并网光伏系统设计

合集下载

并网光伏系统设计方案

并网光伏系统设计方案

并网光伏系统设计方案并网光伏系统设计方案1. 概述本文档旨在提供一种完整的设计方案,用于实现并网光伏系统。

该系统通过将光伏发电系统与电网相连接,实现对光伏电能的高效利用。

本文档将涵盖并网光伏系统的整体设计、组件选择和系统连接等方面的内容。

2. 设计目标本系统的主要设计目标包括:•提高光伏电能的有效利用;•实现光伏电能的平滑并网;•提供可靠的电能供应;•实现系统的安全运行。

3. 系统组成本并网光伏系统主要由以下组件组成:•光伏阵列:用于将太阳能转化为直流电能;•逆变器:将直流电转化为交流电,并对交流电进行电压和频率的调节;•电网连接器:用于将逆变器输出的交流电与电网相连接;•电能计量器:对系统的发电量和购电量进行计量;•监控系统:监测系统的运行状况,并提供实时数据。

4. 设计步骤设计并网光伏系统的步骤如下:4.1 光伏阵列设计光伏阵列的设计需要考虑以下因素:•太阳能辐射强度:根据所在地区的太阳能辐射数据,确定光伏阵列的装机容量;•阵列布局:根据光伏阵列的装机容量和场地条件,确定阵列的布局方式(如平面布置、斜面布置等);•组件选择:选择合适的光伏组件,考虑其转换效率、功率温度系数等性能指标;•连接方式:确定光伏组件之间的串并联连接方式,以确保系统的输出电压和电流适应逆变器的需求。

4.2 逆变器选择与设计逆变器的选择与设计需要考虑以下因素:•输出功率:根据光伏阵列的装机容量和预期的并网电压,确定逆变器的输出功率范围;•电压稳定性:选择具有较好电压稳定性的逆变器,以确保系统的输出电压在合理范围内;•频率调节:选择逆变器能够提供频率调节功能,以适应电网的需求;•保护功能:选择具有多重保护功能的逆变器,以确保系统的安全运行。

4.3 系统连接与调试系统连接与调试的步骤如下:•将光伏阵列的输出与逆变器的输入相连接;•将逆变器的输出与电网连接器相连接;•进行系统的初步调试,检查电流、电压等参数是否正常;•进行系统的安全性检查,确保系统的工作安全可靠。

并网光伏发电站系统设计

并网光伏发电站系统设计

并网光伏发电站系统设计一、系统设计(一)一般规定1、并网光伏发电系统中的设备与材料的选型和设计应符合国家相关规定,主要设备应通过国家批准的认证机构的产品认证。

2、并网光伏发电系统中材料强度设计值和其它物理、力学性能可按照国家相关规定的要求执行。

3、并网光伏发电系统中所选用的电气设备,在其外壳的显著位置应有防触电警示标识。

4、并网光伏发电系统中材料的防火性能应符合GB50016的规定。

支架结构件和连接件应采用不燃材料,保温材料和密封材料宜采用不燃烧或难燃材料,其防火封堵结构应采用防火密封材料。

各类电气设备的防火性能应符合国家相关规定。

5、并网光伏发电站向当地交流负载提供电能和向电网发送的电能质量应符合公用电网的电能质量要求。

6、装机容量超过1MWp的光伏系统,应配置小型气象设备。

(二)材料与设备1、光伏组件(1)光伏组件的安全性应符合GB/T20047.1的规定。

(2)晶体硅光伏组件、薄膜光伏组件、聚光光伏组件的性能要求应符合行业规范的认证要求和相关规定。

(3)晶硅组件衰减率首年不高于2.5%,后续每年不高于0.6%,25年内不高于17%;双面电池组件的功率衰减在1年内不高于2.5%(正面),25年内不高于14.5%,30年不高于17%;薄膜组件衰减率首年不高于5%,后续每年不高于0.4%,25年内不高于15%。

