人教版初中数学知识点总结公式

合集下载

最新初中数学公式大全(人教版)

最新初中数学公式大全(人教版)

初中数学公式大全1 两点之间线段最短2 同角或等角的补角相等,同角或等角的余角相等3 直线外一点与直线上各点连接的所有线段中,垂线段最短4三角形两边的和大于第三边;三角形两边的差小于第三边5 三角形内角和定理 :三角形三个内角的和等于180°推论1 直角三角形的两个锐角互余;推论2 三角形的一个外角等于和它不相邻的两个内角的和6边角边公理(SAS) 角边角公理( ASA) (AAS) 边边边公理(SSS)证全等7 斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等8 定理1 在角的平分线上的点到这个角的两边的距离相等定理2 到一个角的两边的距离相同的点,在这个角的平分线上9 等腰三角形的性质定理等腰三角形的两个底角相等 (即等边对等角)等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合等边三角形的各角都相等,并且每一个角都等于60°如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)推论1 三个角都相等的三角形是等边三角形;推论 2 有一个角等于60°的等腰三角形是等边三角形10 在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半直角三角形斜边上的中线等于斜边上的一半勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^2逆定理如果三角形的三边长a、b、c有关系a^2+b^2=c^2 ,那么这个三角形是直角三角形正弦(sin)等于对边比斜边;sinA=a/c Array余弦(cos)等于邻边比斜边;cosA=b/c正切(tan)等于对边比邻边;tanA=a/b11定理线段垂直平分线上的点和这条线段两个端点的距离相等逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上定理1 关于某条直线对称的两个图形是全等形定理 2 如果两个图形关于某直线对称(或折叠),那么对称轴是对应点连线的垂直平分线12多边形内角和定理 n边形的内角的和等于(n-2)×180°;任意多边的外角和等于360°13平行四边形性质: 平行四边形的对角相等 ;平行四边形的对边相等 ;夹在两条平行线间的平行线段相等 ;平行四边形的对角线互相平分平行四边形判定:两组对角分别相等的四边形是平行四边形 ;两组对边分别相等的四边形是平行四边形 ;对角线互相平分的四边形是平行四边形 ;一组对边平行相等的四边形是平行四边形14矩形性质: 矩形的四个角都是直角 ;矩形的对角线相等矩形判定:有三个角是直角的四边形是矩形 ;对角线相等的平行四边形是矩形15菱形性质:菱形的四条边都相等 ; 菱形的对角线互相垂直,并且每一条对角线平分一组对角菱形面积=对角线乘积的一半,即S=(a×b)÷2 或底×高菱形判定四边都相等的四边形是菱形;对角线互相垂直的平行四边形是菱形16正方形性质:正方形的四个角都是直角,四条边都相等;正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角(45°)17平行线分线段成比例定理三条平行线截两条直线,所得的对应线段成比例推论平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例定理如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边定理平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似(A型或X型)18相似三角形判定定理1 两角对应相等,两三角形相似(ASA)直角三角形被斜边上的高分成的两个直角三角形和原三角形相似判定定理2 两边对应成比例且夹角相等,两三角形相似(SAS)判定定理3 三边对应成比例,两三角形相似(SSS)定理如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似性质定理相似三角形对应高的比,对应中线的比与对应角平分线,周长的比的比都等于相似比;相似三角形面积的比等于相似比的平方19同圆或等圆的半径相等垂径定理①平分弦②垂直③(半)直径④平分优弧⑤平分劣弧知二得三推论2圆的两条平行弦所夹的弧相等推论在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等定理一条弧所对的圆周角等于它所对的圆心角的一半同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等推论半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径推论 如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形定理 圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角切线的判定定理 经过半径的外端并且垂直于这条半径的直线是圆的切线切线的性质定理 圆的切线垂直于经过切点的半径切线长定理 从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角 弦切角定理 弦切角等于它所夹的弧对的圆周角切割线定理 从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项 (射影型) 弧长计算公式:L=n 兀R /180 ;扇形面积公式:S 扇形=n 兀R^2/360=LR /220完全平方公式:(a+b)^2=a^2+2ab+b^2 (a-b)^2=a^2-2ab+b^2(a+b)^2=(a-b)^2+4ab a^2+b^2=(a+b)^2-2ab平方差公式:(a+b)(a-b)=a^2-b^221一元二次方程的解 -b+√(b2-4ac)/2a -b-√(b2-4ac)/2a根与系数的关系 X1+X2=-b/a X1*X2=c/a 注:韦达定理判别式b 2-4ac=0 注:方程有两个相等的实根 ;b 2-4ac>0 注:方程有两个不等的实根b 2-4ac<0 注:方程没有实根;b 2-4ac ≥0注:方程有两个实根 22.求抛物线的顶点、对称轴:顶点是),(a b ac a b 4422--,对称轴是直线ab x 2-=. 抛物线c bx ax y ++=2中,b 和a 共同决定抛物线对称轴的位置.由于抛物线c bx ax y ++=2的对称轴是直线ab x 2-=,故:①0=b 时,对称轴为y 轴;②0>a b (即a 、b 同号)时,对称轴在y 轴左侧;③0<a b (即a 、b 异号)时,对称轴在y 轴右侧.(左同右异)二次函数的解析式:(1)一般式:c bx ax y ++=2.已知图像上三点或三对x 、y 的值,通常选择一般式.(2)顶点式:()k h x a y +-=2.已知图像的顶点或对称轴,通常选择顶点式. (3)交点式:已知图像与x 轴的交点坐标1x 、2x ,通常选用交点式:()()21x x x x a y --=.抛物线与x 轴两交点之间的距离:若抛物线c bx ax y ++=2与x 轴两交点为()()0021,,,x B x A ,由于1x 、2x 是方程02=++c bx ax 的两个根,故 ac x x a b x x =⋅-=+2121,()()a a ac b a c a b x x x x x x x x AB ∆=-=-⎪⎭⎫ ⎝⎛-=-+=-=-=444222122122121 点A (x1,y1),点B (x2,y2)则AB 间的距离,则线段AB=()()221221y y x x -+-直线斜率:1212tan x x y y k --==α 平移口诀:上加下减,左加右减二次函数图象的对称一般有三种情况,可以用一般式或顶点式表达1. 关于x 轴对称2y ax bx c =++关于x 轴对称后,得到的解析式是2y ax bx c =---;()2y a x h k =-+关于x 轴对称后,得到的解析式是()2y a x h k =---;2. 关于y 轴对称2y ax bx c =++关于y 轴对称后,得到的解析式是2y ax bx c =-+; ()2y a x h k =-+关于y 轴对称后,得到的解析式是()2y a x h k =++;3. 关于原点对称2y ax bx c =++关于原点对称后,得到的解析式是2y ax bx c =-+-;()2y a x h k =-+关于原点对称后,得到的解析式是()2y a x h k =-+-;23某些数列前n 项和 1+2+3+4+5+6+7+8+9+…+n=n(n+1)/21+3+5+7+9+11+13+15+…+(2n-1)=n 22+4+6+8+10+12+14+…+(2n)=n(n+1)12+22+32+42+52+62+72+82+…+n 2=n(n+1)(2n+1)/613+23+33+…+n3=(1+2+3+……+n)2=n 2(n+1)2/41*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/324两个规定a 0=1(a ≠0) a -p =p a 1《学前儿童发展心理学》案例分析题汇总一、当孩子遭遇挫折时小一班的毛毛从幼儿园回家一直噘着小嘴,一副可怜的样子。

