直角三角形的边角关系

合集下载

第1章 直角三角形的边角关系

第1章  直角三角形的边角关系

知识点 方向角的定义及应用
1.航海问题. 2.导航问题.
知识点 利用三角函数解决实际问题
三角函数最早的研究可以追溯到公元前2000年,在埃及数学和巴比 伦数学中,主要用于测量.例如:如果知道测量点距泰姬陵的位置与仰角的 大小,则可以轻松地求得泰姬陵的高度.
知识点 利用三角函数解决实际问题
在常见图形中解直角三角形时,常以“公共边”为桥梁,分别在两个 直角三角形中,选择恰当的三角函数,构建关系式进行求解.
知识点 解直角三角形的类型与解法
如图所示的是意大利的比萨斜塔,设塔顶中心点为B,塔身中心线与垂 直中心线的交点为A ,过B点向垂直中心线作垂线,垂足为C,在Rt△ABC 中,∠C=90°,BC=5.2 m,AB=54.5 m,显然可以求出∠A的正弦值,利用计算器 求出∠A的度数.
知识点 解直角三角形的类型与解法
知识点 锐角的正弦、余弦
为了绿化荒山,某地打算从位于山脚下的机井房沿着山坡铺设 水管,在山坡上修建一座扬水站,对坡面的绿地进行喷灌.现测得斜坡 的坡角(∠A)为30°,为使出水口的高度为35 m,显然可利用∠A的正弦 求出需要准备的水管长度.
知识点 锐角的正弦、余弦
锐角的正弦和余弦是在直角三角形中定义的,sin A的值随着∠A 的增大而增大,cos A的值随着∠A的增大而减小.
第一章 直角三角形 的边角关系
6 利用三角函数测高
知识点 测量倾斜角
俗话说:工欲善其事,必先利其器,为了测量仰角和俯角,如果没有专门 的仪器,可以自制一个简易测倾器,简易测倾器由铅垂、度盘、支杆组成, 可以按如图所示的步骤组装一个简易测倾器.
知识点 测量物体的高度
“不登山可以知道山高,不过河可以知道河宽.” 为了测量东方明珠塔的高度,小林和同学们在距离东方明珠塔 200 m处的地面上,用高1.20 m的测倾器测得东方明珠塔顶的仰角为 60°48',小林和同学利用解直角三角形的知识马上得出东方明珠塔的 高度约为359.06 m.