(4)所有组件工作温度范围为-400C~+85℃,初始功率(出厂前)不应低于组件标称峰值功率。

(5)组件型号应具备相关国际国内产品认证。

2、汇流箱(1)汇流箱的额定电压和电流应满足并网光伏发电系统使用的要求。

(2)应具有下列基本保护功能如下:①每一输入回路具有短路保护功能;②输出回路设置具有隔离功能的断路器。

(3)汇流箱宜设置组串监测装置,其监测信号需传送到监控装置。

(4)户外安装的汇流箱防护等级应不低于IP54。

(5)外壳正面应有铭牌、安全警示标识等,箱内应附电路原理图和接线图、使用说明书及产品合格证等。

1MW光伏并网系统设计及配置

1MW光伏并网系统设计及配置

1MW 光伏并网系统设计及配置一、主要设备选型1、太阳能光伏组件选型本方案推荐采用235W P 单晶太阳能光伏组件,共4256块,实际装机容量1.00016MW 1.00016MW。

235Wp 组件开路电压为45V 左右,工作电压为35V 35V。

2、并网逆变器选型本方案采用4台250KW 并网逆变器,共1MW 1MW。

250KW 并网逆变器主要参数如下:下: 容 量量250KW 最大太阳电池阵列功率最大太阳电池阵列功率 275KWp 最大阵列开路电压最大阵列开路电压900Vdc 太阳电池最大功率点跟踪(太阳电池最大功率点跟踪(MPPT MPPT MPPT)范围)范围)范围 450Vdc 450Vdc~~880Vdc最大阵列输入电流最大阵列输入电流 560A MPPT 精度精度 >99>99%%额定交流输出功率额定交流输出功率 250KW总电流波形畸变率总电流波形畸变率 <4%<4%(额定功率时)(额定功率时)(额定功率时)功率因数功率因数 >0.99 效率效率94% 允许电网电压范围(三相)允许电网电压范围(三相) 320V 320V~~440AC 允许电网频率范围允许电网频率范围4747~~51.5Hz二、设计过程1、光伏阵列设计光伏阵列分4个主方阵,每个主方阵容量250.04KW 250.04KW,共,共1064块组件。

块组件。

1414块为一个子串列,共76串。

一个主方阵太阳电池组件布置为19个2*28子阵列,2*28子阵列布置图如下图所示:子阵列布置图如下图所示:2、直流配电设计每台直流配电柜按250KW直流配电单元设计,则1MW系统需要配置4台直流配电柜。

每台配电柜可接入5台直流汇流箱(台直流汇流箱(1616路汇流箱),共需配置20台直流汇流箱。

流汇流箱。

3、交流防雷配电柜设计按照4个250KWp的并网单元配置1台交流防雷配电柜进行设计,即每台交流配电柜可接入4台250KW逆变器的交流防雷配电及计量装置,逆变器的交流防雷配电及计量装置,系统共需配置系统共需配置1台交流防雷配电柜。

