高中数学立体几何大题练习题答案

合集下载

高中数学立体几何测试题(10套)

高中数学立体几何测试题(10套)

∴ BD ∥平面 PMN ,
位置关系为
平行

∴ O 到平面 PMN 的距离即为 BD 到平面 PMN 的距离。
11 、a,b 为异面直线,且 a,b 所成角为 40 °,直线 c 与 a,b 均异面,且所成角均为
∵ BD ⊥ AC , MN ∥ BD
∵ PA⊥面 ABCD
θ,若这样的 c 共有四条,则 θ的范围为 (70 °, 90° ) 。
D
C
A
B
D1 A1
C1 B1
17 、 已知异面直线 a, b 的公垂线段 AB 的中点为 O,平面 满足 a∥ , b∥ , 且 O , M 、 N 是 a, b 上的任意两点, MN ∩ = P,求证: P 是 MN 的中

A aM
O
P
BN b
.
立几面测试 001
参考答 案
一、 1- 8 ACDDBDBA
2、已知 m, n 为异面直线, m∥平面 , n∥平面 , ∩ =l ,则 l( ) ( A)与 m, n 都相交 ( B)与 m,n 中至少一条相交 ( C)与 m, n 都不相交 ( D )与 m, n 中一条相交
3、已知 a, b 是两条相交直线, a∥ ,则 b 与 的位置关系是 ( )
A 、 b∥
PAM
∵ AB=2 , BM=1 , CM=1
∴ AM= 5 ,
P
A H
O
.
B
F M
B
D N C
立几面测试 003
一、选择题
1.异面直线是指
(A) 在空间内不能相交的两条直线
(B) 分别位于两个不同平面的两条直线
(C) 某一个平面内的一条直线和这个平面外的一条直线

高中数学立体几何专项练习题及答案

高中数学立体几何专项练习题及答案

高中数学立体几何专项练习题及答案一、选择题1. 下面哪个选项不是描述柱体的特点?A. 体积恒定B. 底面形状不限C. 侧面是矩形D. 顶面和底面平行答案:A2. 如果一个四面体的一个顶点的对边垂直于底面,那么这个四面体是什么类型?A. 正方形四面体B. 倒立四面体C. 锥体D. 正方锥体答案:C3. 以下哪个选项正确描述了一个正方体的特点?A. 全部面都是正方形B. 12 条棱长度相同C. 8 个顶点D. 6 个面都是正方形答案:D4. 若长方体的高度是 6cm,底面积是 5cm²,底面对角线长为 a cm,那么 a 的值为多少?A. √11B. √29C. √31D. √41答案:C二、填空题1. 一个正方体的棱长为 4cm,它的体积是多少?答案:64cm³2. 一个球的表面积是100π cm²,那么它的半径是多少?答案:5cm3. 一个圆柱体的底面半径为 3cm,高度为 8cm,它的体积是多少?答案:72π cm³4. 一个圆锥的底面半径为 6cm,高度为 10cm,它的体积是多少?答案:120π cm³三、计算题1. 一个四棱锥的底面是边长为 5cm 的正方形,高度为 8cm,它的体积是多少?答案:单位为 cm³,计算过程如下:首先计算底面积:5cm * 5cm = 25cm²再计算体积:25cm² * 8cm / 3 = 200cm³2. 一个圆柱体的底面直径为 12cm,高度为 15cm,它的体积是多少?答案:单位为 cm³,计算过程如下:首先计算底面半径:12cm / 2 = 6cm再计算底面积:π * 6cm * 6cm = 36π cm²最后计算体积:36π cm² * 15cm = 540π cm³3. 一个球的直径为 8cm,它的体积是多少?答案:单位为 cm³,计算过程如下:首先计算半径:8cm / 2 = 4cm再计算体积:4/3 * π * 4cm * 4cm * 4cm = 268.08π cm³4. 一个圆锥的底面半径为 10cm,高度为 20cm,它的体积是多少?答案:单位为 cm³,计算过程如下:首先计算底面积:π * 10cm * 10cm = 100π cm²最后计算体积:100π cm² * 20cm / 3 = 2000π cm³四、解答题1. 若一个长方体的长度、宽度、高度分别为 a、b、c,它的表面积为多少?答案:单位为 cm²,计算过程如下:首先计算侧面积:2 * (a * b + a * c + b * c)再计算底面积:a * b最后计算表面积:2 * (a * b + a * c + b * c) + a * b2. 一个四棱锥的底面为边长为 a 的正三角形,高度为 h,求这个四棱锥的体积。

