linux c网络编程,聊天室服务器,群聊,用多线程实现
c 多线程实现的四种方式

c 多线程实现的四种方式C语言是一种非常流行的编程语言,它可以用来实现多线程编程。
多线程编程可以让你的程序更高效、更快速地运行,因为它可以同时执行多个任务。
在这篇文章中,我们将介绍 C 多线程实现的四种方式。
1. 使用 pthread 库pthread 是一个 POSIX 标准定义的多线程库,它提供了一套API 接口,可以用来实现多线程编程。
使用 pthread,你可以创建多个线程并且控制它们的行为。
这种方式是 C 语言实现多线程的最常用方式之一。
2. 使用 OpenMP 库OpenMP 是一个开源的多线程库,它可以用来在 C 语言中实现多线程编程。
OpenMP 提供了一套 API 接口,可以让你更方便地编写并行程序。
使用 OpenMP,你可以使用 #pragma 指令来控制并行执行的代码块。
3. 使用 POSIX 线程POSIX 线程是一种 POSIX 标准定义的多线程接口,它可以用来实现多线程编程。
与 pthread 类似,POSIX 线程提供了一套 API 接口,可以让你更方便地编写多线程程序。
4. 使用 Windows 线程如果你在 Windows 操作系统上编写 C 语言程序,你可以使用Windows 线程来实现多线程编程。
Windows 线程提供了一套 API 接口,可以让你在 Windows 平台上创建多个线程并且控制它们的行为。
总结以上是 C 多线程实现的四种方式。
在选择使用哪种方式时,你应该考虑自己的需求和使用的操作系统。
不同的方式会有不同的 API 接口、性能和可移植性。
如果你需要了解更多关于 C 多线程编程的知识,可以参考相关的书籍和教程。
C语言并发编程多线程和多进程的应用

C语言并发编程多线程和多进程的应用C语言是一门广泛应用于系统级开发的编程语言,它具备高性能和低级别的特点,常用于操作系统、设备驱动和嵌入式系统的开发。
在实际应用中,多线程和多进程是C语言并发编程的两个重要概念和技术,它们可以提高程序的性能和响应能力。
本文将介绍C语言中多线程和多进程的应用,并探讨它们在不同场景中的优劣和适用性。
一、多线程的应用1. 线程概念及优势多线程是指在一个进程内创建多个并行执行的线程,每个线程可以独立执行不同的任务。
相比单线程程序,多线程程序具有以下优势:- 提高程序的性能:多线程能够将任务拆分为多个子任务,并在多个线程上同时执行,从而减少程序的执行时间。
- 增加程序的响应能力:通过将阻塞操作放在单独的线程中执行,可以避免主线程的阻塞,提高程序的响应速度。
- 使程序结构更清晰:多线程可以提升程序的模块化和可维护性,将不同的功能模块独立封装在不同的线程中,易于理解和扩展。
2. 多线程的创建和同步在C语言中,可以使用标准的线程库如pthread来创建和管理线程。
创建线程的步骤包括线程的初始化、启动和等待线程的结束。
多线程之间的同步可以通过互斥锁、条件变量和信号量等机制来实现。
互斥锁用于保护共享资源的访问,条件变量用于线程之间的通信,信号量则可以用于限制并发访问的数量。
3. 多线程的应用场景多线程适用于以下场景:- 超过单个核心能力的计算任务:通过将任务分解为多个子任务,可以在多个核心上并行执行,提高计算任务的执行效率。
- 服务器应用:通过多线程可以提高服务器的并发处理能力,同时处理多个客户端请求。
- 图形界面程序:通过将耗时操作放在后台线程执行,可以提高界面的流畅性和响应速度。
二、多进程的应用1. 进程概念及优势进程是指一个程序的执行实例,它拥有独立的地址空间和资源。
多进程是指在操作系统中同时运行多个独立的进程,每个进程可以执行不同的任务。
多进程编程的优势包括:- 提高系统的稳定性:通过将不同的任务独立在多个进程中执行,可以避免一个进程的崩溃导致整个系统的崩溃。
linux下的CC++多进程多线程编程实例详解