光伏并网发电电气系统设计

光伏并网发电电气系统设计

光伏并网发电电气系统设计随着能源危机日益突显和对可再生能源的迫切需求,光伏发电作为一种清洁、可持续的能源形式,受到了广泛关注。

光伏并网发电系统是将太阳光转化为电能,然后通过逆变器将电能与电网连接,实现电力的供给和销售。

在光伏并网发电电气系统设计中,以下几个方面需要考虑:1.光伏组件选择和布置:根据工程的需求和现场条件,选择合适的光伏组件,并合理布置。

光伏组件的选取要考虑其性能特点、品质和可靠性,以取得最佳的发电效果。

2.逆变器选择和配置:逆变器是将光伏组件产生的直流电转换成交流电的关键设备。

在选择逆变器时,要考虑其负载容量、效率、功率因数等技术指标,以满足系统的要求。

逆变器的配置要根据发电功率和并网容量确定,以保证系统的稳定运行。

3.并网点和电缆线路设计:并网点是光伏发电系统与电网相连的关键部分。

在设计并网点时,要考虑电流、电压和功率的传输特性,选择适当的电缆规格、电缆敷设方式和连接方式,以确保电能的有效传输和系统的安全运行。

4.保护控制设备选型和布置:光伏并网发电系统需要设置过电压、过流、短路和接地等多种保护装置,以确保系统的安全可靠。

在选型和布置上,要根据系统的容量和运行特点,选择恰当的装置类型和布置位置,以提高系统的安全性和可靠性。

5.监测与管理系统设计:为了实时监测发电系统的运行状态和发电功率,需要设计和配置监测与管理系统。

监测与管理系统可以实现对光伏组件、逆变器和电网等关键设备的实时监测和故障报警,以及发电功率的统计和分析,帮助运维人员及时发现和处理问题,提高系统的维护效率和发电效益。