高中数学立体几何大题训练题含答案

高中数学立体几何大题训练题含答案

立几大题训练题一、解答题(共50题;共505分)1. ( 10分) 已知四棱锥S−ABCD中,四边形ABCD为梯形,∠BCD=∠ADC=∠SAD=90°,平面SAD⊥平面ABCD,E为线段AD的中点,AD=2BC=2CD.(1)证明:BD⊥平面SAB;(2)若SA=AD=2,求点E到平面SBD的距离.2. ( 10分) 如图,平面ABCD∩平面ABEF=AB,四边形ABCD和ABEF都是边长为2的正方形,点M,N分别是AF,AB的中点,二面角D−AB−F的大小为60°.(1)求证:MN//平面BCF;(2)求直线DE与平面BCF所成角的正弦值.3. ( 10分) 如图,四棱锥P-ABCD的底面是正方形,E为AB的中点,PD⊥CE,AE=1,PD=3,PC=√13(1)证明:AD⊥平面PCD.(2)求DA与平面PCE所成角的正弦值.4. ( 10分) 如图所示,直三棱柱ABC−A1B1C1的各棱长均相等,点E为AA1的中点.(1)证明:EB1⊥BC1;(2)求二面角C1−EB1−C的余弦值.AD,G是PB的中点,5. ( 10分) 已知在四棱锥P−ABCD中,AD//BC,AB=BC=CD=12ΔPAD是等边三角形,平面PAD⊥平面ABCD.(1)求证:CD⊥平面GAC;(2)求二面角P−AG−C的余弦值.6. ( 10分) 如图,多面体ABCE中,平面AEC⊥平面ABC,AC⊥BC,AE⊥CD四边形BCDE 为平行四边形.(1)证明:AE⊥EC;(2)若AE=EC=CB=√2,求二面角D−AC−E的余弦值.7. ( 10分) 如图,在三棱锥A−BCD中, △ABC是等边三角形, ∠BAD=∠BCD=90°,点P是AC 的中点,连接BP,DP.(1)证明:平面ACD⊥平面BDP;(2)若BD=√6,且二面角A−BD−C为120°,求直线AD与平面BCD所成角的正弦值.8. ( 10分) 如图,在四棱锥P−ABCD中,AP⊥平面PCD,AD//BC,AB⊥BC,AP=AB=AD,E为AD的中点,AC与BE相交于点O.BC=12(1)证明:PO⊥平面ABCD.(2)若OB=1,求点C到平面PAB的距离.9. ( 10分) 如图,在斜三棱柱ABC−A1B1C1中,平面ABC⊥平面A1ACC1,CC1=2,△ABC,△ACC1,均为正三角形,E为AB的中点.(1)证明: AC1//平面B1CE,(2)求直线AC1与平面B1BAA1所成角的正弦值.10. ( 10分) 如图,四棱锥P−ABCD中,底面ABCD是边长为2的正方形,平面PAB⊥平面ABCD,AP=PB,AP⊥PB,E为CP的中点.(1)求证:AP//平面BDE;(2)求点D到平面ACP的距离.11. ( 10分) 在三棱柱ABC−A1B1C1中,已知AB=AC=AA1=√5,BC=4,O为BC的中点,A1O⊥平面ABC(1)证明四边形BB1C1C为矩形;(2)求直线AA1与平面A1B1C所成角的余弦值.12. ( 10分) 如图,四棱锥P−ABCD的底面是正方形,PA⊥平面ABCD,AE⊥PD.(1)证明:AE⊥平面PCD;(2)若AP=AB,求二面角B−PC−D的余弦值.13. ( 10分) 在直角梯形ABCD(如图1),∠ABC=90°,BC//AD,AD=8,AB=BC=4,M为线段AD中点.将△ABC沿AC折起,使平面ABC⊥平面ACD,得到几何体B−ACD(如图2).(1)求证:CD⊥平面ABC;(2)求AB与平面BCM所成角θ的正弦值.14. ( 15分) 如图,四棱锥S−ABCD的底面是边长为1的正方形,SD垂直于底面ABCD,SD=1.(1)求证BC⊥SC;(2)求平面SBC与平面ABCD所成二面角的大小;(3)设棱SA的中点为M,求异面直线DM与SB所成角的大小.15. ( 10分) 已知菱形ABCD的边长为4, AC∩BD=O, ∠ABC=60°,将菱形ABCD沿对角线BD折起,使AC=a,得到三棱锥A−BCD,如图所示.⇒(1)当a=2√2时,求证: AO⊥平面BCD;(2)当二面角A−BD−C的大小为120°时,求直线AD与平面ABC所成的正切值.16. ( 10分) 在四棱锥P–ABCD中,AB//CD,CD=2AB.⇀=mAP⇀(m>0),且MN//平面PCD,求实数m的值;(1)设AC与BD相交于点M,AN(2)若AB=AD=DP,∠BAD=60°,PB=√2AD,且PD⊥AD,求二面角A−PC−B的余弦值.17. ( 10分) 如图,在四棱锥P−ABCD中,PA⊥平面ABCD,ABCD是正方形,E是CD中点,点F在BC上,且BF=3FC.(1)证明:EF⊥平面PAE;(2)若PA=AB=4,求点C到平面PEF的距离.18. ( 10分) 如图,在四棱锥P−ABCD中,PA⊥平面ABCD,ABCD是正方形,E是CD中点,点F在BC上,且BF=3FC.(1)证明EF⊥平面PAE;AB,求平面PAB与平面PEF所成二面角的正弦值.(2)若PA=5419. ( 10分) 如图(1),在平面五边形EADCB中,已知四边形ABCD为正方形,ΔEAB为正三角形.沿着AB将四边形ABCD折起得到四棱锥E−ABCD,使得平面ABCD⊥平面EAB,设F在线段AD上且满足DF=2AF,G在线段CF上且满足FG=CG,O为ΔECD的重心,如图(2).(1)求证:GO//平面ABE;(2)求直线CF与平面BCE所成角的正弦值.20. ( 10分) 如图所示,在矩形ABCD中,AB=4,AD=2,E是CD的中点,O为AE的中点,以AE为折痕将ΔADE向上折起,使D点折到P点,且PC=PB.(1)求证: PO⊥面ABCE;(2)求AC与面PAB所成角θ的正弦值.21. ( 10分) 如图,在以A,B,C,D,E,F为顶点的多面体中,四边形ACDF是菱形,∠FAC=600,AB//DE,BC//EF,AB=BC=3,AF=2√3,BF=√15(1)求证:平面ABC⊥平面ACDF(2)求平面AEF与平面ACE所成的锐二面角的余弦值22. ( 10分) 已知四棱锥E−ABCD,AB=3,BC=4,CD=12,AD=13,cos∠ADC= 12,EC⊥平面ABCD.13(1)求证:平面ABE⊥平面EBC;(2)当CE=60时,求直线AC和平面ADE所成角的正弦值.23. ( 10分) 如图,在四棱锥P−ABCD中,四边形ABCD是直角梯形,AB⊥AD,AB//CD,PC⊥底面ABCD,AB=2AD=2CD=4,PC=2a,E是PB的中点.(1)求证:AC⊥平面PBC;,求直线PA与平面EAC所成角的正弦值.(2)若二面角P−AC−E的余弦值为√6324. ( 10分) 如图1,在等腰梯形ABF1F2中,两腰AF2=BF1=2,底边AB=6,F1F2=4,D,C是AB的三等分点,E是F1F2的中点.分别沿CE,DE将四边形BCEF1和ADEF2折起,使F1,F2重合于点F,得到如图2所示的几何体.在图2中,M,N分别为CD,EF的中点.(1)证明:MN⊥平面ABCD.(2)求直线CN与平面ABF所成角的正弦值.25. ( 15分) 如图,在四棱锥P一ABCD中,已知AB=BC=√5,AC=4,AD=DC=2√2,点Q为AC中点,PO⊥底面ABCD, PO=2,点M为PC的中点.(1)求直线PB与平面ADM所成角的正弦值;(2)求二面角D-AM-C的正弦值;(3)记棱PD的中点为N,若点Q在线段OP上,且NQ//平面ADM,求线段OQ的长.26. ( 10分) 如图,已知ΔABC为等边三角形,ΔABD为等腰直角三角形,AB⊥BD,平面ABC⊥平面ABD,点E与点D在平面ABC的同侧,且CE//BD,BD=2CE.点F为AD中点,连接EF.(1)求证:EF//平面ABC;(2)求二面角C−AE−D的余弦值.27. ( 10分) 如图,在四棱锥S−ABCD中,底面ABCD是直角梯形,AD//BC,AB⊥BC,ΔSAB 是等边三角形,侧面SAB⊥底面ABCD,AB=2√3,BC=3,AD=1,点M、点N分别在棱SB、棱CB上,BM=2MS,BN=2NC,点P是线段MN上的任意一点.(1)求证:AP//平面SCD;(2)求二面角S−CD−B的大小.28. ( 15分) 如图,四棱锥P−ABCD的底面是正方形,PA⊥底面ABCD,PA=AD=2,点M,N分别在棱PD,PC上,且PC⊥平面AMN.(1)求证:AM⊥PD;(2)求直线CD与平面AMN所成角的正弦值.(3)求二面角C−AM−N的余弦值29. ( 10分) 如图,四棱锥P−ABCD中, PD⊥底面ABCD,且底面ABCD为平行四边形,若∠DAB= 60°, AB=2, AD=1.(1)求证: PA⊥BD;(2)若∠PCD=45°,求点D到平面PBC的距离ℎ.30. ( 10分) 在长方体ABCD−A1B1C1D1中,底面ABCD是边长为2的正方形,E是AB的中点,F是BC的中点.(1)求证:EF//平面A1DC1;(2)若AA1=2√3,求平面A1DC1与平面B1EF所成二面角的正弦值.31. ( 10分) 如图,在四棱锥P−ABCD中,底面ABCD是矩形,侧棱PD⊥底面ABCD,且PD= CD=1,过棱PC的中点E,作EF⊥PB交PB于点F.(1)证明:PA//平面EDB;,求PA与面ABCD所成角的正弦值.(2)若面DEF与面ABCD所成二面角的大小为π332. ( 5分) 如图,在三棱柱ABC−A1B1C1中,AA1⊥平面ABC,D是AB的中点,BC=AC,AB=2DC=2√2,AA1=4.(Ⅰ)求证:BC1//平面A1CD;(Ⅱ)求平面BCC1B1与平面A1CD所成锐二面角的平面角的余弦值.33. ( 10分) 如图,在三棱柱ABC−A1B1C1中,AA1⊥平面ABC,点D是AB的中点,BC= AC,AB=2DC=2,AA1=√3.(1)求证:平面A1DC⊥平面ABB1A1;(2)求点A到平面A1DC的距离.34. ( 10分) 如图,在平行六面体ABCD﹣A1B1C1D1中,AA1=A1D,AB=BC,∠ABC=120°.(1)证明:AD⊥BA1;(2)若平面ADD1A1⊥平面ABCD,且A1D=AB,求直线BA1与平面A1B1CD所成角的正弦值.35. ( 10分) 如图,在四棱锥P−ABCD中, PA⊥平面ABCD,∠ABC=∠BAD=90°,AD=AP= 4,AB=BC=2, M,N为线段PC,AD上一点不在端点.AD,求证:MN∥面PBA(1)当M为中点时,AN=14,若存在(2)当N为AD中点时,是否存在M,使得直线MN与平面PBC所成角的正弦值为2√55求出M的坐标,若不存在,说明理由.36. ( 10分) 如图,正方体ABCD−A1B1C1D1的棱长为2,E为棱CC1的中点.(1)求 AD 1 与 DB 所成角的大小;(2)求 AE 与平面 ABCD 所成角的正弦值.37. ( 20分 ) 如图, E 是以 AB 为直径的半圆 O 上异于 A,B 的点,矩形 ABCD 所在的平面垂直于半圆 O 所在的平面,且 AB =2 , AD =3(1)求证:平面 EAD ⊥ 平面 EBC ;(2)若 EB ⌢ 的长度为 π3,求二面角 A −DE −C 的正弦值. 38. ( 5分 ) 如图1,在直角梯形 ABCD 中,AB ∥CD , AB ⊥AD ,且 AB =AD =12CD =1 .现以 为一边向梯形外作正方形 ADEF ,然后沿边 AD 将正方形 ADEF 翻折,使平面 ADEF 与平面 ABCD 垂直,如图2.(Ⅰ)求证:BC ⊥平面DBE ;(Ⅱ)求点D 到平面BEC 的距离.39. ( 10分 ) 如图,扇形 AOB 的半径为 2 ,圆心角 ∠AOB =120∘ ,点 C 为弧 AB 上一点, PO ⊥ 平面 AOB 且 PO =√5 ,点 M ∈PB 且 BM =2MP , PA ∥平面 MOC .(1)求证:平面MOC⊥平面POB;(2)求平面POA和平面MOC所成二面角的正弦值的大小.40. ( 10分) 如图,已知四边形ABCD为等腰梯形,BDEF为正方形,平面BDEF⊥平面ABCD,AD//BC,AD=AB=1,∠ABC=60°.(1)求证:平面CDE⊥平面BDEF;(2)点M为线段EF上一动点,求BD与平面BCM所成角正弦值的取值范围.41. ( 10分) 如图,在四棱锥P-ABCD中,AD=2√3,AB=3,AP=√3,AD//BC,AD⊥平面PAB,∠APB=90°,点E满足PE⇀=23PA⇀+13PB⇀.(1)证明:PE⊥DC;(2)求二面角A-PD-E的余弦值.42. ( 10分) 在斜三棱柱ABC−A1B1C1中,侧面AC1⊥平面ABC,AA1=√2a,A1C=CA=AB=a,AB⊥AC,D是AA1的中点.(1)求证:CD⊥平面AB1;(2)在侧棱BB1上确定一点E,使得二面角E−A1C1−A的大小为π.343. ( 10分) 如图,在四棱锥P−ABCD中,侧面PAD⊥底面ABCD,底面ABCD为梯形,AB//CD,=2.∠ABC=∠BCD=90°,BC=CD=AB2(1)证明: BD⊥PD;(2)若△PAD为正三角形,求二面角A−PB−C的余弦值.44. ( 10分) 如图,已知四棱锥P−ABCD的底面为直角梯形,∠ADC为直角,AP⊥平面ABCD,BC:AD:CD=5:4:2,且CD=1.(1)求证:BP⊥AC;(2)若AP=CD,求二面角D−PC−B的余弦值.45. ( 10分) 如图,在四棱锥P−ABCD中,底面ABCD是矩形,PA⊥平面ABCD,PA=AD=2,AB=1, AM⊥PD于点M,连接BM.(1)求证:PD⊥BM;(2)求直线CD与平面ACM所成角的正弦值.BC=1,E是BC的中46. ( 10分) 如图所示1,已知四边形ABCD满足AD//BC,BA=AD=DC=12点.将△BAE沿着AE翻折成△B1AE,使平面B1AE⊥平面AECD,F为CD的中点,如图所示2.(1)求证:EF⊥平面AB1E;(2)求AE到平面CB1D的距离.47. ( 10分) 如图,四棱锥P﹣ABCD的底面ABCD是平行四边形,∠BCD=135°,PA⊥平面ABCD,AB=AC=PA=2,E,F,M分别为线段BC,AD,PD的中点.(1)求证:直线EF⊥平面PAC;(2)求平面MEF与平面PBC所成二面角的正弦值.48. ( 5分) 如图,三棱柱A1B1C1−ABC中,BB1⊥平面ABC,AB⊥BC,AB=2,BC= 1,BB1=3,D是CC1的中点,E是AB的中点.(Ⅰ)证明:DE//平面C1BA1;(Ⅱ)F是线段CC1上一点,且直线AF与平面ABB1A1所成角的正弦值为1,求二面角F−3BA1−A的余弦值.49. ( 5分) 如图,在四棱锥P−ABCD中, PA⊥平面ABCD, AD⊥CD,AD//BC,BC=4,PA= AD=CD=2,点E为PC的中点.(I) 证明:DE//平面PAB;(II)求直线PB与平面PCD所成角的正弦值.50. ( 10分) 如图,AB是圆的直径,PA垂直圆所在的平面,C是圆上的一点.(1)求证:平面PAC⊥平面PBC;(2)若AB=2 , AC=PA=1,求直线PA与平面PBC所成角的正弦值.答案解析部分一、解答题1.【答案】(1)解:由题意知∠BCD=∠ADC=90°,BC//ED,且BC=CD=12AD=DE,所以四边形BCDE是正方形,连接CE,所以BD⊥CE,又因为BC//AE,BC=AE,所以四边形ABCE是平行四边形,所以CE//AB,则BD⊥AB.因为平面SAD⊥平面ABCD,∠SAD=90°,平面SAD∩平面ABCD=AD,故SA⊥平面ABCD.所以SA∩AB=A,所以SA⊥BD,又因为SA∩AB=A,则BD⊥平面SAB.(2)解:∵SA=AD=2,BE=DE=1,∴△BDE的面积为12,又由(1)知SA⊥平面ABCD,∴V S−BDE=13×12×2=13,又在RtΔSAB中,SA=2,AB=DB=√2,∴SB=√6,由(1)知BD⊥SB,∴ΔSBD的面积为12×√2×√6=√3,设点E到平面SBD的距离为ℎ,则13S△BDS⋅ℎ=13,即ℎ=√33.【考点】直线与平面垂直的判定,点、线、面间的距离计算【解析】【分析】(1)利用线面垂直的判定定理,即可证得BD⊥平面SAB.(2)由(1)知SA⊥平面ABCD,求得V S−BDE=13,再根据等体积法,即可求解点点E到平面SBD的距离.2.【答案】(1)证明:∵M,N分别是AF,AB的中点,∴MN∥BF.∵MN⊄平面BCF,BF⊂平面BCF,∴MN//平面BCF.(2)解:∵四边形ABCD和ABEF都是边长为2的正方形,∴DA⊥AB,FA⊥AB,∴∠DAF就是二面角D−AB−F的平面角,∴∠DAF=60°.连接DM,在△DAM中,DA=2,AM=1,∠DAM=60°,∴DM2=AM2+AD2−2AM⋅AD⋅cos60°=3,∴DM=√3.∴DM2+AM2=AD2,∴DM⊥AM.∵DA⊥AB,FA⊥AB,FA∩DA=A,∴AB ⊥ 平面 ADM , ∴AB ⊥DM .∴DM ⊥ 平面 ABEF .以点 M 为原点, MF , MG ( G 是 BE 中点), MD 所在直线分别为 x 轴, y 轴, z 轴建立如图空间直角坐标系,如图所示:则 D(0,0,√3) , E(1,2,0) , B(−1,2,0) , F(1,0,0) , A(−1,0,0) ,DE ⃗⃗⃗⃗⃗ =(1,2,−√3) , BF ⃗⃗⃗⃗⃗ =(2,−2,0) , BC ⃗⃗⃗⃗⃗ =AD ⃗⃗⃗⃗⃗ =(1,0,√3) .设平面 BCF 的法向量为 m⃗⃗ =(x,y,z) , 则 {m ⇀⋅BF ⇀=2x −2y =0m ⇀⋅BC⇀=x +√3z =0 ,取 m ⃗⃗ =(√3,√3,−1) . 设直线 DE 与平面 BCF 所成角为 θ ,则 sinθ=|m⃗⃗⃗ ⋅DE ⃗⃗⃗⃗⃗⃗ ||m ⃗⃗⃗ ||DE ⃗⃗⃗⃗⃗⃗ |=√427 ,∴ 直线 DE 与平面 BCF 所成角的正弦值为 √427. 【考点】直线与平面平行的判定,用空间向量求直线与平面的夹角【解析】【分析】(1)根据三角形的中位线,有 MN ∥BF ,再利用线面平行的判定定理证明.(2)根据点 M , N 分别是 AF , AB 的中点,二面角 D −AB −F 的大小为60°,证明 DM ⊥ 平面 ABEF ,然后以点 M 为原点, MF , MG ( G 是 BE 中点), MD 所在直线分别为 x 轴, y 轴, z 轴建立如图空间直角坐标系,再求得平面 BCF 的一个法向量,利用线面角的向量求法求解.3.【答案】 (1)证明:因为E 为AB 的中点, AE =1 ,所以 CD =AB =2 ,所以 CD 2+PD 2=PC 2 ,从而 PD ⊥CD .又 PD ⊥CE , CD ∩CE =C ,所以 PD ⊥ 底面ABCD , 所以 PD ⊥AD .因为四边形ABCD 是正方形,所以 AD ⊥CD .又 CD ∩PD =D ,所以 AD ⊥ 平面PCD.(2)解:以D 为坐标原点,建立空间直角坐标系 D −xyz ,如图所示,则 A(2,0,0) , P(0,0,3) , E(2,1,0) , C(0,2,0) ,所以 PE ⃗⃗⃗⃗⃗ =(2,1,−3) , EC ⃗⃗⃗⃗⃗ =(−2,1,0) , DA ⃗⃗⃗⃗⃗ =(2,0,0) .设平面PCE 的法向量为 n⃗ =(x,y,z) , 则 PE ⃗⃗⃗⃗⃗ ⋅n ⃗ =EC ⃗⃗⃗⃗⃗ ⋅n ⃗ =0 ,即 {2x +y −3z =0−2x +y =0 ,令 x =3 ,得 n ⃗ =(3,6,4) . cos〈n ⃗ ,DA ⃗⃗⃗⃗⃗ 〉=n ⃗ ⋅DA ⃗⃗⃗⃗⃗⃗ |n ⃗ ||DA ⃗⃗⃗⃗⃗⃗ |=3√6161 , 故DA 与平面PCE 所成角的正弦值为 3√6161 .【考点】直线与平面垂直的判定,用空间向量求直线与平面的夹角【解析】【分析】(1)通过证明 PD ⊥AD , AD ⊥CD 即可证明线面垂直;(2)建立空间直角坐标系,利用向量方法求解线面角的正弦值.4.【答案】 (1)证明:设 BC 1 与 CB 1 交点为 O ,连接 OE , BE .由题可知四边形 BCC 1B 1 为正方形,所以 BC 1⊥CB 1 ,且 O 为 BC 1 中点.又因 BE 2=AB 2+AE 2 , C 1E 2=A 1E 2+A 1C 12 ,所以 BE =C 1E ,所以 BC 1⊥OE .又因为 OE ∩CB 1=O ,所以 BC 1⊥ 平面 EB 1C .因为 EB 1⊂ 平面 EB 1C ,所以 BC 1⊥EB 1 .(2)解:取 AB 的中点 O ′ ,连接 O ′C , O ′C ⊥AB ,在平面 ABB 1A 1 过点 O ′ 内作 AB 的垂线,如图所示,建立空间直角坐标系 O ′−xyz .设 AB =2 ,则 E(0,−1,1) , B 1(0,1,2) , B(0,1,0) , C 1(−√3,0,2) .所以 EB 1⃗⃗⃗⃗⃗⃗⃗ =(0,2,1) , EC 1⃗⃗⃗⃗⃗⃗⃗ =(−√3,1,1) .设平面 C 1EB 1 的一个法向量为 n ⃗ =(x,y,z) ,则 {n ⇀⋅EB1⇀=2y +z =0n ⇀⋅EC 1⇀=−√3x +y +z =0 ,令 y =√3 ,则 n ⃗ =(−1,√3,−2√3) . 由(1)可知平面 CEB 1 的一个法向量为 BC 1⃗⃗⃗⃗⃗⃗⃗ =(−√3,−1,2) , 则 |cos〈BC 1⃗⃗⃗⃗⃗⃗⃗ ,n⃗ 〉|=|n ⃗ ⋅BC 1⃗⃗⃗⃗⃗⃗⃗⃗ ||n ⃗ |⋅|BC 1⃗⃗⃗⃗⃗⃗⃗⃗ |=√3√3+1+4⋅√1+3+12=√64.由图可知二面角 C 1−EB 1−C 为锐角,所以其余弦值为 √64.【考点】空间中直线与直线之间的位置关系,用空间向量求平面间的夹角【解析】【分析】(1)通过证明 BC 1⊥ 平面 EB 1C 即可证得;(2)建立空间直角坐标系,利用向量求解.5.【答案】 (1)证明:取 AD 的中点为 O ,连结 OP , OC , OB ,设 OB 交 AC 于 H ,连结 GH . 因为 AD//BC , AB =BC =CD =12AD , 四边形 ABCO 与四边形 OBCD 均为菱形, ∴OB ⊥AC , OB//CD , CD ⊥AC , 因为 △PAD 为等边三角形, O 为 AD 中点, ∴PO ⊥AD ,因为平面 PAD ⊥ 平面 ABCD ,且平面 PAD ∩ 平面 ABCD =AD .PO ⊂ 平面 PAD 且 PO ⊥AD , ∴PO ⊥ 平面 ABCD 因为 CD ⊂ 平面 ABCD , ∴PO ⊥CD ,因为H , G 分别为 OB , PB 的中点, ∴GH//PO , ∴GH ⊥CD .又因为 GH ∩AC =H , AC,GH ⊂ 平面 GAC , ∴CD ⊥ 平面 GAC .(2)解:取 BC 的中点为 E ,以 O 为空间坐标原点,分别以 OE ⇀,OD ⇀,OP ⇀ 的方向为 x 轴、 y 轴、 z 轴的正方向,建立如图所示的空间直角坐标系 O −xyz .设 AD =4 ,则 P(0,0,2√3) , A(0,−2,0) , C(√3,1,0) , D(0,2,0) , G(√32,−12,√3)AP ⃗⃗⃗⃗⃗ =(0,2,2√3) , AG ⇀=(√32,32,√3) , 设平面 PAG 的一法向量 n →=(x,y,z) .由 {n ⇀⋅AP⇀=0n ⇀⋅AG ⇀=0 ⇒{2y +2√3z =0√32x +32y +√3z =0⇒{y =−√3z x =z .令 z =1 ,则 n ⃗ =(1,−√3,1) . 由(1)可知,平面 AGC 的一个法向量 CD ⃗⃗⃗⃗⃗ =(−√3,1,0) , cos〈n ⇀,CD⇀〉=n ⇀⋅CD ⇀|n⇀||CD ⇀|=−√155∴ 二面角 P −AG −C 的平面角的余弦值为 −√155.【考点】直线与平面垂直的判定,用空间向量求平面间的夹角【解析】【分析】(1)取 AD 的中点为 O ,连结 OP , OC , OB ,设 OB 交 AC 于 H ,连结 GH .证明 AC ⊥CD , GH ⊥CD ,即可证 CD ⊥ 平面 GAC ;(2)取 BC 的中点为 E ,以 O 为空间坐标原点,分别以 OE⇀,OD ⇀,OP ⇀ 的方向为 x 轴、 y 轴、 z 轴的正方向,建立如图所示的空间直角坐标系 O −xyz .设 AD =4 ,利用向量法求二面角 P −AG −C 的余弦值.6.