人教版中考考点初中数学全部的所有单元知识点详细总结归纳精华大全(含方程式公式大全)

人教版中考考点初中数学全部的所有单元知识点详细总结归纳精华大全(含方程式公式大全)

人教版中考考点初中数学全部的所有单元知识点详细总结归纳精华大全(含方程式公式大全)1、一元一次方程根的情况△=b2-4ac当△>0时,一元二次方程有2个不相等的实数根;当△=0时,一元二次方程有2个相同的实数根;当△<0时,一元二次方程没有实数根2、平行四边形的性质:①两组对边分别平行的四边形叫做平行四边形。

②平行四边形不相邻的两个顶点连成的线段叫他的对角线。

③平行四边形的对边/对角相等。

④平行四边形的对角线互相平分。

菱形:①一组邻边相等的平行四边形是菱形②领心的四条边相等,两条对角线互相垂直平分,每一组对角线平分一组对角。

③判定条件:定义/对角线互相垂直的平行四边形/四条边都相等的四边形。

矩形与正方形:①有一个内角是直角的平行四边形叫做矩形。

②矩形的对角线相等,四个角都是直角。

③对角线相等的平行四边形是矩形。

④正方形具有平行四边形,矩形,菱形的一切性质。

⑤一组邻边相等的矩形是正方形。

多边形:①N边形的内角和等于(N-2)180度②多边心内角的一边与另一边的反向延长线所组成的角叫做这个多边形的外角,在每个顶点处取这个多边形的一个外角,他们的和叫做这个多边形的内角和(都等于360度)平均数:对于N个数X1,X2…X N,我们把(X1+X2+…+X N)/N叫做这个N个数的算术平均数,记为X 加权平均数:一组数据里各个数据的重要程度未必相同,因而,在计算这组数据的平均数时往往给每个数据加一个权,这就是加权平均数。

