人教版_2021年珠海市中考数学试卷及答案解析

合集下载

2021年广东省珠海市数学中考试题(含答案)

2021年广东省珠海市数学中考试题(含答案)

2021年珠海市初中毕业生学业考试数 学一、选择题(本大题5小题,每小题3分,共15分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑.1.2的倒数是A .2B .-2C .D .2.计算的结果为A .B .C .D .3.某同学对甲、乙、丙、丁四个市场二月份每天的白菜价格进行调查,计算后发现这个月四个市场的价格平均值相同、方差分别为.二月份白菜价格最稳定的市场是A .甲B .乙C .丙D .丁4、下列图形中不是中心对称图形的是 A.矩形 B.菱形 C.平行四边形 D.正五边形5.如果一个扇形的半径是1,弧长是,那么此扇形的圆心角的大小为A .30°B .45°C .60°D .90°二、填空题(本大题5小题,每小题4分,共20分)请将下列各题的正确答案填写在答题卡相应的位置上.6.计算.7.使有意义的取值范围是.8.如图,矩形OABC 的顶点A 、C 分别在轴、轴正半轴上,B 点坐标为(3,2),OB 与AC 交于点P,D 、E 、F、G 分别是线段OP 、AP 、BP 、CP 的中点,则四边形DEFG 的周长为.9.不等式组的解集是 .10E,如果三、解答题(一)(本大题5小题,每小题6分,共30分)2121-222a a +-a 3-a -23a -2a -4.7S 1.10S 5.2S 5.82222====丁丙乙甲,,,S 3π=-21312-x x x y ⎩⎨⎧+≤>+23412x x xx11.(本小题满分6分)计算:.12.(本小题满分6分)先化简,再求值:,其中.13.(本小题满分6分)如图,在△ABC 中,AB=AC,AD是高,AM 是△ABC 外角∠CAE 的平分线.(1)用尺规作图方法,作∠ADC 的平分线DN 。

(保留作图痕迹,不写作法和证明)(2)设DN 与AM 交于点F,判断△ADF 的形状.(只写结果)14.(本小题满分6分)已知关于的一元二次方程.(1)当m=3时,判断方程的根的情况。

