太阳能水泵的系统组成及工作原理

合集下载

太阳能+热泵系统运行原理说明

太阳能+热泵系统运行原理说明

一、系统运行原理图: 热泵温度探头循环水泵电脑控制系统泄空阀电磁阀增压泵温度探头排污阀水位传感器温度探头贮热水箱温度探头溢流二、系统运行原理1、正常情况下,太阳能定温加热在光照条件下,当太阳集热器内水温达到设定水温时(可在0~100℃之间任意设定,一般设定在45~55℃之间),电脑控制器使供冷水电磁阀自动打开,自来水进入太阳集热器底部,同时将太阳集热器顶部达到设定温度的热水顶入储热水箱;当太阳集热器顶部水温低于设定温度时(一般定在40~45℃之间),电脑控制器使供冷水电磁阀自动关闭。

如此运行,不断将达到设定温度的热水顶入储热水箱储存。

2、储热水箱满水位时,太阳能温差循环加热当储热水箱水满时,为了防止水满溢流,电脑控制器使太阳能系统自动转入温差循环。

当太阳集热器水温高于储热水箱水温时,循环水泵自动启动,将储热水箱内较低温度的水泵入太阳集热器继续加热,同时将太阳集热器内较高温度的热水顶入储热水箱。

如此,通过使储热水箱水温升高的方法储存太阳集热器吸收的太阳能。

当用户使用热水,使储热水箱水位下降后,电脑控制器使太阳能系统自动转入定温加热。

3、太阳能不足时,自动启动热泵辅助加热电脑控制器将随时监测储热水箱水温,当水箱水温达不到使用要求时,自动启动热泵辅助加热,以保证用热水。

4、储热水箱水位控制PLC控制器将随时监测储热水箱水位。

在天气正常的情况下,储热水箱的水位在一天中不同的时间将达到不同的水位。

如果在某一时间内,储热水箱的水位没有达到正常的水位,说明太阳能产热水不足或用户用热水过度,此时,PLC控制器使热泵自动启动,当达到正常水位时,PLC使热泵自动停止。

5、储热水箱水温控制当由于循环散热等原因,使储热水箱的水温低于设定值时(一般应设定在45~55℃之间),PLC控制器会自动根据情况选择加热方式。

当太阳能正常时,自动启动太阳能循环水泵,通过太阳能加热储热水箱内的水;当太阳能不足时,自动启动热泵,加热到设定温度,热泵自动停止。

太阳能光伏水泵的组成、特点

太阳能光伏水泵的组成、特点

太阳能光伏水泵的组成、特点太阳能光伏水泵的组成、特点?太阳能水泵特点:节能,1W内启动,宽电压,可增加过压,过流,温度、防空转等保护功能。

太阳能无刷泵,太阳能热泵,太阳能循环泵,太阳能喷泉水泵、太阳能增压泵,光伏太阳能水泵,宽电压循环水泵,3V\5V\12V/24/48V无刷水泵,太阳能潜水泵,太阳能微型水泵,太阳能灌溉直流水泵,太阳能鱼塘水泵,大流量直流水泵,分体式太阳能水泵,壁挂式太阳能水泵,平板式太阳能水泵。

太阳能光伏无刷直流水泵(磁力隔离泵)由泵体(隔离件),电机定子,轴,轴承和转子水叶(磁体和叶轮)几部分组成:磁体(钕铁硼永磁体)由稀土永磁材料制成的永磁体工作温度范围广(-45-400℃),矫顽力高,磁场方向具有很好的各向异性,在同极相接近时也不会发生退磁现象,是一种很好的磁场源。

隔离件在采用金属隔离套时,隔离套处于一个正弦交变的磁场中,在垂直于磁力线方向的截面上感应出涡电流并转化成热量。

涡流的表达式为:其中Pe-涡流;K—常数;n—泵的额定转速;T-磁传动力矩;F-隔套内的压力;D-隔套内径;一材料的电阻率;—材料的抗拉强度。

当泵设计好后,n、T是工况给定的,要降低涡流只能从F、D等方面考虑。

选用高电阻率、高强度的非金属材料制作隔离套,在降低涡流方面效果十分明显。

轴由于无刷直流磁力隔离泵是通过通电线圈带动转子旋转来工作的,旋转为了保持转子转动的平稳及噪音,采用高性能陶瓷轴与轴套配合,可以到达很高的精度,有效的减少了旋转阻力及噪音。