二、基本定理1、过两点有且只有一条直线2、两点之间线段最短3、同角或等角的补角相等4、同角或等角的余角相等5、过一点有且只有一条直线和已知直线垂直6、直线外一点与直线上各点连接的所有线段中,垂线段最短7、平行公理经过直线外一点,有且只有一条直线与这条直线平行8、如果两条直线都和第三条直线平行,这两条直线也互相平行9、同位角相等,两直线平行10、内错角相等,两直线平行11、同旁内角互补,两直线平行12、两直线平行,同位角相等13、两直线平行,内错角相等14、两直线平行,同旁内角互补15、定理三角形两边的和大于第三边16、推论三角形两边的差小于第三边17、三角形内角和定理三角形三个内角的和等于180°18、推论1 直角三角形的两个锐角互余19、推论2 三角形的一个外角等于和它不相邻的两个内角的和20、推论3 三角形的一个外角大于任何一个和它不相邻的内角21、全等三角形的对应边、对应角相等22、边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等23、角边角公理( ASA)有两角和它们的夹边对应相等的两个三角形全等24、推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等25、边边边公理(SSS) 有三边对应相等的两个三角形全等26、斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等27、定理1 在角的平分线上的点到这个角的两边的距离相等28、定理2 到一个角的两边的距离相同的点,在这个角的平分线上29、角的平分线是到角的两边距离相等的所有点的集合30、等腰三角形的性质定理等腰三角形的两个底角相等(即等边对等角)31、推论1 等腰三角形顶角的平分线平分底边并且垂直于底边32、等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合33、推论3 等边三角形的各角都相等,并且每一个角都等于60°34、等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)35、推论1 三个角都相等的三角形是等边三角形36、推论2 有一个角等于60°的等腰三角形是等边三角形37、在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半38、直角三角形斜边上的中线等于斜边上的一半39、定理线段垂直平分线上的点和这条线段两个端点的距离相等40、逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上41、线段的垂直平分线可看作和线段两端点距离相等的所有点的集合42、定理1 关于某条直线对称的两个图形是全等形43、定理2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线44、定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上45、逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称46、勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a2+b2=c247、勾股定理的逆定理如果三角形的三边长a、b、c有关系a2+b2=c2,那么这个三角形是直角三角形48、定理四边形的内角和等于360°49、四边形的外角和等于360°50、多边形内角和定理n边形的内角的和等于(n-2)×180°51、推论任意多边的外角和等于360°52、平行四边形性质定理1 平行四边形的对角相等53、平行四边形性质定理2 平行四边形的对边相等54、推论夹在两条平行线间的平行线段相等55、平行四边形性质定理3 平行四边形的对角线互相平分56、平行四边形判定定理1 两组对角分别相等的四边形是平行四边形57、平行四边形判定定理2 两组对边分别相等的四边形是平行四边形58、平行四边形判定定理3 对角线互相平分的四边形是平行四边形59、平行四边形判定定理4 一组对边平行相等的四边形是平行四边形60、矩形性质定理1 矩形的四个角都是直角61、矩形性质定理2 矩形的对角线相等62、矩形判定定理1 有三个角是直角的四边形是矩形63、矩形判定定理2 对角线相等的平行四边形是矩形64、菱形性质定理1 菱形的四条边都相等65、菱形性质定理2 菱形的对角线互相垂直,并且每一条对角线平分一组对角66、菱形面积=对角线乘积的一半,即S=(a×b)÷267、菱形判定定理1 四边都相等的四边形是菱形68、菱形判定定理2 对角线互相垂直的平行四边形是菱形69、正方形性质定理1 正方形的四个角都是直角,四条边都相等70、正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角71、定理1 关于中心对称的两个图形是全等的72、定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分73、逆定理如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称74、等腰梯形性质定理等腰梯形在同一底上的两个角相等75、等腰梯形的两条对角线相等76、等腰梯形判定定理在同一底上的两个角相等的梯形是等腰梯形77、对角线相等的梯形是等腰梯形78、平行线等分线段定理如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等79、推论1 经过梯形一腰的中点与底平行的直线,必平分另一腰80、推论2 经过三角形一边的中点与另一边平行的直线,必平分第三边81、三角形中位线定理三角形的中位线平行于第三边,并且等于它的一半82、梯形中位线定理梯形的中位线平行于两底,并且等于两底和的一半L=(a+b)÷2 S=L×h83、(1)比例的基本性质:如果a:b=c:d,那么ad=bc如果ad=bc ,那么a:b=c:d84、(2)合比性质:如果a/b=c/d,那么(a±b)/b=(c±d)/d85、(3)等比性质:如果a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a/b86、平行线分线段成比例定理三条平行线截两条直线,所得的对应线段成比例87、推论平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例88、定理如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边89、平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例90、定理平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似91、相似三角形判定定理1 两角对应相等,两三角形相似(ASA)92、直角三角形被斜边上的高分成的两个直角三角形和原三角形相似93、判定定理2 两边对应成比例且夹角相等,两三角形相似(SAS)94、判定定理3 三边对应成比例,两三角形相似(SSS)95、定理如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似96、性质定理1 相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比97、性质定理2 相似三角形周长的比等于相似比98、性质定理3 相似三角形面积的比等于相似比的平方99、任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值100、任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值101、圆是定点的距离等于定长的点的集合102、圆的内部可以看作是圆心的距离小于半径的点的集合103、圆的外部可以看作是圆心的距离大于半径的点的集合104、同圆或等圆的半径相等105、到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆106、和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线107、到已知角的两边距离相等的点的轨迹,是这个角的平分线108、到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线109、定理不在同一直线上的三点确定一个圆。