【答案】 (1)解:因为平面 AEC ⊥ 平面 ABC ,交线为 AC ,又 AC ⊥BC , 所以 BC ⊥ 平面 AEC , ∴BC ⊥AE ,又 AE ⊥CD , CD ∩BC =C , 则 AE ⊥ 平面 BCDE , EC ⊂ 平面 BCDE , 所以, AE ⊥EC ;(2)解:取 AC 的中点 O , AB 的中点 F ,连接 OE , OF ,则 OE ⊥ 平面 ABC , OF ⊥ 平面 AEC ;以点 O 为坐标原点,分别以 OA , OF , OE 为 x 轴, y 轴, z 轴建立空间直角坐标系如图所示,已知 AE =EC =CB =√2 ,则 AC =2 , OE =1 , O(0,0,0) , A(1,0,0) , C(−1,0,0) , D(0,−√2,1) , 则 AC⃗⃗⃗⃗⃗ =(−2,0,0) , AD ⃗⃗⃗⃗⃗ =(−1,−√2,1) , 设平面 DAC 的一个法向量 m⃗⃗ =(x,y,z) , 由 {m ⇀⋅AC⇀=0,m ⇀⋅AD ⇀=0 得 {−2x =0,−x −√2y +z =0令 y =√2 ,则 x =0 , z =2 ,即 m ⃗⃗ =(0,√2,2) ;平面 ECA 的一个法向量为 n ⃗ =(0,1,0) ; cos〈m ⃗⃗ ,n ⃗ 〉=m⃗⃗⃗ ⋅n ⃗ |m ⃗⃗⃗ ||n ⃗ |=√2√2+4=√33.所以二面角 D −AC −E 的余弦值为 √33.【考点】空间中直线与直线之间的位置关系,用空间向量求平面间的夹角【解析】【分析】(1)先通过平面 AEC ⊥ 平面 ABC 得到 BC ⊥AE ,再结合 AE ⊥CD ,可得 AE ⊥ 平面 BCDE ,进而可得结论;(2)取 AC 的中点 O , AB 的中点 F ,连接 OE , OF ,以点 O 为坐标原点,分别以 OA , OF , OE 为 x 轴, y 轴, z 轴建立空间直角坐标系,求出平面 DAC 的一个法向量以及平面 ECA 的一个法向量,求这两个法向量的夹角即可得结果. 7.【答案】 (1)证明:因为 △ABC 是等边三角形, ∠BAD =∠BCD =90° , 所以 Rt △ABD ≅Rt △CBD ,可得 AD =CD . 因为点 P 是 AC 的中点,则 PD ⊥AC , PB ⊥AC , 因为 PD ∩PB =P , PD ⊂ 平面PBD, PB ⊂ 平面 PBD , 所以 AC ⊥ 平面 PBD ,因为 AC ⊂ 平面 ACD , 所以平面 ACD ⊥ 平面 BDP .(2)解:如图,作 CE ⊥BD ,垂足为 E 连接 AE .因为 Rt △ABD ⊆Rt △CBD ,所以 AE ⊥BD, AE =CE, ∠AEC 为二面角A-BD-C 的平面角. 由已知二面角 A −BD −C 为 120° ,知 ∠AEC =120° . 在等腰三角形 AEC 中,由余弦定理可得 AC =√3AE . 因为 △ABC 是等边三角形,则 AC =AB ,所以 AB =√3AE . 在 Rt △ABD 中,有 12AE ⋅BD =12AB ⋅AD ,得 BD =√3AD , 因为 BD =√6 ,所以 AD =√2 . 又 BD 2=AB 2+AD 2 ,所以 AB =2 . 则 AE =2√33, ED =√63.以 E 为坐标原点,以向量 EC ⃗⃗⃗⃗⃗ , ED ⃗⃗⃗⃗⃗ 的方向分别为 x 轴, y 轴的正方向, 以过点 E 垂直于平面 BCD 的直线为 z 轴,建立空间直角坐标系 E −xyz ,则 D(0,√63,0) , A(−√33,0,1) ,向量 AD ⃗⃗⃗⃗⃗ =(√33,√63,−1) ,平面 BCD 的一个法向量为 m⃗⃗ =(0,0,1) , 设直线 AD 与平面 BCD 所成的角为 θ , 则 cos〈m ⃗⃗ ,AD ⃗⃗⃗⃗⃗ 〉=m⃗⃗⃗ ⋅AD ⃗⃗⃗⃗⃗⃗ |m⃗⃗⃗ ||AD ⃗⃗⃗⃗⃗⃗ |=√2×1=−√22, sinθ=|cos〈m ⃗⃗ ,AD⃗⃗⃗⃗⃗ 〉|=√22所以直线 AD 与平面 BCD 所成角的正弦值为 √22.【考点】平面与平面垂直的判定,直线与平面所成的角,二面角的平面角及求法【解析】【分析】(1)由 △ABC 是等边三角形, ∠BAD =∠BCD =90° ,得 AD =CD .再证明 PD ⊥AC , PB ⊥AC ,从而和证明 AC ⊥ 平面 PBD ,故平面 ACD ⊥ 平面 BDP 得证.(2)作 CE ⊥BD ,垂足为 E 连接 AE .由 Rt △ABD ⊆Rt △CBD ,证得 AE ⊥BD, AE =CE, 结合二面角 A −BD −C 为 120° ,可得 AB =2 , AE =2√33, ED =√63 .建立空间直角坐标系,求出点的坐标则 D(0,√63,0) , A(−√33,0,1) ,向量AD ⃗⃗⃗⃗⃗ =(√33,√63,−1) ,即平面 BCD 的一个法向量 m ⃗⃗ =(0,0,1) ,运用公式 cos〈m ⃗⃗ ,AD ⇀〉=m ⃗⃗⃗ ⋅AD ⇀|m⃗⃗⃗ ||AD ⇀| 和 sinθ=|cos〈m ⃗⃗ ,AD ⇀〉| ,即可得出直线 AD 与平面 BCD 所成角的正弦值. 8.【答案】 (1)证明:∵ AP ⊥ 平面 PCD ,∴ AP ⊥CD . ∵ AD//BC , BC =12AD ,∴四边形 BCDE 为平行四边形, ∴ BE//CD , ∴ AP ⊥BE .又∵ AB ⊥BC , AB =BC =12AD ,且 E 为 AD 的中点, ∴四边形 ABCE 为正方形,∴ BE ⊥AC .又 AP ∩AC =A ,∴ BE ⊥ 平面 APC ,则 BE ⊥PO . ∵ AP ⊥ 平面 PCD ,∴ AP ⊥PC ,又 AC =√2AB =√2AP , ∴ ΔPAC 为等腰直角三角形, O 为斜边 AC 上的中点, ∴ PO ⊥AC 且 AC ∩BE =O ,∴ PO ⊥ 平面 ABCD .(2)解:∵ OB =1 ,∴ PA =PB =AB =√2 . 设 C 到平面 PAB 的距离为 d , 由 V C−PAB =V P−ABC ,得 13×√34×(√2)2×d =13×12×(√2)2×1 ,解得 d =2√33.【考点】直线与平面垂直的判定,点、线、面间的距离计算【解析】【分析】(1)首项通过证明 AP ⊥CD,CD//BE ,证得 AP ⊥BE ,然后通过证明四边形 ABCE 是正方形证得 BE ⊥AC ,由此证得 BE ⊥ 平面 APC ,所以 BE ⊥PO .通过证明 ΔPAC 为等腰直角三角形证得 PO ⊥AC ,由此证得 PO ⊥ 平面 ABCD .(2)利用等体积法,由 V C−PAB =V P−ABC 列方程,解方程求得点 C 到平面 PAB 的距离.9.【答案】 (1)解:如图,连接 BC 1 ,交 B 1C 于点M ,连接ME ,则 ME//AC 1 . 因为 AC 1⊄ 平面 B 1CE , ME ⊂ 平面 B 1CE ,所以 AC 1// 平面 B 1CE .(2)解:设O 是AC 的中点,连接 OC 1 ,OB.因为 △ACC 1 为正三角形, 所以 OC 1⊥AC ,又平面 ABC ⊥ 平面 A 1ACC 1 ,平面 ABC ∩ 平面 A 1ACC 1=AC , 所以 OC 1⊥ 平面ABC.由已知得 AC =2 .如图,分别以射线OB ,OA , OC 1 的方向为x ,y ,z 轴的正方向,建立空间直角坐标系,则有 A(0,1,0) , B(√3,0,0) , C 1(0,0,√3) , A 1(0,2,√3) , 故 AC 1⃗⃗⃗⃗⃗⃗⃗ =(0,−1,√3) , AB ⃗⃗⃗⃗⃗ =(√3,−1,0) , AA 1⃗⃗⃗⃗⃗⃗⃗ =(0,1,√3) , 设平面 B 1BAA 1 的一个法向量为 m⃗⃗ =(x,y,z) ,则 {AB ⇀⋅m ⇀=0AA 1⇀⋅m ⇀=0 , 所以 {√3x −y =0y +√3z =0 令 x =1 ,则 m ⃗⃗ =(1,√3,−1) .设直线 AC 1 与平面 B 1BAA 1 所成的角为 θ , 则 sinθ=|AC⃗⃗⃗⃗⃗ ⋅m ⃗⃗⃗ ||AC⃗⃗⃗⃗⃗1|⋅|m⃗⃗⃗ |=√32×5=√155,故直线 AC 1 与平面 B 1BAA 1 所成角的正弦值为 √155.【考点】直线与平面平行的判定,直线与平面所成的角【解析】【分析】(1)如图,连接 BC 1 ,交 B 1C 于点M ,连接ME ,则 ME//AC 1 ,再利用线面平行的判定定理,即可证明线面平行;(2)设O 是AC 的中点,连接 OC 1 ,OB ,分别以射线OB ,OA , OC 1 的方向为x ,y ,z 轴的正方向,建立空间直角坐标系,求出平面 B 1BAA 1 的一个法向量为 m ⃗⃗ =(1,√3,−1) ,设直线 AC 1 与平面 B 1BAA 1 所成的角为 θ ,代入公式 sinθ=|AC ⃗⃗⃗⃗⃗ ⋅m ⃗⃗⃗ ||AC ⃗⃗⃗⃗⃗ 1|⋅|m⃗⃗⃗ | 运算,即可得答案.10.【答案】 (1)解:如图,连接 AC 交 BD 于 O ,连接 OE ,则 O 为 AC 的中点.又E为CP上的中点,所以OE//PA.又AP⊄平面BDE,OE⊂平面BDE,所以AP//平面BDE(2)解:如图,取AB的中点M,连接PM,因为AP⊥PB,AP=PB,所以PM⊥AB,PM=12AB=1,AP=PB=√2,又平面PAB⊥平面ABCD,平面PAB∩平面ABCD=AB,PM⊂平面PAB,所以PM⊥平面ABCD.同理可得BC⊥平面PAB,∵AP、BP⊂平面PAB,∴BC⊥AP,BC⊥BP. 又因为AP⊥BP,BC∩BP=B,所以AP⊥平面BCP,∵PC⊂平面BCP,则AP⊥PC,所以PC=√PB2+BC2=√6,所以SΔAPC=12AP⋅PC=12×√2×√6=√3,又SΔACD=12×2×2=2,设点D到平面ACP的距离为ℎ,由V D−APC=V P−ACD,得13⋅SΔAPC⋅ℎ=13⋅PM⋅SΔACD,所以ℎ=3=2√33,即点D到平面ACP的距离为2√33.【考点】直线与平面平行的判定,点、线、面间的距离计算【解析】【分析】(1)连接AC交BD于O,则O为AC的中点,利用中位线的性质可得出OE//PA,然后利用直线与平面平行的判定定理可证明出AP//平面BDE;(2)取AB的中点M,连接PM,利用面面垂直的性质定理可得出PM⊥平面ABCD,由此可计算出三棱锥P−ACD的体积,并计算出ΔAPC的面积,并设点D到平面ACP的距离为ℎ,由V P−ACD=13SΔACP⋅ℎ可计算出点D到平面ACP的距离的值.11.【答案】(1)解:连接AO,因为O为BC的中点,可得BC⊥AO,∵ A 1O ⊥ 平面 ABC , BC ⊂ 平面 ABC ,∴ A 1O ⊥BC , 又∵ AO ∩A 1O =O ,∴ BC ⊥ 平面 AA 1O ,∴ BC ⊥AA 1 , ∵ BB 1//AA 1 , ∴ BC ⊥BB 1 , 又∵四边形 BB 1C 1C 为平行四边形, ∴四边形 BB 1C 1C 为矩形;(2)解:如图,分别以 OA,OB,OA 1 所在直线为 x,y,z 轴,建立空间直角坐标系,则 A(1,0,0),B(0,2,0),C(0,−2,0),Rt △AOB 中, AO =√AB 2−BO 2=1 , Rt △AA 1O 中, A 1O =√AA 12−AO 2=2 ,A 1(0,0,2) ,∴ AA 1⃗⃗⃗⃗⃗⃗⃗ =(−1,0,2) , A 1C ⃗⃗⃗⃗⃗⃗⃗ =(0,−2,−2) , A 1B 1⃗⃗⃗⃗⃗⃗⃗⃗⃗ =AB ⃗⃗⃗⃗⃗ =(−1,2,0) ,设平面 A 1B 1C 的法向量是 n⃗ =(x,y,z) , 由 {n ⇀⋅AB⇀=0,n ⇀⋅A 1C ⇀=0, 得 {−x +2y =0,−2y −2z =0, 即 {x =2y,z =−y, ,可取 n ⃗ =(2,1,−1) , 设直线 AA 1 与平面 A 1B 1C 所成角为 θ ,则 θ∈[0,π2] ,sinθ=|cos <AA 1⃗⃗⃗⃗⃗⃗⃗ ,n ⃗ >| =|AA 1⃗⃗⃗⃗⃗⃗⃗⃗ ⋅n ⃗ ||AA 1⃗⃗⃗⃗⃗⃗⃗⃗ |⋅|n ⃗ |=√5⋅√6=215√30 , ∵ θ∈[0,π2] ,∴ cosθ=√1−sin 2θ=√10515,即直线 AA 1 与平面 A 1B 1C 所成角的余弦值为 √10515.【考点】直线与平面所成的角【解析】【分析】(1)连接 AO ,可得 BC ⊥AO ,易证 A 1O ⊥BC ,则 BC ⊥ 平面 AA 1O ,从而可证 BC ⊥BB 1 ,由此即可得出结论;(2)以 OA,OB,OA 1 所在直线分别为 x,y,z 轴建立空间直角坐标系,利用法向量解决问题.12.【答案】 (1)证明:因为 PA ⊥ 平面 ABCD , CD ⊂ 平面 ABCD , 所以 PA ⊥CD ,因为底面 ABCD 是正方形,所以 AD ⊥CD , 又 PA ∩AD =A ,所以 CD ⊥ 平面 PAD , 因为 AE ⊂ 平面 PAD ,所以 CD ⊥AE ,又因为 AE ⊥PD,CD ∩PD =D , CD,PD ⊂ 平面 PCD , 所以 AE ⊥ 平面 PCD(2)解:因为 PA ⊥ 平面 ABCD ,底面 ABCD 为正方形,所以 PA ⊥AB,PA ⊥AD,AB ⊥AD ,以 A 为原点,分别以 AB 、AD 、AP 所在的直线为x 轴、y 轴、z 轴建立空间直角坐标系 A −xyz (如图所示),设 PA =AB =1 ,则 A(0,0,0),B(1,0,0),C(1,1,0),D(0,1,0),P(0,0,1) , 因为 AE ⊥PD ,所以 E 为 PD 中点,所以 E(0,12,12) , 所以 PB ⃗⃗⃗⃗⃗ =(1,0,−1),PC ⃗⃗⃗⃗⃗ =(1,1,−1),AE ⃗⃗⃗⃗⃗ =(0,12,12) , 由(1)得 AE ⃗⃗⃗⃗⃗ =(0,12,12) 为平面 PCD 的一个法向量, 设平面 PBC 的一个法向量为 m⃗⃗ =(x,y,z) , 由 {PB ⇀⋅m ⃗⃗ =0PC ⇀⋅m ⃗⃗ =0 ,即 {x −z =0x +y −z =0 ,令 x =1 ,则 z =1,y =0 ,所以 m ⃗⃗ =(1,0,1) , 因此 cos〈m⃗⃗ ,AE ⃗⃗⃗⃗⃗ 〉=m⃗⃗⃗ ⋅AE ⃗⃗⃗⃗⃗ |m⃗⃗⃗ |⋅|AE ⃗⃗⃗⃗⃗ |=12√2×√12=12, 由图可知二面角 B −PC −D 的大小为钝角, 故二面角 B −PC −D 的余弦值为 −12【考点】直线与平面垂直的判定,用空间向量求平面间的夹角【解析】【分析】(1)由 PA ⊥ 平面 ABCD 及底面 ABCD 是正方形可证得 CD ⊥ 平面 PAD ,则 CD ⊥AE ,又由 AE ⊥PD ,即可求证;(2)以 A 为原点,分别以 AB 、AD 、AP 所在的直线为x 轴、y 轴、z 轴建立空间直角坐标系 A −xyz ,由(1)可知 AE ⃗⃗⃗⃗⃗ 为平面 PCD 的一个法向量,求得平面 PBC 的一个法向量 m ⃗⃗ ,进而利用数量积求解即可13.【答案】 (1)解:由题设可知 AC =4√2 , CD =4√2 , AD =8 ∴ AD 2=CD 2+AC 2 ∴ CD ⊥AC又∵平面 ABC ⊥ 平面 ACD ,平面 ABC ∩ 平面 ACD =AC ∴ CD ⊥ 面 ABC .(2)解:法一、等体积法取 AC 的中点 O 连接 OB ,由题设可知 △ABC 为等腰直角三角形,所以 OB ⊥ 面 ACM ∵ V B−ACM =V A−BCM 且 V B−ACM =13S ACM ⋅BO =16√23而 S ΔBCM =4√3∴ A 到面 BCM 的距离 ℎ=4√63,所以 sinθ=ℎAB =√63.法二、向量法取 AC 的中点 O 连接 OB ,由题设可知 △ABC 为等腰直角三角形,所以 OB ⊥ 面 ACM ,连接 OM ,因为 M 、O 分别为 AB 和 AC 的中点,所以 OM//CD ,由(1)可知 OM ⊥AC ,故以 OM 、OC 、OB 所在直线为 x 轴、 y 轴、 z 轴建立空间直角坐标系,如图所示. 则 A(0,−2√2,0) , B(0,0,2√2) , C(0,2√2,0) , M(2√2,0,0) ∴ CB⃗⃗⃗⃗⃗ =(0,−2√2,2√2) CM ⃗⃗⃗⃗⃗⃗ =(2√2,−2√2,0) BA ⃗⃗⃗⃗⃗ =(0,−2√2,−2√2) ∴面 BCM 的一个法向量 n ⃗ =(1,1,1) ∴ sinθ=|BA⃗⃗⃗⃗⃗ ⋅n ⃗ ||BA ⃗⃗⃗⃗⃗ ||n⃗ |=√63【考点】直线与平面垂直的判定,直线与平面所成的角【解析】【分析】(1)通过计算结合勾股定理的逆定理可以证明 CD ⊥AC ,再根据面面垂直的性质定理进行证明即可;(2)法一、取 AC 的中点 O 连接 OB ,根据 V B−ACM =V A−BCM ,结合三棱锥的体积公式进行求解即可;法二、取 AC 的中点 O 连接 OB ,由题设可知 △ABC 为等腰直角三角形,所以 OB ⊥ 面 ACM ,连接 OM ,因为 M 、O 分别为 AB 和 AC 的中点,所以 OM//CD ,由(1)可知 OM ⊥AC ,故以 OM 、OC 、OB 所在直线为 x 轴、 y 轴、 z 轴建立空间直角坐标系,如图所示.运用向量法求解即可.14.【答案】 (1)证明:∵底面 ABCD 是正方形, ∴ BC ⊥CD ,∵ SD ⊥ 底面 ABCD , BC ⊂ 底面 ABCD ,∴ SD ⊥BC ,又 DC ∩SD =D , ∴ BC ⊥ 平面 SDC ,∵ SC ⊂ 平面 SDC ,∴ BC ⊥SC .(2)解:由(1)知 BC ⊥SC ,又 CD ⊥BC ,∴ ∠SCD 为所求二面角的平面角, 在 RtΔDSC 中,∵ SD =DC =1 ,∴ ∠SCD =45° .(3)解:取AB中点P,连结MP,DP,在ΔABS,由中位线定理得MP//SB,∴∠DMP或其补角是异面直线DM与SB所成角,∵MP=12SB=√32,DM=√22,DP=√1+14=√52,所以ΔDMP中,有DP2=MP2+DM2,∴∠DMP=90°.【考点】直线与平面垂直的判定,二面角的平面角及求法【解析】【分析】(1)根据题意,由线面垂直证线线垂直,再根据线面垂直的判定定理,证明线面垂直,再证线线垂直.(2)由(1)中线面垂直,可知所求二面角的平面角为∠SCD,根据题意可求角度.(3)利用中位线将异面直线平移,则∠DMP或其补角是异面直线DM与SB所成角,根据勾股定理,即可求解.15.【答案】(1)解:在△AOC中, OA=OC=2,AC=a=2√2,∴OA2+OC2=AC2∴∠AOC=90°,即AO⊥OC,∵AO⊥BD,且AO∩BD=O,∴AO⊥平面BCD(2)解:由(1)知, OC⊥OD,以O为原点, OC,OD所在的直线分别为x轴, y轴建立如图的空间直角坐标系O−xyz:则 Q(0,0,0), B(0,−2√3,0), C(2,0,0), D(0,2√3,0) . ∵AO ⊥BD,CO ⊥BD∴∠AOC 为二面角 A −BD −C 的平面角, ∴∠AOC =120° ∴ 点 A(−1,0,√3)AD⃗⃗⃗⃗⃗ =(1,2√3,−√3) , BA ⃗⃗⃗⃗⃗ =(−1,2√3,√3) , BC ⃗⃗⃗⃗⃗ =(2,2√3,0) 设平面 ABC 的法向量为 n⃗ =(x,y,z) ,则 ∴ {n ⃗ ⋅BC ⇀=0n ⃗ ⋅BA ⇀=0 故 {2x +2√3y =0x +2√3y +√3z =0 取 x =1 ,则 y =−√33,z =√3∴ n ⃗ =(1,−√33,√3)设直线 AD 与平面 ABC 所成的角为 θ , sinθ=|AD⃗⃗⃗⃗⃗⃗ ⋅n ⃗ ||AD ⃗⃗⃗⃗⃗⃗ ||n ⃗ |=4√133=√313 ∴cosθ=√1−sin 2θ=√1013 ∴tanθ=sinθcosθ=√310=√3010∴ 直线 AD 与平面 ABC 所成的正切值: √3010【考点】直线与平面垂直的判定,用空间向量求直线与平面的夹角,用空间向量求平面间的夹角 【解析】【分析】(1)根据线面垂直定义,即可求得答案.(2)由于平面 ABC 不是特殊的平面,故建系用法向量求解,以 O 为原点建系, OC,OD 所在的直线分别为 x 轴, y 轴,求出平面 ABC 的法向量 n ⃗ ,求解 AD ⃗⃗⃗⃗⃗ 和 n⃗ 的夹角,即可求得答案. 16.【答案】 (1)解:因为 AB//CD ,所以 AMMC =ABCD =12 ,即AM AC=13.因为 MN// 平面PCD , MN ⊂ 平面PAC ,平面 PAC ∩ 平面 PCD =PC , 所以 MN//PC . 所以 ANAP =AM AC=13 ,即 m =13(2)解:因为 AB =AD , ∠BAD =60° ,可知 △ABD 为等边三角形, 所以 BD =AD =PD ,又 BP =√2AD , 故 BP 2=PD 2+DB 2 ,所以 PD ⊥DB .由已知 PD ⊥AD , AD ∩BD =D ,所以 PD ⊥ 平面ABCD ,如图,以D 为坐标原点, DA ⃗⃗⃗⃗⃗ ,DP⃗⃗⃗⃗⃗ 的方向为x , y 轴的正方向建立空间直角坐标系,设 AB =1 ,则 AB =AD =DP =1 , CD =2 , 所以 A(1,0,0) , B(12,0,√32) , P(0,1,0) , C(−1,0,√3) ,则 PB ⃗⃗⃗⃗⃗ =(12,−1,√32) , PC ⃗⃗⃗⃗⃗ =(−1,−1,√3) , PA ⃗⃗⃗⃗⃗ =(1,−1,0) 设平面PBC 的一个法向量为 n 1⃗⃗⃗⃗ =(x 1,y 1,z 1) ,则有 {n 1⇀⋅PB⇀=0n 1⇀⋅PC ⇀=0 即 {x 1−2y 1+√3z 1=0x 1+y 1−√3z 1=0. 令 x 1=1 ,则 y 1=2,z 1=√3 ,即 n 1⃗⃗⃗⃗ =(1,2,√3) , 设平面APC 的一个法向量为 n 2⃗⃗⃗⃗ =(x 2,y 2,z 2) ,则有{n 2⇀⋅PA ⇀=0n 2⇀⋅PC ⇀=0,即 {x 2−y 2=0−x 2−y 2+√3z 2=0 令 x 2=y 2=√3 ,则 z 2=2 ,即 n 2⃗⃗⃗⃗ =(√3,√3,2) . 所以 cos <n 1⃗⃗⃗⃗ ,n 2⃗⃗⃗⃗ >=n 1⃗⃗⃗⃗⃗ ⋅n 2⃗⃗⃗⃗⃗ |n 1⃗⃗⃗⃗⃗ |⋅|n 2⃗⃗⃗⃗⃗ |=√32√2×√10=√154设二面角 A −PC −B 的平面角为 θ ,则 cosθ=√154【考点】向量的共线定理,直线与平面平行的性质,用空间向量求平面间的夹角 【解析】【分析】(1)由AB ∥CD , 得到AM AC=13 ,由MN ∥平面PCD , 得MN ∥PC , 从而 ANAP =AM AC=13,由此能实数m 的值;(2)由AB =AD , ∠BAD =60°,知△ABD 为等边三角形,推导出PD ⊥DB , PD ⊥AD , 从而PD ⊥平面ABCD , 以D 为坐标原点, DA ⃗⃗⃗⃗⃗ ,DP ⃗⃗⃗⃗⃗ 的方向为x , y 轴的正方向建立空间直角坐标系,由此能求出二面角B ﹣PC ﹣B 的余弦值.17.【答案】 (1)证明:因为 PA ⊥ 平面 ABCD , EF ⊂ 平面 ABCD ,故可得 EF ⊥PA ; 设底面正方形的边长为4,故可得 AE =√AD 2+DE 2=√16+4=2√5 , EF =√FC 2+CE 2=√1+4=√5 , AF =√AB 2+BF 2=√16+9=5 , 故在 △AFE 中,满足 AE 2+EF 2=AF 2 ,故可得 AE ⊥EF ; 又 PA,AE ⊂ 平面 PAE ,且 PA ∩AE =A , 则 EF ⊥ 平面 PAE ,即证.(2)解:因为 PA ⊥ 平面 ABCD ,故 PA 为三棱锥 P −EFC 底面上的高线.故可得V P−EFC=13S∆EFC×PA=13×12×1×2×4=43.在△PEF中,因为PE=√PA2+AE2=6,EF=√5,由(1)可知EF⊥平面PAE,又PE⊂平面PAE,故可得EF⊥PE,则S△PEF=12×EF×PE=3√5,设点C到平面PEF的距离为ℎ,故可得V P−EFC=V C−PEF=13×S∆PEF×ℎ=43,解得ℎ=4√515.即点C到平面PEF的距离为:4√515.【考点】直线与平面垂直的判定,点、线、面间的距离计算【解析】【分析】(1)根据PA⊥平面ABCD,可得EF⊥PN,再证EF⊥AE,即可由线线垂直推证线面垂直;(2)转换三棱锥顶点,用等体积法求点面距离即可.18.【答案】(1)证明:因为PA⊥平面ABCD,EF⊂平面ABCD,故可得EF⊥PA;设底面正方形的边长为4,故可得AE=√AD2+DE2=√16+4=2√5,EF=√FC2+CE2=√1+4=√5,AF=√AB2+BF2=√16+9=5,故在△AFE中,满足AE2+EF2=AF2,故可得AE⊥EF;又PA,AE⊂平面PAE,且PA∩AE=A,则EF⊥平面PAE,即证.(2)解:因为PA⊥平面ABCD, AB,AD⊂平面ABCD,故可得PA⊥AB,PA⊥AD,又底面ABCD为正方形,故可得AB⊥AD,故以A为坐标原点,以AB,AD,AP所在直线为x,y,z轴建立空间直角坐标系如下图所示:设AB=4,故可得A(0,0,0),P(0,0,5),B(4,0,0),E(2,4,0),F(4,3,0)设平面PEF的法向量为m⃗⃗ =(x,y,z),则{m⃗⃗ ⋅EF⇀=0m⃗⃗ ⋅PE⇀=0,则{2x−y=02x+4y−5z=0取y=2,则m⃗⃗ =(1,2,2).不妨取平面PAB的法向量n⃗=(0,1,0).则cos〈m⃗⃗ ,n⃗ 〉=m⃗⃗⃗ ⋅n⃗|m⃗⃗⃗ ||n⃗ |=√9×1=23.。