滚动轴承磁力泵滑动轴承的材料有工程塑料塑钢(POM)或陶瓷。

由于塑钢(POM)及陶瓷具有很好的耐热、耐腐蚀、耐摩擦性能,所以磁力泵的滑动轴承多采用工程陶瓷制作。

由于工程陶瓷很脆且膨胀系数小,所以轴承间隙不得过小,以免发生抱轴事故。

太阳能上水原理

太阳能上水原理

太阳能上水原理
太阳能上水是利用太阳能将水抽取到高处的一种方法。

其工作原理如下:
1. 太阳能收集:太阳能上水系统首先需要安装太阳能集热器,通常是一些太阳能光伏板。

太阳能光伏板将太阳光转化为电能,然后将电能转化为动力能,用于驱动水泵。

2. 水泵工作:电能通过电线传送到水泵,启动水泵工作。

水泵将抽取地下水或水源地的水,然后通过管道输送至目标位置。

3. 上水过程:通过管道输送的水会被输送至高处的储水池或水箱。

当水箱中的水位达到一定高度时,水泵会停止工作,确保水箱不会溢出。

需要注意的是,太阳能上水系统需要依赖于太阳能的光照程度。

在太阳光照强度不足或天气不好的情况下,系统的工作效率可能会降低。

因此,在选择使用太阳能上水系统时,需要考虑当地的太阳能资源和气候条件。

总而言之,太阳能上水系统利用太阳能收集器将太阳能转化为电能,驱动水泵将水抽取到高处储存,实现了可再生能源的利用和高效的水资源管理。

光伏水泵方案

光伏水泵方案

光伏水泵方案1. 引言随着全球对可再生能源的重视和需求增加,光伏水泵作为一种使用光伏技术驱动的水泵系统逐渐受到关注。

光伏水泵方案能够利用太阳能光伏电池板将太阳能转换为电能,从而实现无需外部电源就能驱动水泵的功能。

本文将介绍光伏水泵方案的原理、组成部分以及应用领域。

2. 光伏水泵方案的原理光伏水泵方案的核心原理是利用光伏电池板将太阳能转换为电能,然后通过控制器将电能传输给水泵驱动器,最终驱动水泵工作。

光伏电池板通常由多个光伏电池组成,当太阳光照射到光伏电池板上时,光能被光伏电池吸收并转换为直流电能。

这些直流电能经过控制器处理后,将满足水泵正常运行所需的电能传输给水泵驱动器,从而带动水泵工作。

3. 光伏水泵方案的组成部分光伏水泵方案主要由以下几个组成部分组成:3.1 光伏电池板光伏电池板是光伏水泵方案的核心组件,它由多个光伏电池组成。

光伏电池通过吸收太阳光的能量将其转换为电能。

光伏电池板一般使用硅材料制作,其中夹层结构中的P型和N型硅层之间形成PN结,当太阳光照射到PN结上时,会产生电子与空穴对。

该电荷对会产生电流,从而形成直流电能。

3.2 控制器控制器是光伏水泵方案中起控制作用的关键设备。

它负责监测光伏电池板输出的电能并将其传输给水泵驱动器。

控制器通常具有多种功能,例如保护电池过充、过放、过流等,同时也能实现对水泵的控制与监测。

3.3 水泵驱动器水泵驱动器是将控制器传输过来的电能转换为机械能,驱动水泵工作的设备。

水泵驱动器可以根据水泵的不同需求,实现不同的运行方式和功能。

例如,它可以控制水泵的起停、调整水泵的流量和压力等。

3.4 水泵水泵是光伏水泵方案中的核心设备,它通过水泵驱动器的驱动来实现将水从低处抽取到高处的目的。

水泵的种类和参数根据具体的应用需求而定,可以是离心泵、深井泵等。

4. 光伏水泵方案的应用领域光伏水泵方案由于其可再生、环保的特点,在各个领域都得到了广泛应用。

以下是几个典型的应用领域:4.1 农业灌溉光伏水泵方案可以解决农业灌溉中的用水问题。

太阳能水泵工作原理

太阳能水泵工作原理

太阳能水泵工作原理
太阳能水泵的工作原理是太阳能电池在光照下将光能转换成电能,并通过控制器把电能转变成机械能,驱动水泵工作。