三角形的边角关系

三角形的边角关系

三角形的边角关系三角形是几何学中最基本的图形之一,它由三条边和三个角组成。

边和角之间存在着一系列重要的关系,这些关系对于解决三角形相关问题和证明三角形性质非常重要。

本文将深入探讨三角形的边角关系,包括角度和边长之间的关系以及三角形中的一些特殊边角关系。

一、角度和边长的关系1. 三角形内角和角度和为180度三角形的三个内角之和恒为180度,即∠A + ∠B + ∠C = 180°。

这一特性是三角形的重要基本属性,可以通过三角形内角和定理来证明。

2. 同位角和对应角当两条平行线被一条截线所穿过时,截线与平行线所夹的内、外角成对应角关系。

同位角是指两条平行线被第三条截线所穿过后所得到的对应内角,它们的度数相等。

对应角是指两条平行线被第三条截线所穿过后所得到的两个内角,它们的度数相等。

3. 三角形的外角和三角形的一个外角等于其余两个内角的和。

假设三角形的内角为∠A、∠B、∠C,其对应的外角为∠D、∠E、∠F,则有∠D = ∠A +∠B,∠E = ∠B + ∠C,∠F = ∠C + ∠A。

二、三角形的特殊边角关系1. 等边三角形等边三角形的三条边长度相等,三个内角也相等,每个角都是60度。

等边三角形具有对称性和稳定性,在建筑、设计和工程等领域有广泛应用。

2. 等腰三角形等腰三角形的两条边长度相等,两个底角也相等。

底角是等腰三角形两边的夹角,顶角是等腰三角形的顶点处的角,它恒为60度。

等腰三角形也常见于建筑和工程设计中。

3. 直角三角形直角三角形的一个内角为90度,称为直角,另外两个内角为锐角。

直角三角形是解决三角函数问题的基础,它的边角关系可以通过勾股定理得到。

4. 三角形边长关系在三角形中,两边之和大于第三边,且两边之差小于第三边。

这一关系称为三角形的两边之和大于第三边定理和两边之差小于第三边定理。

5. 等腰直角三角形等腰直角三角形是一种特殊的三角形,它同时具有等腰和直角的性质。

在等腰直角三角形中,两个锐角相等,且每个锐角为45度。

直角三角形的边角关系

直角三角形的边角关系

直角三角形的边角关系
直角三角形的角关系:任意两条边的长度之和大于第三条边,任意两条边的长度之差小于第三条边。

斜边的平方等于两条直角边的平方和。

直角三角形的判断:有一个直角的三角形是直角三角形;两个锐角互补的三角形是直角三角形;如果三角形一边的中线等于这条边的一半,那么这个三角形是直角三角形。

直角三角形的性质:1。

角的性质:直角三角形的两个锐角是互补的。

2.边的性质:直角三角形的三条边满足勾股定理,这是直角三角形最重要的性质。

3.斜边上的高度:直角三角形的斜边上的高度高于两个直角除以斜边的乘积,这是一种很常见的求高度线的方法。

4.斜边上的中线:直角三角形斜边上的中线等于斜边的一半,常用于几何计算和证明。

5、一副直角三角形包含两个特殊的三角形,含30°角的直角三角形和等腰直角三角形,在含有30°角的直角三角形中,30°角所对应的直角边是斜边的一半。

6、HL定理,判断两个直角三角形全等的特殊定理,本质是全等三角形的SSS定理,注意本定理只能在直角三角形中才能运用。

直角三角形的边角关系(含答案)

直角三角形的边角关系(含答案)