(完整版)高考立体几何大题及答案(理)

(完整版)高考立体几何大题及答案(理)
由 得2AD= ,解得AD= 。
故AD=AF。又AD⊥AF,所以四边形ADEF为正方形。
因为BC⊥AF,BC⊥AD,AF∩AD=A,故BC⊥平面DEF,因此平面BCD⊥平面DEF。
连接AE、DF,设AE∩DF=H,则EH⊥DF,EH⊥平面BCD。
连接CH,则∠ECH为 与平面BCD所成的角。
因ADEF为正方形,AD= ,故EH=1,又EC= =2,
(II)设线段 、 的中点分别为 、 ,
求证: ∥
(III)求二面角 的大小。
10.如题(18)图,在五面体 中, ∥ , , ,四边形 为平行四边形, 平面 , .求:
(Ⅰ)直线 到平面 的距离;
(Ⅱ)二面角 的平面角的正切值.
11.如图,四棱锥PABCD中,底面ABCD为平行四边形,∠DAB=60°,AB=2AD,PD⊥底面ABCD.
(Ⅱ)设平面BCD的法向量 则
又 =(-1,1,0),
=(-1,0,c),故
令x=1,则y=1,z= , =(1,1, ).
又平面 的法向量 =(0,1,0)
由二面角 为60°知, =60°,
故 °,求得
于是 ,

°
所以 与平面 所成的角为30°
3、(Ⅰ)证明:连接 ,在 中, 分别是 的中点,所以 ,又 ,所以 ,又 平面ACD,DC 平面ACD,所以 平面ACD
(1)证明:PA⊥BD;
(2)设PD=AD,求二面角A-PB-C的余弦值.
12(本小题满分12分)
如图,已知四棱锥P-ABCD的底面为等腰梯形,AB CD,AC BD,垂足为H,
PH是四棱锥的高,E为AD中点
(1)证明:PE BC
(2)若 APB= ADB=60°,求直线PA与平面PEH所成角的正弦值

