节点、线、面之间的位置关系

栏目导航
法二: ∵l1∩l2=A,∴l1,l2确定一个平面α. ∵l2∩l3=B,∴l2,l3确定一个平面β. ∵A∈l2,l2 α,∴A∈α. ∵A∈l2,l2∈β,∴A∈β. 同理可证B∈α,B∈β,C∈α,C∈β. ∴不共线的三个点A,B,C既在平面α内,又在平面β内. ∴平面α和β重合,即直线l1,l2,l3在同一平面内.
栏目导航
D [A错误,不共线的三点可以确定一个平面. B错误,一条直线和直线外一个点可以确定一个平面. C错误,四边形不一定是平面图形. D正确,两条相交直线可以确定一个平________.
α∩β=m,n α 且 m∩n=A [由题图可知平面 α 与平面 β 相交 于直线 m,且直线 n 在平面 α 内,且与直线 m 相交于点 A,故用符 号可表示为:α∩β=m,n α 且 m∩n=A.]
栏目导航
2.本节课要重点掌握的规律方法 (1)理解平面的概念及空间图形画法要求. (2)文字语言、符号语言、图形语言的转换方法. (3)证明点、线共面的方法. (4)证明点共线、线共点的方法. 3.本节课的易错点是平面基本性质运用中忽略重要条件.
栏目导航
当堂达标 固双基
栏目导航
1.已知点A,直线a,平面α,以下命题表述不正确的个数( )
4.在正方体ABCD-A1B1C1D1中,画出平面ACD1与平面BDC1的 交线,并说明理由.
[解] 设AC∩BD=M,C1D∩CD1=N,连结MN,则平面ACD1 ∩平面BDC1=MN,
如图.理由如下: ∵点M∈平面ACD1, 点N 平面ACD1, 所以MN 平面ACD1.
栏目导航
同理,MN 平面BDC1, ∴平面ACD1∩平面BDC1=MN,即MN是平面ACD1与平面BDC1 的交线.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
m.
m 又l l // m m
m l l //
m
评:平行线的定义的应用
例题讲解:
例2.一个长方体如图所示.要经过平面A1C1内 一点P和棱BC将木块锯开,应该怎样画线?
D1 A1 D A
.
P
E
F
C1 B1 C
B
例3 求证 : 如果三个平面两两相交 于三条直线 , 并且其 中两条直线平行 , 那么第三条直线也和它 们平行.
B
C O D
A
思考:
如果直线和平面平行,那么这 条直线是否与这个平面内的任意一 条直线都平行?
直线与平面平行的性质定理:
如果一条直线和一个平面平行,经过这条 直线的平面和这个平面相交,那么这条直线 和交线平行.
已知: l // , l , 求证: l // m .
证明:
m
直线和平面的位置关系 (一)
观察下面组成足球门 的每根柱子与地面的位置 关系?
直线和平面的位置关系
一条直线和一个平面的位置关系有且只有以下三种: (1)直线在平面内——有无数个公共点. (2)直线和平面相交——有且只有一个公共点. (3)直线和平面平行——无公共点.
直线和平面相交或平行的情况统称为 直线在平面外. 符号表示:a
已知 : 平面 , , , l , m, n, 且 l // m 图1 2 28 . 求证 : n // l , n // m .
l
证 l // m l l // l m
n
m
n // l .
图1 2 28
a ∥
课堂练习
、在长方体 ABCD-A1B1C1D1中
D1 A1 D A
C1
B1 C B
平面A1B1C1D1 平面CDD1C1 1.与直线AB平行的平面是______________________
平面CDD1C1 平面BCC1B1 2.和直线AA1平行的平面是_____________________ 平面A1B1C1D1 平面BCC1B1 3.与直线AD平行的平面是______________________
直线和平面的三种位置关系的画法
直线在平面内
直线与平面相交
直线与平面平行
练习:长方体中,指出 , D1 B 所在直线与其余各面得 关系
D1
C1
A1 D A
B1
C
B
直线和平面平行
判定定理
如果平面外一条直线和这个平面内的一条直线平行, 那么这条直线和这个平面平行.
符号表示:
b
a b a∥b
例题讲解:
例1.已知E,F分别是三棱锥A-BCD的 侧棱AB,AD的中点 A 求证:EF∥平面BCD 分析:设法在平面BCD内找一 条直线与EF平行
E B C F D
变式
求证直线BD∥平面ECF
课堂练习
1、如图,已知P为 ABCD 所在平面外一点,M 为PB的中点,求证:PD∥平面MAC。
P M
P M G D H A C
O
B
课堂小结
1、直线与平面的位置关系;
2、直线与平面平行的判定定理及性质定理;
3、证线面平行的基本方法: 线线平行 线面平行 4、证线线平行的基本方法: 线面平行 线线平行
ห้องสมุดไป่ตู้
n
同理 n // m .
思考 如果三个平面两两相交 于三条直线, 并且其中两 条直线相交 , 那么第三条直线和这两 条直线有怎样的位 置关系?
课堂练习
2、ABCD是平行四边形,点P是平面ABCD外一点, M是PC的中点,在DM上取一点G,过G和AP作平 面交平面BDM于GH。求证:AP∥GH