linux下的CC++多进程多线程编程实例详解linux下的C\C++多进程多线程编程实例详解1、多进程编程#include <stdlib.h>#include <sys/types.h>#include <unistd.h>int main(){pid_t child_pid;/* 创建⼀个⼦进程 */child_pid = fork();if(child_pid == 0){printf("child pid\n");exit(0);}else{printf("father pid\n");sleep(60);}return 0;}2、多线程编程#include <stdio.h>#include <pthread.h>struct char_print_params{char character;int count;};void *char_print(void *parameters){struct char_print_params *p = (struct char_print_params *)parameters;int i;for(i = 0; i < p->count; i++){fputc(p->character,stderr);}return NULL;}int main(){pthread_t thread1_id;pthread_t thread2_id;struct char_print_params thread1_args;struct char_print_params thread2_args;thread1_args.character = 'x';thread1_args.count = 3000;pthread_create(&thread1_id, NULL, &char_print, &thread1_args);thread2_args.character = 'o';thread2_args.count = 2000;pthread_create(&thread2_id, NULL, &char_print, &thread2_args);pthread_join(thread1_id, NULL);pthread_join(thread2_id, NULL);return 0;}3、线程同步与互斥1)、互斥pthread_mutex_t mutex;pthread_mutex_init(&mutex, NULL);/*也可以⽤下⾯的⽅式初始化*/pthread_mutex_t mutex = PTHREAD_MUTEX_INITIALIZER; pthread_mutex_lock(&mutex);/* 互斥 */thread_flag = value;pthread_mutex_unlock(&mutex);2)、条件变量int thread_flag = 0;pthread_mutex_t mutex;pthread_cond_t thread_flag_cv;\void init_flag(){pthread_mutex_init(&mutex, NULL);pthread_cond_init(&thread_flag_cv, NULL);thread_flag = 0;}void *thread_function(void *thread_flag){while(1){pthread_mutex_lock(&mutex);while(thread_flag != 0 ){pthread_cond_wait(&thread_flag_cv, &mutex);}pthread_mutex_unlock(&mutex);do_work();}return NULL;}void set_thread_flag(int flag_value){pthread_mutex_lock(&mutex);thread_flag = flag_value;pthread_cond_signal(&thread_flag_cv);pthread_mutex_unlock(&mutex);}感谢阅读,希望能帮助到⼤家,谢谢⼤家对本站的⽀持!。
C语言中的多线程编程技巧

C语言中的多线程编程技巧在C语言中,多线程编程是一种常见的技术,能够充分发挥多核处理器的性能优势,提高程序的效率。
以下是一些在C语言中进行多线程编程时常用的技巧:1. 创建线程:在C语言中,可以使用pthread库来创建线程。
首先需要包含< pthread.h>头文件,并定义一个线程的函数,通过pthread_create函数创建线程。
例如,可以使用以下代码创建一个线程:```#include <pthread.h>void* thread_func(void* arg) {// 线程的具体执行内容return NULL;}int main() {pthread_t tid;pthread_create(&tid, NULL, thread_func, NULL);// 主线程的执行内容pthread_join(tid, NULL); // 等待线程结束return 0;}```2. 线程同步:在多线程编程中,需要注意线程间的数据共享和访问问题。
可以使用互斥锁(pthread_mutex_t)来保护共享数据,避免多个线程同时访问造成数据混乱。
另外,还可以使用条件变量(pthread_cond_t)来进行线程间的同步和通信。
例如,可以使用以下代码实现线程同步:```#include <pthread.h>pthread_mutex_t mutex;pthread_cond_t cond;int count = 0;void* producer(void* arg) {while (1) {pthread_mutex_lock(&mutex);count++;pthread_mutex_unlock(&mutex);pthread_cond_signal(&cond); // 唤醒消费者线程}return NULL;}void* consumer(void* arg) {while (1) {pthread_mutex_lock(&mutex);while (count == 0) {pthread_cond_wait(&cond, &mutex); // 等待生产者线程 }count--;pthread_mutex_unlock(&mutex);}return NULL;}int main() {pthread_t producer_tid, consumer_tid;pthread_mutex_init(&mutex, NULL);pthread_cond_init(&cond, NULL);pthread_create(&producer_tid, NULL, producer, NULL);pthread_create(&consumer_tid, NULL, consumer, NULL);// 主线程的执行内容pthread_join(producer_tid, NULL);pthread_join(consumer_tid, NULL);pthread_mutex_destroy(&mutex);pthread_cond_destroy(&cond);return 0;}```3. 线程池:在多线程编程中,可以使用线程池来管理线程的创建和销毁,提高程序的性能和效率。
linux和windows通用的多线程方法

linux和windows通用的多线程方法
多线程是一种在计算机程序中处理多个相似或相关的任务的技术。
无论是在Linux还是Windows中,多线程的实现都是类似的。
以下是一些通用的多线程方法:
1. 创建线程:使用线程库中提供的函数,例如在Linux中使用pthread_create(),在Windows中使用CreateThread()。
2. 同步线程:使用同步机制来保护共享资源,例如在Linux中使用pthread_mutex_lock()和pthread_mutex_unlock(),在Windows 中使用CriticalSection。
3. 线程间通信:使用消息传递或共享内存等机制来实现线程间通信。
在Linux中,可以使用管道、共享内存和信号量等。
在Windows 中,可以使用命名管道和邮槽等。
4. 线程池:创建一个线程池来管理多个线程,这样可以避免频繁地创建和销毁线程,提高效率。
5. 轮询:使用循环不断地检查线程是否完成任务,从而避免阻塞主线程。
总的来说,多线程在Linux和Windows中的实现都是类似的,只要掌握了基本的多线程概念和方法,就可以在两个操作系统中进行开发。
Linux多线程程序设计