高中数学立体几何多选题100含解析

高中数学立体几何多选题100含解析

高中数学立体几何多选题100含解析一、立体几何多选题1.如图,正方体1111ABCD A B C D -中的正四面体11A BDC -的棱长为2,则下列说法正确的是( )A .异面直线1AB 与1AD 所成的角是3πB .1BD ⊥平面11AC DC .平面1ACB 截正四面体11A BDC -所得截面面积为3D .正四面体11A BDC -的高等于正方体1111ABCD A B C D -体对角线长的23【答案】ABD 【分析】选项A ,利用正方体的结构特征找到异面直线所成的角;选项B ,根据正方体和正四面体的结构特征以及线面垂直的判定定理容易得证;选项C ,由图得平面1ACB 截正四面体11A BDC -所得截面面积为1ACB 面积的四分之一;选项D ,分别求出正方体的体对角线长和正四面体11A BDC -的高,然后判断数量关系即可得解. 【详解】A :正方体1111ABCD ABCD -中,易知11//AD BC ,异面直线1A B 与1AD 所成的角即直线1A B 与1BC 所成的角,即11A BC ∠,11A BC 为等边三角形,113A BC π∠=,正确;B :连接11B D ,1B B ⊥平面1111DC B A ,11A C ⊂平面1111D C B A ,即111AC B B ⊥,又1111AC B D ⊥,1111B B B D B ⋂=,有11A C ⊥平面11BDD B ,1BD ⊂平面11BDD B ,所以111BD AC ⊥,同理可证:11BD A D ⊥,1111AC A D A ⋂=,所以1BD ⊥平面11AC D ,正确;C :易知平面1ACB 截正四面体11A BDC -所得截面面积为134ACB S=,错误;D :易得正方体1111ABCD A B C D -()()()2222226++=2的正四面体11A BDC -的高为22222262213⎛⎫--⨯= ⎪⎝⎭,故正四面体11A BDC -的高等于正方体1111ABCD A B C D -体对角线长的23,正确. 故选:ABD. 【点睛】关键点点睛:利用正方体的性质,找异面直线所成角的平面角求其大小,根据线面垂直的判定证明1BD ⊥平面11AC D ,由正四面体的性质,结合几何图形确定截面的面积,并求高,即可判断C 、D 的正误.2.已知正方体1111ABCD A B C D -的棱长为2,点E ,F 在平面1111D C B A 内,若||5AE =,AC DF ⊥,则( )A .点E 的轨迹是一个圆B .点F 的轨迹是一个圆C .EF 21-D .AE 与平面1A BD 21530+【答案】ACD 【分析】对于A 、B 、C 、D 四个选项,需要对各个选项一一验证. 选项A :由2211||5AE AA A E =+=1||1A E =,分析得E 的轨迹为圆;选项B :由AC DBF ⊥,而点F 在11B D 上,即F 的轨迹为线段11B D ,; 选项C :由E 的轨迹为圆,F 的轨迹为线段11B D ,可分析得min ||EF d r =-; 选项D :建立空间直角坐标系,用向量法求最值. 【详解】 对于A:2211||5AE AA A E =+=221|25A E +=1||1A E =,即点E 为在面1111D C B A 内,以1A 为圆心、半径为1 的圆上;故A 正确;对于B: 正方体1111ABCD A B C D -中,AC ⊥BD ,又AC DF ⊥,且BD ∩DF=D ,所以AC DBF ⊥,所以点F 在11B D 上,即F 的轨迹为线段11B D ,故B 错误;对于C:在平面1111D C B A 内,1A 到直线11B D 的距离为2,d=当点E ,F 落在11A C 上时,min ||21EF =-;故C 正确; 对于D:建立如图示的坐标系,则()()()()10,0,0,2,0,0,0,0,2,0,2,0A B A D因为点E 为在面1111D C B A 内,以1A 为圆心、半径为1 的圆上,可设()cos ,sin ,2E θθ 所以()()()1cos ,sin ,2,2,0,2,2,2,0,AE A B BD θθ==-=-设平面1A BD 的法向量(),,n x y z =,则有1·220·220n BD x y n A B x z ⎧=-+=⎪⎨=-=⎪⎩ 不妨令x =1,则()1,1,1n =, 设AE 与平面1A BD 所成角为α,则:2|||sin|cos,|||||n AEn AEn AEπθα⎛⎫++⎪====⨯当且仅当4πθ=时,sinα15=,故D正确故选:CD【点睛】多项选择题是2020年高考新题型,需要要对选项一一验证.3.在正三棱柱111ABC A B C-中,AC=11CC=,点D为BC中点,则以下结论正确的是()A .111122A D AB AC AA=+-B.三棱锥11D AB C-的体积为6C.1AB BC⊥且1//AB平面11AC DD.ABC内到直线AC、1BB的距离相等的点的轨迹为抛物线的一部分【答案】ABD【分析】A .根据空间向量的加减运算进行计算并判断;B.根据1111D AB C A DB CV V--=,然后计算出对应三棱锥的高AD和底面积11DB CS,由此求解出三棱锥的体积;C.先假设1AB BC⊥,然后推出矛盾;取AB中点E,根据四点共面判断1AB//平面11AC D是否成立;D.将问题转化为“ABC内到直线AC和点B的距离相等的点”的轨迹,然后利用抛物线的定义进行判断.【详解】A.()11111111222A D A A AD AD AA AB AC AA AB AC AA=+=-=+-=+-,故正确;B.1111D AB C ADB CV V--=,因为D为BC中点且AB AC=,所以AD BC⊥,又因为1BB⊥平面ABC,所以1BBAD⊥且1BB BC B=,所以AD⊥平面11DB C,又因为AD===11111122DB CS BB B C=⨯⨯=,所以1111111133226D AB C A DB C DB CV V AD S--==⨯⨯=⋅=,故正确;C .假设1AB BC ⊥成立,又因为1BB ⊥平面ABC ,所以1BB BC ⊥且111BB AB B =,所以BC ⊥平面1ABB ,所以BC AB ⊥,显然与几何体为正三棱柱矛盾,所以1AB BC ⊥不成立;取AB 中点E ,连接11,,ED EA AB ,如下图所示:因为,D E 为,BC AB 中点,所以//DE AC ,且11//AC A C ,所以11//DE AC ,所以11,,,D E A C 四点共面,又因为1A E 与1AB 相交,所以1AB //平面11AC D 显然不成立,故错误;D .“ABC 内到直线AC 、1BB 的距离相等的点”即为“ABC 内到直线AC 和点B 的距离相等的点”,根据抛物线的定义可知满足要求的点的轨迹为抛物线的一部分,故正确; 故选:ABD. 【点睛】方法点睛:求解空间中三棱锥的体积的常用方法:(1)公式法:直接得到三棱锥的高和底面积,然后用公式进行计算;(2)等体积法:待求三棱锥的高和底面积不易求出,采用替换顶点位置的方法,使其求解高和底面积更容易,由此求解出三棱锥的体积.4.已知图1中,A 、B 、C 、D 是正方形EFGH 各边的中点,分别沿着AB 、BC 、CD 、DA 把ABF 、BCG 、CDH △、DAE △向上折起,使得每个三角形所在的平面都与平面ABCD 垂直,再顺次连接EFGH ,得到一个如图2所示的多面体,则( )A .AEF 是正三角形B .平面AEF ⊥平面CGHC .直线CG 与平面AEF 2D .当2AB =时,多面体ABCD EFGH -的体积为83【答案】AC 【分析】取CD 、AB 的中点O 、M ,连接OH 、OM ,证明出OH ⊥平面ABCD ,然后以点O 为坐标原点,OM 、OC 、OH 所在直线分别为x 、y 、z 轴建立空间直角坐标系,求出EF ,可判断A 选项的正误,利用空间向量法可判断BC 选项的正误,利用几何体的体积公式可判断D 选项的正误. 【详解】取CD 、AB 的中点O 、M ,连接OH 、OM , 在图1中,A 、B 、C 、D 是正方形EFGH 各边的中点,则1122CH GH EH DH ===,O 为CD 的中点,OH CD ∴⊥,平面CDH ⊥平面ABCD ,平面CDH 平面ABCD CD =,OH ⊂平面CDH ,OH ∴⊥平面ABCD ,在图1中,设正方形EFGH 的边长为()220a a >,可得四边形ABCD 的边长为2a , 在图1中,ADE 和ABF 均为等腰直角三角形,可得45BAF DAE ∠=∠=, 90BAD ∴∠=,∴四边形ABCD 是边长为2a 的正方形,O 、M 分别为CD 、AB 的中点,则//OC BM 且OC BM =,且90OCB ∠=,所以,四边形OCBM 为矩形,所以,OM CD ⊥,以点O 为坐标原点,OM 、OC 、OH 所在直线分别为x 、y 、z 轴建立空间直角坐标系,则()2,,0A a a -、()2,,0B a a 、()0,,0C a 、()0,,0D a -、(),,E a a a -、()2,0,F a a 、(),,G a a a 、()0,0,H a .对于A 选项,由空间中两点间的距离公式可得2AE AF EF a ===,所以,AEF 是正三角形,A 选项正确;对于B 选项,设平面AEF 的法向量为()111,,m x y z =,(),0,AE a a =-,()0,,AF a a =,由111100m AE ax az m AF ay az ⎧⋅=-+=⎪⎨⋅=+=⎪⎩,取11z =,则11x =,11y =-,则()1,1,1m =-, 设平面CGH 的法向量为()222,,n x y z =,(),0,CG a a =,()0,,CH a a =-,由222200n CG ax az n CH ay az ⎧⋅=+=⎪⎨⋅=-+=⎪⎩,取21z =-,可得21x =,21y =-,则()1,1,1n =--, ()22111110m n ⋅=+--⨯=≠,所以,平面AEF 与平面CGH 不垂直,B 选项错误;对于C 选项,6cos ,23CG m CG m a CG m⋅<>===⨯⋅, 设直线CG 与平面AEF 所成角为θ,则sin 63θ=,23cos 1sin θθ=-=,所以,sin tan 2cos θθθ==,C 选项正确; 对于D 选项,以ABCD 为底面,以OH 为高将几何体ABCD EFGH -补成长方体1111ABCD A B C D -,则E 、F 、G 、H 分别为11A D 、11A B 、11B C 、11C D 的中点,因为2AB =,即1a =,则1OH =,长方体1111ABCD A B C D -的体积为2214V =⨯=,11211111113326A A EF A EF V S AA -=⋅=⨯⨯⨯=△,因此,多面体ABCD EFGH -的体积为111044463ABCD EFGH A A EF V V V --=-=-⨯=, D 选项错误. 故选:AC. 【点睛】方法点睛:计算线面角,一般有如下几种方法:(1)利用面面垂直的性质定理,得到线面垂直,进而确定线面角的垂足,明确斜线在平面内的射影,即可确定线面角;(2)在构成线面角的直角三角形中,可利用等体积法求解垂线段的长度h ,从而不必作出线面角,则线面角θ满足sin hlθ=(l 为斜线段长),进而可求得线面角; (3)建立空间直角坐标系,利用向量法求解,设a 为直线l 的方向向量,n 为平面的法向量,则线面角θ的正弦值为sin cos ,a n θ=<>.5.在正方体1111ABCD A B C D -中,M 、N 分别是棱AB 、1CC 的中点,1MB P 的顶点P 在棱1CC 与棱11C D 上运动,有以下四个命题正确命题的序号是( )A .平面1MB P 1ND ⊥ B .平面1MB P ⊥平面11ND AC .1MB P 在底面ABCD 上的射影图形的面积为定值 D .1MB P 在侧面11D C CD 上射影图形是三角形 【答案】BC 【分析】取N 与P 重合,结合勾股定理可判断A 选项的正误;利用面面垂直的判定定理可判断B 选项的正误;分点P 在棱1CC 、11C D 上运动两种情况讨论,利用三角形的面积公式可判断C 选项的正误;取点P 与点1C 重合,判断1MB P 在侧面11D C CD 上射影图形形状,可判断D 选项的正误. 【详解】对于A 选项,设正方体1111ABCD A B C D -的棱长为2,如下图所示:当点P 与点N 重合时, 若1ND ⊥平面1MB P ,1B N ⊂平面1MB P ,则11ND B N ⊥,由勾股定理可得2211115D N C N C D =+=,同理可得15B N =,1122B D =,2221111B N D N B D ∴+≠,则1ND 与1B N 不垂直,假设不成立,A 选项错误;对于B 选项,取1BB 的中点E ,连接1A E 、EN ,在正方体1111ABCD A B C D -中,11//BB CC ,且E 、N 分别为1BB 、1CC 的中点, 则11//B E C N 且11B E C N =,所以,四边形11B ENC 为平行四边形,则11//EN B C 且11EN B C =,1111//A D B C 且1111A D B C =,所以,11//A D EN 且11A D EN =,所以,四边形11A END 为平行四边形,所以,11//A E D N ,111A B BB =,1B E BM =,11190A B E B BM ∠=∠=,所以,111Rt A B E Rt B BM ≅△△,所以,111B A E BB M ∠=∠,所以,111111190A EB BB M A EB B A E ∠+∠=∠+∠=,190B FE ∴∠=,所以,11B M A E ⊥,11A D ⊥平面11AA B B ,1B M ⊂平面11AA B B ,111B M A D ∴⊥, 1111A D A E A =,11A D 、1A E ⊂平面11ND A ,1MB ∴⊥平面11ND A ,1MB ⊂平面1MB P ,所以,平面1MB P ⊥平面11ND A ,B 选项正确;对于C 选项,设正方体1111ABCD A B C D -的棱长为a .若点P 在棱1CC 上运动时,1MB P 在底面ABCD 上的射影为MBC △, 此时,射影图形的面积为21224MBCa a S a =⋅=△; 若点P 在棱11C D 上运动时,设点P 在底面ABCD 上的射影点为G ,则G CD ∈, 且点G 到AB 的距离为a ,1MB 在底面ABCD 内的射影为MB ,则1MB P 在底面ABCD 内的射影为MBG △,且21224MBGa a S a =⋅⋅=△.综上所述,1MB P 在底面ABCD 内的射影图形的面积为定值,C 选项正确; 对于D 选项,当点P 与1C 重合时,P 、1B 两点在平面11D C CD 上的射影重合, 此时,1MB P 在侧面11D C CD 上的射影不构成三角形,D 选项错误. 故选:BC. 【点睛】方法点睛:证明面面垂直常用的方法: (1)面面垂直的定义; (2)面面垂直的判定定理.在证明面面垂直时,一般假设面面垂直成立,然后利用面面垂直转化为线面垂直,即为所证的线面垂直,组织论据证明即可.6.如图,已知四棱锥P ABCD -所有棱长均为4,点M 是侧棱PC 上的一个动点(不与点,P C 重合),若过点M 且垂直于PC 的截面将该四棱锥分成两部分,则下列结论正确的是( )A .截面的形状可能为三角形、四边形、五边形B .截面和底面ABCD 所成的锐二面角为4π C .当1PM =时,截面的面积为52D .当2PM =时,记被截面分成的两个几何体的体积分别为()1212,>V V V V ,则123=V V 【答案】BCD 【分析】点M 是侧棱PC 上的一个动点,根据其不同位置,对选项逐一进行判断即可. 【详解】A 选项中,如图,连接BD ,当M 是PC 中点时,2MC =,由题意知三角形PDC 与三角形PBC 都是边长为4的正三角形,所以DM PC ⊥,BM BC ⊥,又DM ,BM 在面MBD 内,且相交,所以PC ⊥平面PBD ,三角形MBD 即为过点M 且垂直于PC 的截面,此时是三角形,点M 向下移动时,2MC <,如图,仍是三角形;若点M 由中点位置向上移动,2MC >,在平面PDC 内作EM PC ⊥,交PD 于E ,在平面PBC 内作FM PC ⊥交PB 于F ,平面MEF 交平面PAD 于EG ,交PAB 于FH ,即交平面ABCD 于GH ,则五边形MEGHF 即为过点M 且垂直于PC 的截面,此时是五边形; 故截面的形状可能为三角形、五边形,A 错误;B 选项中,因为截面总与PC 垂直,所以不同位置的截面均平行,截面与平面ABCD 所成的锐角为定值,不妨取M 是中点,连接AC ,BD ,MB ,MD ,设AC ,BD 交点是N ,连接PN ,由题意知,四边形ABCD 是边长为4的菱形,BD AC ⊥,因为MB =MD ,所以MN BD ⊥,故MNC ∠是截面与平面ABCD 所成的锐角,过点M 作MQ AC ⊥,垂足Q.在三角形PAC中,MN =2,2,故在直角三角形MNQ 中,2cos 2NQ MNC MN ∠==,故4MNC π∠=,故B 正确;C 选项中,当PM =1时,M 是PC 中点,如图,五边形MEGHF 即为过点M 且垂直于PC 的截面,依题意,直角三角形PME 中,2cos PMPE EPM==∠,故E 为PD 的中点,同理,F是PB 的中点,则EF 是三角形PBD 的中位线,1222EF BD ==G ,H 分别在,AD AB 的中点上,证明如下,当G ,H ,也是中点时,1//,2GH BD GH BD =,有//,22GH EF GH EF ==EFHG 是平行四边形.依题意,三角形PAC 中4,42PA PC AC ===,故PA PC ⊥,故PC GE ⊥,易见,正四棱锥中BD ⊥平面PAC ,故BD PC ⊥,GH PC ∴⊥,因为 ,GE GH 均在平面EFHG 内,且相交,所以PC ⊥平面EFHG ,故此时平面EFHG 和平面MEF 即同一平面.又BD ⊥平面PAC ,有GH ⊥面平面PAC ,GH GM ⊥,根据对称性有GH GE ⊥,四边形EFHG 是矩形. 即五边形MEGHF 即为过点M 且垂直于PC 的截面,平面图如下:依题意,22GH EF ==,2EG FG ==,三角形高为()()22321h =-=,面积是122122⨯⨯=,四边形面积是22242⨯=,故截面面积是52. 故C 正确;D 选项中,若PM =2,看B 选项中的图可知,21124M BCD P BCD P ABCD V V V V ---===,故剩余部分134P ABCD V V -=,所以123=V V ,故D 正确. 故选:BCD. 【点睛】本题考查了棱锥的截面问题,考查了二面角、体积等计算问题,属于难题.7.如图,点E 为正方形ABCD 边CD 上异于点C ,D 的动点,将ADE 沿AE 翻折成SAE △,在翻折过程中,下列说法正确的是( )A .存在点E 和某一翻折位置,使得SB SE ⊥ B .存在点E 和某一翻折位置,使得//AE 平面SBCC .存在点E 和某一翻折位置,使得直线SB 与平面ABC 所成的角为45°D .存在点E 和某一翻折位置,使得二面角S AB C --的大小为60° 【答案】ACD 【分析】依次判断每个选项:当SE CE ⊥时,⊥SE SB ,A 正确,//AE 平面SBC ,则//AE CB ,这与已知矛盾,故B 错误,取二面角D AE B --的平面角为α,取4=AD ,计算得到2cos 3α=,C 正确,取二面角D AE B --的平面角为60︒,计算得到tan θ=,故D 正确,得到答案. 【详解】当SE CE ⊥时,SE AB ⊥,SE SA ⊥,故SE ⊥平面SAB ,故⊥SE SB ,A 正确; 若//AE 平面SBC ,因AE ⊂平面ABC ,平面ABC 平面SBC BC =,则//AE CB ,这与已知矛盾,故B 错误;如图所示:DF AE ⊥交BC 于F ,交AE 于G ,S 在平面ABCE 的投影O 在GF 上, 连接BO ,故SBO ∠为直线SB 与平面ABC 所成的角,取二面角D AE B --的平面角为α,取4=AD ,3DE =,故5AE DF ==,1CE BF ==,125DG =,12cos 5OG α=,故只需满足12sin 5SO OB α==, 在OFB △中,根据余弦定理:2221213121312sin 1cos 2cos cos 55555OFB ααα⎛⎫⎛⎫⎛⎫=+---∠ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,解得2cos 3α=,故C 正确; 过O 作OMAB ⊥交AB 于M ,则SMO ∠为二面角S AB C --的平面角,取二面角D AE B --的平面角为60︒,故只需满足22DG GO OM ==,设OAG OAM θ∠=∠=,84ππθ<<,则22DAG πθ∠=-,tan tan 22DG OGAG πθθ==⎛⎫- ⎪⎝⎭,化简得到2tan tan 21θθ=,解得tan 5θ=,验证满足,故D 正确; 故选:ACD .【点睛】本题考查了线线垂直,线面平行,线面夹角,二面角,意在考查学生的计算能力,推断能力和空间想象能力.8.在长方体1111ABCD A B C D -中,23AB =12AD AA ==,,,P Q R 分别是11,,AB BB AC 上的动点,下列结论正确的是( ) A .对于任意给定的点P ,存在点Q 使得1D P CQ ⊥ B .对于任意给定的点Q ,存在点R 使得1D R CQ ⊥ C .当1AR A C ⊥时,1AR D R ⊥D .当113AC A R =时,1//D R 平面1BDC 【答案】ABD 【分析】如图所示建立空间直角坐标系,计算142D P CQ b ⋅=-,()12222D R CQ b λλ⋅=--,134AR D R ⋅=-,10D R n ⋅=,得到答案.【详解】如图所示,建立空间直角坐标系,设()2,,0P a ,0,23a ⎡∈⎣,()2,23,Q b ,[]0,2b ∈,设11A R AC λ=,得到()22,23,22R λλλ--,[]0,1λ∈. ()12,,2P a D -=,()2,0,CQ b =,142D P CQ b ⋅=-,当2b =时,1D P CQ ⊥,A 正确;()122,23,2D R λλλ=--,()12222D R CQ b λλ⋅=--,取22bλ=+时,1D R CQ ⊥,B 正确; 1AR A C ⊥,则()()12,23,222,23,2212440AR AC λλλλλλ⋅=--⋅--=-+-+=, 14λ=,此时11333313,,,,022224AR D R ⎛⎫⎛⎫⋅=-⋅-=-≠ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,C 错误; 113AC A R =,则4234,,333R ⎛⎫ ⎪ ⎪⎝⎭,14232,,333D R ⎛⎫=- ⎪ ⎪⎝⎭,设平面1BDC 的法向量为(),,n x y z =,则10n BD n DC ⎧⋅=⎪⎨⋅=⎪⎩,解得()3,1,3n =-,故10D R n ⋅=,故1//D R 平面1BDC ,D 正确. 故选:ABD .【点睛】本题考查了空间中的线线垂直,线面平行,意在考查学生的计算能力和空间想象能力,推断能力.9.在边长为2的等边三角形ABC 中,点,D E 分别是边,AC AB 上的点,满足//DE BC 且AD ACλ=,(()01λ∈,),将ADE 沿直线DE 折到A DE '△的位置.在翻折过程中,下列结论不成立的是( )A .在边A E '上存在点F ,使得在翻折过程中,满足//BF 平面A CD 'B .存在102λ∈⎛⎫⎪⎝⎭,,使得在翻折过程中的某个位置,满足平面A BC '⊥平面BCDEC .若12λ=,当二面角A DE B '--为直二面角时,||104A B '=D .在翻折过程中,四棱锥A BCDE '-体积的最大值记为()f λ,()f λ的最大值为23【答案】ABC 【分析】对于A.在边A E '上点F ,在A D '上取一点N ,使得//FN ED ,在ED 上取一点H ,使得//NH EF ,作//HG BE 交BC 于点G ,即可判断出结论.对于B ,102λ∈⎛⎫⎪⎝⎭,,在翻折过程中,点A '在底面BCDE 的射影不可能在交线BC 上,即可判断出结论. 对于C ,12λ=,当二面角A DE B '--为直二面角时,取ED 的中点M ,可得AM ⊥平面BCDE .可得22A B AM BM '=+,结合余弦定理即可得出.对于D.在翻折过程中,取平面AED ⊥平面BCDE ,四棱锥A BCDE '-体积()3133BCDE f S λλλλ=⋅⋅=-,()01λ∈,,利用导数研究函数的单调性即可得出.【详解】对于A.在边A E '上点F ,在A D '上取一点N ,使得//FN ED ,在ED 上取一点H ,使得//NH EF ,作//HG BE 交BC 于点G ,如图所示,则可得FN 平行且等于BG ,即四边形BGNF 为平行四边形, ∴//NG BE ,而GN 始终与平面ACD 相交,因此在边A E '上不存在点F ,使得在翻折过程中,满足//BF 平面A CD ',A 不正确.对于B ,102λ∈⎛⎫⎪⎝⎭,,在翻折过程中,点A '在底面BCDE 的射影不可能在交线BC 上,因此不满足平面A BC '⊥平面BCDE ,因此B 不正确. 对于C.12λ=,当二面角A DE B '--为直二面角时,取ED 的中点M ,如图所示:可得AM ⊥平面BCDE , 则22223111010()1()21cos12022224A B AM BM '=+=++-⨯⨯⨯︒=≠,因此C 不正确;对于D.在翻折过程中,取平面AED ⊥平面BCDE ,四棱锥A BCDE '-体积()3133BCDE f S λλλλ=⋅⋅=-,()01λ∈,,()213f λλ'=-,可得3λ=时,函数()f λ取得最大值()312313f λ⎛⎫=-=⎪⎝⎭,因此D 正确. 综上所述,不成立的为ABC. 故选:ABC. 【点睛】本题考查了利用运动的观点理解空间线面面面位置关系、四棱锥的体积计算公式、余弦定理、利用导数研究函数的单调性极值与最值,考查了推理能力空间想象能力与计算能力,属于难题.10.如图所示,正方体ABCD A B C D ''''-的棱长为1,E ,F 分别是棱AA ',CC '的中点,过直线EF 的平面分别与棱BB ',DD '交于点M ,N ,以下四个命题中正确的是( )A .0MN EF ⋅=B .ME NE =C .四边形MENF 的面积最小值与最大值之比为2:3D .四棱锥A MENF -与多面体ABCD EMFN -体积之比为1:3 【答案】ABD 【分析】证明EF ⊥平面BDD B '',进而得EF MN ⊥,即可得A 选项正确;证明四边形MENF 为菱形即可得B 选项正确;由菱形性质得四边形MENF 的面积12S MN EF =⋅,再分别讨论MN 的最大值与最小值即可;根据割补法求解体积即可. 【详解】对于A 选项,如图,连接BD ,B D '',MN .由题易得EF BD ⊥,EFBB '⊥,BD BB B '⋂=,所以EF ⊥平面BDD B '',又MN ⊂平面BDD B '',所以EF MN ⊥,因此0MN EF ⋅=,故A 正确.对于B 选项,由正方体性质得:平面''//BCC B 平面''ADD A ,平面''BCC B 平面EMFN MF =,平面''ADD A 平面EMFN EN =, 所以//MF EN ,同理得//ME NF ,又EF MN ⊥,所以四边形MENF 为菱形, 因此ME NE =,故B 正确.对于C 选项,由B 易得四边形MENF 的面积12S MN EF =⋅, 所以当点M ,N 分别为BB ',DD '的中点时,四边形MENF 的面积S 最小,此时MN EF ==,即面积S 的最小值为1;当点M ,N 分别与点B (或点B '),D (或D )重合时,四边形MENF 的面积S 最大,此时MN =,即面积S 的最大值为2所以四边形MENF 的面积最小值与最大值之比为2C 不正确. 对于D 选项,四棱锥A MENF -的体积11113346M AEF N AEF AEF V V V DB S --=+=⋅==△; 因为E ,F 分别是AA ',CC '的中点,所以BM D N '=,DN B M '=,于是被截面MENF 平分的两个多面体是完全相同的,则它们的体积也是相同的,因此多面体ABCD EMFN -的体积21122ABCD A B C D V V ''''-==正方体,所以四棱锥A MENF -与多面体ABCD EMFN -体积之比为1:3,故D 正确. 故选:ABD .【点睛】本题考查立体几何与向量的综合、截面面积的最值、几何体的体积,考查空间思维能力与运算求解能力,是中档题.本题解题的关键在于证明四边形MENF 为菱形,利用割补法将四棱锥A MENF -的体积转化为三棱锥M AEF - 和N AEF -的体积之和,将多面体ABCD EMFN -的体积转化为正方体的体积的一半求解.。