第十四章直角三角形的边角关系基础知识梳理1.锐角三角函数.在Rt△ABC中,∠C是直角,如图所示.(1)正切:∠A的对边与邻边的比叫做∠A的正切,记作tanA,即tanA=AA∠∠的对边的邻边.(2)正弦:∠A的对边与斜边的比叫做∠A的正弦,记作sinA,即sinA=A∠的对边邻边.(3)余弦:∠A的邻边与斜边的比叫做∠A的余弦,记作cosA,即cosA=A∠的邻边邻边.(4)锐角三角函数:锐角A的正弦、余弦、正切都叫做∠A的锐角三角函数.(5)锐角的正弦和余弦之间的关系.任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值.即:如果∠A+∠B=90°,那么sinA=cos(90°-A)=cosB;cosA=sin(•90•°-•A)•=sinB.(6)一些特殊角的三角函数值(如下表).三角函数角sin cos tan30°12323345°2222160°32123(7)已知角度可利用科学计算器求得锐角三角函数值;同样,•已知三角函数值也可利用科学计算器求得角度的大小.(8)三角函数值的变化规律.①当角度在0°~90°间变化时,正弦值(正切值)随着角度的增大(或减小)而增大(或减小).②当角度在0°~90°间变化时,余弦值随着角度的增大(或减小)而减小(•或增大).(9)同角三角函数的关系.①sin2A+cos2A=1;②tanA=sincosAA.2.运用三角函数解直角三角形.由直角三角形中除直角外的已知元素,求出所有未知元素的过程,叫做解直角三角形.如图所示,在Rt△ABC中,∠C=90°,∠A,∠B,∠C的对边分别为a,b,c.(1)三边之间的关系:a2+b2=c2(勾股定理).(2)锐角之间的关系:∠A+∠B=90°.(3)边角之间的关系:sinA=ac,cosA=bc,tanA=ab.所以,在直角三角形中,只要知道除直角外的两个元素(其中至少有一个是边),•就可以求出其余三个未知元素.解直角三角形的基本类型题解法如下表所示:类型已知条件解法两边两直角边a,bc=22a b+,tanA=ab,B=90°-A一直角边a,斜边cb=22c a-,sinA=ac,B=90°-A一边、一锐角一直角边a,锐角AB=90°-A,b=tanaA,c=sinaA斜边a,锐角A B=90°-A,a=c·sin,b=c·cosA注意:解直角三角形需要注意的问题:(1)尽量使用原始数据,使计算更加准确;(2)不是解直角三角形的问题,添加合适的辅助线转化为解直角三角形的问题;(3)恰当使用方程或方程组的方法解决一些较复杂的解直角三角形的问题;(4)在选用三角函数式时,尽量做乘法,避免做除法,以使运算简便;(5)必要时画出图形,分析已知什么,求什么,它们在哪个三角形中,•应当选用什么关系式进行计算;(6)添加辅助线的过程应书写在解题过程中.3.解直角三角形的实际问题.解直角三角形的实际问题涉及到如下概念和术语.(1)坡度、坡角.如图所示,坡面的垂直高度h和水平宽度L的比叫做坡度(或叫做坡比),用字母i表示,即i=hl.坡面与水平面的夹角记作α(叫做坡角),则i=hl=tanα.(2)仰角、俯角.当从低处观测高处的目标时,视线和水平线所成的锐角称为仰角.当从高处观测低处的目标时,视线与水平线所成的锐角称为俯角.如图所示.(3)方位角和方向角.①方位角:正北方向顺时针旋转与已知射线所成的角叫做方位角.如图所示的∠α(0°<α<360°).②方向角:正北或正南方向与已知射线所成的锐角叫做方向角.如图14-5所示的∠β(0°<β<90°),若∠β=30°,则方向角可记作南偏西30°.(4)燕尾槽的深度、燕尾角.燕尾槽的横断面如图所示,AE是燕尾槽的深度,AD是外口宽,BC是里口宽,∠B是燕尾角.考点与命题趋向分析(一)能力1.通过实例认识锐角三角函数(sinA ,cosA ,tanA ),知道30°,45°,60•°角的三角函数值;会使用计算器由已知锐角求它的三角函数值,由已知三角函数值求它对应的锐角.2.运用三角函数解决与直角三角形有关的简单实际问题. (二)命题趋向分析1.三角函数是代数与几何衔接点之一,是三角学的基础,近年来锐角三角函数常与四边形、相似形、坐标系、圆等相结合出题,多涉及实际应用问题,如梯子的倾斜程度、坡度等问题.【例1】(2004年河南省)如图1,在一个房间内,有一个梯子斜靠在墙上,梯子顶端距地面的垂直距离MA 为a 米,此时梯子的倾斜角为75°.如果梯子底端不动,顶端靠在对面墙上,此时梯子顶端距地面的垂直距离NB 为b 米,梯子的倾斜角为45°,则这间房子的宽AB 是________米.(1) (2) 【分析一】AB=AC+CB=tan 75a ︒+tan 45b︒.如图2,在Rt △ACB 中,∠C=90°.∠A=15•°,•∠ABC=75°, 在∠ABC 内部作∠ABD=15°,则∠BDC=30°,∠DBC=60°, 设BC=1,则BD=2,3, ∵∠A=∠ABD=15° ∴AD=BD=2 ∴3 ∴tan75°=AC BC23+3∴∴sin75°=ACAB 如图1所示:NB=CB=b 米∴b 米∴米 在Rt △MAC 中,sin75°=AMMC∴4a=()b解得-1)a∴AB=AC+CB=tan 75a ︒+tan 45b︒+b=(a+)a=a (米)【分析二】在图1中连MN ,可由MC=NC ,∠MCN=60°得等边三角形MCN ,作MH•⊥BN 于H .由∠A=∠MHB=90°,∠MCA=∠MNH=75°,MC=MN .可证△MAC ≌△MHN ,得AM=MH .•再证四边形MABH 为矩形,可得AB=MH=AM=a 米. 【解】此空应填a .2.涉及特殊角的三角函数值的应用题是近年中考中的热点,•对学生的综合能力要求较高,要勤于观察生活中的数学现象,并善于将生活中的实际问题转化为数学问题并加以解决.【例2】(2004年哈尔滨市)如图,在测量塔高AB 时,•选择与塔底在同一水平面的同一直线上的C 、D 两点,用测角仪器测得塔顶A 的仰角分别是30°和60°.•已知测角器高CE=1.5m ,CD=30m .求塔高AB .