总之,光伏并网发电电气系统设计需要充分考虑发电功率、逆变器工作特性、并网点设备、保护控制设备、监测与管理系统等多个方面因素的影响。

只有合理设计和配置,才能确保系统的安全、稳定和高效运行,使光伏发电成为一种可靠的清洁能源供应方式。

光伏工程并网设计方案

光伏工程并网设计方案

光伏工程并网设计方案一、项目概况本项目是一座位于中国南部城市的光伏电站,并网装机容量为100兆瓦,占地面积约1000亩。

该光伏电站采用多晶硅光伏组件,采用集中式逆变器,并通过变电站与电网进行并网发电。

本项目旨在利用可再生能源,减少对传统化石燃料的依赖,减少温室气体排放,为当地提供清洁的电力资源。

二、工程设计1. 光伏组件选型根据该地区的气候条件,我们选择了适合高温高湿环境的多晶硅光伏组件。

组件的规格为156x156mm,功率在300-330W之间,具有良好的耐高温性能和抗PID效果。

2. 支架系统设计考虑到地形和日照条件,我们选用了钢结构支架系统,支撑光伏电池板的安装和固定。

支架系统具有优异的抗风能力和适应性,可以适应区域内不同地形和地貌环境。

3. 逆变器选型在逆变器方面,我们采用了集中式逆变器,对光伏组件发出的直流电进行转换,输出交流电入电网。

逆变器具有高效率和稳定的性能,能够有效提高光伏发电系统的整体效益。

4. 并网工程设计根据电网的容量和运行条件,我们设计了合适的并网方案。

通过变压器和电网进行光伏电站的并网,确保发电系统的安全性和可靠性。

5. 电站布局设计根据实际的场地情况,我们设计了合理的电站布局方案,保证了光伏组件的布设密度和光照条件,实现了电站的最大发电量。

6. 高压配电系统设计在变电站方面,我们设计了高压配电系统,确保光伏电站所发出的电能能够顺利地输送到电网中,同时通过高压配电系统实现对电站内部的多路并网。

三、管理与维护1. 系统监控与管理我们将安装并配置系统监控设备,包括光伏电站监控中心和远程监控系统。

通过这些监控装置,可以实时地监测光伏电站的发电情况、运行状态和设备运行情况。

2. 定期维护与检修光伏电站需要定期的维护和检修工作,以确保设备的正常运行和安全性能。

我们将建立健全的维护与检修计划,包括设备的保养、清洗和技术检修。

3. 安全防护措施为了确保工程的安全性和稳定性,我们将针对光伏电站的安全风险制定相应的安全防护措施,包括防雷、防汛、防火等。

光伏发电并网系统设计介绍

光伏发电并网系统设计介绍

光伏发电并网系统设计介绍一、一般规定1.1 光伏系统接入方案应结合电网规划、分布式电源规划,按照就近分散接入与就地平衡消纳的原则进行设计。

1.2 光伏系统宜采用10kV及以下电压等级接入电网。

1.3 光伏系统模式可采用自发自用/余量上网和全额上网两种模式。

1.4 自发自用/余量上网模式的光伏系统并网容量不应超过所接入变压器容量。

1.5 光伏系统接入电压等级应根据装机容量选取,并满足下列要求:1 单个并网点容量为8kWp及以下宜接入220V;2 单个并网点容量为8kWp~400kWp宜接入380V;3 单个并网点容量为400kWp~6MWp宜接入10kV;4 自发自用/余量上网模式总装机容量超过1MWp,宜接入10kV;5 最终并网电压等级应综合参考有关标准和电网实际条件,通过技术经济比选论证后确定。

1.6 光伏系统在变电站低压并网时,单台变压器的并网点不应超过1个,项目规划审批范围内总并网点数量不应超过4个。

1.7 光伏系统在并网处应设置并网专用开关柜(箱),并应设置专用标识和“警告”、“双电源”等提示性文字和符号。

二、10kV并网2.1 10kV光伏系统的并网点应按如下进行选择:1 自发自用/余量上网模式的并网点可为用户开关站、配电室或箱变的10kV母线,如图2.1所示;2 全额上网模式的并网点可为公共电网10kV母线或线路,如图2.2 所示。

图2.1 10kV自发自用/余量上网模式一次系统接线示意图图2.210kV全额上网模式一次系统接线示意图2.2 10kV光伏系统的并网系统一般由光伏进线柜、压变柜、计量柜、并网柜、隔离柜、无功补偿柜及站用电等设备组成。

如图2.3所示。

图2.3 10kV并网系统方案示意图2.3 10kV自发自用/余电上网模式光伏系统的保护及计量配置应符合下列规定:1 光伏并网柜继电保护装置应具有过压、失压(欠压)保护功能,失压保护的电压信号应采集自光伏配电房隔离柜的电压互感器;2 光伏并网柜继电保护装置应具有过频率和低频率保护,保护装置的频率信号应采集自光伏配电房隔离柜的电压互感器;3 光伏并网柜继电保护装置应具有速断、过流保护等功能,保护定值选取应与用户配电房中光伏接入柜继电保护定值相配合;4 用户配电房中的计量柜应设置双向电表,光伏配电房中的计量柜应设置单向电表;5 光伏配电房计量柜的电压互感器宜采用移动小车式安装,电流互感器宜采用固定式安装;6 计量柜应设置三相电压指示仪;7 光伏进线柜宜按一台变压器对应一个光伏接入柜进行设置;8 光伏进线柜应具有变压器的温度保护和瓦斯保护等保护跳闸功能;9 光伏进线柜继电保护装置应具有速断、过流保护等功能,保护定值选取应与光伏配电房光伏并网柜继电保护定值相配合;10 光伏进线柜不应具有检有压合闸功能;11 变压器室和光伏进线柜不在同一箱变内的,变压器室内应设置变压器出线柜;12 容量超过800kVA的变压器出线柜内应设置断路器。