高三精选立体几何大题30题(含详细解答)

高三精选立体几何大题30题(含详细解答)

A BC第1题图ABCD第1题图立体几何大题1.如下图,一个等腰直角三角形的硬纸片ABC中,∠ACB=90°,AC=4cm,CD是斜边上的高沿CD 把△ABC折成直二面角.(1)如果你手中只有一把能度量长度的直尺,应该如何确定A,B的位置,使二面角A-CD-B是直二面角?证明你的结论.(2)试在平面ABC上确定一个P,使DP与平面ABC内任意一条直线都垂直,证明你的结论.(3)如果在折成的三棱锥内有一个小球,求出小球半径的最大值.2.如图,已知正四棱柱ABCD—A1B1C1D1的底面边长为3,侧棱长为4,连结A1B过A作AF⊥A1B垂足为F,且AF的延长线交B1B于E。

(Ⅰ)求证:D1B⊥平面AEC;(Ⅱ)求三棱锥B—AEC的体积;(Ⅲ)求二面角B—AE—C的大小的正弦值.3.如图,正三棱柱ABC—A1B1C1的底面边长为1,点M在BC上,△AMC1是以M为直角顶点的等腰直角三角形.(I)求证:点M为BC的中点;(Ⅱ)求点B到平面AMC1的距离;(Ⅲ)求二面角M—AC1—B 的正切值. 4.如图,已知多面体ABCDE中,AB⊥平面ACD,DE⊥平面ACD,三角形ACD是正三角形,且AD=DE=2,AB=1,F是CD的中点.(Ⅰ)求证:AF∥平面BCE;(Ⅱ)求多面体ABCDE的体积;(Ⅲ)求二面角C-BE-D 的正切值.5.已知:ABCD是矩形,设PA=a,PA⊥平面ABCD.M、N分别是AB、PC的中点.(Ⅰ)求证:MN⊥AB;(Ⅱ)若PD=AB,且平面MND⊥平面PCD,求二面角P—CD—A的大小;(Ⅲ)在(Ⅱ)的条件下,求三棱锥D—AMN的体积.6.在正方体ABCD—A1B1C1D1中,P、M、N分别为棱DD1、AB、BC的中点。

(I)求二面角B1—MN—B的正切值;(II)证明:PB⊥平面MNB1;(III)画出一个正方体表面展开图,使其满足“有4个正方形面相连成一个长方形”的条件,并求出展开图中P、B两点间的距离。

(完整)高中数学《立体几何》大题及答案解析.doc

(完整)高中数学《立体几何》大题及答案解析.doc

高中数学《立体几何》大题及答案解析( 理)1.( 2009 全国卷Ⅰ)如图,四棱锥S ABCD 中,底面 ABCD 为矩形, SD底面ABCD,AD2 ,DCo SD 2 ,点 M 在侧棱 SC 上,∠ABM=60。

(I )证明:M是侧棱SC的中点;求二面角 S AM B 的大小。

2.( 2009 全国卷Ⅱ)如图,直三棱柱DE ⊥平面 BCC 1(Ⅰ)证明: AB=AC 的角的大小ABC-A 1B1C1中, AB ⊥ AC,D 、E 分别为 AA 1、 B1C 的中点,(Ⅱ)设二面角A-BD-C 为 60°,求 B 1C 与平面 BCD 所成A 1 C1B1D EACB3. ( 2009浙江卷)如图,DC平面ABC,EB / / DC,AC BC EB 2DC 2 ,ACB 120o, P,Q 分别为 AE , AB 的中点.(I)证明: PQ / / 平面ACD;(II)求AD与平面 ABE 所成角的正弦值.4.( 2009 北京卷)如图,四棱锥P ABCD 的底面是正方形,PD 底面 ABCD ,点E在棱PB上.(Ⅰ)求证:平面AEC 平面 PDB ;(Ⅱ)当 PD2AB 且E为PB的中点时,求 AE 与平面 PDB 所成的角的大小.5.( 2009 江西卷)如图,在四棱锥P ABCD 中,底面 ABCD 是矩形, PA平面ABCD,PA AD 4 , AB 2 .以 BD 的中点 O 为球心、 BD 为直径的球面交PD 于点 M .(1)求证:平面ABM⊥平面PCD;(2)求直线PC与平面ABM所成的角;(3)求点O到平面ABM的距离.PMA DOBC6(. 2009 四川卷)如图,正方形ABCD所在平面与平面四边形ABEF所在平面互相垂直,△ ABE 是等腰直角三角形,AB AE , FA FE , AEF 45 (I)求证: EF 平面 BCE ;( II )设线段 CD 、 AE 的中点分别为 P 、 M ,求证: PM ∥平面BCE ( III )求二面角 F BD A 的大小。

