2011广东珠海中考数学及答案
广东2011年中考数学试题分类解析汇编专题4:图形的变换

广东2011年中考数学试题分类解析汇编专题4:图形的变换一.选择题1. (广东省3分)将左下图中的箭头缩小到原来的12,得到的图形是【答案】A。
【考点】相似。
【分析】根据形状相同,大小不一定相等的两个图形相似的定义,A符合将图中的箭头缩小到原来的12的条件;B与原图相同;C将图中的箭头扩大到原来的2倍;D只将图中的箭头长度缩小到原来的12,宽度没有改变。
故选A。
2.(佛山3分)一个图形无论经过平移还是旋转,有以下说法①对应线段平行;②对应线段相等;③对应角相等;④图形的形状和大小都没有发生变化A、①②③B、①②④C、①③④D、②③④【答案】D。
【考点】平移的性质,旋转的性质。
【分析】根据平移和旋转的性质知,①一个图形经过旋转,对应线段不一定平行;②一个图形无论经过平移还是旋转,对应线段相等;③一个图形无论经过平移还是旋转,对应角相等;④一个图形无论经过平移还是旋转,图形的形状和大小都没有发生变化。
故选D。
3.(佛山3分)如图,一个小立方块所搭的几何体,从不同的方向看所得到的平面图形中(小正方形中的数字表示在该位置的小立方块的个数),不正确的是12142A12242B1111123C1111123D【答案】B。
【考点】几何体的三视图。
【分析】根据几何体的三视图的视图规则知,A、C、D分别是这个几何体左视图、主视图、俯视图。
故选B。
4.(河源3分)下面是空心圆柱在指定方向上的视图,正确的是【答案】C。
【考点】几何体的三视图。
【分析】圆柱体在指定方向上的视图是长方形,则空心圆柱应是两个长方形,但里面的从指定方向上是看不见的,应是虚线。
故选C。
5.(清远3分)图中几何体的主视图是【答案】C。
【考点】简单几何体的三视图。
【分析】仔细观察图象可知:图1中几何体的主视图下方是三个正方形,上方的左边有一个正方形。
故选C。
6.(深圳3分)如图所示的物体是一个几何体,其主视图是【答案】C。
【考点】简单几何体的三视图。
广东2011年中考数学试题分类解答汇编专题6:函数的图像与性质

广东2011年中考数学试题分类解析汇编专题6:函数的图像与性质一、选择题1. (佛山3分)下列函数的图像在每一个象限内,y 值随x 值的增大而增大的是A 、1y x =-+B 、21y x =-C 、1y x=D 、1y x=-【答案】D 。
【考点】一次函数、二次函数和反比例函数的性质。
【分析】根据两一次函数和反比例函数的性质知,A 、函数1y x =-+的图像在每一个象限内,y 值随x 值的增大而减小;B 、函数21y x =-的图像在对称轴左边,y 值随x 值的增大而减小,在对称轴右边,y 值随x 值的增大而增大;C 、函数1y x=的图像在每一个象限内,y 值随x 值的增大而减小;D 、、函数1y x=-的图像在每一个象限内,y 值随x 值的增大而增大。
故选D 。
2. (广州3分)下列函数中,当x >0时,y 值随x 值增大而减小的是A 、2y x =B 、1y x =-C 、34y x =错误!未找到引用源。
D 、1y x=错误!未找到引用源。
【答案】D 。
【考点】二次函数、一次函、正比例函数、反比例函数的性质。
【分析】A 、二次函数2y x =的图象,开口向上,并向上无限延伸,在y 轴右侧(x >0时),y 随x 的增大而增大;故本选项错误;B 、一次函数1y x =-的图象,y 随x 的增大而增大; 故本选项错误;C 、正比例函数错误!未找到引用源。
的图象在一、三象限内,y 随x 的增大而增大; 故本选项错误;D 、反比例函数错误!未找到引用源。
中的1>0,所以y 随x 的增大而减小; 故本选项正确;故选D 。
3.(茂名3分)若函数2m y x+=的图象在其象限内y 的值随x 值的增大而增大,则m 的取值范围是A 、m >﹣2B 、m <﹣2C 、m >2D 、m <2【答案】B 。
【考点】反比例函数的性质。
【分析】根据反比例函数的性质,可得m+2<0,从而得出m 的取值范围:m <﹣2。
2011年广东省初中毕业生学业考试[1]
![2011年广东省初中毕业生学业考试[1]](https://img.taocdn.com/s3/m/fd9b6f087e21af45b207a839.png)
2011年广东省初中毕业生学业考试数学参考答案一、1-5、DBACB二、6、-27、___ x ≥2__8、___12__9、__25º__ 10、2561 三、11、原式=-6 12、x ≥3 13、由△ADF ≌△CB E ,得AF =C E ,故得:AE=CF14、(1)⊙P 与⊙P 1外切。
(2)∏-215、(1)c > 21 (2)顺次经过三、二、一象限。