2021年广东省珠海市中考数学一模试卷有答案

2021年广东省珠海市中考数学一模试卷有答案

2021年广东省珠海市中考数学一模试卷学校:__________ 班级:__________ 姓名:__________ 考号:__________ 1. 2020的相反数是( )A.2020B.−2020C.12020D.−120202. 在下列交通标志中,既是轴对称图形,又是中心对称图形的是()A. B. C. D.3. 新冠病毒(COVID−19)肆虐全球,截止4月17日,全球约有2180000人感染新冠病毒,将2180000用科学记数法可表示为()A.218×104B.21.8×105C.2.18×106D.0.218×1074. 已知直线y=x+b经过第一、三、四象限,则b的值可能是()A.−1B.0C.23D.35. 下列计算正确的是()A.a2+a2=a4B.a6÷a2=a4C.(a2)3=a5D.(a−b)2=a2−b26. 一组数据2,x,4,3,3的平均数是3,则这组数据的中位数和众数分别是()A.3,3B.2,3C.3,4D.3,27. 对角线互相平分且垂直的四边形是()A.平行四边形B.矩形C.菱形D.等腰梯形8. 若关于x的一元二次方程kx2−2x+1=0有两个不相等的实数根,则实数k的取值范围是()A.k>1B.k<1C.k>1且k≠0D.k<1且k≠09. 如图,⊙O的直径CD垂直弦AB于点E,且CE=2,DE=8,则BE的长为( )A.2B.4C.6D.810. 如图,P为∠AOB内一定点,M、N分别是射线OA、OB上一点,当△PMN周长最小时,∠OPM=40∘,则∠AOB=()A.40∘B.45∘C.50∘D.55∘11. 使√x−2有意义的x的取值范围是________.12. 因式分解:m2−4n2=________.13. 若正多边形的一个内角等于150∘,则这个正多边形的边数是________.14. 有A,B两个黑布袋,A布袋中有两个完全相同的小球,分别标有数字1和2.B布袋中有三个完全相同的小球,分别标有数字−1,−2和−3.小明从A布袋中随机取出一个小球,记录其标有的数字为x,再从B布袋中随机取出一个小球,记录其标有的数字为y,这样就确定点Q的一个坐标为(x, y),点Q落在直线y=x−3上的概率为________.15. 计算:2x−4+6−x4−x=________.16. 如图,航拍无人机从A处测得一幢建筑物顶部B的仰角为30∘,测得底部C的俯角为60∘,此时航拍无人机与该建筑物的水平距离AD为60米,那么该建筑物的高度BC约为________米.17. 观察下列一组图形:它们是按一定规律排列的,依照此规律,第n个图形中共有________个★.18. 计算:√12−4×|−√32|−(π−1)0+2−1.19. 解方程组:{x−y=32x+y=3.20. 如图,在Rt△ABC中,∠ACB=90∘.(1)用尺规在边BC上求作一点P,使PA=PB(不写作法,保留作图痕迹)(2)连接AP,当∠B为________度时,AP平分∠CAB.21. 某学校机房有100台学生电脑和1台教师用电脑,现在教师用电脑被某种电脑病毒感染,且该电脑病毒传播非常快,如果一台电脑被感染,经过两轮感染后就会有16台电脑被感染.(1)每轮感染中平均一台电脑会感染几台电脑?(2)若病毒得不到有效控制,多少轮感染后机房内所有电脑都被感染?22. 如图,将平行四边形纸片ABCD沿一条直线折叠,使点A与点C重合,点D落在点G 处,折痕为EF.求证:(1)∠ECB=∠FCG;(2)△EBC≅△FGC.(x>0)的图象交于点A,C,23. 如图,平行于y轴的直尺(一部分)与反比例函数y=mx与x轴交于点B,D,连接AC.点A,B的刻度分别为5,2,直尺的宽度BD为2,OB=2,设直线AC的解析式为y=kx+b.(1)请结合图象直接写出不等式kx+b>m的解集;x(2)求直线AC的解析式;(3)平行于y轴的直线x=n(2<n<4)与AC交于点E,与反比例函数图象交于点F,,求n的值.当这条直线左右平移时,线段EF的长为1424. 如图,已知CE是圆O的直径,点B在圆O上由点E顺时针向点C运动(点B不与点E、C重合),弦BD交CE于点F,且BD=BC,过点B作弦CD的平行线与CE的延长线交于点A.(1)若圆O的半径为2,且点D为弧EC的中点时,求圆心O到弦CD的距离;(2)在(1)的条件下,当DF⋅DB=CD2时,求∠CBD的大小;(3)若AB=2AE,且CD=12,求△BCD的面积.25. 如图,已知,抛物线y=x2+bx+c与x轴交于A(−1, 0),B(4, 0)两点,过点A的直线y=kx+k与该抛物线交于点C,点P是该抛物线上不与A,B重合的动点,过点P作PD⊥x轴于D,交直线AC于点E.(1)求抛物线的解析式;(2)若k=−1,当PE=2DE时,求点P坐标;(3)当(2)中直线PD为x=1时,是否存在实数k,使△ADE与△PCE相似?若存在请求出k的值;若不存在,请说明你的理由.参考答案与试题解析2021年广东省珠海市中考数学一模试卷一、选择题(本题共计 10 小题,每题 3 分,共计30分)1.【答案】B【考点】相反数【解析】直接利用相反数的定义得出答案.【解答】解:根据相反数的定义可知,2020的相反数是:−2020.故选B.2.【答案】C【考点】轴对称图形【解析】根据轴对称图形与中心对称图形的概念求解.【解答】A、是轴对称图形,不是中心对称图形;B、不是轴对称图形,也不是中心对称图形;C、是轴对称图形,也是中心对称图形;D、是轴对称图形,不是中心对称图形.3.【答案】C【考点】科学记数法--表示较大的数【解析】科学记数法表示较大的数形式为a×10n的形式,其中1≤|a|<10,n为整数,10的指数n比原来的整数位数少1.【解答】解:用科学记数法表示一个大于10的正数,这个正数的整数部分有n位数时,就记作a×10n−1(1≤a<10),即10的指数比原数的整数位数少1.2180000=2.18×106.故选C.4.【答案】A【考点】一次函数图象与系数的关系根据一次函数的性质得出b<0,再得出选项即可.【解答】∵直线y=x+b经过第一、三、四象限,∴b<0,∴符合的只有选项A,选项B、C、D都不符合,5.【答案】B【考点】同底数幂的除法完全平方公式幂的乘方与积的乘方合并同类项【解析】直接利用合并同类项、同底数幂的除法、幂的乘方以及完全平方公式的知识求解即可求得答案.【解答】解:A、a2+a2=2a2,故本选项错误;B、a6÷a2=a4,故本选项正确;C、(a2)3=a6,故本选项错误;D、(a−b)2=a2−2ab+b2,故本选项错误.故选B.6.【答案】A【考点】众数算术平均数中位数【解析】根据一组数据2,x,4,3,3的平均数是3,可以求得x的值,从而可以求得这组数据的中位数和众数.【解答】∵一组数据2,x,4,3,3的平均数是3,∴2+x+4+3+3=3×5,解得,x=3,∴这组数据是2,3,4,3,3,按照从小大排列是:2,3,3,3,4,∴这组数据的中位数和众数分别是:3,3,7.【答案】C多边形等腰梯形的性质平行四边形的性质与判定【解析】根据菱形的判定方法判断即可.【解答】对角线互相平分且垂直的四边形是菱形,8.【答案】D【考点】一元二次方程的定义【解析】根据一元二次方程的定义和△的意义得到k≠0且△>0,即(−2)2−4×k×1>0,然后解不等式即可得到k的取值范围.【解答】∵关于x的一元二次方程kx2−2x+1=0有两个不相等的实数根,∴k≠0且△>0,即(−2)2−4×k×1>0,解得k<1且k≠0.∴k的取值范围为k<1且k≠0.9.【答案】B【考点】勾股定理垂径定理【解析】根据CE=2,DE=8,得出半径为5,在直角三角形OBE中,由勾股定理得BE.【解答】解:∵CE=2,DE=8,∴⊙O的直径为10,∴OB=5,∴OE=3.∵AB⊥CD,∴在Rt△OBE中,BE=√OB2−OE2=√52−32=4.故选B.10.【答案】C【考点】轴对称——最短路线问题【解析】作P关于OA,OB的对称点P,P.连接OP,OP.则当M,N是P P与OA,OB的交OP2=OP,根据等腰三角形的性质即可求解.【解答】作P关于OA,OB的对称点P1,P2.连接OP1,OP2.则当M,N是P1P2与OA,OB的交点时,△PMN的周长最短,连接P1O、P2O,∵PP1关于OA对称,∴∠P1OP=2∠MOP,OP1=OP,P1M=PM,∠OP1M=∠OPM=40∘同理,∠P2OP=2∠NOP,OP=OP2,∴∠P1OP2=∠P1OP+∠P2OP=2(∠MOP+∠NOP)=2∠AOB,OP1=OP2=OP,∴△P1OP2是等腰三角形.∴∠OP2N=∠OP1M=40∘,∴∠P1OP2=180∘−2×40∘=100∘,∴∠AOB=50∘,二、填空题(本题共计 7 小题,每题 3 分,共计21分)11.【答案】x≥2【考点】二次根式有意义的条件【解析】当被开方数x−2为非负数时,二次根式才有意义,列不等式求解.【解答】解:根据二次根式的意义,得x−2≥0,解得x≥2.故答案为:x≥2.12.【答案】(m+2n)(m−2n)【考点】因式分解-运用公式法平方差公式提公因式法与公式法的综合运用【解析】先将所给多项式变形为m2−(2n)2,然后套用公式a2−b2=(a+b)(a−b),再进一步分解因式.【解答】m2−4n2,=m2−(2n)2,=(m+2n)(m−2n).13.【答案】12【考点】多边形内角与外角【解析】解:∵正多边形的一个内角等于150∘,∴它的外角是:180∘−150∘=30∘,∴它的边数是:360∘÷30∘=12.故答案为:12.14.【答案】13【考点】一次函数图象上点的坐标特点列表法与树状图法【解析】先画树状图展示所有6种等可能的结果数,再根据一次函数图象上点的坐标特征,找出点(1, −2),(2, −1)在直线y=x−3上,然后根据概率公式求解.【解答】画树状图为:共有6种等可能的结果数,其中有(1, −2),(2, −1)落在直线y=x−3上,所以点Q落在直线y=x−3上的概率=26=13.15.【答案】1【考点】分式的加减运算【解析】根据同分母分式的加减法法则计算即可.同分母分式相加减,分母不变,分子相加减.【解答】2 x−4+6−x 4−x=2−6−x=2−(6−x)x−4=x−4 x−4=1.16.【答案】80√3【考点】解直角三角形的应用-仰角俯角问题【解答】由题意可得:tan30∘=BDAD =BD60=√33,解得:BD=20√3(米),tan60∘=DCAD =DC60=√3,解得:DC=60√3(米),故该建筑物的高度为:BC=BD+DC=80√3(米)17.【答案】3n+1【考点】规律型:图形的变化类规律型:点的坐标规律型:数字的变化类【解析】把五角星分成两部分,顶点处的一个不变,其它的分三条线,每一条线上后一个图形比前一个图形多一个,根据此规律找出第n个图形中五角星的个数的关系式.【解答】观察发现,第1个图形五角星的个数是:1+3=4,第2个图形五角星的个数是:1+3×2=7,第3个图形五角星的个数是:1+3×3=10,第4个图形五角星的个数是:1+3×4=13,…依此类推,第n个图形五角星的个数是:1+3×n=3n+1.三、解答题(本题共计 8 小题,每题 10 分,共计80分)18.【答案】原式=2√3−2√3−1+12=−12.【考点】负整数指数幂零指数幂实数的运算【解析】直接利用负整数指数幂的性质以及绝对值的性质、零指数幂的性质分别化简得出答案.【解答】原式=2√3−2√3−1+12=−12.19.【答案】{x−y=32x+y=3,①+②得:3x=6,解得:x=2,把x=2代入①得:y=−1,则方程组的解为{x=2y=−1.【考点】二元一次方程组的解加减消元法解二元一次方程组代入消元法解二元一次方程组【解析】方程组利用加减消元法求出解即可.【解答】{x−y=32x+y=3,①+②得:3x=6,解得:x=2,把x=2代入①得:y=−1,则方程组的解为{x=2y=−1.20.【答案】如图,30【考点】线段垂直平分线的性质作图—基本作图【解析】(1)运用基本作图方法,中垂线的作法作图,(2)求出∠PAB=∠PAC=∠B,运用直角三角形解出∠B.