创建缺省线程
如果未指定属性对象,则该对象为NULL,系统会创建具有以下属性
的缺省线程: 进程范围 非分离 缺省栈和缺省栈大小 零优先级
线程的ID号,创建
线程创建 int pthread_create (pthread_t * thread, __const pthread_attr_t * attr, void *(*__start_routine) (void *), void *arg); thread:指向线程标识符的指针,被创建的线程的标识符将由操作系统 写入到此结构中; attr:设置线程属性,如果为空指针(NULL),则表示采用缺省类型; start_routine:线程运行函数的起始地址; arg:指向运行函数参数的指针。
当创建线程成功时,函数返回0,若不为0 则说明创建线程失败,常见的 错误返回代码为EAGAIN 和EINVAL。前者表示系统限制创建新的线程, 例如线程数目过多了;后者表示第二个参数代表的线程属性值非法。创 建线程成功后,新创建的线程运行start_routine函数,其输入参数由arg 确定,原来的线程则继续运行下一行代码。
线程属性
初始化属性
int pthread_attr_init(pthread_attr_t *tattr);
线程属性
销毁属性 int pthread_attr_destroy(pthread_attr_t *tattr); 设置分离状态
int pthread_attr_setdetachstate(pthread_attr_t *tattr,int
线程属性
设置调度策略
int pthread_attr_setschedpolicy(pthread_attr_t *tattr, int policy); POSIX 标准指定的Policy:
Linux下c语言多线程编程

Linux下c语⾔多线程编程引⾔ 线程(thread)技术早在60年代就被提出,但真正应⽤多线程到中去,是在80年代中期,solaris是这⽅⾯的佼佼者。
传统的Unix也⽀持线程的概念,但是在⼀个进程(process)中只允许有⼀个线程,这样多线程就意味着多进程。
现在,多 为什么有了进程的概念后,还要再引⼊线程呢?使⽤多线程到底有哪些好处?什么的系统应该选⽤多线程?我们⾸先必须回答这些问题。
使⽤多线程的理由之⼀是和进程相⽐,它是⼀种⾮常"节俭"的多任务操作⽅式。
我们知道,在Linux系统下,启动⼀个新的进程必须分配给它独⽴的地址空间,建⽴众多的数据表来维护它的代码段、堆栈段和数据段,这是⼀种"昂贵"的多任务⼯作⽅式。
⽽运⾏于⼀个进程中的多个线程,它们彼此之间使⽤相同的地址空间,共享⼤部分数据,启动⼀个线程所花费的空间远远⼩于启动⼀个进程所花费的空间,⽽且,线程间彼此切换所需的时间也远远⼩于进程间切换所需要的时间。
使⽤多线程的理由之⼆是线程间⽅便的机制。
对不同进程来说,它们具有独⽴的数据空间,要进⾏数据的传递只能通过通信的⽅式进⾏,这种⽅式不仅费时,⽽且很不⽅便。
线程则不然,由于同⼀进程下的线程之间共享数据空间,所以⼀个线程的数据可以直接为其它线程所⽤,这不仅快捷,⽽且⽅便。
当然,数据的共享也带来其他⼀些问题,有的变量不能同时被两个线程所修改,有的⼦程序中声明为static的数据更有可能给多线程程序带来灾难性的打击,这些正是编写多线程程序时最需要注意的地⽅。
除了以上所说的优点外,不和进程⽐较,多线程程序作为⼀种多任务、并发的⼯作⽅式,当然有以下的优点: 1) 提⾼应⽤程序响应。
这对图形界⾯的程序尤其有意义,当⼀个操作耗时很长时,整个系统都会等待这个操作,此时程序不会响应、、菜单的操作,⽽使⽤多线程技术,将耗时长的操作(time consuming)置于⼀个新的线程,可以避免这种尴尬的情况。
网络编程实训课程学习总结基于Socket的多人聊天室开发