(答案保留根号) 【分析】由CD=30m ,可求EG=30m ,考虑到∠AGF 是△AEG 的外角,可知EG=AG ,故AG=30m ,在Rt △AGF 中可求AF 长.AB=AF+FB 问题得以解决. 【解】由题意可知:EG=CD=30米 ∵∠AEG=30°,∠AGF=60°∴∠EAG=30°∴EG=AG=30米在Rt△AFG中,sin60°=AF AG∴AF=AG·sin60°=30×32=153(米)∴AB=AF+FB=153+32(米)答:塔高AB为(153+32)米.【规律总结】本题发现EG=AG=30米,以及熟记特殊角三角函数值是关键.3.近10年来含特殊角的三角函数值的应用问题中中考中呈现上升趋势,•这类考题往往给定一些角的三角函数值供考生选用,且这类题多以中档解答题为主,望读者引起注意.【例3】(2004年沈阳市)某地一居民楼,窗户朝南,窗户的高度为h米,•此地一年中的冬至这一天的正午时刻太阳光与地面的夹角最小为α,夏至这一天的正午时刻太阳光与地面的夹角最大为β(如图1).小明想为自己家的窗户设计一个直角形遮阳篷BCD,要求它既能最大限度地遮挡夏天炎热的阳光,•又能最大限度地使冬天温度的阳光射入室内.小明查阅了有关资料,获得了所在地区∠α和∠β的相应数据:∠α=24°36′,∠β=73°30′,小明又量得窗户的高AB=1.65米.若同时满足下面两个条件:(1)•当太阳光与地面夹角为α时,要想使太阳光刚好全部射入室内;(2)•当太阳光与地面夹角为β时,要想使太阳光刚好不射入室内.请你借助图形(如图2),帮助小明算一算,•遮阳篷BCD中,BC和CD的长各是多少?(精确到0.01米)以下数据供计算中选用:sin24°36′=0.416 cos24°36′=0.909tan24°36′=0.458 cot24°36′=2.184sin73°30′=0.959 cos73°30′=0.284tan73°30′=3.376 cot73°30′=0.296【分析】图中有两个直角三角形,即△BCD 和△ACD .•利用这两个直角三角形求解.另外题中所给数据中cot24°36′实际上是tan24°36′的倒数,今后我们会学习到. 【解】∵在Rt △BCD 中,tan ∠CDB=BCCD,∠CDB=∠α ∴BC=CD ·tan ∠CDB=CD ·tan α ∵在Rt △ACD 中,tan ∠CDA=ACCD,∠CDA=∠β ∴AC=CD ·tan ∠CDA=CD ·tan β ∵AB=AC-BC=CD ·tan β-CD ·tan α =CD (tan β-tan α) ∴CD=tan tan AB βα-= 1.653.3760.458-≈0.57(米)∴BC=CD ·tan ∠CDB ≈0.57×0.458≈0.26(米) 答:BC 的长约为0.26米,CD 的长约为0.57米.【规律总结】本题的解决关键是把∠α、∠β置于两个直角三角形中,另外要细心体会把实际问题转化为数学模型的过程和方法.4.运用解直角三角形知识解决实际问题是近年中考的热点题型,•主要涉及测量(特别是底部不可到达的物体的高度的测量)、航空、航海、工程等领域,且说理性题(如船会不会触礁,速度应提高多少,巡逻艇能否追上走私船等)比重有所加大.这类题主要考查学生应用相关知识解决实际问题的能力. 【例4】(2003年青岛)如图14-11所示,•人民海关缉私巡逻艇在东海海域执行巡逻任务时,发现在其所处位置O 点的正北方向10海里处的A 点有一涉嫌走私船只,正以24海里/时的速度向正东方向航行,为迅速实施检查,巡逻艇调整好航向,以26•海里/时的速度追赶,在涉嫌船只不改变航向和航速的前提下,问 (1)需要几小时才能追上?(点B 为追上时的位置) (2)确定巡逻艇追赶方向(精确到0.1°)(参考数据:sin66.8°≈0.9191,cos66.8°≈0.3939,•sin67.•4•°≈0.•9231,cos67.4°≈0.3843,sin68.4°≈0.9298,cos68.4°≈0.3681,•sin70.•6•°≈0.9432,cos70.6°≈0.3322).【分析】由于已知速度,本题第(1)问可利用直角△ABO 的各边长列方程求解,•第(2)问可利用sin ∠AOB=ABOB,求出∠AOB 的度数. 【解】(1)设需要t 小时才能追上,则AB=24t ,OB=26t .在Rt △ABO 中,OB 2=AB 2+OA 2,即(26t )2=(24t )2+102,解得t=±1,t=-1不合题意,舍去,∴t=1,即需要1小时才能追上. (2)在Rt △ABO 中 ∵sin ∠AOB=AB OB =2426t t =1213≈0.9231, ∴∠AOB ≈67.4°即巡逻艇的追赶方向是北偏东67.4°.解题方法与技巧1.数形结合思想.【例1】已知tan α=34,求sin cos sin cos αααα+-的值. 【分析】利用数形结合思想,将已知条件tan α=34用图形表示.【解】如图所示,在Rt △ABC 中,∠C=90°,∠A=α,设BC=3k ,AC=4k ,则AB=22AC BC +=22(4)(3)k k +=5k .∴sin α=BC AB =35k k =35 cos α=4455AC k AB k ==, ∴原式=34553455+-=-7.方法2:转化思想 【例2】已知tan α=34,求sin cos sin cos αααα+-的值. 【分析】可将所求式子的分子、分母都除以cos ,转化为含有sin cos αα的式子,•再利用tan α=sin cos αα进行转化求解. 【解】将式子sin cos sin cos αααα+-的分子、分母都除以cos α,得原式=31tan143tan114αα++=--=-7【规律总结】因为tanα=34所以α不等于90°,所以cosα≠0,因此分子分母可以同时除以cosα.实现转化的目的.方法3:方程思想【例3】去年某省将地处A、B两地的两所大学合并成了一所综合性大学,•为了方便A、B两地师生的交往,学校准备在相距2千米的A、B•两地之间修筑一条笔直的公路(即图中的线段AB),经测量,在A地的北偏东60°方向,B地的西偏北45°的C处有一个半径为0.7千米的公园,问计划修筑的这条公路会不会穿过公园?