【解答】如图,如图,∵PA=PB,∴∠PAB=∠B,如果AP是角平分线,则∠PAB=∠PAC,∴∠PAB=∠PAC=∠B,∵∠ACB=90∘,∴∠PAB=∠PAC=∠B=30∘,∴∠B=30∘时,AP平分∠CAB.故答案为:30.21.【答案】每轮感染中平均一台电脑会感染3台电脑;4轮感染后机房内所有电脑都被感染【考点】一元二次方程的应用一元一次不等式的运用一元一次不等式的实际应用【解析】(1)设每轮感染中平均一台会感染x台电脑,则第一轮后共有(1+x)台被感染,第二轮后共有(1+x)+x(1+x)即(1+x)2台被感染,利用方程即可求出x的值即可;(2)结合(1)得出n轮后共有(1+x)n台被感染,进而求出即可.【解答】设每轮感染中平均每一台电脑会感染x台电脑,依题意得:1+x+(1+x)x=16,整理得(1+x)2=16,则x+1=4或x+1=−4,解得x1=3,x2=−5(舍去).答:每轮感染中平均一台电脑会感染3台电脑;∵n轮后,有(1+x)n台电脑被感染,故(1+3)n=4n,∵n=3时,43=64,n=4时,44=256.答:4轮感染后机房内所有电脑都被感染.22.【答案】∵四边形ABCD是平行四边形,∴∠A=∠BCD,由折叠可得,∠A=∠ECG,∴∠BCD=∠ECG,∴∠BCD−∠ECF=∠ECG−∠ECF,∴∠ECB=∠FCG;∵四边形ABCD是平行四边形,∴∠D=∠B,AD=BC,由折叠可得,∠D=∠G,AD=CG,∴∠B=∠G,BC=CG,又∵∠ECB=∠FCG,∴△EBC≅△FGC(ASA).【考点】平行四边形的性质翻折变换(折叠问题)全等三角形的判定【解析】(1)依据平行四边形的性质,即可得到∠A=∠BCD,由折叠可得,∠A=∠ECG,即可得到∠ECB=∠FCG;(2)依据平行四边形的性质,即可得出∠D=∠B,AD=BC,由折叠可得,∠D=∠G,AD=CG,即可得到∠B=∠G,BC=CG,进而得出△EBC≅△FGC.【解答】∵四边形ABCD是平行四边形,∴∠A=∠BCD,由折叠可得,∠A=∠ECG,∴∠BCD=∠ECG,∴∠BCD−∠ECF=∠ECG−∠ECF,∴∠ECB=∠FCG;∵四边形ABCD是平行四边形,∴∠D=∠B,AD=BC,由折叠可得,∠D=∠G,AD=CG,∴ ∠B =∠G ,BC =CG ,又∵ ∠ECB =∠FCG ,∴ △EBC ≅△FGC(ASA).23.【答案】根据图象可知:不等式kx +b >m x 的解集为:2<x <4; 将A 点坐标(2, 3)代入y =m x ,得:m =xy =2×3=6,∴ y =6x ;又OD =4,∴ C(4, 1.5),将A(2, 3)和C(4, 1.5)分别代入y =kx +b ,得{2k +b =34k +b =1.5, 解得{k =−34b =92 , ∴ 直线AC 的解析式为y =−34x +92;当x =n 时,点E 的纵坐标为−34n +92, 点F 的坐标为6n ,依题意,得:−34n +92−6n =14,解得n =83或n =3.【考点】反比例函数与一次函数的综合【解析】(1)结合图象即可写出不等式kx +b >m x 的解集;(2)由OB 与AB 的长,及A 位于第一象限,确定出A 的坐标,将A 坐标代入反比例解析式中求出k 的值,确定出反比例解析式,由OB +BD 求出OD 的长,即为C 的横坐标,代入反比例解析式中求出CD 的长,确定出C 坐标,设直线AC 解析式为y =kx +b ,将A 与C 坐标代入求出k 与b 的值,即可确定出直线AC 的解析式;(3)根据题意画出线段EF ,根据线段EF 的长为14,即可求n 的值.【解答】根据图象可知:不等式kx +b >m x 的解集为:2<x <4;将A 点坐标(2, 3)代入y =m x ,得:m =xy =2×3=6,∴ y =6x ;又OD =4,∴ C(4, 1.5),将A(2, 3)和C(4, 1.5)分别代入y =kx +b ,得{2k +b =34k +b =1.5, 解得{k =−34b =92, ∴ 直线AC 的解析式为y =−34x +92;当x =n 时,点E 的纵坐标为−34n +92,点F 的坐标为6n ,依题意, 得:−34n +92−6n =14, 解得n =83或n =3.24.【答案】如图,过O 作OH ⊥CD 于H ,∵ 点D 为弧EC 的中点,∴ 弧ED =弧CD ,∴ ∠OCH =45∘,∴ OH =CH ,∵ 圆O 的半径为2,即OC =2,∴ OH =√2;∵当DF⋅DB=CD2时,FDCD =CDBD,又∵∠CDF=∠BDC,∴△CDF∽△BDC,∴∠DCF=∠DBC,由(1)可得∠DCF=45∘,∴∠DBC=45∘;注:也可以由点D为弧EC的中点,可得弧ED=弧CD,即可得出∠DCF=∠DBC=45∘;如图,连接BE,BO,DO,并延长BO至H点,∵BD=BC,OD=OC,∴BH垂直平分CD,又∵AB // CD,∴∠ABO=90∘=∠EBC,∴∠ABE=∠OBC=∠OCB,又∵∠A=∠A,∴△ABE∽△ACB,∴AEAB =ABAC,即AB2=AE×AC,∴AC=AB2AE,设AE=x,则AB=2x,∴AC=4x,EC=3x,∴OE=OB=OC=32x,∵CD=12,∴CH=6,∵AB // CH,∴△AOB∽△COH,∴AOCO =BOHO=ABCH,即x+32x32x=32xOH=2x6,解得x=5,OH=4.5,OB=7.5,∴BH=BO+OH=12,∴△BCD的面积=12×12×12=72.【考点】圆周角定理等腰三角形的性质相似三角形的性质与判定垂径定理【解析】(1)过O作OH⊥CD于H,根据点D为弧EC的中点,可得∠OCH=45∘,进而得出OH=CH,再根据圆O的半径为2,即可得到OH=√2;(2)先判定△CDF∽△BDC,可得∠DCF=∠DBC,再根据∠DCF=45∘,即可得出∠DBC=45∘;(3)连接BE,BO,DO,并延长BO至H点,依据∠ABE=∠OBC=∠OCB,∠A=∠A,判定△ABE∽△ACB,即可得到AC=AB 2AE,设AE=x,再根据△AOB∽△COH,可得AO CO =BOHO=ABCH,即x+32x32x=32xOH=2x6,解得x=5,OH=4.5,OB=7.5,即可得到△BCD的面积=12×12×12=72.【解答】如图,过O作OH⊥CD于H,∵点D为弧EC的中点,∴弧ED=弧CD,∴∠OCH=45∘,∴OH=CH,∵圆O的半径为2,即OC=2,∴OH=√2;∵当DF⋅DB=CD2时,FDCD =CDBD,又∵∠CDF=∠BDC,∴△CDF∽△BDC,∴∠DCF=∠DBC,由(1)可得∠DCF=45∘,∴∠DBC=45∘;注:也可以由点D为弧EC的中点,可得弧ED=弧CD,即可得出∠DCF=∠DBC=45∘;如图,连接BE,BO,DO,并延长BO至H点,∵BD=BC,OD=OC,∴BH垂直平分CD,又∵AB // CD,∴∠ABO=90∘=∠EBC,∴∠ABE=∠OBC=∠OCB,又∵∠A=∠A,∴△ABE∽△ACB,∴AEAB =ABAC,即AB2=AE×AC,∴ AC =AB 2AE , 设AE =x ,则AB =2x ,∴ AC =4x ,EC =3x ,∴ OE =OB =OC =32x , ∵ CD =12,∴ CH =6,∵ AB // CH ,∴ △AOB ∽△COH ,∴ AO CO =BO HO =AB CH ,即x+32x32x =32x OH =2x6,解得x =5,OH =4.5,OB =7.5,∴ BH =BO +OH =12,∴ △BCD 的面积=12×12×12=72.25.【答案】将点A(−1, 0),B(4, 0)代入y =x 2+bx +c ,得,{1−b +c =016+4b +c =0, 解得,{b =−3c =−4, ∴ 抛物线的解析式为y =x 2−3x −4;当k =−1时,直线AC 的解析式为y =−x −1, 设P(x, x 2−3x −4),则E(x, −x −1),D(x, 0), 则PE =|x 2−3x −4−(−x −1)|=|x 2−2x −3|,DE =|x +1|, ∵ PE =2ED ,∴ |x 2−2x −3|=2|x +1|,当x 2−2x −3=2(x +1)时,解得,x 1=−1(舍去),x 2=5,∴ P(5, 6);当x 2−2x −3=−2(x +1)时,解得,x 1=−1(舍去),x 2=1,∴ P(1, −6);综上所述,点P 的坐标为(5, 6)或(1, −6); 存在,理由如下;∵ ∠AED =∠PEC ,∴ 要使△ADE 与△PCE 相似,必有∠EPC =∠ADE =90∘或∠ECP =∠ADE =90∘, ①当∠EPC =∠ADE =90∘时,如图1,CP // x 轴,∵ P(1, −6),根据对称性可得C(2, −6), 将C(2, −6),代入直线AC 解析式中,得2k +k =−6,解得,k =−2;②当∠ECP =∠ADE =90∘时,如图2,过C 点作CF ⊥PD 于点F ,则有∠FCP =∠PEC =∠AED ,则△PCF ∽△AED ,∴ CF DE =PFAD ,在直线y =kx +k 上,当x =1时,y =2k , ∴ E(1, 2k),∴ DE =−2k ,由{y =x 2−3x −4y =kx +k, 得{x =−1y =0 或{x =k +4y =k 2+5k, ∴ C(k +4, k 2+5k),∴ F(1, k 2+5k),∴ CF =k +3,FP =k 2+5k +6,∴ k+3−2k =k 2+5k+62,解得,k 1=k 2=−1,k 3=−3(此时C 与P 重合,舍去), 综上,当k =−2或−1时,△ADE 与△PCE 相似.【考点】二次函数综合题【解析】(1)将点A ,B 的坐标代入y =x 2+bx +c 即可;(2)写出直线AC 的解析式,设P(x, x 2−3x −4),则E(x, −x −1),D(x, 0),写出PE ,DE 的长度,利用PE =2ED 这一等量关系列出方程即可;(3)存在,因为∠AED =∠PEC ,所以要使△ADE 与△PCE 相似,必有∠EPC =∠ADE =90∘或∠ECP =∠ADE =90∘,分两种情况进行讨论,由相似三角形的性质可分别求出k 的值.【解答】将点A(−1, 0),B(4, 0)代入y =x 2+bx +c ,得,{1−b +c =016+4b +c =0, 解得,{b =−3c =−4, ∴ 抛物线的解析式为y =x 2−3x −4;当k =−1时,直线AC 的解析式为y =−x −1,设P(x, x 2−3x −4),则E(x, −x −1),D(x, 0),则PE =|x 2−3x −4−(−x −1)|=|x 2−2x −3|,DE =|x +1|,∵ PE =2ED ,∴ |x 2−2x −3|=2|x +1|,当x 2−2x −3=2(x +1)时,解得,x 1=−1(舍去),x 2=5,∴ P(5, 6);当x 2−2x −3=−2(x +1)时,解得,x 1=−1(舍去),x 2=1,∴ P(1, −6);综上所述,点P 的坐标为(5, 6)或(1, −6);存在,理由如下;∵ ∠AED =∠PEC ,∴ 要使△ADE 与△PCE 相似,必有∠EPC =∠ADE =90∘或∠ECP =∠ADE =90∘,①当∠EPC =∠ADE =90∘时,如图1,CP // x 轴,∵ P(1, −6),根据对称性可得C(2, −6), 将C(2, −6),代入直线AC 解析式中, 得2k +k =−6,解得,k =−2;②当∠ECP =∠ADE =90∘时,如图2,过C 点作CF ⊥PD 于点F ,则有∠FCP =∠PEC =∠AED ,则△PCF ∽△AED ,∴ CF DE =PFAD ,在直线y =kx +k 上,当x =1时,y =2k , ∴ E(1, 2k),∴ DE =−2k ,由{y =x 2−3x −4y =kx +k, 得{x =−1y =0 或{x =k +4y =k 2+5k, ∴ C(k +4, k 2+5k),∴ F(1, k 2+5k),∴ CF =k +3,FP =k 2+5k +6,∴ k+3−2k =k 2+5k+62,解得,k 1=k 2=−1,k 3=−3(此时C 与P 重合,舍去), 综上,当k =−2或−1时,△ADE 与△PCE 相似.。