新人教版初中数学公式总结

新人教版初中数学公式总结

新人教版初中数学公式总结
数学是一门需要掌握各种公式的学科。

下面是新人教版初中数学课程中的一些常用公式总结:
1. 平方公式
对于一个数a,其平方可以表示为a^2。

2. 立方公式
对于一个数a,其立方可以表示为a^3。

3. 一元一次方程公式
一元一次方程的一般形式为ax + b = 0。

其中,a和b都是已知常数,x是未知数。

解方程的步骤是将方程整理为ax = -b,然后求得x的值。

4. 一元一次不等式公式
一元一次不等式的一般形式为ax + b > 0或ax + b < 0。

其中,a和b都是已知常数,x是未知数。

解不等式的步骤是将方程整理为ax > -b或ax < -b,然后确定x的取值范围。

5. 二元一次方程公式
二元一次方程的一般形式为ax + by = c,dx + ey = f。

其中,a、b、c、d、e和f都是已知常数,x和y是未知数。

解方程的步骤是
先用一种方法将其中一个变量表示出来,然后将它代入另一个方程,求解得到另一个变量的值。

6. 相似三角形公式
相似三角形有相似比。

如果两个三角形的对应角相等,并且对
应边成比例,那么它们相似。

相似三角形的相似比等于对应边的长
度比。

以上是新人教版初中数学课程中的一些常用公式总结。

通过掌
握这些公式,能够更好地解决数学问题。

希望这份总结对你有帮助!。

(完整版)人教版初中数学知识点总结 公式

(完整版)人教版初中数学知识点总结 公式

(完整版)人教版初中数学知识点总结公式一、整数和小数1. 整数:正整数、负整数、零2. 小数:有限小数、无限小数、循环小数3. 小数的四舍五入:小数的第一位是被保留的数,第二位如果大于或等于5,则第一位加1;如果小于5,则舍去第二位。

4. 小数的转化:将小数的分数形式求出,可以分为有限小数和循环小数。

5. 数轴:数轴上原点是0,数轴上的正数向右,负数向左。

6. 绝对值:一个数a的绝对值是它到0的距离,记作|a|。

7. 加减法:同号相加减,异号相减;先把减数取反再加。

8. 乘除法:同号得正,异号得负;除数不为0。

9. 分数的四则运算:加减法要通分,乘法直接相乘,除法变成乘以倒数。

10. 百分数:用分数表示的百分数,分母是100。

11. 百分数的转化:百分数可以转化成小数或分数。

二、代数式和方程式1. 代数式:含有未知数的式子,可以是数字、字母和运算符号的组合。

2. 方程式:含有未知数的代数式,表示等式的形式。

3. 解方程的步骤:运用逆运算、移项和通分的方法,将未知数的系数系数化为1,得到方程的解。

4. 一元一次方程:未知数的最高次数是1,形如ax+b=0。

5. 实际问题的解法:将实际问题转化为代数式和方程式,再运用解方程的方法求解。

6. 不等式:含有不等号的式子,可以是数字、字母和运算符号的组合。

7. 不等式的解法:将不等式中的未知数的系数系数化为1,再将不等式的符号确定方向,从而求得不等式的解。

三、比例和分数1. 比例关系:表示可比较的两个数之间的量的关系,通常表示成a:b或a/b。

2. 相等比例:两个比例中对应的两个数之间的比是相等的。

3. 比例的性质:比例中的四个数成正比例或反比例,比例中的两个比相等,化简比例后仍然是比例。

4. 分数:表示整体中的一部分,通常表示成a/b。

5. 分数的化简:将分子分母同时除以它们的最大公约数。

6. 分数的大小比较:通分后比较分子大小。

7. 分数的加减法:通分后分子相加减,分母不变。

人教版初中数学公式大全1

人教版初中数学公式大全1

人教版初中数学公式大全1人教版初中数学公式大全1一、整式的加法与减法公式1.加法交换律:$a+b=b+a$2.减法公式:$a-b=a+(-b)$3.加法结合律:$(a+b)+c=a+(b+c)$4.减法结合律:$(a-b)-c=a-(b+c)$5.加法的零元:$a+0=a$6.减法的零元:$a-0=a$7.减法的相反数:$a+(-a)=0$8.加法的相反数:$a+(-b)=a-b$二、整式的乘法公式三、整式的乘方公式3. 幂的除法:$\frac{a^m}{a^n}=a^{m-n}$4.幂的零次方:$a^0=1$5. 幂的负次方:$a^{-n}=\frac{1}{a^n}$四、整式的化简公式1. 同底数幂的除法:$\frac{a^m}{a^n}=a^{m-n}$3. 分子相同分母相加:$\frac{a}{b}+\frac{c}{b}=\frac{a+c}{b}$4. 分子有分母的除法:$\frac{a+b}{c}=\frac{a}{c}+\frac{b}{c}$五、因式分解公式1. 提取公因式:$ax+bx=(a+b)x$2.公式$a^2-b^2=(a+b)(a-b)$3. 公式$(a+b)^2=a^2+2ab+b^2$4. 公式$(a-b)^2=a^2-2ab+b^2$5. 公式$a^2+b^2=(a+b)^2-2ab$六、一元一次方程及解法公式1.方程的加法原理:若$a=b$,则$a+c=b+c$2.方程的减法原理:若$a=b$,则$a-c=b-c$4. 方程的除法原理:若$a=b$,则$\frac{a}{c}=\frac{b}{c}$5. 一元一次方程求解公式:$ax=b$,则$x=\frac{b}{a}$七、简单利、息问题公式八、平方与平方根公式1.定义:$a^2$表示$a$的平方,$a$称为$a^2$的平方根。