因为:k >0,b=1>0四、16、解:设该品牌饮料一箱有x 瓶,依题意,得6.032626=+-x x 化简,得013032=-+x x解得 131-=x (不合,舍去),102=x经检验:10=x 符合题意答:略.17、略解:AD=25(3+1)≈68.3m18、(1)“班里学生的作息时间”是总体(2)略(3)10%19、略解:(1)∠BDF =90º;(2)AB=BD ×sin60°=6.五、20、略解:(1)64,8,15;(2)n 2-2n+2,n 2,(2n-1);(3)第n 行各数之和:)12)(1()12(222222-+-=-⨯++-n n n n n n n 21、略解:(1)、△HAB △HGA ;(2)、由△AGC ∽△HAB ,得AC/HB=GC/AB ,即9/y=x/9,故y=81/x (0<x<29)(3)因为:∠GAH = 45①当∠GAH = 45°是等腰三角形.的底角时,如图(1):可知CG =x =29/2②当∠GAH = 45°是等腰三角形.的顶角时, 如图(2):由△HGA ∽△HAB知:HB= AB=9,也可知BG=HC ,可得:CG =x =18-29B (D )A FE G(H ) C图(1)图(2) 22、略解:(1)易知A(0,1),B(3,2.5),可得直线AB 的解析式为y =121+x (2) )30(41545)121(14174522≤≤+-=+-++-=-==t t t t t t MP NP MN s (3)若四边形BCMN 为平行四边形,则有MN =BC ,此时,有25415452=+-t t ,解得11=t ,22=t 所以当t =1或2时,四边形BCMN 为平行四边形.①当t =1时,23=MP ,4=NP ,故25=-=MP NP MN , 又在Rt △MPC 中,2522=+=PC MP MC ,故MN =MC ,此时四边形BCMN 为菱形②当t =2时,2=MP ,29=NP ,故25=-=MP NP MN , 又在Rt △MPC 中,522=+=PC MP MC ,故MN ≠MC ,此时四边形BCMN 不是菱形. B(D )A F E G HC。
2011年广东省中考数学试卷(WORD版含答案)

2011年广东省初中毕业生学业考试数 学 试 题全卷共6页,考试用时100分钟,满分为120分。
一、选择题(本大题5小题,每小题3分,共15分)在每小题列出的四个选项中,只有一个是正确的,1.-3的相反数是( ) A .3B .31C .-3D .31-2.如图,已知∠1 = 70º,如果CD ∥BE ,那么∠B 的度数为(A .70ºB .100ºC .110ºD .120º3.某学习小组7位同学,为玉树地震灾区捐款,捐款金额分别为57元,8元,9A .6,6B 45.下列式子运算正确的是( ) B .248=C .331= D .4321321=-++4分,共20分)6. 日电:世博会开园一个月来,客流平稳,累计至当晚19时,参观者已超过8000000人次。
试用科学记数法表示8000000=_______________________。
7.化简:11222---+-y x y xy x =_______________________。
8.如图,已知Rt △ABC 中,斜边BC 上的高AD=4,cosB=54,则AC=____________。
9.已知一次函数b x y -=与反比例函数xy 2=的图象,有一个交点的纵坐标是2,则b 的值为________。
D .第4题图第8题图ABC D1C 2DC 1C D E10.如图(1),已知小正方形ABCD的面积为1,把它的各边延长一倍得到新正方形A1B1C1D1;把正方形A1B1C1D1边长按原法延长一倍得到正方形A2B2C2D2(如图(2));以此下去···,则正方形A4B4C4D4的面积为__________。
三、解答题(一)(本大题5小题,每小题6分,共30分)11.1001()260(2)2cosπ--+-。
12.解方程组:⎩⎨⎧=-+=-433222yyxyx13.如图,方格纸中的每个小方格都是边长为1个单位的正方形,Rt△ABC的顶点均在格点上,在建立平面直角坐标系后,点A的坐标为(-6,1),点B的坐标为(-3,1),点C的坐标为(-3,3)。
2011广东珠海中考数学试题

广东省珠海市年初中毕业生学业考试数学一、选择题(本小题分,每小题分,共分) .(·珠海)-的相反数是.- .- .- . 【答案】 .(·珠海)化简()的结果是. . . . 【答案】 .(·珠海)圆心角为°,且半径为的扇形的弧长为. .π . . π 【答案】 .(·珠海)已知一组数据:,-,,,,,,则这组数据的极差是. . . . 【答案】 .(·珠海)若分式中的、的值同时扩大到原来的倍,则此分式的值.是原来的倍 .是原来的倍 .是原来的 .不变 【答案】二、填空题(本大题小题,每小题分,共分) .(·珠海)分解因式-= ▲ . 【答案】(+)(-) .(·珠海)方程组的解为 ▲ .【答案】 .(·珠海)写出一个图象位于第二、第四象限的反比例函数的解析式 ▲ . 【答案】=- (答案不唯一) .(·珠海)在□中,=,=,则□的周长为 ▲ . 【答案】 .(·珠海)不等式组的解集为 ▲ .【答案】<<三、解答题(一)(本大题小题,每小题分,共分) .(·珠海)(本题满分分)计算:|-|+()--(π-)-.【答案】原式=+--……………………分= ……………………分.(·珠海)(本题满分分)某校为了调查学生视力变化情况,从该校年入校的学生中抽取了部分学生进行连续三年的视力跟踪调查,将所得数据处理,制成拆线统计图和扇形统计图,如图所示: ()该校被抽查的学生共有多少名?()现规定视力及以上为合格,若被抽查年级共有名学生,估计该年级在年有多少名学生视力合格. 【答案】()被抽查的学生共有:÷=(人) ……………………分()视力合格人数约有:×(+)=(人)……………………分.(·珠海)(本题满分分)如图,在△中,∠=°.()求作:△的一条中位线,与交于点,与交于点.