079--2021年广东省珠海市2021年中考数学试题(解析版)

079--2021年广东省珠海市2021年中考数学试题(解析版)

2021年广东省珠海市中考数学试卷一、选择题(本大题5小题,每小题3分,共15分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑1.(3分)(2013•珠海)实数4的算术平方根是()A.﹣2 B.2C.±2 D.±42.(3分)(2013•珠海)如图两平行线a、b被直线l所截,且∠1=60°,则∠2的度数为()A.30°B.45°C.60°D.120°3.(3分)(2013•珠海)点(3,2)关于x轴的对称点为()A.(3,﹣2)B.(﹣3,2)C.(﹣3,﹣2)D.(2,﹣3)4.(3分)(2013•珠海)已知一元二次方程:①x2+2x+3=0,②x2﹣2x﹣3=0.下列说法正确的是()A.①②都有实数解B.①无实数解,②有实数解C.①有实数解,②无实数解D.①②都无实数解5.(3分)(2013•珠海)如图,▱ABCD的顶点A、B、D在⊙O上,顶点C在⊙O的直径BE上,∠ADC=54°,连接AE,则∠AEB的度数为()A.36°B.46°C.27°D.63°A.﹣2 B.2C.±2 D.±4考点:算术平方根.分析:根据算术平方根的定义解答即可.解答:解:∵22=4,∴4的算术平方根是2,即=2.故选B.点评:本题考查了算术平方根的定义,是基础题,熟记概念是解题的关键.A.30°B.45°C.60°D.120°考点:平行线的性质.分析:由a∥b,根据两直线平行,同位角相等,即可求得∠3=∠1=60°,又由对顶角相等,即可求得答案.解答:解:∵a∥b,∴∠3=∠1=60°,∴∠2=∠3=60°.故选C.点评:此题考查了平行线的性质.此题比较简单,注意掌握数形结合思想的应用.A.(3,﹣2)B.(﹣3,2)C.(﹣3,﹣2)D.(2,﹣3)考点:关于x轴、y轴对称的点的坐标.分析:根据关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数可直接写出答案.解答:解:点(3,2)关于x轴的对称点为(3,﹣2),故选:A.点评:此题主要考查了关于x轴对称点的坐标特点,关键是掌握点的坐标的变化规律.A.①②都有实数解B.①无实数解,②有实数解C.①有实数解,②无实数解D.①②都无实数解考点:根的判别式.分析:求出①、②的判别式,根据:①当△>0时,方程有两个不相等的两个实数根;②当△=0时,方程有两个相等的两个实数根;③当△<0时,方程无实数根.即可得出答案.解答:解:方程①的判别式△=4﹣12=﹣8,则①没有实数解;方程②的判别式△=4+12=20,则②有两个实数解.故选B.点评:本题考查了根的判别式,解答本题的关键是掌握跟的判别式与方程根的关系.A.36°B.46°C.27°D.63°考点:圆周角定理;平行四边形的性质.分析:根据BE是直径可得∠BAE=90°,然后在▱ABCD中∠ADC=54°,可得∠B=54°,继而可求得∠AEB的度数.解答:解:∵四边形ABCD是平行四边形,∠ADC=54°,∴∠B=∠ADC=54°,∵BE为⊙O的直径,∴∠BAE=90°,∴∠AEB=90°﹣∠B=90°﹣54°=36°.故选A.点评:本题考查了圆周角定理及平行四边形的性质,解答本题的关键是根据平行四边形的性质得出∠B=∠ADC.考点:二次根式有意义的条件.分析:二次根式的被开方数是非负数.解答:解:根据题意,得2x+1≥0,解得,x≥﹣.故答案是:x≥﹣.点评:考查了二次根式的意义和性质.概念:式子(a≥0)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.考点:一次函数图象上点的坐标特征.分析:分别把点A(﹣1,y1),点B(﹣2,y2)代入函数y=3x,求出点y1,y2的值,并比较出其大小即可.解答:解:∵点A(﹣1,y1),点B(﹣2,y2)是函数y=3x上的点,∴y1=﹣3,y2=﹣6,∵﹣3>﹣6,∴y1>y2.故答案为:>.点评:本题考查的是一次函数图象上点的坐标特点,即一次函数图象上各点的坐标一定适合此函数的解析式.考点:圆锥的计算.专题:计算题.分析:先计算出圆锥底面圆的周长2π×3,再根据圆锥的侧面展开图为扇形,扇形的弧长等于圆锥底面圆的周长,扇形的半径等于圆锥的母线长,然后根据扇形的面积公式计算即可.解答:解:圆锥的测面展开图的面积=×2π×3×5=15π(cm2).故答案为15π.点评:本题考查了圆锥的计算:圆锥的侧面展开图为扇形,扇形的弧长等于圆锥底面圆的周长,扇形的半径等于圆锥的母线长.也考查了扇形的面积公式.考点:完全平方公式.专题:计算题.分析:将a+b=3两边平方,利用完全平方公式化简,将ab的值代入计算,即可求出所求式子的值.解答:解:将a+b=3两边平方得:(a+b)2=a2+2ab+b2=9,把ab=2代入得:a2+4+b2=9,则a2+b2=5.故答案为:5.点评:此题考查了完全平方公式,熟练掌握完全平方公式是解本题的关键.考点:中点四边形.专题:规律型.分析:根据题意,利用中位线定理可证明顺次连接正方形ABCD四边中点得正方形A1B1C1D1的面积为正方形ABCD面积的一半,根据面积关系可得周长关系,以此类推可得正方形A6B6C6D6的周长.解答:解:顺次连接正方形ABCD四边的中点得正方形A1B1C1D1,则得正方形A1B1C1D1的面积为正方形ABCD面积的一半,即,则周长是原来的;顺次连接正方形A1B1C1D1中点得正方形A2B2C2D2,则正方形A2B2C2D2的面积为正方形A1B1C1D1面积的一半,即,则周长是原来的;顺次连接正方形A2B2C2D2得正方形A3B3C3D3,则正方形A3B3C3D3的面积为正方形A2B2C2D2面积的一半,即,则周长是原来的;顺次连接正方形A3B3C3D3中点得正方形A4B4C4D4,则正方形A4B4C4D4的面积为正方形A3B3C3D3面积的一半,则周长是原来的;…以此类推:第六个正方形A6B6C6D6周长是原来的,∵正方形ABCD的边长为1,∴周长为4,∴第六个正方形A6B6C6D6周长是.故答案为:.点评:本题考查了利用了三角形的中位线的性质,相似图形的面积比等于相似比的平方的性质.进而得到周长关系.考点:实数的运算;零指数幂;负整数指数幂.专题:计算题.分析:根据零指数幂与负整数指数幂得到原式=3﹣1+﹣,然后化为同分母后进行加减运算.解答:解:原式=3﹣1+﹣=.点评:本题考查了实数的运算:先算乘方或开方,再算乘除,然后进行加减运算;有括号先算括号.也考查了零指数幂与负整数指数幂.考点:解分式方程.专题:计算题.分析:分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.解答:解:去分母得:x(x+2)﹣1=x2﹣4,去括号得:x2+2x﹣1=x2﹣4,解得:x=﹣,经检验x=﹣是分式方程的解.点评:此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.考点:条形统计图;扇形统计图.分析:(1)由七年级“勤洗手”的人数除以所占的百分比,求出全校“勤洗手”的人数,进而求出八年级“勤洗手”的人数,补全条形统计图;求出九年级“勤洗手”人数所占的百分比,补全扇形统计图即可;(2)求出三个年级“勤洗手”人数所占的百分比,比较大小即可.解答:解:(1)根据题意得:300÷25%=1200(人),则八年级“勤洗手”人数为1200×35%=420(人),(2)七年级“勤洗手”学生人数占本年级学生人数的比例为×100%=50%;八年级“勤洗手”学生人数占本年级学生人数的比例为×100%=60%;九年级“勤洗手”学生人数占本年级学生人数的比例为×100%=80%,则九年级“勤洗手”学生人数占本年级学生人数的比例最大.点评:此题考查了条形统计图,以及扇形统计图,弄清题意是解本题的关键.考点:全等三角形的判定与性质.专题:证明题.分析:先求出∠ACB=∠ECD,再利用“角边角”证明△ABC和△EDC全等,然后根据全等三角形对应边相等证明即可.解答:证明:∵∠BCE=∠DCA,∴∠BCE+∠ACE=∠DCA+∠ACE,即∠ACB=∠ECD,在△ABC和△EDC中,,∴△ABC≌△EDC(ASA),∴BC=DC.点评:本题考查了全等三角形的判定与性质,求出相等的角∠ACB=∠ECD是解题的关键,也是本题的难点.考点:一元二次方程的应用.专题:增长率问题.分析:解答此题利用的数量关系是:2010年平均每次捕鱼量×(1﹣每次降价的百分率)2=2012年平均每次捕鱼量,设出未知数,列方程解答即可.解答:解:设2010年﹣2012年每年平均每次捕鱼量的年平均下降率x,根据题意列方程得,10×(1﹣x)2=8.1,解得x1=0.1,x2=﹣1.9(不合题意,舍去).答:2010年﹣2012年每年平均每次捕鱼量的年平均下降率为10%.点评:本题考查的下降的百分率也就是增长率问题,两年前是10吨,下降后现在是8.1吨,求每年的下降的百分率,可列式求解.考点:解直角三角形的应用-仰角俯角问题.分析:首先利用三角形的外角的性质求得∠BAD的度数,得到AD的长度,然后在直角△ADC 中,利用三角函数即可求解.解答:解:∵∠ADC=∠B+∠BAD,∴∠BAD=∠ADC﹣∠B=60°﹣30°=30°,∴∠B=∠BAD,∴AD=BD=62(米).在直角△ACD中,AC=AD•sin∠ADC=62×=31≈31×1.7=52.7≈53(米).答:小岛的高度是53米.点评:本题考查仰角的定义,要求学生能借助仰角构造直角三角形并解直角三角形.考点:切线的判定与性质;菱形的性质.分析:(1)连结OA、OB、OC、BD,根据切线的性质得OA⊥AB,即∠OAB=90°,再根据菱形的性质得BA=BC,然后根据“SSS”可判断△ABC≌△CBO,则∠BOC=∠OAC=90°,于是可根据切线的判定方法即可得到结论;(2)由△ABC≌△CBO得∠AOB=∠COB,则∠AOB=∠COB,由于菱形的对角线平分对角,所以点O在BD上,利用三角形外角性质有∠BOC=∠ODC+∠OCD,则∠BOC=2∠ODC,由于CB=CD,则∠OBC=∠ODC,所以∠BOC=2∠OBC,根据∠BOC+∠OBC=90°可计算出∠OBC=30°,然后利用∠ABC=2∠OBC计算即可.解答:(1)证明:连结OA、OB、OC、BD,如图,∵AB与⊙切于A点,∴OA⊥AB,即∠OAB=90°,∵四边形ABCD为菱形,∴BA=BC,在△ABC和△CBO中,∴△ABC≌△CBO,∴∠BOC=∠OAC=90°,∴OC⊥BC,∴BC为⊙O的切线;(2)解:∵△ABC≌△CBO,∴∠AOB=∠COB,∵四边形ABCD为菱形,∴BD平分∠ABC,CB=CD,∴点O在BD上,∵∠BOC=∠ODC+∠OCD,而OD=OC,∴∠ODC=∠OCD,∴∠BOC=2∠ODC,而CB=CD,∴∠OBC=∠ODC,∴∠BOC=2∠OBC,∵∠BOC+∠OBC=90°,∴∠OBC=30°,∴∠ABC=2∠OBC=60°.点评:本题考查了切线的判定与性质:过半径的外端点与半径垂直的直线为圆的切线;圆的切线垂直于过切点的半径.也考查了全等三角形相似的判定与性质以及菱形的性质.考点:列表法与树状图法.分析:(1)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与这两个小球上的数字互为倒数的情况,再利用概率公式即可求得答案;(2)由概率为,可得这两个小球上的数字互为倒数的有5种情况,继而可求得答案.解答:解:(1)画树状图得:∵共有20种等可能的结果,这两个小球上的数字互为倒数的有4种情况,∴这两个小球上的数字互为倒数的概率为:=;(2)∵当B袋中标有的小球上的数字变为、、、时(填写所有结果),∴这两个小球上的数字互为倒数的有5种情况,∴这两个小球上的数字互为倒数的概率为:=.故答案为:、、、.点评:本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.注意概率=所求情况数与总情况数之比.考点:反比例函数与一次函数的交点问题.专题:计算题.分析:(1)过点M作MC⊥x轴,MD⊥y轴,根据M为AB的中点,MC∥OB,MD∥OA,利用平行线分线段成比例得到点C和点D分别为OA与OB的中点,从而得到MC=MD,设出点M的坐标代入反比例函数解析式中,求出a的值即可得到点M的坐标;(2)根据(1)中求出的点M的坐标得到MC与MD的长,从而求出OA与OB的长,得到点A与点B的坐标,设出一次函数的解析式,把点A与点B的坐标分别代入解析式中求出k与b的值,确定出直线AB的表达式.解答:解:(1)过点M作MC⊥x轴,MD⊥y轴,∵AM=BM,∴点M为AB的中点,∵MC⊥x轴,MD⊥y轴,∴MC∥OB,MD∥OA,∴点C和点D分别为OA与OB的中点,∴MC=MD,则点M的坐标可以表示为(﹣a,a),把M(﹣a,a)代入函数y=中,解得a=2,则点M的坐标为(﹣2,2);(2)∵则点M的坐标为(﹣2,2),∴MC=2,MD=2,∴OA=OB=2MC=4,∴A(﹣4,0),B(0,4),设直线AB的解析式为y=kx+b,把点A(﹣4,0)和B(0,4)分别代入y=kx+b中得,解得:.则直线AB的解析式为y=x+4.点评:此题考查了反比例函数与一次函数的交点问题,平行线分线段成比例,以及中位线定理,用待定系数法确定函数的解析式,是常用的一种解题方法.同学们要熟练掌握这种方法.考点:分式的混合运算.专题:阅读型.分析:(1)由分母为﹣x2+1,可设﹣x4﹣6x2+8=(﹣x2+1)(x2+a)+b,按照题意,求出a和b 的值,即可把分式拆分成一个整式与一个分式(分子为整数)的和的形式;(2)对于x2+7+当x=0时,这两个式子的和有最小值,最小值为8,于是求出的最小值.解答:解:(1)由分母为﹣x2+1,可设﹣x4﹣6x2+8=(﹣x2+1)(x2+a)+b则﹣x4﹣6x2+8=(﹣x2+1)(x2+a)+b=﹣x4﹣ax2+x2+a+b=﹣x4﹣(a﹣1)x2+(a+b)∵对应任意x,上述等式均成立,∴,∴a=7,b=1,∴===x2+7+这样,分式被拆分成了一个整式x2+7与一个分式的和.(2)由=x2+7+知,对于x2+7+当x=0时,这两个式子的和有最小值,最小值为8,即的最小值为8.点评:本题主要考查分式的混合运算等知识点,解答本题的关键是能熟练的理解题意,此题难度不是很大.考点:全等三角形的判定与性质;角平分线的性质;勾股定理;相似三角形的判定与性质.专题:几何综合题.分析:(1)根据旋转的性质可得AP=AP′,根据等边对等角的性质可得∠APP′=∠AP′P,再根据等角的余角相等证明即可;(2)过点P作PD⊥AB于D,根据角平分线上的点到角的两边的距离相等可得CP=DP,然后求出∠P AD=∠AP′E,利用“角角边”证明△APD和△P′AE全等,根据全等三角形对应边相等可得AE=DP,从而得证;(3)设CP=3k,PE=2k,表示出AE=CP=3k,AP′=AP=5k,然后利用勾股定理列式求出P′E=4k,再求出△ABP′和△EPP′相似,根据相似三角形对应边成比例列式求出P′A=AB,然后在Rt△ABP′中,利用勾股定理列式求解即可.解答:(1)证明:∵AP′是AP旋转得到,∴AP=AP′,∴∠APP′=∠AP′P,∵∠C=90°,AP′⊥AB,∴∠CBP+∠BPC=90°,∠ABP+∠AP′P=90°,又∵∠BPC=∠APP′(对顶角相等),∴∠CBP=∠ABP;(2)证明:如图,过点P作PD⊥AB于D,∵∠CBP=∠ABP,∠C=90°,∴CP=DP,∵P′E⊥AC,∴∠EAP′+∠AP′E=90°,又∵∠P AD+∠EAP′=90°,∴∠P AD=∠AP′E,在△APD和△P′AE中,,∴△APD≌△P′AE(AAS),∴AE=DP,∴AE=CP;(3)解:∵=,∴设CP=3k,PE=2k,则AE=CP=3k,AP′=AP=3k+2k=5k,在Rt△AEP′中,P′E==4k,∵∠C=90°,P′E⊥AC,∴∠CBP+∠BPC=90°,∠EP′P+∠P′PE=90°,∵∠BPC=∠EPP′(对顶角相等),∴∠CBP=∠P′PE,又∵∠BAP′=∠P′EP=90°,∴△ABP′∽△EPP′,∴=,即=,解得P′A=AB,在Rt△ABP′中,AB2+P′A2=BP′2,即AB2+AB2=(5)2,解得AB=10.点评:本题考查了全等三角形的判定与性质,旋转的性质,角平分线上的点到角的两边的距离相等的性质,勾股定理,相似三角形的判定与性质,(2)作辅助线构造出过渡线段DP 并得到全等三角形是解题的关键,(3)利用相似三角形对应边成比例求出P′A=AB是解题的关键.考点:二次函数综合题.分析:(1)设抛物线l的解析式为y=ax2+bx+c,将A、D、M三点的坐标代入,运用待定系数法即可求解;(2)设AD与x轴交于点M,过点A′作A′N⊥x轴于点N.根据轴对称及平行线的性质得出DM=OM=x,则A′M=2m﹣x,OA′=m,在Rt△OA′M中运用勾股定理求出x,得出A′点坐标,运用待定系数法得到直线OA′的解析式,确定E点坐标(4m,﹣3m),根据抛物线l与线段CE相交,列出关于m的不等式组,求出解集即可;(3)根据二次函数的性质,结合(2)中求出的实数m的取值范围,即可求解.解答:解:(1)设抛物线l的解析式为y=ax2+bx+c,将A(0,m),D(2m,m),M(﹣1,﹣1﹣m)三点的坐标代入,得,解得,所以抛物线l的解析式为y=﹣x2+2mx+m;(2)设AD与x轴交于点M,过点A′作A′N⊥x轴于点N.∵把△OAD沿直线OD折叠后点A落在点A′处,∴△OAD≌△OA′D,OA=OA′=m,AD=A′D=2m,∠OAD=∠OA′D=90°,∠ADO=∠A′DO,∵矩形OABC中,AD∥OC,∴∠ADO=∠DOM,∴∠A′DO=∠DOM,∴DM=OM.设DM=OM=x,则A′M=2m﹣x,在Rt△OA′M中,∵OA′2+A′M2=OM2,∴m2+(2m﹣x)2=x2,解得x=m.∵S△OA′M=OM•A′N=OA′•A′M,∴A′N==m,∴ON==m,∴A′点坐标为(m,﹣m),易求直线OA′的解析式为y=﹣x,当x=4m时,y=﹣×4m=﹣3m,∴E点坐标为(4m,﹣3m).当x=4m时,﹣x2+2mx+m=﹣(4m)2+2m•4m+m=﹣8m2+m,即抛物线l与直线CE的交点为(4m,﹣8m2+m),∵抛物线l与线段CE相交,∴﹣3m≤﹣8m2+m≤0,∵m>0,∴﹣3≤﹣8m+1≤0,解得≤m≤;(3)∵y=﹣x2+2mx+m=﹣(x﹣m)2+m2+m,≤m≤,∴当x=m时,y有最大值m2+m,又∵m2+m=(m+)2﹣,∴当≤m≤时,m2+m随m的增大而增大,∴当m=时,顶点P到达最高位置,m2+m=()2+=,故此时抛物线l顶点P到达最高位置时的坐标为(,).点评:本题是二次函数的综合题,其中涉及到运用待定系数法求一次函数、二次函数的解析式,轴对称的性质,勾股定理,两个函数交点坐标的求法,二次函数、矩形的性质,解不等式组等知识,综合性较强,有一定难度.(2)中求出A′点的坐标是解题的关键.。