太阳能电池板在太阳光下被照射后,在光电效应的作用下产生电子流,使太阳能电池的两端产生电压,通过控制器对电压进行变换,使之达到所需的直流电压。

同时将直流电能转换成与之相适应的交流电能。

这种现象叫做光电效应。

光电效应只发生在光照物体上,当光照强度降低时,半导体材料的电阻率随之降低,当光照消失时,电阻率随之恢复正常。

所以光能也可以用来发电。

在光伏发电中,把太阳能电池板做成一个半导体器件,当太阳光照射到太阳能电池板上时,一部分光能被吸收转化为电能;当有电流通过时,就会产生电压和电流。

直流电通过控制器送到动力蓄电池中储存起来;当需要用电时,控制器控制动力蓄电池将储存的直流电变成交流电输出。

在蓄电池中储存的电能就是太阳能电池板转化出来的电能。

它经过逆变装置转换成高频交流电输出,通过控制电路送入交流电机中带动水泵工作。

—— 1 —1 —。

太阳能热水系统控制及原理解析

太阳能热水系统控制及原理解析

太阳能热水系统控制及原理一、智能型太阳能、热泵互补热水系统原理说明:注:进水在集热器入口,集热循环水泵出口,集热水箱底部出水供用户使用。

太阳能供水系统原理说明新能源太阳能中央热水器由以下四大部分组成:太阳能集热器:吸收太阳能,将光能转化为热能,使冷水在集热器内被加热;保温水箱:储存热水,可保温3天,内胆为不锈钢,外包8厘米保温层,最外层是铝合金外壳;热泵辅助加热系统:用于阴雨天辅助加热:供热水管道:将经过增压泵加压后的热水引向各用水点,主管道有保温层,未端有回水管。

晴天,当太阳能把集热器内的冷水加热至55C时(该温度可调),冷水管上的电磁阀门自动打开,冷水被自来水压力压入集热器内,集热器内的热水被挤出,然后进入到保温水箱中储存待用,当冷水到达集热器出口处的温度探头时,探头温度底于55r,电磁阀门就立刻关闭,冷水停留在集热器内继续被太阳能加热,2-5分钟后,水温又达到55°C时,电磁阀门再次打开,集热器内的热水又被挤到保温水箱中,按此规律,一次又一次的产生热水进入水箱,水箱内热水逐渐增加,一直增加到水箱水满为止。

水箱水满后,就停止进水,如果还有太阳,为了充分利用太阳能,循环泵会自动启动,把水箱内55 C的热水抽出来,经过太阳能集热器循环加热,使水温进一步升高至60-70 C,当水温达到70C时,就停止循环加热,限制水温不要超过70 C,以免烫伤人,又可防止结水垢(产生水垢的温度条件是水温超过80C)。

热泵加热系统只有在太阳能光照不足时才启动,为最大限度地利用太阳能,减少电能的消耗,我们将设定3个时间段检测保温水箱的水位。

在上午10: 30〜11: 30,如果保温水箱内热水水位还不到40%勺位置,则自动启动热泵加热系统,往保温水箱补充50C的热水,如果水位达到设定值,则热泵系统停止工作。

同样,在中午12: 30〜1: 30,系统自动检测保温水箱70%勺水位,在下午3: 30〜6: 30,系统自动检测保温水箱100%勺水位。

太阳能 地能热泵采暖供热系统原理图

太阳能 地能热泵采暖供热系统原理图

太阳能、地能热泵采暖供热系统原理图●采暖供热原理:如图一所示,热泵主要由制冷压缩机、冷凝器、膨胀阀、蒸发器等组成制冷回路,在制冷回路内充注制冷剂。

制冷压缩机通入三相交流电高速旋转,将低温低压制冷剂气体吸入压缩机,经压缩后变成高压高温气体,该高温高压气体经冷凝器被冷却水冷却,变成中压中温制冷剂液体,制冷剂液体经过膨胀阀节流减压后送入蒸发器,由于蒸发器连接在压缩机的吸气口上,压缩机不停的吸入蒸发器的制冷剂气体,使得进入蒸发器的大量制冷剂压力减低,制冷剂进一步大量蒸发。