为什么?【分析】过C作AB的垂线段CM,把AM、BM用含x的代数式3x,x表示,利用AM+MB=2列方程得,3x+x=2,解出CM的长与0.7千米进行比较,本题要体会设出CM的长,列方程解题的思想方法.【解】作CM⊥AB,垂足为M,设CM为x千米,在Rt△MCB中,∠MCB=∠MBC=45°,则MB=CM=x千米.在Rt△AMC中,∠CAM=30°,∠ACM=60°tan∠ACM=AM CM∴AM=CM·tan60°=3x千米∵AM+BM=2千米∴3x+x=2∴x=3-1≈1.732-2=0.732∴CM长约为0.732千米,大于0.7千米∴这条公路不会穿过公园.方法4:建模思想【例4】如图所示,一艘轮船以20里/时的速度由西向东航行,•途中接到台风警报,台风中心正以40里/时的速度由南向北移动,距离台风中心2010•里的圆形区域(包括边界)都属台风区,当轮船到A处时,测得台风中心移到位于点A•正南方向的B处,且AB=100里.(1)若这艘轮船自A处按原速度继续航行,在途中会不会遇到台风?若会,•试求轮船最初遇到台风的时间;若不,请说明理由.(2)现轮船自A处立即提高船速,向位于东偏北30°方向,相距60里的D港驶去,为使台风到来之前到达D港,问船速至少应提高多少?(取整数,13≈3.6)【分析】本题是航海问题,把航海问题抽象成纯数学问题,建立起“解直角三角形”的“数学模型”.【解】(1)设途中会遇到台风,且最初遇到台风的时间为t小时,此时,轮船位于C 处,台风中心移到E处,连结CE,则有AC=20t,AE=AB-EB=100-40t,EC=2010在Rt△ACE中,AE2+AC2=EC2∴(20t)2+(100-40t)2=(2010)2∴t2-4t+3=0△=(-4)2-4×1×3=4>0∴途中会遇到台风解方程①得t1=1,t2=3∴最初遇到台风的时间为1小时.(2)设台风抵达D港的时间为t小时,此时台风中心至M点,过D作DF⊥AB,垂足为F,连结DM.在Rt△ADF中,AD=60,∠FAD=60°∴DF=303,FA=30又FM=FA+AB-BM=130-40tMD=2010∴(303)2+(130-40t)2=(2010)2整理,得4t2-26t+39=0解之得t1=13134-,t2=13134+∴台风抵达D港的时间为13134-小时,到D港的速度为60÷13134-≈25.5(海里/时).因此为使台风抵达D 港之前轮船到D 港,轮船应提高6海里/时.方法5:说理性问题的解法【例5】如图,MN 表示某引水工程的一段设计路线,从M 到N 的走向为南偏东30°,在M 的南偏东60°方向上有一点A ,以A 为圆心,500m 为半径的圆形区域为居民区,•取MN 上另一点B ,测得BA 的方向为南偏东75°,已知MB=400m ,通过计算回答,如果不改变方向,输水路线是否会穿过居民区?【分析】说明输水路线是否穿过居民区,应过A 作MN 的垂线段AH ,计算出AH 的长,然后把AH 与500m 比较大小.【解】过A 作AH ⊥MN ,垂足为H ∵MK ∥BG∴∠GBH=∠KMH=30°又∵∠GBA=75°,∠HBA=45° ∴∠BAH=45° ∴AH=BH设AH 为xm ,则BH=xm ,在Rt △MHA 中,∠HMA=∠KMA-∠KMB=60°-30°=30°. ∵tan ∠HMA=AHMH∴MH=tan 30x =33x =3x∵MB=MH-BH∴3x-x=400 解得x=200(3+1)∴AH ≈546.4m>500m答:输水路线不会穿过居民区.【规律总结】此题是说理性问题,这类题要求学生对基本概念、基本定理、基本思路有清醒的认识,能根据实际问题进行相关的计算,并利用计算所得结果说明问题的原因、依据.方法6:探索性问题【例6】某学校为了改善教职工居住条件,•准备在教学楼(正楼)的正南方向建一座住宅楼(正楼),要求住宅楼与教学楼等高,均为15.6米,已知该地区冬至正午时分太阳高度最低,太阳光线与水平线的夹角为30°,如果住宅楼与教学楼间相距19.2米,如图1所示.(1)此时住宅楼的影子落在教学楼上有多高?(精确到0.1米)(2)要使住宅楼的影子刚好落在教学楼的墙角,则两楼间的距离应是多少?•(精确到0.1米) 【分析】(1)如图所示,设冬至正午太阳最低时,住宅楼顶A•点的影子落在教学楼上的C 处,那么CD 的长就是影子落在教学楼上的高度.(2)如图2所示,BC 的长就是两楼间的距离.(1) (2) 【解】(1)如图1所示,作CE ⊥AB 于E , 在Rt △ACE 中,∠ACE=30°,EC=19.2, ∴AE=EC ·tan30°=19.2319.2 1.7323⨯≈11.1 CD=EB=AB-AE≈15.6-11.1=4.5(米)∴住宅楼的影子落在教学楼上约有4.5米高 (2)如图2所示,在Rt △ABC 中,∠ACB=30° BC=tan 30AB ︒3315.6×1.732≈27.0(米)∴要使冬至正午的太阳能够照到教学楼的墙角,两楼间的距离至少应为27.0米.【规律总结】此题为探索性题,结论没有直接给出,需要通过观察、分析、比较、概括、推理、判断等活动,逐步确定结论.方法7:开放性问题【例7】某处有一天线,高度超过10米,底部四周有铁丝网围墙,•使得不能直接到达天线底部,数学小组的同学们只有测倾器和测量长度用的量绳,请你为他们设计一个能测得天线高度的方案(包括测量方法,并推导计算公式).【分析】本题是一道开放性试题,是近年来有关解直角三角形的中考试题中,开放程度很高的题目,着重考查学生如何借助解直角三角形知识解决这类测量问题.解题中要注意测量工具所能测得的数据,以免审题失误.【解】如图所示,测倾器离地面b 米,在点B 处测得天线顶端仰角为α,从B•点向前走a 米,到达点C ,在点C 处测得天线顶端仰角为β,设AG 为x 米. 在Rt △AGC 中,CG=tan tan AG xββ= 在Rt △AGB 中,BG=tan tan AG xαα=∵BC=BG-CG ∴tan x α-tan x β=a∴x=11()tan tan aαβ-=tan tan tan tan a αββα-∴AM=AG+GM=tan tan tan tan a αββα-+b【规律总结】对于开放性问题,一般都有多种解题方法,首先应对解直角三角形知识有关的基本图形非常熟悉,然后才能给出设计方案,选择适合自己的解题方法,灵活巧妙地解答问题.