2. 平方根的性质:$\sqrt{a^2}=,a,$3. 平方的性质:$(a+b)^2=a^2+2ab+b^2$4. 平方的性质:$(a-b)^2=a^2-2ab+b^2$5.平方的性质:$a^2-b^2=(a+b)(a-b)$九、直角三角形中的三角函数公式1. 正弦定理:$\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}$2. 余弦定理:$c^2=a^2+b^2-2ab\cos C$3. 正切定理:$\tan A=\frac{\sin A}{\cos A}$。

初中数学人教版公式大全总结

初中数学人教版公式大全总结

初中数学人教版公式大全总结?答:初中数学人教版公式大全总结如下:一、数与代数1. 正整数n的位数为[log10(n)+1](其中[x]表示不超过x的最大整数,如[3.2]=3,[5]=5,[8.9999]=8等)。

2. 如果m>n,那么am>an(m、n均是正数,a>1时)。

3. 完全平方数公式:①(a+b)²=a²+2ab+b²;②(a-b)²=a²-2ab+b²。

4. 平方差公式:(a+b)(a-b)=a²-b²。

5. 同底数幂的乘法:am×an=am+n(m、n都是正数)。

6. 幂的乘方:(am)n=amn(m,n都是正数)。

7. 积的乘方:(ab)n=anbn(n是正数)。

8. 二项式定理:(a+b)n=C(n,0)a^n+C(n,1)a^(n-1)b+...+C(n,i)a^(n-i)b^i+...+C(n,n)b^n(其中i为0到n之间的整数)。

二、空间与图形1. 三角形内角和公式:三角形三个内角的和等于180°。

2. 多边形的内角和公式:(n-2)×180°(其中n表示多边形的边数)。

3. 勾股定理:在直角三角形中,两直角边的平方和等于斜边的平方,即c²=a²+b²(其中c为斜边,a、b为两直角边)。

4. 弧长公式:l=nπr/180(其中l表示弧长,n表示圆心角度数,r表示半径)。

5. 扇形面积公式:s=nπr²/360=lr/2(其中s表示扇形面积,n表示圆心角度数,r表示半径,l表示弧长)。

6. 正方形周长公式:c=4a(其中c表示周长,a表示边长)。

7. 正方形面积公式:s=a²(其中s表示面积,a表示边长)。

8. 长方形周长公式:c=2(a+b)(其中c表示周长,a、b分别表示长和宽)。

初中数学公式大全_人教版_

初中数学公式大全_人教版_

⑶加权平均数: x
=
x1 f1
+ x2
f2 +Λ n
+ xk
fk
( f1
+
f2

+
fk
= n) ;
⑷平均数是刻划数据的集中趋势(集中位置)的特征数。通常用样本平均数去估计总体
平均数,样本容量越大,估计越准确。
第1页
1
5.不解方程,求二次方程的根 x1、x2 的对称式的值,特别注意以下公式:
① x12 + x22 = (x1 + x2 )2 − 2x1x2
② 1 + 1 = x1 + x2 x1 x2 x1x2
③ (x1 − x2 )2 = (x1 + x2 )2 − 4x1x2 ④ | x1 − x2 |= (x1 + x2 )2 − 4x1x2 ⑤ (| x1 | + | x2 |)2 = (x1 + x2 )2 − 2x1x2 + 2 | x1x2 | ⑥ x13 + x23 = (x1 + x2 )3 − 3x1x2 (x1 + x2 )
当 Δ = b2 − 4ac =0 时,一元二次方程 ax 2 + bx + c = 0(a ≠ 0) 有两个相等的实数根.反之亦然.
当 Δ = b2 − 4ac <0 时,一元二次方程 ax2 + bx + c = 0(a ≠ 0) 没有的实数根.反之亦然.
3.根与系数的关系: x1
+ x2
=

b a
4.工程问题:工作量=工作效率×工作时间(没告诉工作量时,工作量为 1)。 5.利息问题:本息和=本金+本金×利率×期数 6.数字问题:三位数=百位数字×100+十位数字×10+个位数字 7.利润问题:单个利润=售价-进价;总利润=销量(每个售价-每个进价)