由于蒸发器另一侧与地下水中水泵连接,所以当地下水大量流过蒸发器时,被蒸发的制冷剂带走大量的地下水中的热量(因为制冷剂蒸发过程,也就是制冷剂吸热的过程)。

地下水中含有大量的地球浅层土壤低温热量,这些低温热量通过地下水媒介被蒸发器中蒸发的制冷剂吸收提取变成制冷剂热量,被源源不断地吸入制冷压缩机。

经压缩机压缩之后,又变成为80-90℃的高温气体,这个高温气体在被冷凝器冷却的过程中,将大量的高温热量传给了冷凝器另一侧的采暖系统,80-90℃高温制冷剂气体被冷却的过程,也可以看作是将这些高温热量传递给冷却系统的过程,或者说是对采暖系统的加热过程,维持采暖系统水温在50-60℃,通过风机盘管或暖气片负荷向空调房间供热。

综上所述,热泵机组是将电能通入压缩机,压缩机将电能变为高速旋转的机械能,机械能又通过压缩机将机械能变成为热能,压缩机输出的总热能=压缩机电功率+压缩机向地下水吸收的热能,而向井水中吸取的热能远远大于压缩机的电功率。

一般从井水中提取的热能是压缩机电功率产生热能的 4-5倍,所以热泵机组的能效比=输出热能(kw)/输入电功率(kw)≈4.5左右。

而电锅炉的能效比=输出热能(kw)/输入功率(kw)≈0.9~0.98左右,从上面的对比可以看出热泵机组是节能环保设备,与电锅炉相比也同样是电采暖设备,只不过热泵比电锅炉更节省运行费用,理应得到电力部门大力推广的设备,最终受益的首先是电力部门,然后是用户,对环保、对电力部门、对全社会都是有很大好处的事。

太阳能热水器的工作原理图解与结构图解

太阳能热水器的工作原理图解与结构图解

太阳能热水器的工作原理图解与结构图解太阳能热水器具有安装使用方便、节能效果明显的优点,可以吸收太阳能辐射能,并且把能量转换成热能,从而产生热水的一种设备。

在家庭用热水、商业用热水、工业制造用热水等方面都有广泛的应用,下面小编就为大家介绍一下太阳能热水器的工作原理与结构图解。

太阳能热水器工作原理太阳能热水器工作原理图1、吸热过程真空管式太阳能热水器:太阳辐射透过真空管的外管,然后被集热镀膜吸收后沿内管壁传递到管内的水,此时水受热而温度逐渐升高,比重减小而上升,形成一个向上的动力,构成一个热虹吸系统。

随着热水的不断上移并储存在储水箱上部,同时温度较低的水沿管的另一侧不断补充如此循环往复,最终整箱水都升高至一定的温度。

平板式太阳能热水器:其中介质在集热板内因热虹吸自然循环,随后将太阳辐热量及时传送到水箱内,介质也可通过泵循环实现热量传递,因此就有源源不断的人能来保持水温的稳定。

2、循环管路直插式结构的真空管式太阳能热水器,热水是因为通过重力的作用而提供动力;然而平板式则通过自来水的压力提供动力。

不过这两种太阳能集中供热系统均采用泵循环。

由于太阳能热水器集热面积不大,考虑到热能损失,一般不采用管道循环。

太阳能热水器自然循环集热原理示意图3、系统工作1)温差控制集热循环集热器温测器和水温感应器置入在太阳能热水地暖系统中,能够很好地吸收太阳能辐射后,促使集热管温度上升,然后当集热器温度和水箱温度水温差到达△t设定值时,通过检测系统发出指令,循环泵将中央热水器中的冷水输入集热器中,然而水被加热后又再次回到水箱中,使水箱内的水达到设定的温度。

2)地暖管道循环系统这个系统是增加热水循环泵作为不同点,然后通过控制器更好得控制地暖管道循环为工作原理。

然后再通过当水温达到设定温度时,自动启动地暖循环泵,使高温水通过地暖盘管在室内循环,从而使室内温度不断提高。

如果水箱水温开始低于某一设定值时,应当将地暖管道循环泵进行自动停止为最好的方式。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