方法8:综合性问题【例8】如图所示,已知A 为∠POQ 的边OQ 上一点,以A•为顶点的∠MAN 的两边分别交射线OP 于M 、N 两点,且∠MAN=∠POQ=α(α为锐角),当∠MAN 以点A 为旋转中心,AM 边从与AO 重合的位置开始,按逆时针方向旋转(∠MAN 保持不变)时,M 、N 两点在射线OP 上同时以不同的速度向右平移,设OM=x ,ON=y (y>x ≥0),△AOM•的面积为S ,且cos α,OA 是方程2z 2-5z+2=0的两个根.(1)当∠MAN 旋转30°(即∠OAM=30°)时,求点N 移动的距离; (2)求证:AN 2=ON ·MN ; (3)试求y 与x 之间的函数关系式及自变量x 的取值范围.(4)试写出S 随x 变化的函数关系式,并确定S 的取值范围.【分析】本题把解直角三角形与一元二次方程、相似三角形、平移、旋转、函数等知识糅合在一起,形成一道综合性很强的考题.本题从解一元二次方程入手,逐步挖掘隐含条件,构造直角三角形,将其转化为解直角三角形问题.【解】(1)解方程2z2-5z+2=0,得z1=12,z2=2∵α为锐角∴O<cosα<1∴OA=2,cosα=1 2∴α=60°,即∠POQ=∠MAN=60°∴ON=OA=2,如图14-20所示.当AM旋转到AM′时,点N移动到N′∴∠M′N′A=30°,∠OAN′=90°,在Rt△OAN′中,ON′=2AO=2×2=4,∴MN′=ON′-ON=4-2=2∴点N移动距离为2(2)如图1所示,在△OAN和△AMN中,∠AON=∠MAN,∠ANO=∠MNA,∴△AON•∽△MAN,∴ANMN=ONAN,∴AN2=ON·MN(1) (2) (3)如图2所示,过A作AH⊥OP于点H.∵MN=ON-OM=x-y,∴AN2=ON·MN=y(y-x)=y2-xy在Rt△AOH中,OH=OA·cos60°=2×12=1∴AH=OA·sin60°3∴HN=ON-OH=y-1在△ANH中,AN2=AH2+HN2=32+(y-1)2=y2-2y+4,∴y2-xy=y2-2y+4,整理得y=42x.∵y>O ∴2-x>O ∴x<2 又∵x ≥O∴x 的取值范围是O ≤x<2(4)如图2所示,在△AOM 中,OM 边上的高AH 为,∴S=12OM ·AH=12·x 2x∵S 是x ∴S 随x 的增大而增大∴O ≤ 【规律总结】本题通过作OM 边上的高AH ,从而将其转化为解直角三角形问题,在解有关综合性问题时,要注意挖掘隐含条件,合理运用相应知识,构造直角三角形,利用直角三角形的边角关系沟通各知识点间的联系.中考试题归类解析(一)锐角三角函数 【例1】(2003,大连)在Rt △ABC 中,∠C=90°,AC=4,BC=3,则B 的值为( ) A .45 B .35 C .43 D .34【思路分析】由勾股定理可知AB=5,根据锐角三角函数的定义可知cosB=35BC AB 解:答案B 【例2】(2003,南京)在△ABC 中,∠C=90°,tanA=1,那么cotB 等于( )A C .1 D .3【思路分析】由互为余角的三角函数关系可知:cotB=tanA=1 解:答案C【规律总结】本题也可由tanA=1得到∠A=45•°,•所以∠B=•45•°,• 故cotB=cot45°=1【例3】(2003,黄冈)已知∠A 为锐角,且cosA ≤12,那么( ) A .0°∠A ≤60° B .60°≤A ∠90° C .0°∠A ≤30° D .30°≤A ∠90°【思路分析】锐角三角函数的余弦值随角度的增大而减小,因为∠A 为锐角,所以O<cosA ≤12,即cos90°<cosA ≤cos60°,所以60°≤A<90° 解:答案B【例4】(2004,山西)计算:sin 248°+sin 242°-tan44•°·•tan45•°·•tan46•°=_______.【思路分析】利用互为余函数的关系化为同角函数,再利用同角三角函数公式就可求出值.【解】sin 248°+sin 242°-tan44°·tna45°tan46°=sin 248°+cos 248°-tan44°·cot44°tan45° =1-1×1 =0 故应填:0【规律总结】解决这样的问题一是要善于互化函数,往公式上靠,二是特殊角的三角函数值要记住.【例5】(2004,宁波)计算:(π-3)°-(12)-2+(-1)3-sin 245° 【思路分析】按运算法则和运算顺序直接计算即可. 【解】(π-3)°-(12)-2+(-1)3-sin 245° =1-211()2+(-1)3-(2)2 =1-4-1-12=-412【规律总结】在中考题中象这样代数值的运算和三角函数值的运算结合在一起的比较多.(二)解直角三角形【例1】已知如图所示,在△ABC 中,∠A 、∠B 、∠C 所对的边分别为a 、b 、c .【求证】S △ABC =12absinc=12bcsinA=12casinB . 【思路分析】要求面积关键是作高,构造出直角三角形利用锐角三角函数的定义加以理解.【证明】过A 点作AD ⊥BC 垂足为D 在Rt △ABD 中,sinB=ADAB∴AD=AB ·sinB=c ·sinB∴S=12AD ·BC=12ac ·sinB 同理可证,S=12absinc=12bcsinA【例2】如图,若CD 是Rt △ABC 斜边上的高,AD=3,CD=4,则BC=_____.【思路分析】先利用勾股定理求出AC 长再利用相似比就可求出BC 【解】∵AC 2=AD 2+DC 2 而AD=3 CD=4 ∴AC=3234+=5 Rt △CDA ∽Rt △BDCAD CD =ACBCBC=542033AC CD AD ⨯⨯==故应填:203【规律总结】:本题也可以利用射影定理去解.【例3】一艘渔船在A 处观测到东北方向有一小岛C ,周围4.8海里范围内是水产养殖场,渔船沿北偏东30°方向航行10海里到达B 处,在B 处测得小岛C•在北偏东60°方向,这时渔船改变航线向正东(即BD )方向航行,这艘船是否有进入养殖场的危险. 