(保留作图痕迹,不写作法) ()若=,=,连结,则= ▲ ,= ▲ .【答案】()作出的垂直平分线 ……………………分 答:线段即为所求 ……………………分(), ……………………分)被抽取学生视力在以下人数 变化情况统计图 被抽取学生视力在的视力分布情况统计图视力分组说明::以下 : : :以上每组数据只含最低值,不含最高值..(·珠海)(本题满分分)八年级学生到距离学校千米的农科所参观,一部分学生骑自行车先走,过了分钟后,其余同学乘汽车出发,结果两者同时到达.若汽车的速度是骑自行车同学速度的倍,求骑自行车同学的速度.【答案】解:设骑自行车同学的速度为千米小时,由题意得……………………分-=……………………分解之得:=……………………分经验,=是原方程的解 ……………………分答:骑自行车同学的速度为千米小时.……………………分.(·珠海)(本题满分分)如图,在正方形中,=.连接,以为边作第二个正方形;连接,以为边作第三个正方形.()求第二个正方形和第三个正方形的边长;()请直接写出按此规律所作的第个正方形的边长.【答案】()解:∵四边形是正方形,∠=°∴∠=°,==;∴==即第二个正方形的边长为.……………………分∵四边形是正方形,∴∠=°,==;∴==;即第二个正方形的边长为.……………………分()解:∵第个正方形的边长. ……………………分四、解答题(二)(本大题小题,每小题分,共分).(·珠海)(本题满分分)如图,在鱼塘两侧有两棵树、,小华要测量此两树之间的距离.他在距树的处测得∠=°,又在处测得∠=°.求、两树之间的距离(结果精确到)(参考数据:≈,≈)分∵∠=°,∠=°,∴∠=°;∴=……………………分∴===×=……………………分在△中,∵=,……………………分∴===≈……………………分答:、两树之间的距离约为. ……………………分.(·珠海)(本题满分分)某校为庆祝国庆节举办游园活动,小军来到摸球兑奖活动场地,李老师对小军说:“这里有、两个盒子,里面都装有一些乒乓球,你只能选择在其中一只盒子中摸球.”获将规则如下:在盒中有白色乒乓球个,红色乒乓球个,一人只能摸一次且一次摸出一个球,若为红球则可获得玩具熊一个,否则不得奖;在盒中有白色乒乓球个,红色乒乓球个,一人只能摸一次且一次摸出两个球,若两球均为红球则可获得玩具熊一个,否则不得奖.请问小军在哪只盒子内摸球获得玩具熊的机会更大?说明你的理由.【答案】解:小军在盒中摸球获得玩具熊的机会更大 ……………………分把小军从盒中抽出红球的概率记为,那么:== ……………………分把盒中的两个白球记为白,白,两个红球记为红,红,小军从盒中摸出两球的所有可能出现的结果为:白白;白红;白红;白红;白红;红红;且六种结果出现的可能性相等,把小军从盒中抽出两个红球的概率记为,那么=; ……………………分因为>,所以小军在盒内摸球获得玩具熊的机会更大 ………………分.(·珠海)(本题满分分)如图,△中,∠=°,为坐标原点,边在轴上,==个单位长度.把△沿轴正方向平移个单位长度后得△.()求以为顶点,且经过点的抛物线的解析式;()若()中的抛物线与交于点,与轴交于点,求点、的坐标.【答案】解:()由题意,得 (,), (,), (,). ……………………分 设以为顶点的抛物线的解析式为=(-) ∵此抛物线过点 (,),∴= (-). ∴=.∴抛物线的解析式为=(-). ……………………分()∵当=时,=(-)=.∴点坐标为 (,). ……………………分 由题意,得在第一象限的角平分线上,故可设 (,), 代入=(-),得=(-), ……………………分 解得=<,=>(舍去). ……………………分 .(·珠海)(本题满分分)如图,将一个钝角△(其中∠=°)绕点顺时针旋转得△,使得点落在的延长线上的点处,连结. ()写出旋转角的度数; ()求证:∠=∠.【答案】()解:旋转角的度数为°. ……………………分 ()证明:由题意可知:△≌△, ∴=,∠=∠, 由()知:∠=°, ∴△为等边三角形. ∠=° ……………………分 而∠=°,∴∠=∠,……………………分 ∴∥∴∠=∠. 又∵∠=∠,∴∠=∠ ……………………分五、解答题(三)(本大题小题,每小题分,共分) .(·珠海)(本题满分分)阅读材料:小明在学习二次根式后,发现一些含根号的式子可以写成另一个式子的平方,如:+=(+),善于思考的小明进行了以下探索:设+=(+)(其中、、、均为整数),则有+=++.∴=+,=.这样小明就找到了一种把部分+的式子化为平方式的方法.请我仿照小明的方法探索并解决下列问题:()当、、、均为正整数时,若+=(+),用含、的式子分别表示、,得= ▲ ,= ▲ ; ()利用所探索的结论,找一组正整数、、、,填空: ▲ + ▲ =( ▲ + ▲ ); ()若+=(+),且、、均为正整数,求的值.【答案】()=+,= ……………………分(),,,(答案不唯一) ……………………分 ()解:由题意,得 ……………………分 ∵=,且、为正整数,∴=,=或=,=. ……………………分 ∴=+×=或=+×=. ……………………分.(·珠海)(本题满分分)已知:如图,锐角△内接于⊙,∠=°;点是上一点,过点的切线交的延长线于点,且∥;连结、、,的垂线与的延长线交于点. ()求证:△∽△;()记△、△的面积分别为△、△,求证:△>△.【答案】证明:()连结. ∵是⊙的切线,∴⊥. 又∵∥,∴⊥. ∴⌒)=⌒). ∴∠=∠.