高三数学立体几何试题答案及解析

高三数学立体几何试题答案及解析

高三数学立体几何试题答案及解析1.一块石材表示的几何体的三视图如图所示,将该石材切削、打磨、加工成球,则能得到的最大球的半径等于()A.1B.2C.3D.4【答案】B【解析】几何体为一个三棱柱,底面为直角三角形,直角边长分别为6,8;三棱柱高为12.得到的最大球为直角三角形的内切球,其半径为,选B.【考点】三视图2.如图是某几何体的三视图,正视图是等腰梯形,俯视图中的曲线是两个同心的半圆组成的半圆环,侧视图是直角梯形,则该几何体的体积等于()A.B.C.D.【答案】A【解析】由三视图知:,,∴.【考点】三视图.3.几何体的三视图如图所示,若从该几何体的实心外接球中挖去该几何体,则剩余几何体的表面积是(注:包括外表面积和内表面积)()A.133B.100C.66D.166【答案】D【解析】由三视图知,该几何体为底面半径为3,搞为8的圆柱.其外接球时半径为5的球.则剩余几何体的表面积是球的表面积与该圆柱表面积的和,即.故选D.【考点】多面体及与其外接球的关系及几何体表面积计算问题.4.(本小题满分12分)如图,已知五面体,其中内接于圆,是圆的直径,四边形为平行四边形,且平面.(1)证明:;(2)若,,且二面角所成角的正切值是,试求该几何体的体积.【答案】(1)见解析;(2)8.【解析】(1)将问题转化为证明平面,再转化为证明(由直径可证)与(由平面可证);(2)考虑建立空间直角坐标系,通过求两个法向量的夹角来确定二面角所成角的正切值,并确定的长,进而可求得几何体的体积.试题解析:(1)证明:是圆的直径,,又平面,又平面,且,平面又平面,(2)设,以所在直线分别为轴,轴,轴,如图所示则,,,由(Ⅰ)可得,平面,平面的一个法向量是设为平面的一个法向量由条件得,,即不妨令,则,,.又二面角所成角的正切值是,,得该几何体的体积是【考点】1、空间直线与直线、直线与平面的垂直的判定与性质;2、二面角;3、空间几何体的体积.【方法点睛】用空间向量处理某些立体几何问题时,除要有应用空间向量的意识外,关键是根据空间图形的特点建立恰当的空间直角坐标系.若坐标系选取不当,计算量就会增大.总之树立用数解形的观念,即用数形结合的思想解决问题,而建立空间直角坐标系通常考虑以特殊点为坐标原点(如中点、正方体的顶点),特殊直线(如有两两垂直的直线)为坐标轴来建立.5.如图,在多面体中,为菱形,,平面,平面,为的中点,若平面.(1)求证:平面;(2)若,求二面角的余弦值.【答案】(1)见解析;(2).【解析】(1)证明线面垂直,只要证明这条直线与平面内两条相交直线垂直即可,取中点,连接,可证,先证,即可证明,即可证明结论成立;(2)建立空间直角坐标系,求出平面与平面的法向量,由空间向量公式直接计算即可.试题解析:(1)取AB的中点M,连结GM,MC,G为BF的中点,所以GM //FA,又EC面ABCD, FA面ABCD,∵CE//AF,∴CE//GM,∵面CEGM面ABCD=CM,EG// 面ABCD,∴EG//CM,∵在正三角形ABC中,CM AB,又AF CM∴EG AB, EG AF,∴EG面ABF.(2)建立如图所示的坐标系,设AB=2,则B()E(0,1,1) F(0,-1,2)=(0,-2,1),=(,-1,-1),=(,1, 1),设平面BEF的法向量=()则令,则,∴=()同理,可求平面DEF的法向量 =(-)设所求二面角的平面角为,则=.【考点】1.线面垂直的判定与性质;2.空间向量的应用.【方法点睛】本题主要考查线面垂直的判定与性质、空间向量的应用,属中档题.解答空间几何体中的平行、垂直关系时,一般要根据已知条件把空间中的线线、线面、面面之间的平行、垂直关系进行转化,转化时要正确运用有关的定理,找出足够的条件进行推理;求二面角,则通过求两个半平面的法向量的夹角间接求解.此时建立恰当的空间直角坐标系以及正确求出各点的坐标是解题的关键所在.6.三棱锥及其三视图中的正视图和侧视图如下图所示,,则棱的长为.【答案】.【解析】由已知三视图可知,平面,且底面为等腰三角形.在中,,边上的高为,所以.在中,由可得,故应填.【考点】1、三视图.【易错点晴】本题主要考查了空间几何体的三视图及其空间几何体的面积、体积的计算,考查学生空间想象能力和计算能力,属中档题.其解题过程中容易出现以下错误:其一是不能准确利用已知条件的三视图得出原几何体的空间形状,即不能准确找出该几何体中线线关系、线面关系,导致出现错误;其二是计算不仔细,导致结果出现错误.解决这类问题的关键是正确地处理三视图与原几何体之间的关系.7.在三棱锥中,平面为侧棱上的一点,它的正视图和侧视图如图所示,则下列命题正确的是()A.平面且三棱锥的体积为B.平面且三棱锥的体积为C.平面且三棱锥的体积为D.平面且三棱锥的体积为【答案】C【解析】∵平面,∴,又,∴平面,∴,又由三视图可得在中,为的中点,∴平面.又平面.故.故选:C.【考点】1.直线与平面垂直的判定;2.命题的真假判断与应用;3.简单空间图形的三视图.8.已知某几何体的三视图的侧视图是一个正三角形,如图所示,则该几何体的体积等于()A.B.C.D.【答案】C【解析】题设三视图是下图中几何体的三视图,由三视图中的尺寸,知其体积为,故选C.【考点】三视图与几何体的体积.9.如图,在三棱柱ABC A1B1C1中,D,E分别为A1C1,BB1的中点,B1C⊥AB,侧面BCC1B1为菱形.求证:(Ⅰ)DE∥平面ABC1;(Ⅱ)B1C⊥DE.【答案】(Ⅰ)证明见解析;(Ⅱ)证明见解析.【解析】(Ⅰ)取AA1的中点F,连DF,FE,根据中点易证线线平行,从而平面DEF∥平面ABC1,又因为DE平面DEF,所以B1C⊥DE;(Ⅱ)在菱形中B1C⊥BC1,又B1C⊥AB,易证B1C⊥平面ABC1,再根据面面平行的性质,得:B1C⊥平面DEF,从而证明B1C⊥DE.试题解析:(Ⅰ)如图,取AA1的中点F,连DF,FE.又因为D,E分别为A1C1,BB1的中点,所以DF∥AC1,EF∥AB.因为DF平面ABC1,AC1平面ABC1,故DF∥平面ABC1.同理,EF∥平面ABC1.因为DF,EF为平面DEF内的两条相交直线,所以平面DEF∥平面ABC1.因为DE平面DEF,所以DE∥平面ABC1.(Ⅱ)因为三棱柱ABC A1B1C1的侧面BCC1B1为菱形,故B1C⊥BC1.……9分又B1C⊥AB,且AB,BC1为平面ABC1内的两条相交直线,所以B1C⊥平面ABC1.而平面DEF∥平面ABC1,所以B1C⊥平面DEF,因为DE平面DEF,所以B1C⊥DE.【考点】1、线面平行;2、面面平行;3、线面垂直;4、三角形中位线.【方法点晴】本题主要考查的是线面平行、线线平行、线线垂直和线面垂直,属于中档题.解题时一定要注意得线线平行的常用证明方法,构造中位线和平行四边形是最常用方法.证明线面垂直的关键是证明线线垂直,证明线线垂直常用的方法是直角三角形、等腰三角形的“三线合一”和菱形、正方形的对角线.10.已知,是两个不同的平面,,是两条不同的直线,则下列正确的是()A.若,,则B.若,,,则C.若,,,则D.若,,,则【答案】C.【解析】A:或者,异面,故A错误;B:根据面面垂直的判定可知B错误;C:正确;D:或,故D错误,故选C.【考点】空间中直线平面的位置关系.11.已知三条不重合的直线和两个不重合的平面,下列命题正确的是()A.若,,则B.若,,且,则C.若,,则D.若,,且,则【答案】D【解析】A.若,,则,错,有可能;B.若,,且,则,错,有可能;C.若,,则,错,有可能,或异面;D.若,,且,则,正确【考点】空间直线与平面,平面与平面的位置关系12.如图,三角形是边长为4的正三角形,底面,,点是的中点,点在上,且.(1)证明:平面平面;(2)求直线和平面所成角的正弦值.【答案】(1)证明见解析;(2).【解析】(1)由底面,可得,又,可证的平面,问题得证;(2)在第一问证明的基础上,应用面面垂直的性质定理容易作出平面的垂线,即得斜线的射影,找出角,解直角三角形可得线面角的正弦.试题解析:(1)证明∵底面,底面,∴,又,,∴平面.又平面,∴平面平面.(2)解:过点作,连结.平面平面,平面平面,平面,∴平面,∴为直线和平面所成角.∵是边长为的正三角形,∴,.又∵,∴,,∴.即直线和平面所成角的正弦值为.【考点】空间垂直关系的应用和证明,直线与平面所成的角.【方法点晴】证明面面垂直只能证明线面垂直,而要证明线面垂直就得证明线线垂直,结合题中已知的垂直条件,分析容易找到哪个平面的垂线,逐步完成证明,组织步骤时一定要思路条理;对于直线与平面所成的角遵循作—证(指)—求—答的解题步骤,应当结合条件和前面证明的结论找到平面的垂线是解题的关键,本题中在第一问证明的基础上有了平面的垂面,利用面面垂直的性质定理过直线上一点作交线的垂线即为平面的垂线,连接垂足和斜足即得射影,找到线面角后解直角三角形得解.13.一个几何体的三视图如图所示,则这个几何体的外接球表面积为()A.B.C.D.【答案】A【解析】几何体为一个三棱锥S-ABC,其中D为AC中点,且SD垂直平面ABC,BD垂直AC,则球心在SD上,设球半径为R,则外接球表面积为,选A.【考点】三视图【方法点睛】1.解答此类题目的关键是由多面体的三视图想象出空间几何体的形状并画出其直观图.2.三视图中“正侧一样高、正俯一样长、俯侧一样宽”,因此,可以根据三视图的形状及相关数据推断出原几何图形中的点、线、面之间的位置关系及相关数据.14.已知正三角形的三个顶点都在半径为的球面上,球心到平面的距离为,点是线段的中点,过点作球的截面,则截面面积的最小值是_________.【答案】【解析】因为过作球的截面,当截面与垂直时,截面圆的半径最小,所以当截面与垂直时,截面圆的面积有最小值.设正三角形的外接圆圆心为,在中,,所以.在中,,所以,所以截面面积为【考点】1、多面体的外接球;2、球的截面圆性质.【方法点睛】“切”“接”问题的处理规律:①“切”的处理:解决与球的内切问题主要是指球内切多面体与旋转体,解答时首先要找准切点,通过作截面来解决;②“接”的处理:把一个多面体的几个顶点放在球面上即为球的外接问题.解决这类问题的关键是抓住外接的特点,即球心到多面体的顶点的距离等于球的半径.15.(2015•金家庄区校级模拟)如图正方形BCDE的边长为a,已知AB=BC,将△ABE沿BE边折起,折起后A点在平面BCDE上的射影为D点,则翻折后的几何体中有如下描述:①AB与DE所成角的正切值是;②AB∥CE;③VB﹣ACE的体积是a2;④平面ABC⊥平面ADC;⑤直线EA与平面ADB所成角为30°.其中正确的有.(填写你认为正确的序号)【答案】①③④⑤【解析】①由于BC∥DE,则∠ABC(或其补角)为AB与DE所成角;②AB和CE是异面直线;③根据三棱锥的体积公式即可求VB ﹣ACE的体积;④根据面面垂直的判定定理即可证明;⑤根据直线和平面所成角的定义进行求解即可.解:由题意,AB=BC,AE=a,AD⊥平面BCDE,AD=a,AC= a①由于BC∥DE,∴∠ABC(或其补角)为AB与DE所成角∵AB=a,BC=a,AC=a,∴BC⊥AC,∴tan∠ABC=,故①正确;②由图象可知AB与CE是异面直线,故②错误.③VB﹣ACE的体积是S△BCE×AD=×a3=,故③正确;(4)∵AD⊥平面BCDE,BC⊂平面BCDE,∴AD⊥BC,∵BC⊥CD,AD∩CD=D,∴BC⊥平面ADC,∵BC⊂平面ABC,∴平面ABC⊥平面ADC,故④正确;⑤连接CE交BD于F,则EF⊥BD,∵平面ABD⊥平面BDE,∴EF⊥平面ABD,连接F,则∠EAF为直线AE与平面ABD所成角,在△AFE中,EF=,AE=a,∴sin∠EAF==,则∠EAF=30°,故⑤正确,故正确的是①③④⑤故答案为:①③④⑤【考点】命题的真假判断与应用;空间中直线与直线之间的位置关系;平面与平面之间的位置关系.16.已知某几何体的三视图,则该几何体的体积是_______.【答案】.【解析】该几何体是一个四棱锥,底面是边长为2的正方形,高为,所以.【考点】1.空间几何体的表面积与体积;2.空间几何体的三视图与直观图.17.设三棱柱的侧棱垂直于底面,,且三棱柱的所有顶点都在同一球面上,则该球的表面积是.【答案】【解析】由题意可得:把三棱柱补成底面以2为边长的正方形,以为高的长方体,长方体的体对角线就是球的直径,所以,所以该球的表面积是;故填.【考点】空间几何体的表面积.18.某几何体的正视图与侧视图都是等腰梯形,则该几何体可以是下列几何体中的()①三棱台,②四棱台,③五棱台,④圆台.A.①②B.③④C.①③D.②④【答案】D【解析】由题意得,几何体的正视图和侧视图都是等腰梯形,则根据几何体的三视图的规则可知,该几何体可能为四棱台或圆台,故选D.【考点】空间几何体的三视图.【方法点晴】本题主要考查了空间几何体的三视图的应用,着重考查了推理和运算能力及空间想象能力,属于中档试题,解答此类问题的关键是根据三视图的规则“长对正、宽相等、高平齐”的原则,还原出原几何体的形状,本题的解答中,只是给出了几何体的正视图和侧视图都是等腰梯形,从而可得这个几何体可能是四棱台或圆台.19.在直三棱柱中,,,且异面直线与所成的角等于,设.(1) 求的值;(2) 求三棱锥的体积.【答案】(1); (2)【解析】(1)由BC ∥B 1C 1可得∠A 1BC 就是异面直线A 1B 与B 1C 1所成的角,从而∠A 1BC =60°,再由AA 1⊥平面ABC ,AB=AC ,则A 1B=A 1C ,△A 1BC 为等边三角形, 由已知可得,即可求得 (2)连接B 1C ,则三棱锥B 1–A 1BC 的体积等于三棱锥C –A 1B 1B 的体积,△的面积, 又可得平面,利用三棱锥的体积公式可求得.试题解析:(1)∵BC ∥B 1C 1,∴∠A 1BC 就是异面直线A 1B 与B 1C 1所成的角,即∠A 1BC =60°,又AA 1⊥平面ABC ,AB=AC ,则A 1B=A 1C ,∴△A 1BC 为等边三角形, 由,, ∴; (2)连接B 1C ,则三棱锥B 1–A 1BC 的体积等于三棱锥C –A 1B 1B 的体积, 即:, △的面积,又平面,所以,所以.【考点】异面直线所成的角及三棱锥的体积的求法.20. 如图,在四棱锥中,已知棱,,两两垂直,长度分别为1,2,2.若(),且向量与夹角的余弦值为.(1)求的值;(2)求直线与平面所成角的正弦值.【答案】(1);(2).【解析】(1)以为坐标原点,、、分别为、、轴建立空间直角坐标系,写出,的坐标,根据空间向量夹角余弦公式列出关于的方程可求;(2)设岀平面的法向量为,根据,进而得到,从而求出,向量的坐标可以求出,从而可根据向量夹角余弦的公式求出,从而得和平面所成角的正弦值.试题解析:(1)依题意,以为坐标原点,、、分别为、、轴建立空间直角坐标系 ,因为,所以,从而,则由,解得(舍去)或. (2)易得,,设平面的法向量, 则,,即,且,所以,不妨取,则平面的一个法向量,又易得,故,所以直线与平面所成角的正弦值为.考点: 1、空间两向量夹角余弦公式;2、利用向量求直线和平面说成角的正弦.21.如图,在四棱锥中,平面,分别是棱的中点.(1)求证:平面;(2)求证:平面平面.【答案】(1)详见解析(2)详见解析【解析】(1)证明线面平行,一般利用线面平行判定定理,即从线线平行出发给予证明,而线线平行的寻找与证明,往往需结合平面几何条件,如本题利用三角形中位线性质定理得(2)证明面面垂直,一般利用面面垂直判定定理,即从线面垂直出发给予证明,而线面垂直的证明,需多次利用线面垂直的判定与性质定理:先由平行四边形为菱形得,再由平面得,即,从而得平面试题解析:(1)设,连结,因为,为的中点,所以,所以四边形为平行四边形,所以为的中点,所以又因为平面,平面,所以平面.(2)(方法一)因为平面,平面所以,由(1)同理可得,四边形为平行四边形,所以,所以因为,所以平行四边形为菱形,所以,因为平面,平面,所以平面因为平面,所以平面平面.(方法二)连结,因为平面,平面,所以因为,所以,因为平面,平面,所以因为为的中点,所以,由(1),所以又因为为的中点,所以因为,平面,平面所以平面,因为平面,所以平面平面.【考点】线面平行判定定理,面面垂直判定定理22.如图,网格纸上小正方形的边长为1,粗线画出的是某个几何体的三视图,则该几何体的体积为()A.B.C.D.【答案】A【解析】因为网格纸上小正方形的边长为,有三视图可知,该几何体是下面为底面半径为高为的圆柱体的一半、上面是底面半径为高为的圆锥体的一半,所以体积为,故选A.【考点】1、几何体的三视图;2、圆柱及圆锥的体积公式.【方法点睛】本题利用空间几何体的三视图重点考查学生的空间想象能力和抽象思维能力,属于难题.三视图问题是考查学生空间想象能力最常见题型,也是高考热点.观察三视图并将其“翻译”成直观图是解题的关键,不但要注意三视图的三要素“高平齐,长对正,宽相等”,还要特别注意实线与虚线以及相同图形的不同位置对几何体直观图的影响.23.已知如图所示的三棱锥的四个顶点均在球的球面上,和所在的平面互相垂直,,,,则球的体积为()A.B.C.D.【答案】C【解析】因为,,,所以的中点为的外心,连接,则,又和所在的平面互相垂直,所以平面,上的每一点到距离相等,因此正三角形的中心即是外接球球心,其半径也是外接球半径,所以球半径,求体积为,故选C.【考点】1、外接球的性质及勾股定理;2、面面垂直及球的体积公式.【方法点睛】本题主要考查外接球的性质及勾股定理、面面垂直及三棱锥外接球体积的求法,属于难题.要求外接球的表面积和体积,关键是求出求的半径,求外接球半径的常见方法有:①若三条棱两垂直则用(为三棱的长);②若面(),则(为外接圆半径);③可以转化为长方体的外接球;④特殊几何体可以直接找出球心和半径.本题是根据方法④直接找出球心并求出半径进而得到求体积的.24.四棱锥的底面是正方形,,分别是的中点(1)求证:;(2)设与交于点,求点到平面的距离【答案】(1)证明见解析;(2).【解析】(1)要证明线面垂直,一般先证明线线垂直,本题中,由于是中点,因此有,而与垂直,从而与平面垂直,结论得证;(2)要求点到平面的距离,考虑三棱锥,的面积易求(为面积的一半),另外由(1)的结论,此三棱锥以为底时,是高,体积易求,从而所求距离易得.试题解析:(1)证明:连接,由于分别是的中点,所以,又,平面,故,又为正方形,故故,故(2)连接交于点,连接,则交线为,又,故,由于分别是的中点,故为的中点,又,故为三棱锥的高又故,又设点到平面的距离为,,所以【考点】线面垂直的判断,点到平面的距离.25.某几何体的三视图如图,则该几何体的体积为()A.B.C.D.【答案】C【解析】由题意得,由几何体的三视图,知该几何体是上下底面为梯形的直棱柱,所以该几何体的体积为,故选C.【考点】几何体的三视图及几何体的体积.【方法点晴】本题主要考查了空间几何体的三视图的应用,着重考查了推理和运算能力及空间想象能力,属于中档试题,解答此类问题的关键是根据三视图的规则“长对正、宽相等、高平齐”的原则,还原出原几何体的形状,本题的解答中,该几何体是上下底面为梯形的直棱柱是解答本题的关键,属于基础题.26.一个几何体的三视图如图,则这个几何体的表面积是()A.B.C.D.【答案】C【解析】由题意得,根据给定的几何体的三视图,可知,原几何体为正方体的一部分,如图所示的红线部分,是一个棱长为的正四面体,所以此几何体的表面积为,故选C.【考点】几何体的三视图与表面积.27.某几何体的三视图如图所示(单位:cm),则该几何体的表面积是______cm2,体积是______cm3.【答案】80,40【解析】由三视图知该组合体是一个长方体上面放置了一个小正方体,,.【考点】三视图.【方法点睛】解决由三视图求空间几何体的表面积与体积问题,一般是先根据三视图确定该几何体的结构特征,再准确利用几何体的表面积与体积公式计算该几何体的表面积与体积.28.如图,在四棱锥中,平面平面,,,,,,.(Ⅰ)求证:平面;(Ⅱ)求直线PB与平面PCD所成角的正弦值;(Ⅲ)在棱PA上是否存在点M,使得BM∥平面PCD?若存在,求的值;若不存在,说明理由.【答案】(Ⅰ)见解析;(Ⅱ);(Ⅲ)存在,.【解析】(Ⅰ)由面面垂直的性质定理知AB⊥平面,根据线面垂直的性质定理可知,再由线面垂直的判定定理可知平面;(Ⅱ)取的中点,连结,以O为坐标原点建立空间直角坐标系O-xyz,利用向量法可求出直线PB与平面PCD所成角的正弦值;(Ⅲ)假设存在,根据A,P,M三点共线,设,根据BM∥平面PCD,即(为平面PCD的法向量),求出的值,从而求出的值.试题解析:(Ⅰ)因为平面平面,,所以平面.所以.又因为,所以平面.(Ⅱ)取的中点,连结.因为,所以.又因为平面,平面平面,所以平面.因为平面,所以.因为,所以.如图建立空间直角坐标系.由题意得,.设平面的法向量为,则即令,则.所以.又,所以.所以直线与平面所成角的正弦值为.(Ⅲ)设是棱上一点,则存在使得.因此点.因为平面,所以平面当且仅当,即,解得.所以在棱上存在点使得平面,此时.【考点】空间线面垂直的判定定理与性质定理;线面角的计算;空间想象能力,推理论证能力【名师】平面与平面垂直的性质定理的应用:当两个平面垂直时,常作的辅助线是在其中一个平面内作交线的垂线,把面面垂直转化为线面垂直,进而可以证明线线垂直(必要时可以通过平面几何的知识证明垂直关系),构造(寻找)二面角的平面角或得到点到面的距离等.29.如图,在四棱锥中,底面是菱形,,平面,,点分别为和中点.(1)求证:直线平面;(2)求三棱锥的表面积.【答案】(1)证明见解析;(2).【解析】(1)要证线面平行,一般先证线线平行,考虑到,是中点,因此取的中点,可证得且,从而得平行四边形,因此有,最终得线面平行;(2)要求三棱锥的表面积,必须求得它的各个面的面积,由平面,得,三角形和的面积可求,由题设又可证,这样就有,另两个面的面积又可求得.试题解析:(1)证明:作FM∥CD交PC于M.∵点F为PD中点,∴. ∴,∴AEMF为平行四边形,∴AF∥EM,∵,∴直线AF平面PEC.(2)连结可知,,由此;;;;因此三棱锥的表面积.【考点】线面平行的判断,多面体的表面积.30.在棱长为3的正方体中,在线段上,且,为线段上的动点,则三棱锥的体积为()A.1B.C.D.与点的位置有关【答案】B【解析】由于是定值,点到平面的距离是,因此点平面的距离是.所以三棱锥的体积,应选B.【考点】三棱锥体积的运算.31.如图,在多面体中,底面是边长为2的正方形,四边形是矩形,且平面平面,,和分别是和的中点.(1)求证:平面;(2)求.【答案】(1)证明见解析;(2).【解析】(1)运用线面平行的判定定理求证;(2)借助题设条件及转化化归的思想求解即可. 试题解析:(1)证明:设,连接,在中,因为,,所以,又因为平面,平面,所以平面.(2)因为四边形是正方形,所以,又因为平面平面,平面平面,且平面,所以平面,则到平面的距离为的一半,又因为,所以,所以.【考点】直线与平面的位置关系及棱锥公式的运用.32.如图,在三棱柱中,,,,在底面的射影为的中点,是的中点.(1)证明:平面;(2)求二面角的平面角的余弦值.【答案】(1)证明见解析;(2).【解析】(1)设为的中点,连接,依题意有,,故平面.根据分析有,故平面;(2)以的中点为原点,分别以射线为轴的正半轴,建立空间直角坐标系,利用向量法求得余弦值为.试题解析:(1)设为的中点,连接.由题意得:平面,所以.因为,所以,,故平面.由分别为的中点,得且,从而且,所以为平行四边形,故,又因为平面,所以平面.(2)方法一:作,且,连结.由,,得,由,,得与全等.由,得,因此为二面角的平面角.由,,,得,,由余弦定理得.方法二:以的中点为原点,分别以射线为轴的正半轴,建立空间直角坐标系,如图所示,由题意知各点坐标如下:,因此,,,设平面的法向量为,平面的法向量为,由,即,可取.由,即,可取,于是.由题意可知,所求二面角的平面角是钝角,故二面角的平面角的余弦值为.【考点】空间向量与立体几何.33.某几何体的三视图如图所示,则该几何体的体积为()A.B.C.D.【答案】A【解析】由三视图可知,从左往右为半个圆锥,一个圆柱,一个半圆,故体积为.【考点】三视图.34.如图,在四棱柱中,底面,为线段上的任意一点(不包括两点),平面与平面交于.(1)证明:;(2)证明:平面.【答案】(1)证明见解析;(2)证明见解析.【解析】(1)要证线线垂直,一般可证线面垂直,观察题中垂直条件,平面,则有,题中又有,从而有平面,因此结论得证;(2)要证线面平行,就是要证线线平行,直线是平面与平面的交线,因此要得平行,就要有线面平行,而这由可得平面,从而,结论得证.试题解析:(1)证明:因为平面,平面,所以.又,所以平面,而平面,所以.(2)在四棱柱中,,平面,平面,所以平面,又平面,平面与平面交于,所以,因为,所以,而平面,平面,所以平面.【考点】线面垂直的判定与性质,线面平行的判定与性质.【名师】证明线面(面面)平行(垂直)时要注意以下几点:(1)由已知想性质,由求证想判定,即分析法与综合法相结合寻找证题思路。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