2021年广东省中考数学试题含答案解析

2021年广东省中考数学试题含答案解析

2021年广东省中考数学试题含答案解析2021年广东省中考数学试卷;;一、选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑.;1.(3分)四个实数0、、3.14、2中,最小的数是()a.0b.c.3.14d.22.(3分)据有关部门统计,2021年“五一小长假”期间,广东各大景点共接待游客约14420000人次,将数14420000用科学记数法表示为()a.1.442×107b.0.1442×107c.1.442×108d.0.1442×1083.(3分后)例如图,由5个相同正方体组合而成的几何体,它的主视图就是()a.b.c.d.4.(3分后)数据1、5、7、4、8的中位数就是()a.4b.5c.6d.75.(3分后)以下所述图形中,就是轴对称图形但不是中心对称图形的就是()a.圆b.菱形c.平行四边形d.等腰三角形;;6.(3分后)不等式3x1≥x+3的边值问题就是()a.x≤4b.x≥4c.x≤2d.x≥27.(3分后)在△abc中,点d、e分别为边ab、ac的中点,则△ade与△abc的面积之比是()a.b.c.d.8.(3分后)例如图,ab∥cd,则∠dec=100°,∠c=40°,则∠b的大小就是()a.30°b.40°c.50°d.60°9.(3分后)关于x的一元二次方程x23x+m=0存有两个不成正比的实数根,则实数m的值域范围就是()a.m<b.m≤c.m>d.m≥10.(3分后)例如图,点p就是菱形abcd边上的一动点,它从点a启程沿在a→b→c→d路径匀速运动至点d,设立△pad的面积为y,p点的运动时间为x,则y关于x的函数图象大致为()a.b.c.d.二、填空题(共6小题,每小题3分,满分18分)11.(3分后)同圆中,未知弧ab面元的圆心角就是100°,则弧ab面元的圆周角就是.12.(3分)分解因式:x22x+1=.13.(3分后)一个正数的平方根分别就是x+1和x5,则x=.14.(3分后)未知+|b1|=0,则a+1=.15.(3分后)例如图,矩形abcd中,bc=4,cd=2,以ad为直径的半圆o与bc切线于点e,相连接bd,则阴影部分的面积为.(结果留存π)16.(3分)如图,已知等边△oa1b1,顶点a1在双曲线y=(x>0)上,点b1的座标为(2,0).过b1作b1a2∥oa1交双曲线于点a2,过a2作a2b2∥a1b1交x轴于点b2,获得第二个等边△b1a2b2;过b2作b2a3∥b1a2交双曲线于点a3,过a3作a3b3∥a2b2交x轴于点b3,获得第三个等边△b2a3b3;以此类推,…,则点b6的座标为.三、解答题(一)17.(6分后)排序:|2|20210+()118.(6分后)先化简,再表达式:,其中a=.19.(6分后)例如图,bd就是菱形abcd的对角线,∠cbd=75°,(1)请用尺规作图法,作ab的垂直平分线ef,垂足为e,交ad于f;(不要求写作法,保留作图痕迹)(2)在(1)条件下,相连接bf,谋∠dbf的度数.20.(7分)某公司购买了一批a、b型芯片,其中a型芯片的单价比b型芯片的单价少9元,已知该公司用3120元购买a型芯片的条数与用4200元购买b型芯片的条数相等.(1)求该公司出售的a、b型芯片的单价各就是多少元?(2)若两种芯片共购买了200条,且购买的总费用为6280元,求购买了多少条a型芯片?21.(7分后)某企业工会积极开展“一周工作量顺利完成情况”调查活动,随机调查了部分员工一周的工作量余下情况,并将调查结果统计数据后绘制董阳图1和图2右图的不能完备统计图.(1)被调查员工人数为人:(2)把条形统计图补充完整;(3)若该企业存有员工10000人,恳请估算该企业某周的工作量顺利完成情况为“剩下少量”的员工存有多少人?22.(7分)如图,矩形abcd中,ab>ad,把矩形沿对角线ac所在直线折叠,使点b落在点e处,ae交cd于点f,连接de.(1)求证:△ade≌△ced;(2)求证:△def是等腰三角形.23.(9分后)例如图,未知顶点为c(0,3)的抛物线y=ax2+b(a≠0)与x轴处设a,b两点,直线y=x+m过顶点c和点b.(1)谋m的值;(2)求函数y=ax2+b(a≠0)的解析式;(3)抛物线上与否存有点m,使∠mcb=15°?若存有,谋出点m的座标;若不存有,恳请表明理由.24.(9分)如图,四边形abcd中,ab=ad=cd,以ab为直径的⊙o经过点c,连接ac,od交于点e.(1)证明:od∥bc;(2)若tan∠abc=2,证明:da与⊙o切线;(3)在(2)条件下,连接bd交于⊙o于点f,连接ef,若bc=1,求ef的长.25.(9分后)未知rt△oab,∠oab=90°,∠abo=30°,斜边ob=4,将rt△oab绕点o顺时针转动60°,例如题图1,相连接bc.(1)填空题:∠obc=°;(2)如图1,连接ac,作o p⊥ac,垂足为p,求op的长度;(3)例如图2,点m,n同时从点o启程,在△ocb边上运动,m沿o→c→b路径匀速运动,n沿o→b→c路径匀速运动,当两点碰面时运动暂停,未知点m的运动速度为1.5单位/秒,点n的运动速度为1单位/秒,设立运动时间为x秒,△omn的面积为y,求当x 为何值时y获得最大值?最大值为多少?2021年广东省中考数学试卷参考答案与试题解析一、选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑.1.(3分)四个实数0、、3.14、2中,最小的数是()a.0b.c.3.14d.2【分析】正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,据此判断即可.【解答】解:根据实数比较大小的方法,可得3.14<0<<2,所以最小的数是3.14.故选:c.【评测】此题主要考查了实数大小比较的方法,必须熟练掌握,答疑此题的关键就是必须明晰:正实数>0>正数实数,两个正数实数绝对值小的反而大.2.(3分)据有关部门统计,2021年“五一小长假”期间,广东各大景点共接待游客约14420000人次,将数14420000用科学记数法表示为()a.1.442×107b.0.1442×107c.1.442×108d.0.1442×108【分析】根据科学记数法的则表示方法可以将题目中的数据用科学记数法则表示,本题以求化解.【解答】解:14420000=1.442×107,故选:a.【评测】本题考查科学记数法则表示很大的数,答疑本题的关键就是明晰科学记数法的则表示方法.3.(3分)如图,由5个相同正方体组合而成的几何体,它的主视图是()a.b.c.d.【分析】根据主视图是从物体正面看所得到的图形解答即可.【答疑】求解:根据主视图的定义所述,此几何体的主视图就是b中的图形,故挑选:b.【点评】本题考查的是简单几何体的三视图的作图,主视图、左视图、俯视图是分别从物体正面、侧面和上面看所得到的图形.4.(3分后)数据1、5、7、4、8的中位数就是()a.4b.5c.6d.7【分析】根据中位数的定义推论即可;【解答】解:将数据重新排列为1、4、5、7、8,则这组数据的中位数为5故选:b.【评测】本题考查了确认一组数据的中位数的能力.中位数就是将一组数据从小到大(或从小至大)重新排列后,最中间的那个数(最中间两个数的平均数),叫作这组与数据的中位数.5.(3分)下列所述图形中,是轴对称图形但不是中心对称图形的是()a.圆b.菱形c.平行四边形d.等腰三角形【分析】根据轴对称图形与中心对称图形的概念求解.【答疑】求解:a、就是轴对称图形,也就是中心对称图形,故此选项错误;b、就是轴对称图形,也就是中心对称图形,故此选项错误;c、不是轴对称图形,就是中心对称图形,故此选项错误;d、就是轴对称图形,不是中心对称图形,故此选项恰当.故挑选:d.【点评】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.6.(3分后)不等式3x1≥x+3的边值问题就是()a.x≤4b.x≥4c.x≤2d.x≥2【分析】根据求解不等式的步骤:①移项;②分拆同类项;③化系数为1即可得.【答疑】求解:移项,得:3xx≥3+1,分拆同类项,得:2x≥4,系数化成1,得:x≥2,故挑选:d.【点评】本题主要考查解一元一次不等式,解题的关键是掌握解一元一次不等式的步骤:①去分母;②去括号;③移项;④合并同类项;⑤化系数为1.7.(3分后)在△abc中,点d、e分别为边ab、ac的中点,则△ade与△abc的面积之比是()a.b.c.d.【分析】由点d、e分别为边ab、ac的中点,可以得出结论de为△abc的中位线,进而可以得出结论de∥bc及△ade∽△abc,再利用相近三角形的性质即可谋出来△ade与△abc的面积之比.【解答】解:∵点d、e分别为边ab、ac的中点,∴de为△abc的中位线,∴de∥bc,∴△ade∽△abc,∴=()2=.故挑选:c.【点评】本题考查了相似三角形的判定与性质以及三角形中位线定理,利用三角形的中位线定理找出de∥bc是解题的关键.8.(3分后)例如图,ab∥cd,则∠dec=100°,∠c=40°,则∠b的大小就是()a.30°b.40°c.50°d.60°【分析】依据三角形内角和定理,可以得∠d=40°,再根据平行线的性质,即可获得∠b=∠d=40°.【解答】解:∵∠dec=100°,∠c=40°,∴∠d=40°,又∵ab∥cd,∴∠b=∠d=40°,故选:b.【评测】本题考查了平行线性质的应用领域,运用两直线平行,内错角成正比就是解题的关键.9.(3分)关于x的一元二次方程x23x+m=0有两个不相等的实数根,则实数m的取值范围是()a.m<b.m≤c.m>d.m≥【分析】根据一元二次方程的根的判别式,建立关于m的不等式,求出m的取值范围即可.【答疑】求解:∵关于x的一元二次方程x23x+m=0存有两个不成正比的实数根,∴△=b24ac=(3)24×1×m>0,∴m<.故挑选:a.【点评】此题考查了根的判别式,一元二次方程根的情况与判别式△的关系:(1)△>0?方程有两个不相等的实数根;(2)△=0?方程有两个相等的实数根;(3)△<0?方程没有实数根.10.(3分后)例如图,点p就是菱形abcd边上的一动点,它从点a启程沿在a→b→c→d路径匀速运动至点d,设立△pad的面积为y,p点的运动时间为x,则y关于x的函数图象大致为()a.b.c.d.【分析】设立菱形的低为h,即为就是一个定值,再分点p在ab上,在bc上和在cd 上三种情况,利用三角形的面积公式列式谋出来适当的函数关系式,然后挑选答案即可.【解答】解:分三种情况:①当p在ab边上时,如图1,设菱形的高为h,y=ap?h,∵ap随x的减小而减小,h维持不变,∴y随x的减小而减小,故选项c不恰当;②当p在边bc上时,如图2,y=ad?h,ad和h都不变,∴在这个过程中,y维持不变,故选项a不恰当;③当p在边cd上时,如图3,y=pd?h,∵pd随x的减小而增大,h维持不变,∴y随x的减小而增大,∵p点从点a出发沿在a→b→c→d路径匀速运动到点d,∴p在三条线段上运动的时间相同,故选项d不正确;故选:b.【评测】本题考查了动点问题的函数图象,菱形的性质,根据点p的边线的相同,分后三段谋出来△pad的面积的表达式就是解题的关键.二、填空题(共6小题,每小题3分,满分18分)11.(3分后)同圆中,未知弧ab面元的圆心角就是100°,则弧ab面元的圆周角就是50°.【分析】直接利用圆周角定理求解.【答疑】求解:弧ab面元的圆心角就是100°,则弧ab面元的圆周角为50°.故答案为50°.【点评】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.12.(3分后)水解因式:x22x+1=(x1)2.【分析】轻易利用全然平方公式水解因式即可.【答疑】求解:x22x+1=(x1)2.【点评】本题考查了公式法分解因式,运用完全平方公式进行因式分解,熟记公式是解题的关键.13.(3分后)一个正数的平方根分别就是x+1和x5,则x=2.【分析】根据正数的两个平方根互为相反数列出关于x的方程,解之可得.【解答】解:根据题意知x+1+x5=0,解得:x=2,故答案为:2.【评测】本题主要考查的就是平方根的定义和性质,熟练掌握平方根的定义和性质就是解题的关键.14.(3分)已知+|b1|=0,则a+1=2.【分析】直接利用非负数的性质结合绝对值的性质得出a,b的值进而得出答案.【解答】解:∵∴b1=0,ab=0,解得:b=1,a=1,故a+1=2.故答案为:2.【评测】此题主要考查了为负数的性质以及绝对值的性质,恰当得出结论a,b的值就是解题关键.15.(3分)如图,矩形abcd中,bc=4,cd=2,以ad为直径的半圆o与bc相切于点e,连接bd,则阴影部分的面积为π.(结果保留π)+|b1|=0,【分析】连接oe,如图,利用切线的性质得od=2,oe⊥bc,易得四边形oecd为正方形,先利用扇形面积公式,利用s正方形oecds扇形eod计算由弧de、线段ec、cd所围成的面积,然后利用三角形的面积减去刚才计算的面积即可得到阴影部分的面积.。

中考数学专题《一元一次方程的应用数轴与几何问题》(人教版)

中考数学专题《一元一次方程的应用数轴与几何问题》(人教版)