∵∠=∠,∥,∴∠=∠. ∴∠=∠,∴△∽△. ()由()得=,即=· ……………………分设在△中,边上的高为,则: ∴△= ·,且<. 由∠=°,⊥可推得△为等腰直角三角形∴△= . ……………………分 ∴△=△∴△>△. ……………………分.(·珠海)(本题满分分)如图,在直角梯形中,∥,⊥,==,=.将点折叠到边上,记折叠后点对应的点为(与点不重合),折痕只与边、相交,交点分别为、.过点作∥交于、交于,连结、、,与相交于.()指出四边形的形状(不需证明); ()记∠=,△、△的面积分别为、.① 求证:= . ② 设=,=,试求出以为自变量的函数 的解析式,并确定的取值范围. 【答案】()四边形为菱形 ……………………分 ()证明:∵四边形为平行四边形, =∴∠= =·. ……………………分 ∵在△中,=,∴=·.=·,)=·×==×()=.……………………分()过作垂直于于,交于点,则:⊥,====,==.∵=-=-=,∴=.∴∠=∠=°. ∴==. ∴=+. 在△中, = + =+(+)=++. ……………………分 过作的垂线(垂足为),令△的面积为. ∵△∽△, ∴=()==.则=.∵四边形的面积等于菱形的面积,∴=+.∴-=-=-=(-).∴==(-)×=(-)×= (-).∴=--.个人整理,仅供交流学习--------------------------------------------------------------------------------------------------------------------。
广东省2011年中考数学试卷精选2

广东省2011年中考数学试卷精选2 姓名: 班别: 成绩:一、选择题(本大题共5小题,每小题3分,共15分) 1.不等式组⎩⎨⎧≥+<-0302x x 的解集在数轴上正确..表示的是2.如图2,小正方形边长均为1,则下列图形中三角形(阴影部分)与△ABC 相似的是3.如图,⊙1o 、⊙2o 相内切于点A ,其半径分别是8和4,将⊙2o 沿直线1o 2o 平移至两圆相外切时,则点2o 移动的长度是( ) A .4 B .8 C .16 D .8 或164.如图,已知:9045<<A ,则下列各式成立的是A .sinA=cosAB .sinA>cosAC .sinA>tanAD .sinA<cosA5.如图,正方形ABCD 内接于⊙O ,⊙O 的直径为2分米,若在这个圆面上随意抛一粒豆子,则豆子落在正方形ABCD 内的概率是( )A .π2B .2π C .π21 D .π2第4题图第3题图 第5题图二、填空题(本大题共5小题,每小题4分,共20分.)6.(11·佛山)在矩形ABCD 中,两条对角线AC 、BD 相交于点O ,若AB =OB =4,则AD = ;7.(2011•湛江)若:A 32=3×2=6,A 53=5×4×3=60,A 54=5×4×3×2=120,A 64=6×5×4×3=360,…,观察前面计算过程,寻找计算规律计算 A 73= (直接写出计算结果),并比较A 103 A 104(填“>”或“<”或“=”) 8.凸n 边形的对角线的条数记作(4)nn a ≥,例如:42a=,那么:①___________5a =;②____________65a a-=;③____________1n n a a +-=.(4n ≥,用n 含的代数式表示) 9.(11·清远)如图4,在□ABCD 中,点E 是CD 的中点,AE 、BC 的延长线交于点F .若 △ECF 的面积为1,则四边形ABCE 的面积为 _ .10.(11·佛山)如图物体从点A 出发,按照A →B (第1步)→C (第2)→D →A →E →F →G →A →B →……的顺序循环运动,则第2011步到达点 处;三、解答题(每小题6分,共30分) 11. (11·佛山)如图,已知AB 是⊙O 的弦,半径OA =20cm ,∠AOB =120°,求△AOB的面积;A BC D 图4E FAFGDC BE A OB12. (11河源)如图4,在平面直角坐标系中,点A (-4,4),点B (-4,0),将△ABO 绕原点O 按顺时针方向旋转135°得到△11A B O 。
2011年广东省中考数学试卷及答案(WORD版)

2011年广东省初中毕业生学业考试数 学考试用时100分钟,满分为120分一、选择题(本大题5小题,每小题3分,共15分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑.1.-2的倒数是( )A .2B .-2C . 21D .21- 2.据中新社北京2010年12月8日电,2010年中国粮食总产量达到546 400 000吨,用科学记数法表示为( )A .5.464×107吨B .5.464×108吨C .5.464×109吨D .5.464×1010吨3.将左下图中的箭头缩小到原来的1,得到的图形是( ) 4.在一个不透明的口袋中,装有5个红球3个白球,它们除颜色外都相同,从中任意摸出一个球,摸到红球的概率为( )A .51B .31C .85D .83 5.正八边形的每个内角为( )A .120ºB .135ºC .140ºD .144º二、填空题(本大题5小题,每小题4分,共20分)请将下列各题的正确答案填写在答题卡相应的位置上.6.已知反比例函数xk y =的图象经过(1,-2),则=k ____________. 7.