并网光伏发电系统方案

并网光伏发电系统方案
-推动区域经济发展,提升社会形象。
-增强公众对清洁能源的认识和接受度,促进绿色能源的广泛应用。
七、结论
本方案为用户提供了全面的并网光伏发电系统解决方案,既符合国家法规政策,又体现了高效、安全、环保的设计理念。通过本方案的实施,用户将在实现经济效益的同时,为保护环境和推动社会可持续发展作出贡献。
五、项目实施
1.前期准备
-完成项目备案、环评等相关手续。
-确定项目施工图纸和技术要求。
2.施工安装
-按照施工图纸和技术要求进行组件安装、逆变器安装、配电设备安装等。
-确保施工过程中遵守安全规范,减少对用户的影响。
3.调试与验收
-完成系统安装后,进行严格的调试,确保系统各项指标满足设计要求。
-组织专业验收,包括电气性能、安全性能等,确保系统合规运行。
并网光伏发电系统方案
第1篇
并网光伏发电系统方案
一、项目背景
随着我国能源结构的优化调整和绿色低碳发展战略的实施,太阳能光伏发电作为清洁能源的重要组成部分,其推广应用日益得到重视。本方案旨在为用户提供一套合法合规的并网光伏发电系统方案,实现能源的高效利用和环境保护。
二、项目目标
1.满足用户日常用电需求,降低用电成本。
三、系统设计
1.光伏组件
选用高效率、低衰减、耐候性强的高质量光伏组件,确保系统长期稳定运行。具体参数如下:
-单块组件额定功率:X寸:XXmm×XXmm
-组件重量:XXkg
2.逆变器
选择品牌信誉良好、性能稳定的逆变器,确保光伏电能高效并网。逆变器关键参数:
-最大功率:XX千瓦(kW)
3.验收调试:项目完成后,组织相关部门进行验收调试,确保系统稳定运行。
4.培训与售后服务:为用户提供培训,确保用户熟练掌握系统操作;提供长期、优质的售后服务。

10KW光伏并网系统设计方案及对策

10KW光伏并网系统设计方案及对策

10KW光伏并网示X工程XX合大太阳能科技XX2021年3月15日目录1、并网光伏系统的原理22、10KW并网光伏系统配置33、光伏组件技术参数44、逆变器技术参数45、安装支架56、系统报价67、相关政策自持68、投资预算和节能分析79、经济效益和经济社会效益分析710、后期维护管理效劳810KW光伏并网工程技术方案1、并网光伏系统的原理系统的根本原理:太阳能电池组件所发直流电通过光伏并网逆变器逆变成50Hz、380V 的交流电,经交流配电箱与用户侧并网,向负载供电。

本工程并网接入系统方案采用380V 低压并网,如图1所示:图1 光伏电站并网发电系统框图图2 光伏电站并网发电示意图2、10KW并网光伏系统配置表1 10KW并网系统配置清单序号零部件名称规格数量备注1 光伏组件250W多晶40块2 安装支架5KW/套2套水泥平顶屋面3 逆变器10KW/380V三相四线1只4 配电箱箱体1只直流断路器4P/1000V/16A 2只交流断路器4P/400V /32A 1只直流浪涌保护器1000V/ 1只交流浪涌保护器4P/400V/20KA 1只5 光伏电缆1*4mm2 200米6 逆变输出电缆3*6+2*4 20米3、光伏组件技术参数光伏系统采用250Wp的多晶硅太阳能电池组件,其参数如下:◆电池材料:多晶硅;◆峰值功率:253W;◆开路电压:37.6V;◆短路电流:8.55A;◆最正确工作电压:31.4V;◆最正确工作电流:7.96A;◆电池组件尺寸:1650×992×50mm◆电池组件重量:21.0 Kg◆电池组成:60片多晶硅电池式串联而成◆满足IEC61215,IEC61730标准◆工作环境温度:-40℃~+80℃◆正常使用25年后组件输出功率损耗不超过初始值的20%4、逆变器技术参数本系统采用1台10kW逆变器,技术参数如下:表2 10kW逆变器技术参数类别内容规格型号SPV-10KW光伏输入最大光伏输入功率11.7KW最大开路电压780输入电压X围280Vdc~700Vdc最正确效率输入电压>560v最低输入电压350V图3 240Wp多晶硅组件5、安装支架通过地锚栓或水泥根底固定,适用于平屋顶系统和地面系统。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

光伏系统原理本章主要讲述太阳能光伏系统的组成结构和工作原理,并结合实例讲述光伏系统的常见类型、一般设计原理和方法、光伏系统的测试以及性能分析,并描述了太阳能光伏系统的发展趋势。