立体几何大题专练1、如图,已知PA⊥矩形ABCD 所在平面,M、N 分别为AB、PC 的中点;(1)求证:MN// 平面PAD(2)若∠ PDA=45 °,求证:MN ⊥平面PCD2(本小题满分12 分)如图,在三棱锥P ABC中,E,F 分别为AC,BC 的中点.1)求证:EF // 平面PAB ;2)若平面PAC 平面ABC,且PA PC ,求证:平面PEF 平面PBC .ABC 90 ,APCFB(1)证明:连结EF , Q E、F 分别为AC 、BC的中点,EF // AB. ⋯⋯⋯⋯⋯⋯⋯⋯ 2 分又EF 平面PAB ,AB 平面PAB ,EF∥平面PAB. ⋯⋯⋯⋯⋯⋯⋯⋯5 分(2)Q PA PC,E为AC的中点,PE AC ⋯⋯⋯⋯⋯⋯⋯⋯ 6 分又Q 平面PAC 平面ABCPE 面ABC ⋯⋯⋯⋯⋯⋯⋯⋯8 分PE BC ⋯⋯⋯⋯⋯⋯⋯⋯9 分又因为F 为BC 的中点,EF // ABQ ABC 900, BC EF ⋯⋯⋯⋯⋯⋯⋯⋯10 分Q EF I PE EBC 面PEF ⋯⋯⋯⋯⋯⋯⋯⋯11 分又Q BC 面PBC面PBC 面PEF ⋯⋯⋯⋯⋯⋯⋯⋯12 分3. 如图,在直三棱柱ABC—A1B1C1中,AC=BC,点D是AB的中点。

1)求证:BC1// 平面CA1D;2)求证:平面CA1D⊥平面AA1B1B。

4.已知矩形ABCD所在平面外一点P,PA⊥平面ABCD,E、F 分别是AB、PC的中点.(1) 求证:EF∥平面PAD;(2) 求证:EF⊥ CD;(3) 若∠ PDA=45°,求EF与平面ABCD 所成的角的大小.5.(本小题满分 12 分)如图, PA 矩形ABCD 所在的平面, M 、N 分别是AB 、PC 的中点.1)求证: MN // 平面 PAD ;( 2)求证: MN CD ;∴tan ∠EPN= 2 . ........... 10 分6. 如图, 正方形 ABCD 所在的平面与三角形AD E所在平面互相垂直, 三角形,且AE=E D△AEB是等腰直角设线段 BC 、 AE 的中点分别为 F 、M ,求证:(1) FM ∥平面ECD ; (2)求二面角E-BD—A的正切值.(1)证明:取 AD 的中点 N,连结 FN,MN, 则 MN ∥ ED ,FN ∥CD∴平面 FMN ∥平面 ECD. ∵ MF 在平面 FMN 内 ,∴ FM ∥平面 ECD ..................... 5 分(2)连接 EN, ∵ AE=ED , N 为 AD 的中点, ∴ EN ⊥ AD.又∵面 ADE ⊥面 ABCD ,∴ EN ⊥面 ABCD. 作 NP ⊥BD, 连接 EP,则 EP ⊥BD , ∴∠ EPN 即二面角 E-BD-A 的平面角,设 AD=a, ∵ABCD 为 正方形 ,⊿ADE 为等 腰三角形,∴EN= 1 a,NP= 224a .7. 如图,一个圆锥的底面半径为 2cm ,高为 6cm ,其中有一个高为 x cm 的内接圆柱(1) 试用x 表示圆柱的侧面积;( 2)当x 为何值时,圆柱的侧面积最大 .所以当圆柱的高为 3cm 时,它的侧面积最大为6 cm .... 10 分8.(10 分) 如图,在三棱锥 P ABC 中,⊿ PAB 是等边三角形,∠ PAC=∠ PBC=90 o.(1)证明: AB ⊥ PC ;(2)若 PC 4,且平面 PAC ⊥平面 PBC ,求三棱锥 P ABC 体积 .解:(1)因为 PAB 是等边三角形, PAC PBC 90所以 Rt PBC Rt PAC , 可得 AC BC 。

如图,取 AB 中点 D ,连结 PD , CD , 则 PD AB ,CD AB , 所以 AB 平面 PDC , 所以 AB PC 5 分2)作 BE PC ,垂足为 E ,连结 AE .则有r6x ,即r2 x263.∴ S圆柱侧2 rx 2(2x)x 34 x 2x 2................ 5 分 3 (2)由(1)知当 x4 3时,这个二次函数有最大值为219. ( 1) 解:设所求的圆柱的底面半径为 r2( 23)因为 Rt PBC Rt PAC 所以 AE PC , AE BE .因为 Rt AEB Rt PEB ,所以 AEB, PEB, CEB 都是等腰直角三角形。

(1)证明 PB ∥平面 ACM ; (2)证明 AD ⊥平面 PAC ;(3) 求直线 AM 与平面 ABCD 所成角的正切值.解析: (1)证明:如图,连接 BD , MO ,在平行四边形 ABCD 中,因为 O 为 AC 的中点, 所以 O 为 BD 的中点.由已知,平面 PAC平面 PBC ,故 AEB 90由已知 PC 4,得 AE BE 2 , AEB 的面积 S 2.因为 PC 平面 AEB , 所以三角锥 P ABC 的体积V 139.(本题满分 12 分)如图,在四棱锥8S PC ..10分3P - ABCD 中,底ABCD 为平行四边∠ADC = 45°,AD = AC = 1,O 为AC 的中点, PO ⊥平面 ABCD ,PO = 2,M 为 PD 的中点.又 M 为 PD 的中点,所以 PB ∥MO .因为 PB?平面 ACM ,MO ? 平面 ACM ,所以 PB ∥ 平面 ACM.(2)证明:因为∠ ADC = 45 °,且 AD =AC =1,所以∠ DAC = 90 °,即 AD ⊥AC.又 PO ⊥ 平面 ABCD ,AD ? 平面 ABCD ,所以 PO ⊥ AD .而 AC ∩PO =O ,所以 AD ⊥平面 PAC.1(3)如图,取 DO 中点 N ,连接 MN ,AN .因为 M 为 PD 的中点,所以 MN ∥ PO ,且 MN= 2PO =1,由 PO ⊥平面 ABCD ,得 MN ⊥平面 ABCD ,所以∠ MAN 是直线 AM 与平面ABCD 所1成的角.在 Rt △ DAO 中, AD =1,AO =2,10(本小题满分 12 分)如图,在侧棱垂直于底面的三棱柱 ABC A 1B 1C 1 中,AC 3,AB 5,BC 4,AA 1 4,点D 是 AB 的中点.(Ⅰ)求证: AC BC 1 ;III )求三棱锥 A 1 B 1CD 的体积. 证明:(Ⅰ)在△ ABC 中,∵ AC 3, AB 5, BCDO =5. 2. 1 从而 AN =2DO =.在 Rt △ANM 中,tan ∠MAN =M AN N1 =4 55=54即直线 AM 与平面 ABCD 所成角的正切值为 455II )求证: AC 1 // 平面 CDB 1;1分4,∴△ ABC为直角三角形,∴ AC BC ,V A 1 B 1CD V C A 1DB 1 ,⋯⋯⋯⋯⋯ 10 分而11S VDA1B 12A 1B 1gAA 1 5 4 210 , ⋯⋯⋯⋯⋯ 11 分1 12V A 1 B 1CD3 10 58 . 3511. (本小题满分 12 分)如图, 在四棱锥 P-ABCD 中,平面 PAD ⊥平面 ABCD ,AB=AD,∠ BAD=60°,E 、F 分别是AP 、AD 的中点 求下:(Ⅰ)直线 EF// 平面 PCD ; (Ⅱ)平面 BEF ⊥平面 PAD.又∵ CC 1 平面 ABC ,∴ CC 1 AC ,CC 1 BC C , 2分∴ AC 平面 BCC 1 ,∴ AC BC 1 .4分II )设 B 1C 与 BC 1交于点 E ,则 E 为 BC 1的中点,连结 DE ,5分 则在△ ABC 1中, DE // AC 1 ,又 DE 面CDB 1 , 7分 ∴ AC 1 // 平面 B 1CD .8分III )在△ ABC 中,过 C 作 CFAB ,F 为垂足,∵平面 ABB 1A 1 平面 ABC , ∴CF 平面ABB 1A 1 ,而 CFAC BC 3 4 12 ,AB 5 5 ,9分12 分12. (本小题满分12 分)如图所示,在四棱锥P ABCD 中,ABCD , PD CD,E 是PC的中点,作EF (I)求证:PA// 平面EDB ;(II )求证:PB 平面EFD ;(III )求二面角P BC D 的大小。

13.(本小题满分12 分)如图,四棱锥P ABCD 中,底面ABCD 是边长为 2 的正方形,PA PB PC PD 51)求二面角P AB C 的度数2)若M 是侧棱PC的中点,求异面直线PA与BM 所成角的正切值A PCB14.(本小题满分 12 分)若图为一简单组合体,其底面 ABCD 为正方形, PD1)求证: BE// 平面 PDA ;2)若 N 为线段 PB 的中点,求证: EN 平面 PDB ;平面 ABCD ,EC//PD ,且 PD=2EC 。

1)证明:EC∥PD∴EC∥面PAD;同理BC∥面PAD;∴面BEC∥面PAD;∴ BE∥面PAD2)证明:取BD的中点O,连NO、CO,易知,CO⊥ BD;又∵ CO⊥ PD; ∴CO⊥面PBD。

15.(本小题满分12 分)如图,在多面体ABCDE 中,底面ABC 为等腰直角三角形,且ACB 90 ,侧面BCDE 是菱形,O 点是BC 的中点,EO 平面ABC 。

(1)求异直线AC 和BE 所成角的大小;(2)求平面ABE 与平面ADE 所成锐二面角的余弦值。

相关文档
最新文档