人教版初中数学公式大全

人教版初中数学公式大全

人教版初中数学公式大全1 过两点有且只有一条直线2 两点之间线段最短3 同角或等角的补角相等4 同角或等角的余角相等5 过一点有且只有一条直线和已知直线垂直6 直线外一点与直线上各点连接的所有线段中,垂线段最短7 平行公理经过直线外一点,有且只有一条直线与这条直线平行8 如果两条直线都和第三条直线平行,这两条直线也互相平行9 同位角相等,两直线平行10 内错角相等,两直线平行11 同旁内角互补,两直线平行12两直线平行,同位角相等13 两直线平行,内错角相等14 两直线平行,同旁内角互补15 定理三角形两边的和大于第三边16 推论三角形两边的差小于第三边17 三角形内角和定理三角形三个内角的和等于180°18 推论1 直角三角形的两个锐角互余19 推论2 三角形的一个外角等于和它不相邻的两个内角的和20 推论3 三角形的一个外角大于任何一个和它不相邻的内角21 全等三角形的对应边、对应角相等22边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等23 角边角公理( ASA)有两角和它们的夹边对应相等的两个三角形全等24 推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等25 边边边公理(SSS) 有三边对应相等的两个三角形全等26 斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等27 定理1 在角的平分线上的点到这个角的两边的距离相等28 定理2 到一个角的两边的距离相同的点,在这个角的平分线上29 角的平分线是到角的两边距离相等的所有点的集合30 等腰三角形的性质定理等腰三角形的两个底角相等(即等边对等角)31 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边32 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合33 推论3 等边三角形的各角都相等,并且每一个角都等于60°34 等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)35 推论1 三个角都相等的三角形是等边三角形36 推论2 有一个角等于60°的等腰三角形是等边三角形37 在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半38 直角三角形斜边上的中线等于斜边上的一半39 定理线段垂直平分线上的点和这条线段两个端点的距离相等40 逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上41 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合42 定理1 关于某条直线对称的两个图形是全等形43 定理2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线44定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上45逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称46勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^2 47勾股定理的逆定理如果三角形的三边长a、b、c有关系a^2+b^2=c^2 ,那么这个三角形是直角三角形48定理四边形的内角和等于360°49四边形的外角和等于360°50多边形内角和定理n边形的内角的和等于(n-2)×180°51推论任意多边的外角和等于360°52平行四边形性质定理1 平行四边形的对角相等53平行四边形性质定理2 平行四边形的对边相等54推论夹在两条平行线间的平行线段相等55平行四边形性质定理3 平行四边形的对角线互相平分56平行四边形判定定理1 两组对角分别相等的四边形是平行四边形57平行四边形判定定理2 两组对边分别相等的四边形是平行四边形58平行四边形判定定理3 对角线互相平分的四边形是平行四边形59平行四边形判定定理4 一组对边平行相等的四边形是平行四边形60矩形性质定理1 矩形的四个角都是直角61矩形性质定理2 矩形的对角线相等62矩形判定定理1 有三个角是直角的四边形是矩形63矩形判定定理2 对角线相等的平行四边形是矩形64菱形性质定理1 菱形的四条边都相等65菱形性质定理2 菱形的对角线互相垂直,并且每一条对角线平分一组对角66菱形面积=对角线乘积的一半,即S=(a×b)÷267菱形判定定理1 四边都相等的四边形是菱形68菱形判定定理2 对角线互相垂直的平行四边形是菱形69正方形性质定理1 正方形的四个角都是直角,四条边都相等70正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角71定理1 关于中心对称的两个图形是全等的72定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分73逆定理如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称74等腰梯形性质定理等腰梯形在同一底上的两个角相等75等腰梯形的两条对角线相等76等腰梯形判定定理在同一底上的两个角相等的梯形是等腰梯形77对角线相等的梯形是等腰梯形78平行线等分线段定理如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等79 推论1 经过梯形一腰的中点与底平行的直线,必平分另一腰80 推论2 经过三角形一边的中点与另一边平行的直线,必平分第三边81 三角形中位线定理三角形的中位线平行于第三边,并且等于它的一半82 梯形中位线定理梯形的中位线平行于两底,并且等于两底和的一半L=(a+b)÷2 S=L×h83 (1)比例的基本性质如果a:b=c:d,那么ad=bc如果ad=bc,那么a:b=c:d84 (2)合比性质如果a/b=c/d,那么(a±b)/b=(c±d)/d85 (3)等比性质如果a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a/b86 平行线分线段成比例定理三条平行线截两条直线,所得的对应线段成比例87 推论平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例88 定理如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边89 平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例90 定理平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似91 相似三角形判定定理1 两角对应相等,两三角形相似(ASA)92 直角三角形被斜边上的高分成的两个直角三角形和原三角形相似93 判定定理2 两边对应成比例且夹角相等,两三角形相似(SAS)94 判定定理3 三边对应成比例,两三角形相似(SSS)95 定理如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似96 性质定理1 相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比97 性质定理2 相似三角形周长的比等于相似比98 性质定理3 相似三角形面积的比等于相似比的平方99 任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值100任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值101圆是定点的距离等于定长的点的集合102圆的内部可以看作是圆心的距离小于半径的点的集合103圆的外部可以看作是圆心的距离大于半径的点的集合104同圆或等圆的半径相等105到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆106和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线107到已知角的两边距离相等的点的轨迹,是这个角的平分线108到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线109定理不在同一直线上的三点确定一个圆。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