网络编程实训课程学习总结基于Socket的多人聊天室开发在网络编程实训课程中,我学习了基于Socket的多人聊天室开发。
本文将总结我在学习过程中的收获和体会,并对实训课程进行一些反思和建议。
一、引言网络编程是现代计算机科学中非常重要的一个领域,它涉及到如何在不同的计算机之间进行通信和数据交换。
而Socket则是网络编程中常用的一种编程接口。
本次实训课程通过基于Socket的多人聊天室开发,使我们更加深入地了解了网络编程的原理和实践。
二、实训内容在实训课程中,我们首先学习了Socket编程的基本知识,包括Socket的建立、数据传输和断开等。
随后,我们开始实践基于Socket 的多人聊天室的开发。
通过分析需求,我们设计了聊天室的功能模块和用户界面,并使用Python编程语言进行开发。
三、学习收获1. 深入理解了网络编程的原理:通过实践,我更加深入地理解了网络编程的原理和过程。
我了解到Socket编程是通过TCP/IP协议栈实现的,而客户端和服务器之间的通信则是通过套接字(Socket)进行的。
2. 掌握了多线程编程:为了实现多个用户同时在线聊天的功能,我们采用了多线程编程的方式。
学习了线程的创建、管理和同步等技术,使得我们能够更好地实现多人聊天室。
3. 提升了团队协作能力:在开发聊天室的过程中,我们需要与团队成员紧密合作。
通过分工合作、协商解决问题等方式,我们体会到了团队协作的重要性,并在实践中逐渐提升了团队协作能力。
四、实训反思与建议在实训过程中,我发现了一些可以改进的地方,并提出了一些建议:1. 更加注重理论与实践结合:在学习网络编程的过程中,希望能够更加注重理论与实践的结合。
例如,在学习Socket编程的基本原理时,可以提供更多的实际案例进行演示。
2. 加强技术支持与指导:对于初学者而言,网络编程可能会遇到一些技术上的困难。
因此,希望在实训过程中能够加强技术支持与指导,及时解答学生的疑问。
3. 提供更多实际应用案例:除了多人聊天室的开发,希望在实训课程中能够提供更多实际应用案例。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
基于linux c的socket服务器,用线程写成
文件名:server.c
运行命令gcc server.c -o client -lpthread
./server
输入服务器的IP
郭迁迁
#include <stdlib.h>
#include <stdio.h>
#include <errno.h>
#include <string.h>
#include <unistd.h>
#include <netdb.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <sys/types.h>
#include <arpa/inet.h>
#include <pthread.h>
#define PORT 8004
char temp[100];
int flag=0;
int who;
void *threadrecv(void *arg);
void *threadsend(void *arg);
/*struct Info
{
}*/
int main()
{
int listenfd=socket(AF_INET, SOCK_STREAM,0);
if(listenfd<0)
{
perror("socket");
exit(1);
}
struct sockaddr_in serveraddr;
bzero((char *)&serveraddr,sizeof(serveraddr));
serveraddr.sin_family=AF_INET;
serveraddr.sin_addr.s_addr=htonl(INADDR_ANY);
serveraddr.sin_port=htons(PORT);
if(bind(listenfd,(struct sockaddr *)&serveraddr,sizeof(serveraddr))<0)
{
perror("connect");
exit(1);
}
if(listen(listenfd,10)<0)
{
perror("listen error");
exit(1);
}
struct sockaddr_in clientaddr;
int clientlen, connfdp[10];
int j;
char temp[100];
for(j=0;j<10;j++)
{
connfdp[j]=-1;
}
clientlen=sizeof(clientaddr);
int i=0;
pthread_t tid,tid1,tid2;
while(1)
{
connfdp[i]=accept(listenfd,(struct sockaddr *)&clientaddr, &clientlen);
//inet_ntop(AF_INET,&clientaddr.sin_addr,IP[i],sizeof(IP));
pthread_create(&tid,NULL,threadrecv,&connfdp[i]);
i++;
printf("在线人数%d\n",i);
printf("Accepted!\n");
pthread_create(&tid1,NULL,threadsend,connfdp);
}
void *threadrecv(void *arg)
{
while(1)
{
int num=0;
num=recv(*((int *)arg),temp,100,0);
if(num>0)
{
who=*((int *)arg);
printf(" 接收客户端信息: %s\n",temp);
flag=1;
}
}
return NULL;
}
void *threadsend(void * arg)
{
int i;
while(1)
{
if(flag==1)
{
for(i=0;((int *)arg)[i]!=-1;i++)
{
if(((int *)arg)[i]==who)
{
continue;
}
else
{
//send(((int *)arg)[i],IP[i],16,0);
send(((int *)arg)[i],temp,100,0);
}
printf("消息转发成功\n");
}
flag=0;
}
return NULL; }。