专题3.14一元一次方程的应用:数轴与几何问题大题专项提升训练(重难点培优)姓名:__________________ 班级:______________ 得分:_________________注意事项:本试卷满分120分,试题共24题,选择10道、填空8道、解答6道.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.(2022·民大附中海南陵水分校七年级期中)将一个周长为42cm 的长方形的长减少3cm ,宽增加2cm ,能得到一个正方形.若设长方形的长为x cm ,根据题意可列方程为( )A .()2423x x +=--B .()3422x x -=-+C .()2213x x +=--D .()3212x x -=-+2.(2021·四川省南充市高坪中学七年级期中)如图,宽为50cm 的长方形图案由10个形状大小完全相同的小长方形拼成,其中一个小长方形的面积为( )A .2400cmB .2500cmC .2600cmD .24000cm3.(2022·广东·龙门县平陵中学七年级期中)数轴上标出若干个整数点,每相邻两点相距一个单位,点M ,N ,P ,Q 分别表示整数m ,n ,p ,q ,且q ﹣2m =10,则原点O 在点( )的位置.A .点MB .点NC .点PD .点Q4.(2022·重庆黔江·七年级期末)如图为甲、乙、丙三根笔直的钢管平行摆放在地面上的情形.已知乙有一部分只与甲重叠,其余部分只与丙重叠,甲没有与乙重叠的部分的长度为2m ,丙没有与乙重叠的部分的长度为3m .若乙的长度最长且甲、乙的长度相差m x ,乙、丙的长度相差m y ,则乙的长度为( ).(用含有x 、y 的代数式表示).A .(5)m x y ++B .(5)m x y -+C .(25)m x y +-D .(25)m x y +-5.(2022·内蒙古鄂尔多斯·七年级阶段练习)如图,长方形ABCD 中,3cm AB =,2cm BC =,点P 从A 出发,以1cm/s 的速度沿A B C →→运动,最终到达点C ,在点P 运动了3秒后点Q 开始以2cm/s 的速度从D 运动到A ,在运动过程中,设点P 的运动时间为t ,则当APQ ∆的面积为22cm 时,t 的值为( )A .2或103B .2或113C .2或4D .2或1336.(2022·全国·七年级课时练习)如图,数轴上点A 和点B 表示的数分别是-6和4,动点M 从A 点以每秒3cm 的速度匀速向右移动,动点N 同时从B 点以每秒1cm 的速度匀速向右移动.设移动时间为t 秒,当动点N 到原点的距离是动点M 到原点的距离的2倍时,t 的值为( )A .87B .127C .87或165D .127或1657.(2021·山东烟台·期中)如图,线段AB =8cm ,点P 在射线AB 上从点A 开始以每秒2cm 的速度沿着射线AB 的方向匀速运动,则当PB =13AB 时,运动时间为( )A .83秒或163秒B .83秒C .3秒D .163秒或323秒 8.(2022·全国·七年级课时练习)一条数轴上有点A 、B ,点C 在线段AB 上,其中点A 、B 表示的数分别是-8,6,现以点C 为折点,将数轴向右对折,若点A '落在射线CB 上,并且A 'B =4,则C 点表示的数是( )A .1B .-1C .1或-2D .1或-39.(2022·重庆市第一一〇中学校九年级期中)在原点为O 的数轴上,从左到右依次排列的三个动点A ,M ,B ,满足MA MB =,将点A ,M ,B 表示的数分别记为a ,m ,b .下列说法正确的个数有( )①当2m =时,4b a =-;①当5m =时,若a 为奇数,且58b <≤,则3a =或5;①若8b =,3BM OM =,则2m =;①当3m =,4b =时,将点B 水平右移3个单位至点1B ,再将点1B 水平右移3个单位至点2B ,以此类推,…且满足n n MA MB =,则数轴上与2022B 对应的点2022A 表示的数为6064.A .1B .2C .3D .410.(2022·福建龙岩·七年级期末)如图,A 点的初始位置在数轴上表示1的点上,先对A 做如下移动:第一次向右移动3个单位长度到达点B ,第二次从B 点出发向左移动6个单位长度到达点C ,第三次从C 点出发向右移动9个单位长度到达点D ,第四次从D 点出发向左移动12个单位长度到达点E ,…….以此类推,按照以上规律第( )次移动到的点到原点的距离为20A .7B .10C .14D .19二、填空题(本大题共8小题,每小题3分,共24分)请把答案直接填写在横线上11.(2022·全国·九年级专题练习)如图,一个长方形被划分成大小不等的6个正方形,已知中间的最小的正方形的面积为1平方厘米,则这个长方形的面积为__平方厘米.12.(2022·黑龙江·哈尔滨市松雷中学校七年级阶段练习)如图,长方形土地ABCD 的长AB 为230m ,宽AD为100m,据以往的统计资料,甲、乙两种作物的单位面积产值的比为6:17,在AB上取一点E作EF①DC 于点F,将长方形ABCD分成两个长方形,现要在长方形AEFD和长方形BEFC上分别种植甲、乙两种作物,要使甲、乙两种作物的总产值相等.则AE的长为_______m.13.(2022·浙江·七年级专题练习)如图,长方形ABCD中,AB=8cm,BC=6cm,点P从A出发,以1cm/s 的速度沿A→B→C运动,最终到达点C,在点P运动了8秒后,点Q开始以2cm/s的速度从D运动到A,在运动过程中,设点P的运动时间为t秒,当①APQ的面积为4cm2时,t的值为________14.(2022·四川·岳池县兴隆中学七年级阶段练习)已知数轴上两点A、B对应的数分别为﹣2与2.点P从A点出发,以每秒2个单位长度的速度沿数轴的正方向匀速运动;同时点Q从B点出发,以每秒1个单位长度沿数轴匀速运动.设P、Q两点的运动时间为t秒,当PQ12=AB时,t=________.15.(2022·全国·七年级专题练习)如图,一个长方形征好分成A、B、C、D、E、F这6个正方形,其中最小的正方形A边长为1,则这个长方形的面积是_____________.16.(2022·河南新乡·七年级阶段练习)如图,已知线段AB=50cm.动点P从点A出发以每秒3cm的速度向点B运动,同时动点Q从点B出发以每秒2cm的速度向点A运动,有一个点到达终点时另一点也随之停止运动.当PQ =10cm 时,则运动时间为________秒.17.(2022·全国·七年级专题练习)一个长方体水箱从里面量得长、宽、高分别是50cm 、40cm 和30cm ,此时水箱中水面高12cm ,放入一个棱长为20cm 的正方体实心铁块后,水箱中的水面仍然低于铁块的顶面,则此时铁块在水箱中露出水面部分的体积为 _____cm 3.18.(2022·河南南阳·七年级期中)如图,数轴上A ,B 两点对应的数分别为10,-3,点P 和点Q 同时从原点出发,点P 以每秒1个单位长度的速度沿数轴正方向运动,点Q 以每秒3个单位长度的速度先沿数轴负方向运动,到达B 点后再沿数轴正方向运动,当点Q 到达点A 后,两个点同时结束运动.设运动时间为t 秒,当P ,Q 两点距离为2个单位长度时,t 的值为___________.三、解答题(本大题共6小题,共66分.解答时应写出文字说明、证明过程或演算步骤)19.(2022·黑龙江·哈尔滨市第四十七中学七年级阶段练习)将长为1,宽为a 的长方形纸片(0.51a <<)如图折叠,剪下一个边长等于长方形的宽度的正方形(称为第一次操作);再把剩下的长方形如图折叠,剪下一个边长等于此时长方形宽度的正方形(称为第二次操作);如此反复操作下去,若在第n 次操作后剩下的长方形恰好为正方形,则操作终止.(1)第一次操作后,剩下的长方形周长为_________________;(2)若第二次操作后,剩下的长方形的周长恰好是1.3,求a 的值;(3)若第三次操作后,剩下的长方形恰好是正方形,求a 的值.20.(2022·江苏·文林中学七年级阶段练习)如图在数轴上A 点表示数a ,B 点表示数b ,a 、b 满足|a +2|+|b -4|=0;(1)点A 表示的数为______;(2)若在原点O处放一挡板,一小球甲从点A处以1个单位/秒的速度向左运动;同时另一小球乙从点B处以2个单位/秒的速度也向左运动,在碰到挡板后(忽略球的大小,可看作一点)以3个单位/秒的速度向相反的方向运动,设运动的时间为t(秒);①当t=1时,甲小球与乙小球的距离为______;①当t=______时,甲小球与乙小球的距离为4.5;①当t=______时,甲小球与乙小球到原点的距离相等.21.(2021·辽宁·葫芦岛市实验中学七年级阶段练习)如图,在长方形ABCD中,AB=CD=10,AD=BC=6.动点P从点A出发,每秒1个单位长度的速度沿A→B匀速运动,到B点停止运动;同时点Q从点C出发,以每秒2个单位长度的速度沿C→B→A匀速运动,到A点停止运动.设P点运动的时间为t秒(t>0).(1)点P在AB上运动时,P A=______,PB=______,点Q在AB上运动时,BQ=______,QA=______(用含t的代数式表示);(2)求当t为何值时,AP=BQ;(3)当P,Q两点在运动路线上相距3个单位长度时,请直接写出t的值.22.(2021·广东·珠海市文园中学七年级阶段练习)如图,一个点从数轴上的原点开始,先向左运动2cm到达A点,再向左移动3cm到达B点,然后向右移动9cm到达C点,数轴上一个单位长度表示1cm.(1)在数轴A、B、C点表示的数分别为、、.(2)把点A到点C的距离记为AC,则AC=.(3)若数轴上点D表示的数为x,且满足|x﹣3.5|=5.5,则x的值为.(4)若点B沿数轴以每秒3cm匀速向右运动,经过几秒后,点B到点C的距离为3cm?23.(2020·北京市陈经纶中学分校七年级期中)在数轴上,对于不重合的三点A,B,C,给出如下定义:若点C到点A的距离是点C到点B的距离的13倍,我们就把点C叫做【A,B】的理想点.例如:图中,点A表示的数为-1,点B表示的数为3.表示数0的点C到点A的距离是1,到点B的距离是3,那么点C是【A,B】的理想点;又如,表示数2的点D到点A的距离是3,到点B的距离是1,那么点D就不是【A,B】的理想点,但点D是【B,A】的理想点.(1)当点A表示的数为-1,点B表示的数为7时,①若点C表示的数为1,则点C(填“是”或“不是”)【A,B】的理想点;①若点D是【B,A】的理想点,则点D表示的数是;(2)若A,B在数轴上表示的数分别为-2和4,现有一点C从点B出发,以每秒1个单位长度的速度向数轴负半轴方向运动,当点C到达点A时停止.请直接写出点C运动多少秒时,C,A,B中恰有一个点为其余两点的理想点?24.(2021·河北·原竞秀学校七年级期中)如图,甲乙两人(看成点)分别在数轴﹣10和10对应的位置上,沿着数轴做向东、向西移动的游戏,移动游戏规则如下:用一枚硬币,先由乙抛掷后遮住,甲猜向上一面是正还是反,如果甲猜对了,甲向东移动3个单位,如果甲猜错了,甲向西移动3个单位;然后再由甲抛掷后遮住,乙猜向上一面是正还是反,如果乙猜对了,乙向西移动2个单位,如果乙猜错了,乙向东移动3个单位.两人各抛掷一次硬币并完成相应的移动算一次游戏;10次游戏结束后,甲猜对了m次,乙猜对了n次.(1)甲猜对了m次,则甲猜错了(________)次.(用含m的代数式表示)乙猜对了n次,则乙猜错了(________)次.(用含n的代数式表示)(2)当游戏结束时,分别求出甲乙两人在数轴上的位置上的点代表的数;(用含m或n的代数式表示)(3)10次游戏结束后,若甲10次都猜对了,且两人在数轴上的位置刚好距离10个单位,则乙猜对的次数为________次.。

广东省珠海市2021版中考数学试卷B卷

广东省珠海市2021版中考数学试卷B卷

广东省珠海市2021版中考数学试卷B卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分) (2015七上·宜昌期中) 相反数是2的数是()A . ﹣2B .C . 2D . -2. (2分)若使式子在实数范围内有意义,则x的取值范围是()。

A .B .C .D .3. (2分)(2017·泰兴模拟) 口袋中装有形状、大小与质地都相同的红球2个,黄球1个,下列事件为随机事件的是()A . 随机摸出1个球,是白球B . 随机摸出1个球,是红球C . 随机摸出1个球,是红球或黄球D . 随机摸出2个球,都是黄球4. (2分) (2018八上·腾冲期中) 图中由“○”和“□”组成轴对称图形,该图形的对称轴是直线()A . l1B . l2C . l3D . l45. (2分)(2019·潮南模拟) 如图是由几个相同的小正方体堆砌成的几何体,它的左视图是()A .B .C .D .6. (2分)(2018·广州) 甲袋中装有2个相同的小球,分别写有数字1和2,乙袋中装有2个相同的小球,分别写有数字1和2,从两个口袋中各随机取出1个小球,取出的两个小球上都写有数字2的概率是()A .B .C .D .7. (2分) (2020九下·北碚月考) 下列命题中,是真命题的是()A . 将函数y= x+1向右平移2个单位后所得函数的解析式为y= xB . 若一个数的平方根等于其本身,则这个数是0和1C . 对函数y=,其函数值y随自变量x的增大而增大D . 直线y=3x+1与直线y=﹣3x+2一定互相平行8. (2分)(2020·丰南模拟) 一个有进水管和出水管的容器,从某时刻开始4min内只进水不出水,在随后的8min内即进水又出水,每分钟的进水量和出水量是两个常数,容器内的水量y(L)与时间x(min)之间的关系如图所示,则每分钟的出水量为()A . 5LB . 3.75LC . 2.5LD . 1.25L9. (2分) (2019八上·农安期末) 如图,点E在正方形ABCD内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是()A . 48B . 6C . 76D . 8010. (2分)(2018·绍兴模拟) 我们把1,1,2,3,5,8,13,21,…这组数称为斐波那契数列,为了进一步研究,依次以这列数为半径作90°圆弧,,,…得到斐波那契螺旋线,然后顺次连结P1P2 ,P2P3 , P3P4 ,…得到螺旋折线(如图),已知点P1(0,1),P2(﹣1,0),P3(0,﹣1),则该折线上的点P9的坐标为()A . (﹣6,24)B . (﹣6,25)C . (﹣5,24)D . (﹣5,25)二、填空题 (共6题;共6分)11. (1分) (2018九上·定安期末) 计算: =________.12. (1分)(2020·常德模拟) 个正整数中,中位数是,唯一的众数是则这个数的和的最大值为________.13. (1分) (2020八上·常德期末) 计算: ________.14. (1分) (2017八下·大石桥期末) 如图,在口ABCD中, , E是AD的中点,若CE=4,则BC 的长是________.15. (1分)(2020·连云港模拟) 如图,抛物线y=x2+bx+c(c>0)与y轴交于点C,顶点为A,抛物线的对称轴交x轴于点E,交BC于点D,tan∠AOE=.直线OA与抛物线的另一个交点为B.当OC=2AD时,c的值是________.16. (1分)如图a是长方形纸带,∠DEF=20°,将纸带沿EF折叠成图b,再沿BF折叠成图c,则图c中的∠CFE的度数是________ 度.三、解答题 (共8题;共91分)17. (5分)计算:(1);(2);(3);(4)先化简,再求值:,其中x=-1,y=2.18. (5分) (2020七下·高新期末) 如图,∠EBC+∠EFA=180°,∠A=∠C。