使2-x 在实数范围内有意义的x 的取值范围是______ _____.8.按下面程序计算:输入3=x ,则输出的答案是_______________.9.如图,AB 与⊙O 相切于点B ,AO 的延长线交⊙O 于点C .若∠A =40º,则∠C =_____.10.如图(1),将一个正六边形各边延长,构成一个正六角星形AFBDCE ,它的面积为1;取△ABC 和△DEF各边中点,连接成正六角星形A 1F 1B 1D 1C 1E 1,如图(2)中阴影部分;取△A 1B 1C 1和△D 1E 1F 1各边中点,连接成正六角星形A 2F 2B 2D 2C 2E 2,如图(3)中阴影部分;如此下去…,则正六角星形A 4F 4B 4D 4C 4E 4的面积为A .B . D . 题3图 题9图 BC O A_________________.三、解答题(一)(本大题5小题,每小题6分,共30分)11.计算:20245sin 18)12011(-︒+-.12.解不等式组:⎩⎨⎧-≤-->+128,312x x x ,并把解集在数轴上表示出来.13.已知:如图,E 14.如图,在平面直角坐标系中,点P 的坐标为(-4,0),⊙P 的半径为2,将⊙P 沿x 轴向右平移4个单位长度得⊙P 1.(1)画出⊙P 1,并直接判断⊙P 与⊙P 1的位置关系;(2)设⊙P 1与x 轴正半轴,y 轴正半轴的交点分别为A ,B ,求劣弧AB 与弦AB 围成的图形的面积(结果保留π).15.已知抛物线c x x y ++=221与x 轴没有交点. (1)求c 的取值范围;(2)试确定直线1+=cx y 经过的象限,并说明理由.四、解答题(二)(本大题4小题,每小题7分,共28分)16.某品牌瓶装饮料每箱价格26元.某商店对该瓶装饮料进行“买一送三”促销活动,若整箱购买,则题13图 B C DA F E 题14图题10图(1) E E C E 题10图(2) 题10图(3)买一箱送三瓶,这相当于每瓶比原价便宜了0.6元.问该品牌饮料一箱有多少瓶?17.如图,小明家在A 处,门前有一口池塘,隔着池塘有一条公路l ,AB 是A 到l 的小路. 现新修一条路AC 到公路l . 小明测量出∠ACD =30º,∠ABD =45º,BC =50m . 请你帮小明计算他家到公路l 的距离AD 的长度(精确到0.1m ;参考数据:414.12≈,732.13≈).18.李老师为了解班里学生的作息时间表,调查了班上50名学生上学路上花费的时间,他发现学生所花时间都少于50分钟,然后将调查数据整理,作出如下频数分布直方图的一部分(每组数据含最小值不含最大值).请根据该频数分布直方图,回答下列问题:(1)此次调查的总体是什么?(2)补全频数分布直方图;(3)该班学生上学路上花费时间在30分钟以上(含30分钟)的人数占全班人数的百分比是多少?19.如图,直角梯形纸片ABCD 中,AD //BC ,∠A =90º,∠C =30º.折叠纸片使BC 经过点D ,点C 落在点E处,BF 是折痕,且BF =CF =8.(1)求∠BDF 的度数;(2)求AB 的长.五、解答题(三)(本大题3小题,每小题9分,共27分)20.如下数表是由从1开始的连续自然数组成,观察规律并完成各题的解答.12 3 45 6 7 8 910 11 12 13 14 15 1617 18 19 20 21 22 23 24 2526 27 28 29 30 31 32 33 34 35 36…………………………(1)表中第8行的最后一个数是______________,它是自然数_____________的平方,第8行共有____________个数;(2)用含n 的代数式表示:第n 行的第一个数是___________________,最后一个数是________________,第n 行共有_______________个数;第17题图 ) 题19图 B CED AF 题18图(3)求第n 行各数之和.21.如图(1),△ABC 与△EFD 为等腰直角三角形,AC 与DE 重合,AB =AC =EF =9,∠BAC =∠DEF =90º,固定△ABC ,将△DEF 绕点A 顺时针旋转,当DF 边与AB 边重合时,旋转中止.现不考虑旋转开始和结束时重合的情况,设DE ,DF (或它们的延长线)分别交BC (或它的延长线) 于G ,H 点,如图(2)(1)问:始终与△AGC 相似的三角形有及 ;(2)设CG =x ,BH =y ,求y 关于x 的函数关系式(只要求根据图(2)的情形说明理由)(3)问:当x 为何值时,△AGH 是等腰三角形.22.如图,抛物线1417452++-=x y 与y 轴交于A 点,过点A 的直线与抛物线交于另一点B ,过点B 作BC ⊥x (1(2)动点P 在线段OC 点M ,交抛物线于点N . 设点P 移动的时间为t 出t (3)设在(2)的条件下(不考虑点P 与点O BCMN 为平行四边形?问对于所求的t 2011一、1-5、DBACB二、6、-27、___ x ≥2__8、___12__9、__25º__ 10、2561 三、11、原式=-6 12、x ≥3 13、由△ADF ≌△CB E ,得AF =C E ,故得:AE=CF14、(1)⊙P 与⊙P 1外切。
广东中考数学试卷及答案