4.1.光伏系统的组成和原理光伏系统由以下三部分组成:太阳电池组件;充、放电控制器、逆变器、测试仪表和计算机监控等电力电子设备和蓄电池或其它蓄能和辅助发电设备。

光伏系统具有以下的特点:-没有转动部件,不产生噪音;-没有空气污染、不排放废水;-没有燃烧过程,不需要燃料;-维修保养简单,维护费用低;-运行可靠性、稳定性好;-作为关键部件的太阳电池使用寿命长,晶体硅太阳电池寿命可达到25年以上;-根据需要很容易扩大发电规模。

光伏系统应用非常广泛,光伏系统应用的基本形式可分为两大类:独立发电系统和并网发电系统。

应用主要领域主要在太空航空器、通信系统、微波中继站、电视差转台、光伏水泵和无电缺电地区户用供电。

随着技术发展和世界经济可持续发展的需要,发达国家已经开始有计划地推广城市光伏并网发电,主要是建设户用屋顶光伏发电系统和MW级集中型大型并网发电系统等,同时在交通工具和城市照明等方面大力推广太阳能光伏系统的应用。

光伏系统的规模和应用形式各异,如系统规模跨度很大,小到0.3~2W的太阳能庭院灯,大到MW级的太阳能光伏电站。

其应用形式也多种多样,在家用、交通、通信、空间应用等诸多领域都能得到广泛的应用。

尽管光伏系统规模大小不一,但其组成结构和工作原理基本相同。

图4-1是一个典型的供应直流负载的光伏系统示意图。

其中包含了光伏系统中的几个主要部件:●光伏组件方阵:由太阳电池组件(也称光伏电池组件)按照系统需求串、并联而成,在太阳光照射下将太阳能转换成电能输出,它是太阳能光伏系统的核心部件。

●蓄电池:将太阳电池组件产生的电能储存起来,当光照不足或晚上、或者负载需求大于太阳电池组件所发的电量时,将储存的电能释放以满足负载的能量需求,它是太阳能光伏系统的储能部件。

目前太阳能光伏系统常用的是铅酸蓄电池,对于较高要求的系统,通常采用深放电阀控式密封铅酸蓄电池、深放电吸液式铅酸蓄电池等。

●控制器:它对蓄电池的充、放电条件加以规定和控制,并按照负载的电源需求控制太阳电池组件和蓄电池对负载的电能输出,是整个系统的核心控制部分。

随着太阳能光伏产业的发展,控制器的功能越来越强大,有将传统的控制部分、逆变器以及监测系统集成的趋势,如AES公司的SPP和SMD 系列的控制器就集成了上述三种功能。

●逆变器:在太阳能光伏供电系统中,如果含有交流负载,那么就要使用逆变器设备,将太阳电池组件产生的直流电或者蓄电池释放的直流电转化为负载需要的交流电。

太阳能光伏供电系统的基本工作原理就是在太阳光的照射下,将太阳电池组件产生的电能通过控制器的控制给蓄电池充电或者在满足负载需求的情况下直接给负载供电,如果日照不足或者在夜间则由蓄电池在控制器的控制下给直流负载供电,对于含有交流负载的光伏系统而言,还需要增加逆变器将直流电转换成交流电。

光伏系统的应用具有多种形式,但是其基本原理大同小异。

对于其他类型的光伏系统只是在控制机理和系统部件上根据实际的需要有所不同,下面将对不同类型的光伏系统进行详细地描述。

图4-1直流负载的太阳能光伏系统4.2. 光伏系统的分类与介绍一般将光伏系统分为独立系统、并网系统和混合系统。

如果根据光伏系统的应用形式、应用规模和负载的类型,对光伏供电系统进行比较细致的划分,可将光伏系统分为如下六种类型:小型太阳能供电系统(Small DC);简单直流系统(Simple DC);大型太阳能供电系统(Large DC);交流、直流供电系统(AC/DC);并网系统(Utility Grid Connect);混合供电系统(Hybrid);并网混合系统。