【思路分析】是否有进入养殖场的危险就是看C 点到BD 的距离是多少,•如果大于4.8海里就没有进入养殖场的危险,否则就有危险.【解】过C 点作BD 的垂线与BD 交于E 点 ∠BAC=60°-45°=15° ∠BCA=45°-30°=15° 在Rt △CBE 中, sin ∠CBE=CEBCCE=BC·sin∠CBE=10×1 2=5(海里)∵4.8<5∴没有进入养殖场的危险.【规律总结】这种类型题关键是要构建直角三角形计算距离,再根据距离大小来判断是否有危险.中考试题集萃(一)填空题1.(2004,宁波)sin45°=________.2.(2004,衡阳)∠A为锐角,若cosA=13,则sin(90°-A)=_______.3.(2004,芜湖)在直角三角形ABC中,∠C=90°,已知sinA=35,则cosB=________.4.(2004,常州)若∠α′的余角是30°,则∠α′=_______°,sin∠α′=________. 5.(2004,江西)在△ABC中,若AC=2,BC=7,AB=3,则cosA=________.6.(2004,沈阳)在Rt△ABC中∠C=90°,tanA=23,AC=4,则BC=_______.7.(2004,上海)在△ABC中,∠A=90°,设∠B=θ,AC=b,则AB=______.(用b和θ的三角比表示)8.(2004,深圳)计算:3tan30°+cot45°-2tan45°+2cos60°=________.9.(2004,西宁)某人沿倾斜角为β的斜坡走了100m,则他上升的高度是______m. 10.(2004,潍坊)某落地钟钟摆的摆长为0.5m,来回摆动的最大夹角为20°,已知在钟摆的摆运过程中,摆锤离地面的最低高度为am,最大高度为bm,则b-a=_______m(不取近似值).(二)选择题1.小强和小明去测量一座古塔的高度(如图)他们在离古塔60m•的A处,用测角仪器测得塔顶的仰角为30°,已知测角仪器高AD=1.5m,则古塔BE的高为(• )A.(203-1.5)m B.(203+1.5)mC.31.5m D.28.5m2.在Rt△ABC中,如果各边长度都扩大为原来的2倍,则锐角A的正切值()A.扩大2倍 B.缩小2倍 C.扩大4倍 D.没有变化3.用科学计算器计算锐角α的三角函数值时,•不能直接计算出来的三角函数值是( )A .cot αB .tan αC .cos αD .sin α 4.计算sin30°·cot45°的结果是( )A .12B .2C .6D .45.=( )A .1-3 B -1 C .3-1 D . 6.在Rt △ABC 中,∠C=90°,AC=12,cosA=1213,则tanA 等于( ) A .513 B .1312 C .125 D .5127.已知α为锐角,tan αcos α等于( )A .12B .2C 8.在△ABC 中,∠C=90°,sinA=,则cosB 的值为( )A .12B .2C .2D .39.在△ABC 中,∠C=90°,AB=5,BC=3,CA=4,那么sinA 等于( ) A .34 B .43 C .35 D .45(三)解答题1.(2004,芜湖)在△ABC 中,∠A 、∠B 都是锐角,且sinA=12,,AB=10,•求△ABC 的面积.2.(2004,大连)如图,某校自行车棚的人字架棚顶为等腰三角形,D是AB的中点,•中柱CD=1m,∠A=72°,求跨度AB的长(精确到0.01m).3.(2004,南京)如图,天空中有一个静止的广告气球C,从地面A点测得C点的仰角为45°,从地面B点测得C点的仰角为60°,已知AB=20m,点C和直线AB在同一铅垂平面上,求气球离地面的高度.(结果保留根号).4.(2004,贵阳)某居民小区有一朝向为正南方向的居民楼(如图),该居民楼的一楼是高6m的小区超市,超市以上是居民住房,在该楼的前面15m处要盖一栋高20m的新楼,当冬季正午的阳光与水平线的夹角为32°时,问:(1)超市以上的居民住房采光是否有影响?为什么?(2)若要使超市采光不受影响,两楼应相距多少米?(•结果保留整数,•参考数据:sin32°≈53100,cos32°≈106125,tan32°≈58)5.(2004,济南)如图表示一山坡路的横截面,•CM•是一段平路,•它高出水平地面24m,从A到B,从B到C是两段不同坡角的山坡路,山坡路AB的路面长100m,•把山坡路BC的坡角降到与AB的坡角相同,使得∠DBI=5°.(精确到0.01m)(1)求山坡路AB的高度BE.(2)降低坡度后,整个山坡的路面加长了多少米?(sin5°=0.0872,cos5°=0.9962,sin12°=0.2079,cos12°=0.9781)答案:一、填空题1.222.133.354.60°,325.236.837.b·cos或tanb83.100sinβ 10.12(1-cos10°)•二、选择题1.B 2.D 3.A 4.A 5.A 6.D 7.A 8.C 9.C 三、解答题1253 32.3.93m3.解:作CD⊥AB,垂足为D,设气球离地面的高度是xm在Rt△CBD中,∠CAD=45°∴AD=CD=x在Rt△CBD中,∠CBD=60°∴cot60°=BD CD∴BD=3 3∵AB=AD-BD,∴20=x-33x∴x=30+103.答:气球离地面的高度是(30+103)m.4.(1)如图设CE=x米,则AF=(20-x)米,tan32°=AFEF,即20-x=15·tan32°x=11∵11>6,∴居民住房的采光有影响.(2)如图:tan32°=ABBF,BF=20×85=32两楼应相距32米.5.(1)在Rt△ABE中BE=ABsin∠BAE=100sin5°=100×0.0872=8.72(米).(2)在Rt△CBH中CH=CF-HF=15.28BC=sin CH CBH ∠=15.28sin12︒≈73.497在Rt△DBI中DB=sin DIDBI∠=15.28sin5︒≈175.229∴DB-BC≈175.229-73.497=101.732≈101.73(米).。