2011年广东省初中毕业生学业考试数 学考试用时100分钟,满分为120分一、选择题(本大题5小题,每小题3分,共15分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑.1.-2的倒数是()A .2B .-2C .21D .21- 2.据中新社北京2010年12月8日电,2010年中国粮食总产量达到546 400 000吨,用科学记数法表示为( )A .5.464×107吨B .5.464×108吨C .5.464×109吨D .5.464×1010吨3.将左下图中的箭头缩小到原来的21,得到的图形是( )4.在一个不透明的口袋中,装有5个红球3个白球,它们除颜色外都相同,从中任意摸出一个球,摸到红球的概率为( )A .51B .31C .85D .83 5.正八边形的每个内角为( )A .120ºB .135ºC .140ºD .144º二、填空题(本大题5小题,每小题4分,共20分)请将下列各题的正确答案填写在答题卡相应的位置上.6.已知反比例函数xk y =的图象经过(1,-2),则=k ____________. 7.使2-x 在实数范围内有意义的x 的取值范围是___________.8.按下面程序计算:输入3=x ,则输出的答案是_______________.9.如图,AB 与⊙O 相切于点B ,AO 的延长线交⊙O 于点C .若∠A =40º,则∠C =_____.A .B . D .题3图BC O A10.如图(1),将一个正六边形各边延长,构成一个正六角星形AFBDCE ,它的面积为1;取△ABC 和△DEF 各边中点,连接成正六角星形A 1F 1B 1D 1C 1E 1,如图(2)中阴影部分;取△A 1B 1C 1和△D 1E 1F 1各边中点,连接成正六角星形A 2F 2B 2D 2C 2E 2,如图(3)中阴影部分;如此下去…,则正六角星形A 4F 4B 4D 4C 4E 4的面积为_________________.三、解答题(一)(本大题5小题,每小题6分,共30分)11.计算:20245sin 18)12011(-︒+-.11、原式=-612.解不等式组:⎩⎨⎧-≤-->+128,312x x x ,并把解集在数轴上表示出来.12、x ≥313.已知:如图,E ,F 在AC 上,AD //求证:AE =CF .13、由△ADF ≌△CB E ,得AF =C E14.如图,在平面直角坐标系中,点P的坐标为(-4,0),⊙P 的半径为2,将⊙P 沿x轴向右平移4个单位长度得⊙P 1.(1)画出⊙P 1,并直接判断⊙P与⊙P 1的位置关系;(2)设⊙P 1与x 轴正半轴,y 轴正半轴的交点分别为A ,B ,求劣弧AB 与弦AB 围成的图形的面积(结果保留π).题13图 B CD A FE 题14图题10图(1) E 题10图(2) 题10图(3)14、(1)⊙P 与⊙P 1外切。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2011年珠海市初中毕业生学业考试数学(满分120分,考试时间100分钟)一、选择题(本大题5小题,每小题3分,共15分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目的选项涂黑.1. (2011广东珠海,1,3分)如-43的相反数是 A. 34 B. -43 C.-34 D. 43【答案】D2. (2011广东珠海,2,3分)化简(a 3)2的结果是A. a 6B.a 5C.a 9D.2a 3【答案】A3. (2011广东珠海,3,3分)圆心角为60°,且半径为3的扇形的弧长为 A.2π B.π C.23π D.3π 【答案】B4. (2011广东珠海,4,3分)已知一组数据:4,-1,5,9,7,6,7,则这组数据的极差是A.10B.9C.8D.7 【答案】A5. (2011广东珠海,5,3分)若分式ba a+2的a 、b 的值同时扩大到原来的10倍,则此分式的值A.是原来的20倍B.是原来的10倍C. 是原来的101倍 D.不变 【答案】D二、填空题(本大题5小题,每小题4分,共20分)请将下列各题的正确答案填写在答题卡相应的位置上.6. (2011广东珠海,6,4分)分解因式:a x 2-4a . 【答案】a (x+2)(x-2)7. (2011广东珠海,7,4分)方程组⎩⎨⎧3y 26y =—=+x x 的解为 .【答案】⎩⎨⎧==33y x8. (2011广东珠海,8,4分)写出一个图象位于第二、第四象限的反比例函数的解析式 . 【答案】y =-x1(答案不唯一) 9. (2011广东珠海,9,4分)在□ABCD 中,AB =6cm,BC =8cm ,则□ABCD 的周长为 cm. 【答案】2810. (2011广东珠海,10,4分)不等式⎩⎨⎧-2462><x x 的解集为 .【答案】2<x <5 三、解答题(一)(本大题5小题,每小题6分,共30分) 11. (2011广东珠海,11,6分)(本题满分6分)计算2-+(31)-1-(π-5)0-16.【答案】解:原式=2+3-1-4=0 12. (2011广东珠海,12,6分)(本题满分6分)某校为了调查学生视力变化情况,从该校2008年入校学生中抽取了部分学生进行连续三年的视力跟踪调查,将所得数据处理,制成折线统计图和扇形统计图,如图所示:视力分组说明:A :5.0以下B :5.0~5.1C :5.1~5.2D :5.2及以上每组数据只含最低值,不含最高值.