系统组成及工作原理
1.1 光伏水泵系统的结构图
由图1可知,系统利用太阳电池阵列将太阳能直接转变成电能。

经过DC/DC升压,和具有TMPPT功能的变频器后输出三相交流电压驱动交流异步电机和水泵负载,完成向水塔储水功能。

其中主要包括4部分:太阳电池阵列;具有TMPPT功能的变频器;水泵负载;储水装置。

1.2 变频器主电路及硬件构成
本系统所采用的主电路及硬件控制框图如图2所示。

主电路DC/DC部分采用性能优越的推挽正激式电路进行升压;DC/AC部分采用三相桥式逆变电路。

主功率器件采用ASIPM(一体化智能功率模块)PS12036,系统控制核心由16位数字信号控制器dsPIC30F2010构成。

外围控制电路包括阵列母线电压检测和水位打干检测电路。

系统首先通过初始设置的工作方式和PI参数工作,然后由MPPT子程序实时搜索出的电压值作为内环CVT的给定,通过PI 调节得到工作频率值,计算出PWM信号的占空比,实现光伏阵列的真正最大功率跟踪(TMPPT),并保持异步电机的V/f比为恒值。

系统将MPPT和逆变器相结合,利用ASIPM模块自带的故障检测功能进行检测和保护,结构简单,控制方便。

1.2.1 DC/DC升压电路简述
1.2.1.1主电路选择
对于中小功率的光伏水泵来说,光伏阵列电压大都是低压(24v、36v、48V),对于升压主电路的选择,人们一般选择推挽电路,因为推挽电路变压器原边工作电压就是直流侧输入电压,同时驱动不需隔离,因此比较适合输入电压较低的场合。

但是偏磁问题是制约其应用的一大不利因素,功率管的参数差异和变压器的绕制工艺都有可能使推挽电路工作在一种不稳定状态。

基于诸多因素的考虑,本系统采用了结构新颖的推挽正激电路,此电路拓扑不仅克服了偏磁问题,而且闭环控制也比较容易(二阶系统)。

1.2.l.2推挽正激电路简单分析
推挽正激电路如图2所示,由功率管S1及S2,电容C8和变压器T组成,变压器T原边绕组N1及N2具有相同的匝数,同名端如图2所示。

当S1及S2同时关断的时候,电容C8两端电压下正上负,且等于阵列电压,当S1开通,S1、N2和光伏阵列构成回路,N2上正下负,同时C8、N1和S1构成回路,C8放电,N1下正上负,此时的工作相当于两个正激变换器的并联。

同理,当S2开通S1关断时,也相当于两个正激变换器的并联。

经过理论分析,推挽正激电路是一个二阶系统,因此闭环控制简单,同时输出滤波电感和电容大大减小。

1.2.2 dsPIC30F2010简单介绍
Microchip公司通过在16位单片机内巧妙地添加DSP功能,使Microchip的dsPIC30F数字信号控制器(DSC)同时具有单片机(MCU)的控制功能以及数字信号处理器(DSP)的计算能力和数据吞吐能力。

因为它具有的DSP 功能,同时具有单片机的体积和价格,所以本系统采用此芯片作为控制器。

此芯片主要适用于电机控制,如直流无刷电机、单相和三相感应电机及开关磁阻电机;同时也适用于不间断电源(UPS)、逆变器、开关电源和功率因数校正等。

dsPIC30F2010管脚示意如图3所示。

1.2.2.1 主要结构
12KB程序存储器;
512字节SRAM:
1024字节EEPROM;
3个16位定时器;
4个输入捕捉通道;
2个输出比较/标准PWM通道;
6个电机控制PWM通道;
6个10位500kspsSA/D转换器通道。

l 2.2.2 主要特点
A/D采样速度快且多通道可以同时采样;
6个独立/互补/中心对齐/边沿对齐的PWM:
2个可编程的死区;
在噪声环境下5V电源可正常工作;
最低工作电压3V;
A/D采样和PWM同期同步。