2021年广东省珠海市中考数学模拟试卷及答案解析

2021年广东省珠海市中考数学模拟试卷及答案解析
“掌握新技术,走进数时代”信息技术应用大赛成绩频数分布统计表
组别
成绩x(分)
人数
A
60≤x<70
10
B
70≤x<80
m
C
80≤x<90
16
D
90≤x≤100
4
请观察上面的图表,解答下列问题:
(1)统计表中m=;统计图中n=;B组的圆心角是度.
(2)D组的4名学生中,有2名男生和2名女生.从D组随机抽取2名学生参加5G体验活动,请你画出树状图或用列表法求:
五、解答题(三)(本大题2小题,每小题10分,共20分)
24.(10分)如图,已知BC⊥AC,圆心O在AC上,点M与点C分别是AC与⊙O的交点,点D是MB与⊙O的交点,点P是AD延长线与BC的交点,且AD•AO=AM•AP.
(1)连接OP,证明:△ADM∽△APO;
(2)证明:PD是⊙O的切线;
(3)若AD=12,AM=MC,求PB和DM的值.
(2)在(1)的条件下,连接BF,求∠DBF的度数.
四、解答题(二)(本大题3小题,每小题8分,共24分)
21.(8分)电子政务、数字经济、智慧社会……一场数字革命正在神州大地激荡,在第二届数字中国建设峰会召开之际,某校举行了第二届“掌握新技术,走进数时代”信息技术应用大赛,将该校八年级参加竞赛的学生成绩统计后,绘制成如下统计图表(不完整):
16.如图,在△ABC中,CA=CB,∠ACB=90°,AB=2,点D为AB的中点,以点D为圆心作圆心角为90°的扇形DEF,点C恰在弧EF上,则图中阴影部分的面积为.
17.如图,平面直角坐标系中,点A1的坐标为(1,2),以O为圆心,OA1长为半径画弧,交直线y 于点B1.过点B1作B1A2∥y轴交直线y=2x于点A2,以O为圆心,OA2长为半径画弧,交直线y═ x于点B2;过点B2作B2A3∥y轴交直线y=2x于点A3,以点O为圆心,OA3长为半径画弧,交直线y x于点B3;……按如此规律进行下去,点B2020的坐标为.

广东省2021年中考数学真题试卷(含详细解析)

广东省2021年中考数学真题试卷(含详细解析)
A. B. C. D.1
二、填空题
11.二元一次方程组 的解为___.
12.把抛物线 向左平移1个单位长度,再向下平移3个单位长度,得到的抛物线的解析式为___.
13.如图,等腰直角三角形 中, .分别以点B、点C为圆心,线段 长的一半为半径作圆弧,交 、 、 于点D、E、F,则图中阴影部分的面积为____.
【详解】
列表如下:
1
2
3
4
5
6
1
2
3
4
5
6
7
2
3
4
5
6
7
8
3
4
5
6
7
8
9
4
5
6
7
8
9
10
5
6
7
8
9
10
11
6
7
8
9
10
11
12
由表知,两枚骰子向上的点数之和所有可能的结果数为36种,两枚骰子向上的点数之和为7的结果数为6,故两枚骰子向上的点数之和为7的概率是:
故选:B.
【点睛】
本题考查了用列表法或树状图求等可能事件的概率,用列表法或树状图可以不重不漏地把事件所有可能的结果数及某一事件的结果数表示出来,具有直观的特点.
4.D
【分析】
利用同底数幂乘法逆用转换求 ,
∴故选:D.
【点睛】
本题主要考查同底数幂乘法的逆用,熟练掌握其运算法则即表现形式是解题关键.
5.B
【分析】
根据一个实数的绝对值非负,一个非负实数的算术平方根非负,且其和为零,则它们都为零,从而可求得a、b的值,从而可求得ab的值.
(1)求证: ;
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