下面就每种系统的工作原理和特点进行说明。

4.2.1. 小型太阳能供电系统(Small DC)该系统的特点是系统中只有直流负载而且负载功率比较小,整个系统结构简单,操作简便。

其主要用途是一般的户用系统,负载为各种民用的直流产品以及相关的娱乐设备。

如在我国西北边远地区就大面积推广使用了这种类型的光伏系统,负载为直流节能灯、收录机和电视机等,用来解决无电地区家庭的基本照明问题。

图4-4 简单直流的光伏水泵系统4.2.2.简单直流系统(Simple DC)该系统的特点是系统负载为直流负载而且对负载的使用时间没有特别的要求,负载主要是在白天使用,所以系统中没有使用蓄电池,也不需要使用控制器。

系统结构简单,直接使用太阳能太阳电池组件给负载供电,省去了能量在蓄电池中的储存和释放过程所造成的损失,以及控制器中的能量损失,提高了太阳能的利用效率。

其常用于光伏水泵系统、一些白天临时设备用电和旅游设施中。

图4-4显示的就是一个简单直流的光伏水泵系统。

这种系统在发展中国家的无纯净自来水供饮地区得到了广泛的应用,产生了良好的社会效益。

4.2.3.大型太阳能供电系统(Large DC)与上述两种光伏系统相比,这种光伏系统仍适用于直流电源系统,但是这种太阳能光伏系统的负载功率较大,为了保证可靠地给负载提供稳定的电力供应,其相应的系统规模也较大,需要配备较大的太阳能太阳电池组件阵列和较大的蓄电池组,常应用于通信、遥测、监测设备电源,农村的集中供电站,航标灯塔、路灯等领域。

我国在西部地区实施的“光明工程”中,一些无电地区建设的部分乡村光伏电站就是采用这种形式;中国移动和中国联通公司在偏僻无电网地区建设的通信基站也采用了这种光伏系统供电。

4.2.4. 交流、直流供电系统(AC/DC)与上述的三种太阳能光伏系统不同的是,这种光伏系统能够同时为直流和交流负载提供电力,在系统结构上比上述三种系统多了逆变器,用于将直流电转换为交流电以满足交流负载的需求。

通常这种系统的负载耗电量也比较大,从而系统的规模也较大。

在一些同时具有交流和直流负载的通信基站和其它一些含有交、直流负载的光伏电站中得到应用。

4.2.5.并网系统(Utility Grid Connected)这种光伏系统最大的特点就是太阳电池组件产生的直流电经过并网逆变器转换成符合市电电网要求的交流电之后直接接入公共电网,并网系统中光伏方阵所产生电力除了供给交流负载外,多余的电力反馈给电网。

在阴雨天或夜晚,太阳电池组件没有产生电能或者产生的电能不能满足负载需求时就由电网供电。

因为直接将电能输入电网,免除配置蓄电池,省掉了蓄电池储能和释放的过程,可以充分利用光伏方阵所发的电力从而减小了能量的损耗,并降低了系统的成本。

但是系统中需要专用的并网逆变器,以保证输出的电力满足电网电力对电压、频率等电性能指标的要求。

因为逆变器效率的问题,还是会有部分的能量损失。

这种系统通常能够并行使用市电和太阳能太阳电池组件阵列作为本地交流负载的电源,降低了整个系统的负载缺电率。

而且并网光伏系统可以对公用电网起到调峰作用。

但并网光伏供电系统作为一种分散式发电系统,对传统的集中供电系统的电网会产生一些不良的影响,如谐波污染,孤岛效应等。

4.2.6.混合供电系统(Hybrid)这种太阳能光伏系统中除了使用太阳能太阳电池组件阵列之外,还使用了燃油发电机作为备用电源。

使用混合供电系统的目的就是为了综合利用各种发电技术的优点,避免各自的缺点。

比方说,上述几种独立光伏系统的优点是维护少,缺点是能量输出依赖于天气,不稳定。

综合使用柴油发电机和太阳电池组件的混合供电系统与单一能源的独立系统相比所提供的能源对天气的依赖性要小,它的优点是:✧使用混合供电系统可以达到可再生能源的更好利用。