2 光伏水泵最大功率点跟踪(MPPT)设计
2.1 常规恒定电压跟踪(CVT)方式的特点与不足
CVT方式可以近似获得太阳电池的最大功率输出,软件上处理比较简单。

但实际上日照强度和温度是时刻变化的,尤其是在西部地区,同一天中的不同时段,温度和日照强度变化都相当大,这些都会引起太阳电池阵列最大功率点电压的偏移,其中尤以温度的变化影响最大。

在这种情况下,采用CVT方式就不能很好地跟踪最大点。

2.2 TMPPT的原理与实现
为克服CVT方式弊端,提出了TMPPT(TrueMaximum Power Point
Tracking)概念,其意思是“真正的最大功率跟踪”控制,即保证系统不论在何种日照及温度条件下,始终使太阳电池工作在最大功率点处。

由于逆变器采用恒V/f控制,故水泵电机的转速与其输入电压成正比,因此,调节逆变
器的输出电压,就等于调节了负载电机的输出功率。

故本系统采用TMPPT方式使太阳电池尽可能工作在最大功率点处,为负载提供最大的能量。

由太阳电池阵列的特性曲线(见图4)可知,
在最大功率点处,dP/dv=O,在最大功率点的左侧,当dP/dV>O 时,P呈增加趋势,dP/dV<O时,P呈减少趋势;但在最大功率点的右侧,当dP/dv>O时,P呈减少趋势,dP/d
v<O时,P呈增加趋势。

据此可在实际运行时根据P-V的变化关系确定最大功率点。

图5为TMPPT型最大功率点跟踪控制框图。

系统的输入指令值为0,反馈值为dP/dV,假定Z3状态为+1,则Usp*指令电压增加,经CVT环节调整,系统的输出电压V跟踪Usp*增加,采样输出电流I,经功率运算环节和功率微分环节,获得dP/dV值,如dP/dV>0,则Z1为+1,Z2为+1,Z3为+l,Usp*指令电压继续增加。

如dP/dV<O,则Z1为-l,Z2为-1,Z3为-1,Usp*指令电压开始减小。

稳定工作时,系统在最大功率点附近摆动,如果摆动幅度越小,则精度越高。

在具体工作时,为了防止搜索方向的误判断,软件中设置了搜索限幅值,使系统的工作可靠性进一步提高。

由于本系统中采用的ASIPM模块带有电流检测功能,故在硬件设计上可以省去电流检测电路,节约了成本,并进一步优化了外围电路。

3 系统的保护功能设计
1)过流和短路保护功能
由于ASIPM的下臂IGBT母线上串有采样电阻,所以通过检测母线电流可以实现保护功能。

当检测电流值超过给定值时,被认为过流或短路,此时下桥臂IGBT门电路被关断,同时输出故障信号,dsPIC检测到此信号时封锁PWM脉冲进一步保护后级电路。

2)欠压保护功能
ASIPM检测下桥臂的控制电源电压,如果电源电压连续低于给定电压1OMs,则下桥臂各相IGBT均被关断,同时输出故障信号,在故障期间,下桥臂三相IGBT的门极均不接受外来信号。

3)过热保护功能ASIPM内置检测基板温度的热敏电阻,热敏电阻的阻值被直接输出,dsPIC通过检测其阻值可以完成过热保护功能。

以上保护是利用了ASIPM自身带有的功能,无须外加电路,进一步简化了硬件电路设计。

系统除了具有上述保护功能外,还具有光伏水泵系统特有的低频、日照低、打干(自动和手动打干)等保护功能。

对于泵类负载,当转速低于下限值时,光伏阵列所提供的能量绝大部分都转化为损耗,长期低速运行,
会引起发热并影响水泵使用寿命,因此,本系统设计了低频保护,对水泵来说,当液面低于水泵进水口时,水泵处于空载状态,若不采取措施,长时间运行则会损坏润滑轴承,而本系统为户外无人值守工作方式,故系统为了增加检测可靠性,采用了自动打干和手动打干两种识别方式,其中,自动打干是根据系统输出功率和电机工作频率来进行判别;手动打干则是通过水位传感器识别当前水位高低来实现的。

由于低频、日照低、打干等功能都是由软件来完成,不须增加硬件电路,故系统结构简单。

相关文档
最新文档