被抽取学生在2010年的视力 分布情况统计图被抽取学生视力在5.0以下人数 变化情况统计图 80 50 302008 2009 2010 时间(年)(1)该校被抽查的学生共有多少名?(2)现规定视力,5.1及以上为合格,若被抽查年级共有600名学生,估计该年级在2010年有多少名学生视力合格. 【答案】解:(1)被抽查的学生共有:80÷40%=200(名). 答:被抽查的学生共有200名.(2)视力合格人数约有:600×(10%+20%)=180(名)答:估计该年级在2010年有180名学生视力合格. 13. (2011广东珠海,13,6分)(本题满分6分)如图,在Rt △ABC 中,∠C =90°, (1).求作:△ABC 的一条中位线,与AB 交于D 点,与BC 交于E 点,(保留作图痕迹不写作法)(2).若AC =6,AB =10,连续CD ,则DE = .C D = .第13题图CABBC 的垂直平分线与AB 交于D 点,与BC 交于E 点,线段DE (2)3, C B14. (2011(本题满分6分)八年级学生到距离学校15千米的农科所参40分钟后,其余同学乘汽车出发,结果两者同时到达.若3倍,求骑自行车同学的速度.x 千米/小时,根据题意得,x 15-x 315经检验,x =15是原方程的根. 15千米/小时15. (2011(本题满分6分)如图,在正方形ABC 1D 1中,AB=1. 连结AC 1,以AC 1AC 1C 2D 2;连结AC 2,以AC 2为边作第三个正方形AC 2C 3D 3.第15题图CD 3AC 1(1)求第二个正方形AC 1C 2D 2和第三个正方形AC 2C 3D 3的边长; (2)请直接写出按此规律所作的第7个正方形的边长. 【答案】解:(1)∵四边形ABC 1D 1是正方形,∴∠B=90°,BC 1=AB=1, ∴AC 1=2211+=2.即第二个正方形AC 1C 2D 2边长为2. 同理,AC 2=()()2222+=2.即第三个正方形AC 2C 3D 3的边长为2.(2)第7个正方形的边长是8. 16. (2011广东珠海,16,7分)(本题满分7分)如图,在鱼塘两侧有两棵树A 、B ,小华要测量此两树之间的距离.他在距A 树30m 的C 处测得∠ACB=30°,又在B 处测得∠ABC=120°.求A 、B 两树之间的距离.(结果精确到0.1m )(参考数据:2≈1.414,3≈1.732)第16题图A【答案】解:A如图,过点B 作BD ⊥AC 于D ,∵∠ACB=30°,∠ABC=120°∴∠A=30°∴AB=BC ,∴BD 平分AC ,即AD=CD=15m.在Rt △ABD 中, ∵cosA=AB AD ,∴AB=︒30cos AD =2315=103≈17.3(m ). 答:A 、B 两树之间的距离约为17.3m. 17. (2011广东珠海,17,7分)(本题满分7分)某校为庆祝国庆节举办游园活动,小军来到摸球兑奖活动场地,李老师对小军说:“这里有A 、B 两个盒子,里面都装有一些乒乓球,你只能选择在其中一只盒子中摸球.”获奖规则如下:在A 盒中有白色乒乓球4个,红色乒乓球2个,一人只能摸一次且一次摸出一个球,若为红球则可获得玩具熊一个,否则不得奖;在B 盒中有白色乒乓球2个,红色乒乓球2个,一人只能摸一次且一次摸出两个球,若两球均红球则可获得玩具熊一个,否则不得奖.请问小军在哪只盒子内摸球获得玩具熊的机会更大?说明你的理由.【答案】解:小军在A 盒中摸球获得玩具熊的机会更大..理由:设小军从A 盒中摸到红球的概率为P A ,P A =242+=31.B 盒的两个白球记为白1、白2,两个红球记为红1、红2,小军在B 盒的摸球的所有结果出现的可能性相等,可画树状图:第2个球第1个球白2 红1 红2 白1 红1 红2 白1 白2 红2 白1 白2 红1白1 白2 红1 红2开始设小军从B 盒摸出两个红球的概率为P B ,则P B =122=61.∵P A >P B ,∴小军在A 盒中摸球获得玩具熊的机会更大.18. (2011广东珠海,18,7分)(本题满分7分)如图,Rt △OAB 中,∠OAB =90°,O 为坐标原点,边OA 在x 轴,OA =AB=1个单位长度,把Rt △OAB 沿x 轴正方向平移1个单位长度后得△AAB x第18题图A 1(1)求以A 为顶点,且经过点B 1的抛物线;(2)若(1)中的抛物线与OB 交于点C ,与y 轴交于点D ,求点D 、C 的坐标. 【答案】解:(1)由题意得,A (1,0),A 1(2,0),B 1(2,1). 设抛物线解析式为y =a (x -1)2,∵抛物线经过点B 1(2,1),∴1= a (2-1)2,解得a=1. ∴抛物线解析式为y =(x -1)2.(2)令x=0,y=(0-1)2=1,∴D 点坐标为(0,1).∵直线OB 在第一、三象限的角平分线上,∴直线OB 的解析式为:y=x根据题意得,()⎩⎨⎧-==21x y x y 解得⎪⎪⎩⎪⎪⎨⎧+=+=25325311y x⎪⎪⎩⎪⎪⎨⎧-=-=25325322y x ∵x 1=253+>1(舍去),所以点C 坐标为(253-,253-). 19. (2011广东珠海,19,7分)(本题满分7分)如图,将一个钝角△ABC (其中∠ABC=120°)绕点B 顺时针旋转得△A 1BC 1,使得C 点落在AB 的延长线上的点C 1处,连结AA 1.(1)写出旋转角的度数; (2)求证:∠A 1AC=∠C 1.