七年级数学(上)知识点第一章 有理数一. 知识框架二.知识概念 1.有理数:(1)凡能写成)0p q ,p (p q≠为整数且形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;不一定是负数,也不一定是正数;不是有理数;(2)有理数的分类: ① ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数 ② ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数 2.数轴:数轴是规定了原点、正方向、单位长度的一条直线.3.相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0; (2)相反数的和为0 0 a 、b 互为相反数. 4.绝对值:(1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;(2) 绝对值可表示为:⎪⎩⎪⎨⎧<-=>=)0a (a )0a (0)0a (a a 或⎩⎨⎧<-≥=)0a (a )0a (aa ;绝对值的问题经常分类讨论;5.有理数比大小:(1)正数的绝对值越大,这个数越大;(2)正数永远比0大,负数永远比0小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数-小数 > 0,小数-大数 < 0. 6.互为倒数:乘积为1的两个数互为倒数;注意:0没有倒数;若 a ≠0,那么a 的倒数是a1;若1 a 、b互为倒数;若1 a 、b 互为负倒数. 7. 有理数加法法则:(1)同号两数相加,取相同的符号,并把绝对值相加;(2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值; (3)一个数与0相加,仍得这个数.8.有理数加法的运算律: (1)加法的交换律: ;(2)加法的结合律:()().9.有理数减法法则:减去一个数,等于加上这个数的相反数;即(). 10 有理数乘法法则:(1)两数相乘,同号为正,异号为负,并把绝对值相乘; (2)任何数同零相乘都得零;(3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定. 11 有理数乘法的运算律: (1)乘法的交换律:;(2)乘法的结合律:()(); (3)乘法的分配律:a () .12.有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数,无意义即0a .13.有理数乘方的法则:(1)正数的任何次幂都是正数;(2)负数的奇次幂是负数;负数的偶次幂是正数;注意:当n 为正奇数时: ()或(a )()n , 当n 为正偶数时: ()n 或 ()()n .14.乘方的定义:(1)求相同因式积的运算,叫做乘方;(2)乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂;15.科学记数法:把一个大于10的数记成a ×10n 的形式,其中a 是整数数位只有一位的数,这种记数法叫科学记数法.16.近似数的精确位:一个近似数,四舍五入到那一位,就说这个近似数的精确到那一位.17.有效数字:从左边第一个不为零的数字起,到精确的位数止,所有数字,都叫这个近似数的有效数字. 18.混合运算法则:先乘方,后乘除,最后加减.第二章 整式的加减 一.知识框架二.知识概念1.单项式:在代数式中,若只含有乘法(包括乘方)运算。

或虽含有除法运算,但除式中不含字母的一类代数式叫单项式.2.单项式的系数与次数:单项式中不为零的数字因数,叫单项式的数字系数,简称单项式的系数;系数不为零时,单项式中所有字母指数的和,叫单项式的次数. 3.多项式:几个单项式的和叫多项式.4.多项式的项数与次数:多项式中所含单项式的个数就是多项式的项数,每个单项式叫多项式的项;多项式里,次数最高项的次数叫多项式的次数。

第二章 一元一次方程一. 知识框架二.知识概念1.一元一次方程:只含有一个未知数,并且未知数的次数是1,并且含未知数项的系数不是零的整式方程是一元一次方程.2.一元一次方程的标准形式: 0(x 是未知数,a 、b 是已知数,且a ≠0).3.一元一次方程解法的一般步骤: 整理方程 …… 去分母 …… 去括号 …… 移项 …… 合并同类项 …… 系数化为1 …… (检验方程的解). 4.列一元一次方程解应用题:(1)读题分析法:………… 多用于“和,差,倍,分问题” 仔细读题,找出表示相等关系的关键字,例如:“大,小,多,少,是,共,合,为,完成,增加,减少,配套”,利用这些关键字列出文字等式,并且据题意设出未知数,最后利用题目中的量与量的关系填入代数式,得到方程.(2)画图分析法: ………… 多用于“行程问题”利用图形分析数学问题是数形结合思想在数学中的体现,仔细读题,依照题意画出有关图形,使图形各部分具有特定的含义,通过图形找相等关系是解决问题的关键,从而取得布列方程的依据,最后利用量与量之间的关系(可把未知数看做已知量),填入有关的代数式是获得方程的基础. 11.列方程解应用题的常用公式:(1)行程问题: 距离=速度·时间 时间距离速度=速度距离时间=; (2)工程问题: 工作量=工效·工时 工时工作量工效=工效工作量工时=; (3)比率问题: 部分=全体·比率 全体部分比率= 比率部分全体=;(4)顺逆流问题: 顺流速度=静水速度+水流速度,逆流速度=静水速度-水流速度;(5)商品价格问题: 售价=定价·折·101,利润=售价-成本, %100⨯-=成本成本售价利润率;(6)周长、面积、体积问题:C 圆=2πR ,S 圆=πR 2,C 长方形=2(),S 长方形, C 正方形=4a ,S 正方形2,S 环形=π(R 22)长方体 ,V 正方体3,V 圆柱=πR 2h ,V 圆锥=31πR 2h.第三章 图形的认识初步 知识框架七年级数学(下)知识点第五章相交线与平行线一、知识框架二、知识概念1.邻补角:两条直线相交所构成的四个角中,有公共顶点且有一条公共边的两个角是邻补角。