广东省珠海市2021年中考数学试卷一、选择题(本大题5小题,每小题3分,共15分)在毎小题列出的四个选项中,只有一个是正确的,请把答题卡上对应題目所选的选项涂黑.1.(3分)(2021•珠海)﹣的相反数是()A.2B.C.﹣2 D.﹣考点: 相反数.专题: 计算题.分析:根据相反数的定义,只有符号不同的两个数是互为相反数,﹣的相反数为.解答:解:与﹣符号相反的数是,所以﹣的相反数是;故选B.点评:本题主要相反数的意义,只有符号不同的两个数互为相反数,a的相反数是﹣a.2.(3分)(2021•珠海)边长为3cm的菱形的周长是()A.6cm B.9cm C.12cm D.15cm考点: 菱形的性质.分析:利用菱形的各边长相等,进而求出周长即可.解答:解:∵菱形的各边长相等,∴边长为3cm的菱形的周长是:3×4=12(cm).故选:C.点评:此题主要考查了菱形的性质,利用菱形各边长相等得出是解题关键.3.(3分)(2021•珠海)下列计算中,正确的是()A.2a+3b=5ab B.(3a3)2=6a6C.a6+a2=a3D.﹣3a+2a=﹣a考点: 合并同类项;幂的乘方与积的乘方.分析:根据合并同类项,积的乘方,等于先把每一个因式分别乘方,再把所得的幂相乘;对各选项分析判断后利用排除法求解.解答:解:A、不是同类二次根式,不能加减,故本选项错误;B、(3a3)2=9a6≠6a6,故本选项错误;C、不是同类二次根式,不能加减,故本选项错误;D、﹣3a+2a=﹣a正确故选:D.点评:本题主要考查了合并同类项,积的乘方,等于先把每一个因式分别乘方,再把所得的幂相乘;熟记计算法则是关键.4.(3分)(2021•珠海)已知圆柱体的底面半径为3cm,髙为4cm,则圆柱体的侧面积为()A.24πcm2B.36πcm2C.12cm2D.24cm2考点: 圆柱的计算.分析:圆柱的侧面积=底面周长×高,把相应数值代入即可求解.解答:解:圆柱的侧面积=2π×3×4=24π.故选A.点评:本题考查了圆柱的计算,解题的关键是弄清圆柱的侧面积的计算方法.5.(3分)(2021•珠海)如图,线段AB是⊙O的直径,弦CD丄AB,∠CAB=20°,则∠AOD 等于()A.160°B.150°C.140°D.120°考点: 圆周角定理;垂径定理.分析:利用垂径定理得出=,进而求出∠BOD=40°,再利用邻补角的性质得出答案.解答:解:∵线段AB是⊙O的直径,弦CD丄AB,∴=,∵∠CAB=20°,∴∠BOD=40°,∴∠AOD=140°.故选:C.点评:此题主要考查了圆周角定理以及垂径定理等知识,得出∠BOD的度数是解题关键.二、填空题(本大题5小题,毎小题4分,共20分)请将下列各题的正确答案填写在答题卡相应的位置上.6.(4分)(2021•珠海)比较大小:﹣2>﹣3.考点: 有理数大小比较分析:本题是基础题,考查了实数大小的比较.两负数比大小,绝对值大的反而小;或者直接想象在数轴上比较,右边的数总比左边的数大.解答:解:在两个负数中,绝对值大的反而小,可求出﹣2>﹣3.点评:(1)在以向右方向为正方向的数轴上两点,右边的点表示的数比左边的点表示的数大.(2)正数大于0,负数小于0,正数大于负数.(3)两个正数中绝对值大的数大.(4)两个负数中绝对值大的反而小.7.(4分)(2021•珠海)填空:x2﹣4x+3=(x﹣2)2﹣1.考点: 配方法的应用.专题: 计算题.分析:原式利用完全平方公式化简即可得到结果.解答:解:x2﹣4x+3=(x﹣2)2﹣1.故答案为:2点评:此题考查了配方法的应用,熟练掌握完全平方公式是解本题的关键.8.(4分)(2021•珠海)桶里原有质地均匀、形状大小完全一样的6个红球和4个白球,小红不慎遗失了其中2个红球,现在从桶里随机摸出一个球,则摸到白球的概率为.考点: 概率公式.分析:由桶里原有质地均匀、形状大小完全一样的6个红球和4个白球,小红不慎遗失了其中2个红球,直接利用概率公式求解即可求得答案.解答:解:∵桶里原有质地均匀、形状大小完全一样的6个红球和4个白球,小红不慎遗失了其中2个红球,∴现在从桶里随机摸出一个球,则摸到白球的概率为:=.故答案为:.点评:此题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.9.(4分)(2021•珠海)如图,对称轴平行于y轴的抛物线与x轴交于(1,0),(3,0)两点,則它的对称轴为直线x=2.考点: 二次函数的性质分析:点(1,0),(3,0)的纵坐标相同,这两点一定关于对称轴对称,那么利用两点的横坐标可求对称轴.解答:解:∵点(1,0),(3,0)的纵坐标相同,∴这两点一定关于对称轴对称,∴对称轴是:x==2.故答案为:直线x=2.点评:本题主要考查了抛物线的对称性,图象上两点的纵坐标相同,则这两点一定关于对称轴对称.10.(4分)(2021•珠海)如图,在等腰Rt△OAA1中,∠OAA1=90°,OA=1,以OA1为直角边作等腰Rt△OA1A2,以OA2为直角边作等腰Rt△OA2A3,…则OA4的长度为8.考点: 等腰直角三角形专题: 规律型.分析:利用等腰直角三角形的性质以及勾股定理分别求出各边长,进而得出答案.解答:解:∵△OAA1为等腰直角三角形,OA=1,∴AA1=OA=1,OA1=OA=;∵△OA1A2为等腰直角三角形,∴A1A2=OA1=,OA2=OA1=2;∵△OA2A3为等腰直角三角形,∴A2A3=OA2=2,OA3=OA2=2;∵△OA3A4为等腰直角三角形,∴A3A4=OA3=2,OA4=OA3=8.故答案为:8.点评:此题主要考查了等腰直角三角形的性质以及勾股定理,熟练应用勾股定理得出是解题关键.三、解答题(一)(本大题5小题,毎小题6分,共30分>11.(6分)(2021•珠海)计算:()﹣1﹣(﹣2)0﹣|﹣3|+.考点: 实数的运算;零指数幂;负整数指数幂.分析:本题涉及零指数幂、负指数幂、绝对值、二次根式化简四个考点.针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.解答:解:原式=﹣1﹣3+2=2﹣1﹣3+2=0.点评:本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握零指数幂、负指数幂、绝对值、二次根式化简等考点的运算.12.(6分)(2021•珠海)解不等式组:.考点: 解一元一次不等式组.分析:分别求出各不等式的解集,再求出其公共解集即可.解答:解:,由①得,x>﹣2,由②得,x≤﹣1,故此不等式组的解集为:﹣2<x≤﹣1.点评:本题解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的法则是解答此题的关键.13.(6分)(2021•珠海)化简:(a2+3a)÷.考点: 分式的混合运算.专题: 计算题.分析:原式第二项约分后,去括号合并即可得到结果.解答:解:原式=a(a+3)÷=a(a+3)×=a.点评:此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.14.(6分)(2021•珠海)某市体育中考共设跳绳、立定跳远、仰卧起坐三个项目,要求毎位学生必须且只需选考其中一项,该市东风中学初三(2)班学生选考三个项目的人数分布的条形统计图和扇形统计图如图所示.(1)求该班的学生人数;(2)若该校初三年级有1000人,估计该年级选考立定供远的人数.考点: 条形统计图;扇形统计图专题: 计算题.分析:(1)根据跳绳的人数除以占的百分比,得出学生总数即可;(2)求出立定跳远的人数占总人数的百分比,乘以1000即可得到结果.解答:解:(1)根据题意得:30÷60%=50(人),则该校学生人数为50人;(2)根据题意得:1000×=100(人),则估计该年级选考立定供远的人数为100人.点评:此题考查了条形统计图,扇形统计图,以及用样本估计总体,弄清题意是解本题的关键.15.(6分)(2021•珠海)如图,在Rt△ABC中,∠ACB=90°.(1)用尺规在边BC上求作一点P,使PA=PB(不写作法,保留作图痕迹)(2)连结AP,当∠B为30度时,AP平分∠CAB.考点: 作图—基本作图;线段垂直平分线的性质分析:(1)运用基本作图方法,中垂线的作法作图,(2)求出∠PAB=∠PAC=∠B,运用直角三角形解出∠B.解答:解:(1)如图,(2)如图,∵PA=PB,∴∠PAB=∠B,如果AP是角平分线,则∠PAB=∠PAC,∴∠PAB=∠PAC=∠B,∵∠ACB=90°,∴∠PAB=∠PAC=∠B=30°,∴∠B=30°时,AP平分∠CAB.故答案为:30.点评:本题主要考查了基本作图,角平分线的知识,解题的关键是熟记作图的方法及等边对等角的知识.四、解答题(二)(本大题4小题,毎小题7分,共28分>16.(7分)(2021•珠海)为庆祝商都正式营业,商都推出了两种购物方案.方案一:非会员购物所有商品价格可获九五折优惠,方案二:如交纳300元会费成为该商都会员,则所有商品价格可获九折优惠.(1)以x(元)表示商品价格,y(元)表示支出金额,分别写出两种购物方案中y关于x的函数解析式;(2)若某人计划在商都购买价格为5880元的电视机一台,请分析选择哪种方案更省钱?考点: 一次函数的应用分析:(1)根据两种购物方案让利方式分别列式整理即可;(2)分别把x=5880,代入(1)中的函数求得数值,比较得出答案即可.解答:解:(1)方案一:y=0.95x;方案二:y=0.9x+300;(2)当x=5880时,方案一:y=0.95x=5586,方案二:y=0.9x+300=5592,5586<5592所以选择方案一更省钱.点评:此题考查一次函数的运用,根据数量关系列出函数解析式,进一步利用函数解析式解决问题.17.(7分)(2021•珠海)如图,一艘渔船位于小岛M的北偏东45°方向、距离小岛180海里的A处,渔船从A处沿正南方向航行一段距离后,到达位于小岛南偏东60°方向的B处.(1)求渔船从A到B的航行过程中与小岛M之间的最小距离(结果用根号表示);(2)若渔船以20海里/小时的速度从B沿BM方向行驶,求渔船从B到达小岛M的航行时间(结果精确到0.1小时).(参考数据:≈1.41,≈1.73,≈2.45)考点: 解直角三角形的应用-方向角问题.分析:(1)过点M作MD⊥AB于点D,根据∠AME的度数求出∠AMD=∠MAD=45°,再根据AM的值求出和特殊角的三角函数值即可求出答案;(2)在Rt△DMB中,根据∠BMF=60°,得出∠DMB=30°,再根据MD的值求出MB的值,最后根据路程÷速度=时间,即可得出答案.解答:解:(1)过点M作MD⊥AB于点D,∵∠AME=45°,∴∠AMD=∠MAD=45°,∵AM=180海里,∴MD=AM•cos45°=90(海里),答:渔船从A到B的航行过程中与小岛M之间的最小距离是90海里;(2)在Rt△DMB中,∵∠BMF=60°,∴∠DMB=30°,∵MD=90海里,∴MB==60,∴60÷20=3=3×2.45=7.35≈7.4(小时),答:渔船从B到达小岛M的航行时间约为7.4小时.点评:本题考查的是解直角三角形的应用,根据题意作出辅助线,构造出直角三角形,利用锐角三角函数的定义求解是解答此题的关键.18.(7分)(2021•珠海)如图,在Rt△ABC中,∠BAC=90°,AB=4,AC=3,线段AB为半圆O的直径,将Rt△ABC沿射线AB方向平移,使斜边与半圆O相切于点G,得△DEF,DF 与BC交于点H.(1)求BE的长;(2)求Rt△ABC与△DEF重叠(阴影)部分的面积.考点: 切线的性质;扇形面积的计算;平移的性质专题: 计算题.分析:(1)连结OG,先根据勾股定理计算出BC=5,再根据平移的性质得AD=BE,DF=AC=3,EF=BC=5,∠EDF=∠BAC=90°,由于EF与半圆O相切于点G,根据切线的性质得OG⊥EF,然后证明Rt△EOG∽Rt△EFD,利用相似比可计算出OE=,所以BE=OE ﹣OB=;(2)求出BD的长度,然后利用相似比例式求出DH的长度,从而求出△BDH,即阴影部分的面积.解答:解:(1)连结OG,如图,∵∠BAC=90°,AB=4,AC=3,∴BC==5,∵Rt△ABC沿射线AB方向平移,使斜边与半圆O相切于点G,得△DEF,∴AD=BE,DF=AC=3,EF=BC=5,∠EDF=∠BAC=90°,∵EF与半圆O相切于点G,∴OG⊥EF,∵AB=4,线段AB为半圆O的直径,∴OB=OG=2,∵∠GEO=∠DEF,∴Rt△EOG∽Rt△EFD,∴=,即=,解得OE=,∴BE=OE﹣OB=﹣2=;(2)BD=DE﹣BE=4﹣=.∵DF∥AC,∴,即,解得:DH=2.∴S阴影=S△BDH=BD•DH=××2=,即Rt△ABC与△DEF重叠(阴影)部分的面积为.点评:本题考查了切线的性质:圆的切线垂直于经过切点的半径.也考查了平移的性质、勾股定理和相似三角形的判定与性质.19.(7分)(2021•珠海)如图,在平面直角坐标系中,边长为2的正方形ABCD关于y轴对称,边在AD在x轴上,点B在第四象限,直线BD与反比例函数y=的图象交于点B、E.(1)求反比例函数及直线BD的解析式;(2)求点E的坐标.考点: 反比例函数与一次函数的交点问题.分析:(1)根据正方形的边长,正方形关于y轴对称,可得点A、B、D的坐标,根据待定系数法,可得函数解析式;(2)根据两个函数解析式,可的方程组,根据解方程组,可得答案.解答:解:(1)边长为2的正方形ABCD关于y轴对称,边在AD在x轴上,点B在第四象限,∴A(1,0),D(﹣1,0),B(1,﹣2).∵反比例函数y=的图象过点B,∴,m=﹣2,∴反比例函数解析式为y=﹣,设一次函数解析式为y=kx+b,∵y=kx+b的图象过B、D点,∴,解得.直线BD的解析式y=﹣x﹣1;(2)∵直线BD与反比例函数y=的图象交于点E,∴,解得∵B(1,﹣2),∴E(﹣2,1).点评:本题考查了反比例函数与一次函数的交点问题,利用待定系数法求解析式,利用方程组求交点坐标.五、解答题(三)(本大题3小题,毎小题9分,共27分)20.(9分)(2021•珠海)阅读下列材料:解答“已知x﹣y=2,且x>1,y<0,试确定x+y的取值范围”有如下解法:解∵x﹣y=2,∴x=y+2又∵x>1,∵y+2>1.∴y>﹣1.又∵y<0,∴﹣1<y<0.…①同理得:1<x<2.…②由①+②得﹣1+1<y+x<0+2∴x+y的取值范围是0<x+y<2请按照上述方法,完成下列问题:(1)已知x﹣y=3,且x>2,y<1,则x+y的取值范围是1<x+y<5.(2)已知y>1,x<﹣1,若x﹣y=a成立,求x+y的取值范围(结果用含a的式子表示).考点: 一元一次不等式组的应用.专题: 阅读型.分析:(1)根据阅读材料所给的解题过程,直接套用解答即可;(2)理解解题过程,按照解题思路求解.解答:解:(1)∵x﹣y=3,∴x=y+3,又∵x>2,∴y+3>2,∴y>﹣1.又∵y<1,∴﹣1<y<1,…①同理得:2<x<4,…②由①+②得﹣1+2<y+x<1+4∴x+y的取值范围是1<x+y<5;(2)∵x﹣y=a,∴x=y+a,又∵x<﹣1,∴y+a<﹣1,∴y<﹣a﹣1,又∵y>1,∴1<y<﹣a﹣1,…①同理得:a+1<x<﹣1,…②由①+②得1+a+1<y+x<﹣a﹣1+(﹣1),∴x+y的取值范围是a+2<x+y<﹣a﹣2.点评:本题考查了一元一次不等式组的应用,解答本题的关键是仔细阅读材料,理解解题过程,难度一般.21.(9分)(2021•珠海)如图,在正方形ABCD中,点E在边AD上,点F在边BC的延长线上,连结EF与边CD相交于点G,连结BE与对角线AC相交于点H,AE=CF,BE=EG.(1)求证:EF∥AC;(2)求∠BEF大小;(3)求证:=.考点: 四边形综合题分析:(1)根据有一组对边平行且相等的四边形是平行四边形即可判定.(2)先确定三角形GCF是等腰直角三角形,得出CG=AE,然后通过△BAE≌△BCG,得出BE=BG=EG,即可求得.(3)因为三角形BEG是等边三角形,∠ABC=90°,∠ABE=∠CBG,从而求得∠ABE=15°,然后通过求得△AHB∽△FGB,即可求得.解答:解:(1)∵四边形ABCD是正方形,∴AD∥BF,∵AE=CF,∴四边形ACFE是平行四边形,∴EF∥AC,(2)连接BG,∵EF∥AC,∴∠F=∠ACB=45°,∵∠GCF=90°,∴∠CGF=∠F=45°,∴CG=CF,∵AE=CF,∴AE=CG,在△BAE与△BCG中,,∴△BAE≌△BCG(SAS)∴BE=BG,∵BE=EG,∴△BEG是等边三角形,∴∠BEF=60°,(3)∵△BAE≌△BCG,∴∠ABE=∠CBG,∵∠BAC=∠F=45°,∴△AHB∽△FGB,∴======,∵∠EBG=60°∠ABE=∠CBG,∠ABC=90°,∴∠ABE=15°,∴=.点评:本题考查了平行四边形的判定及性质,求得三角形的判定及性质,正方形的性质,相似三角形的判定及性质,连接BG是本题的关键.22.(9分)(2021•珠海)如图,矩形OABC的顶点A(2,0)、C(0,2).将矩形OABC绕点O逆时针旋转30°.得矩形OEFG,线段GE、FO相交于点H,平行于y轴的直线MN分别交线段GF、GH、GO和x轴于点M、P、N、D,连结MH.(1)若抛物线l:y=ax2+bx+c经过G、O、E三点,则它的解析式为:y=x2﹣x;(2)如果四边形OHMN为平行四边形,求点D的坐标;(3)在(1)(2)的条件下,直线MN与抛物线l交于点R,动点Q在抛物线l上且在R、E两点之间(不含点R、E)运动,设△PQH的面积为s,当时,确定点Q的横坐标的取值范围.考点: 二次函数综合题分析:(1)求解析式一般采用待定系数法,通过函数上的点满足方程求出.(2)平行四边形对边平行且相等,恰得MN为OF,即为中位线,进而横坐标易得,D为x轴上的点,所以纵坐标为0.(3)已知S范围求横坐标的范围,那么表示S是关键.由PH不为平行于x轴或y轴的线段,所以考虑利用过动点的平行于y轴的直线切三角形为2个三角形的常规方法来解题,此法底为两点纵坐标得差,高为横坐标的差,进而可表示出S,但要注意,当Q在O点右边时,所求三角形为两三角形的差.得关系式再代入,求解不等式即可.另要注意求解出结果后要考虑Q本身在R、E之间的限制.解答:解:(1)如图1,过G作GI⊥CO于I,过E作EJ⊥CO于J,∵A(2,0)、C(0,2),∴OE=OA=2,OG=OC=2,∵∠GOI=30°,∠JOE=90°﹣∠GOI=90°﹣30°=60°,∴GI=sin30°•GO==,IO=cos30°•GO==3,JO=cos30°•OE==,JE=sin30°•OE==1,∴G(﹣,3),E(,1),设抛物线解析式为y=ax2+bx+c,∵经过G、O、E三点,∴,解得,∴y=x2﹣x.(2)∵四边形OHMN为平行四边形,∴MN∥OH,MN=OH,∵OH=OF,∴MN为△OGF的中位线,∴x D=x N=•x G=﹣,∴D(﹣,0).(3)设直线GE的解析式为y=kx+b,∵G(﹣,3),E(,1),∴,解得,∴y=﹣x+2.∵Q在抛物线y=x2﹣x上,∴设Q的坐标为(x,x2﹣x),∵Q在R、E两点之间运动,∴﹣<x<.①当﹣<x<0时,如图2,连接PQ,HQ,过点Q作QK∥y轴,交GE于K,则K(x,﹣x+2),∵S△PKQ=•(y K﹣y Q)•(x Q﹣x P),S△HKQ=•(y K﹣y Q)•(x H﹣x Q),∴S△PQH=S△PKQ+S△HKQ=•(y K﹣y Q)•(x Q﹣x P)+•(y K﹣y Q)•(x H﹣x Q)=•(y K﹣y Q)•(x H﹣x P)=•[﹣x+2﹣(x2﹣x)]•[0﹣(﹣)]=﹣x2+.②当0≤x<时,如图2,连接PQ,HQ,过点Q作QK∥y轴,交GE于K,则K(x,﹣x+2),同理S△PQH=S△PKQ﹣S△HKQ=•(y K﹣y Q)•(x Q﹣x P)﹣•(y K﹣y Q)•(x Q﹣x H)=•(y K﹣y Q)•(x H﹣x P)=﹣x2+.综上所述,S△PQH=﹣x2+.∵,∴<﹣x2+≤,解得﹣<x<,∵﹣<x<,∴﹣<x<.点评:本题考查了一次函数、二次函数性质与图象,直角三角形及坐标系中三角形面积的表示等知识点.注意其中“利用过动点的平行于y轴的直线切三角形为2个三角形的常规方法来表示面积”是近几年中考的考查热点,需要加强理解运用.。

相关文档
最新文档