因为可再生能源是变化的,不稳定的,所以系统必须按照能量产生最少的时期进行设计。

由于系统是按照最差的情况进行设计,所以在其他的时间,系统的容量过大。

在太阳辐照最高峰时期产生的多余能量没法使用而白白浪费了。

整个独立系统的性能就因此而降低。

如果最差月份的情况和其他月份差别很大,有可能导致浪费的能量等于甚至超过设计负载的需求。

✧具有较高的系统实用性。

在独立系统中因为可再生能源的变化和不稳定会导致系统出现供电不能满足负载需求的情况,也就是存在负载缺电情况,使用混合系统则会大大地降低负载缺电率。

✧和单用柴油发电机的系统相比,具有较少的维护和使用较少的燃料。

✧较高的燃油效率。

在低负荷的情况下,柴油机的燃油利用率很低,会造成燃油的浪费。

在混合系统中可以进行综合控制使得柴油机在额定功率附近工作,从而提高燃油效率。

✧负载匹配更佳。

使用混合系统之后,因为柴油发电机可以即时提供较大的功率,所以混合系统可以适用于范围更加广泛的负载系统,例如可以使用较大的交流负载,冲击载荷等。

还可以更好的匹配负载和系统的发电,只要在负载的高峰时期打开备用能源即可简单的办到。

有时候,负载的大小决定了需要使用混合系统,大的负载需要很大的电流和很高的电压。

如果只是使用太阳能成本就会很高。

但混合系统也有其自身的缺点:✧控制比较复杂。

因为使用了多种能源,所以系统需要监控每种能源的工作情况,处理各个子能源系统之间的相互影响、协调整个系统的运作,这样就导致其控制系统比独立系统复杂,现在多使用微处理芯片进行系统管理。

✧初期工程较大。

混合系统的设计,安装,施工工程都比独立工程要大。

✧比独立系统需要更多的维护。

油机的使用需要很多的维护工作,比如更换机油滤清器,燃油滤清器,火花塞等,还需要给油箱添加燃油等。

✧污染和噪音。

光伏系统是无噪音、无排放的洁净能源利用,但是因为混合系统中使用了柴油机,这样就不可避免地产生噪音和污染。

很多在偏远无电地区的通信电源和民航导航设备电源,因为对电源的要求很高,都采用混合系统供电,以求达到最好的性价比。

我国新疆、云南建设的很多乡村光伏电站就是采用光/柴混合系统。

并网光伏系统设计并网系统是目前发展最为迅速的太阳能光伏应用方式。

随着光伏建筑一体化的飞速发展,各种各样的光伏并网发电技术都得到了广泛的应用。

光伏并网发电包括如下几种形式:●纯并网光伏系统●具有UPS功能的并网光伏系统●并网光伏混合系统首先我们介绍确定并网光伏系统的最佳倾角。

并网光伏供电系统有着与独立光伏系统不同的特点,在有太阳光照射时,光伏供电系统向电网发电,而在阴雨天或夜晚光伏供电系统不能满足负载需要时又从电网买电。

这样就不存在因倾角的选择不当而造成夏季发电量浪费、冬季对负载供电不足的问题。

在并网光伏系统中唯一需要关心的问题就是如何选择最佳的倾角使太阳电池组件全年的发电量最大。

通常该倾角值为当地的纬度值。

对于上述并网光伏系统的任何一种形式,最佳倾角的选择都是需要根据实际情况进行考虑,需要考虑太阳电池组件安装地点的限制,尤其对于是现在发展迅速的光伏建筑一体化(BIPV)工程,组件倾角的选择还要考虑建筑的美观度,需要根据实际需要对倾角进行小范围的调整,而且这种调整不会导致太阳辐射吸收的大幅降低。

相关文档
最新文档