2.对顶角:一个角的两边分别是另一个叫的两边的反向延长线,像这样的两个角互为对顶角。

3.垂线:两条直线相交成直角时,叫做互相垂直,其中一条叫做另一条的垂线。

4.平行线:在同一平面内,不相交的两条直线叫做平行线。

5.同位角、内错角、同旁内角:同位角:∠1与∠5像这样具有相同位置关系的一对角叫做同位角。

内错角:∠2与∠6像这样的一对角叫做内错角。

同旁内角:∠2与∠5像这样的一对角叫做同旁内角。

6.命题:判断一件事情的语句叫命题。

7.平移:在平面内,将一个图形沿某个方向移动一定的距离,图形的这种移动叫做平移平移变换,简称平移。

8.对应点:平移后得到的新图形中每一点,都是由原图形中的某一点移动后得到的,这样的两个点叫做对应点。

9.定理与性质对顶角的性质:对顶角相等。

10垂线的性质:性质1:过一点有且只有一条直线与已知直线垂直。

性质2:连接直线外一点与直线上各点的所有线段中,垂线段最短。

11.平行公理:经过直线外一点有且只有一条直线与已知直线平行。

平行公理的推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行。

12.平行线的性质:性质1:两直线平行,同位角相等。

性质2:两直线平行,内错角相等。

性质3:两直线平行,同旁内角互补。

13.平行线的判定:判定1:同位角相等,两直线平行。

判定2:内错角相等,两直线平行。

判定3:同旁内角相等,两直线平行。

第六章平面直角坐标系一.知识框架二.知识概念1.有序数对:有顺序的两个数a与b组成的数对叫做有序数对,记做()2.平面直角坐标系:在平面内,两条互相垂直且有公共原点的数轴组成平面直角坐标系。

3.横轴、纵轴、原点:水平的数轴称为x轴或横轴;竖直的数轴称为y轴或纵轴;两坐标轴的交点为平面直角坐标系的原点。

4.坐标:对于平面内任一点P,过P分别向x轴,y轴作垂线,垂足分别在x轴,y轴上,对应的数分别叫点P的横坐标和纵坐标。

5.象限:两条坐标轴把平面分成四个部分,右上部分叫第一象限,按逆时针方向一次叫第二象限、第三象限、第四象限。

坐标轴上的点不在任何一个象限内。

第七章三角形一.知识框架二.知识概念1.三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。

2.三边关系:三角形任意两边的和大于第三边,任意两边的差小于第三边。

3.高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足间的线段叫做三角形的高。

4.中线:在三角形中,连接一个顶点和它的对边中点的线段叫做三角形的中线。

5.角平分线:三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线。

6.三角形的稳定性:三角形的形状是固定的,三角形的这个性质叫三角形的稳定性。

6.多边形:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形。

7.多边形的内角:多边形相邻两边组成的角叫做它的内角。

8.多边形的外角:多边形的一边与它的邻边的延长线组成的角叫做多边形的外角。

9.多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线。

10.正多边形:在平面内,各个角都相等,各条边都相等的多边形叫做正多边形。

11.平面镶嵌:用一些不重叠摆放的多边形把平面的一部分完全覆盖,叫做用多边形覆盖平面。

12.公式与性质三角形的内角和:三角形的内角和为180°三角形外角的性质:性质1:三角形的一个外角等于和它不相邻的两个内角的和。

性质2:三角形的一个外角大于任何一个和它不相邻的内角。

多边形内角和公式:n边形的内角和等于(2)·180°多边形的外角和:多边形的内角和为360°。

多边形对角线的条数:(1)从n边形的一个顶点出发可以引(3)条对角线,把多边形分词(2)个三角形。

(2)n边形共有23)-n(n条对角线。

第八章二元一次方程组一.知识结构图二、知识概念1.二元一次方程:含有两个未知数,并且未知数的指数都是1,像这样的方程叫做二元一次。

方程,一般形式是(a≠0≠0)。

2.二元一次方程组:把两个二元一次方程合在一起,就组成了一个二元一次方程组。

3.二元一次方程的解:一般地,使二元一次方程两边的值相等的未知数的值叫做二元一次方程组的解。

4.二元一次方程组的解:一般地,二元一次方程组的两个方程的公共解叫做二元一次方程组。

5.消元:将未知数的个数由多化少,逐一解决的想法,叫做消元思想。

6.代入消元:将一个未知数用含有另一个未知数的式子表示出来,再代入另一个方程,实现消元,进而求得这个二元一次方程组的解,这种方法叫做代入消元法,简称代入法。

相关文档
最新文档