第19题图C 1CA【答案】(1)解:旋转角的度数为60°.(2)证明:∵点A 、B 、C 1在一直线上.∴∠ABC 1=180°∵∠ABC=∠A 1BC 1=120°. ∴∠ABA 1=CBC 1=60°∴∠A 1BC=60°,又AB=A 1B ,所以△ABA 1是等边三角形, ∴∠AA 1B=∠A 1BC 1=60°,∴AA 1∥BC ,∴∠A 1AC=∠C ,∵△ABC ≌△A 1BC 1, ∴∠C=∠C 1,∴∠A 1AC=∠C 1. 五、解答题(三)(本大题3小题,每小题9分,共27分) 20. (2011广东珠海,20,9分)(本题满分9分)阅读材料: 小明在学习二次根式后,发现一些含根号的式子可以写成另一个式子的平方,如3+22=(1+2)2,善于思考的小明进行了以下探索:设a+b 2=(m+n 2)2(其中a 、b 、m 、n 均为正整数),则有a+b 2=m 2+2n 2+2mn 2, ∴a= m 2+2n 2,b=2mn.这样小明就找到了一种把部分a+b 2的式子化为平方式的方法. 请你仿照小明的方法探索并解决下列问题:(1)当a 、b 、m 、n 均为正整数时,若a +b 3=(m +n 3)2,用含m 、n 的式子分别表示a 、b ,得:a = , b = ;(2)利用所探索的结论,找一组正整数a 、b 、m 、n 填空: + =( +2;(3)若a +43=(m +n 3)2,且a 、m 、n 均为正整数,求a 的值. 【答案】解:(1)a= m 2+3n 2 b=2mn (2)4,2,1,1(答案不唯一)(3)根据题意得,⎩⎨⎧=+=mnn m a 24322∵2mn =4,且m 、n 为正整数,∴m=2,n=1或m=1,n=2.∴a=13或7. 21. (2011广东珠海,21,9分)(本题满分9分)已知:如图,锐角三角形ABC 内接于⊙O ,∠ABC=45°;点D 是 ⌒BC上一点,过点D 的切线DE 交AC 的延长线于点E ,且DE ∥BC ;连结AD 、BD 、BE,AD 的垂线AF 与DC 的延长线交于点F.第21题图FD(1)求证:△ABD ∽△ADE ;(2)记△DAF 、△BAE 的面积分别为S △DAF 、S △BAE ,求证:S △DAF >S △BAE. 【答案】证明:(1)连结OD ,∵DE 是⊙O 的切线,∴OD ⊥DE. ∵DE ∥BC ∴OD ⊥BC ,∴ ⌒BD= ⌒CD ,∴∠BAD=∠EAD ,∵∠BDA=∠BCA,DE ∥BC , ∴∠BDA=∠DEA.∵∠BAD=∠EAD ,∴△ABD ∽△ADE.(2)过B 作BG ⊥AE 于G ,由(1)得AD AB =AE AD ,即AD 2=AB ·AE 设△ABE 的AE 边上的高为h ,则S △ABE =21AE ·h,h <AB.由∠ABC=45°,AD ⊥AF ,∴△ADF 为等腰三角形.∴S △ADF =21 AD 2∴S △DAF >S △BAE..第21题图FD22. (2011广东珠海,22,9分)(本题满分9分)如图,在直角梯形ABCD 中,AD ∥BC ,AB ⊥BC ,AD=AB=1,BC=2. 将点A 折叠到CD 边上,记折叠后A 点对应的点为P (P 与D 点不重合),折痕EF 只与边AD 、BC 相交,交点分别为E 、F.过P 作PN ∥BC 交AB 于N 、交EF 于M ,连结PA 、PE 、AM 、,EF 与PA 相交于O.第22题FNE A C(1)指出四边形PEAM 的形状(不需证明);(2)记∠EPM=α,△AOM 、△AMN 的面积分别为S 1、S 2.①求证:2tan 1αS =81PA 2; ②设AN=x ,y =2tan 21αS S -,试求出以x 为自变量的函数y 的解析式,并确定y 的取值范围. 【答案】(1)四边形PEAM 为菱形.G K(2)①证明:∵四边形PEAM 为菱形.∴∠MNP=21α,S 1=21OA ·OM. ∵在Rt △AOM 中,tan 2α=OA OM ,∴2tan 1αS =OAOM OMOA ∙21=21OA 2=21×(21PA )2=81PA 2 ②过点D 作DH ⊥BC 于H ,∴DK ⊥PN ,BH=AB=AD=DH=1,DK=AN=x. ∵CH=B C -BH=2-1=1,∴CH=DH.∴∠NPD=∠BCD=45°,∴PK=DK=x .∴PN=X +1.在Rt △ANP 中,AP 2=AN 2+PN 2=x 2+(x +1)2=2x 2+2x+1.过E 作EG ⊥PM 于G ,设△EGM 的面积为S.∵△EGM ∽△AOM ,∴1S S=2⎪⎭⎫⎝⎛AO EG =2241AP x =224AP x . S=224AP x S 1. ∵四边形ANGE 的面积等于菱形AMPE 的面积,∴2S 1=S 2+S.∴S 1-S 2=S-S 1=224AP x S 1-S 1=(224AP x -1)S 1. ∴y=2tan 21αS S =(224AP x -1)×2tan 1αS =(224APx -1)×81AP 2=81(4x 2-AP 2)=81(4x 2-2x 2-2x -1). ∴y=41x 2-41x -81. 当点E 和点D 重合时,则菱形的边长为1,x =22,根据题意得,0<x <22,当x=0时, y=-81;当x=22时,y=-82. 又∵y=41x 2-41x -81=41(x -21)2-163 ∴y 最小值=-163,∴-163≤y <-81。