直角三角形的边角关系

直角三角形的边角关系

直角三角形的边角关系直角三角形是一种特殊的三角形,它的一个角是90度,另外两个角是锐角。

直角三角形的边角关系是指三条边和三个角之间的关系。

边角定义在直角三角形中,我们通常将底边称为底边,直角所对的边称为斜边,另外一个边称为高。

以直角三角形ABC为例,边AB为底边,边AC为高,边BC为斜边。

直角三角形中的两个锐角分别称为锐角A和锐角B。

锐角A位于底边AB的顶点A,锐角B位于直角C的顶点B。

边角关系直角三角形的边角关系非常重要,它们之间存在着多个重要的数学关系。

下面是直角三角形的边角关系的详细介绍:边与角的关系1. 底边与斜边的关系:根据勾股定理,底边的平方加上高的平方等于斜边的平方。

用公式表示为:AB² + AC² = BC²2. 斜边与锐角的关系:在直角三角形中,斜边与锐角的关系可以用三角函数来表示。

以锐角A为例,斜边BC与锐角A的正弦比等于底边AB 与斜边BC的比值,用公式表示为:sin(A) = AB / BC角与角的关系1. 直角和锐角的关系:直角是直角三角形的特殊角,它的度数为90度。

而锐角是小于90度的角。

2. 锐角之间的关系:直角三角形中的两个锐角之和等于90度。

用公式表示为:A +B = 90°边与角之间的关系1. 高与锐角的关系:直角三角形中的高与锐角之间存在正弦和余弦的关系。

以锐角A为例,高AC与锐角A的正弦比等于底边AB与斜边BC的比值,用公式表示为:sin(A) = AC / BC2. 底边与锐角的关系:直角三角形中的底边与锐角之间存在正切关系。

以锐角A 为例,底边AB与锐角A的正切比等于高AC与底边AB的比值,用公式表示为:tan(A) = AC / AB总结直角三角形的边角关系是数学中一种重要的关系,它涉及到边与角之间的联系。

通过掌握这些关系,我们可以在解决三角形相关问题时更加方便和高效。

一个直角三角形中,底边与斜边的关系可以由勾股定理给出,斜边与锐角之间的关系可以用正弦比来表示,高与锐角之间的关系可以用正弦比来表示,底边与锐角的关系可以用正切比来表示。

直角三角形的边角关系

直角三角形的边角关系

直角三角形的边角关系[知识链接]知识讲解:1.直角三角形中的边角关系(1)三边之间的关系:a 2+b 2=c 2 (2)锐角之间的关系:A +B =90°(3)边角之间的关系:sinA =cosB =c a , cosA =sinB =c btanA =cotB =b a , cotA =tanB =ab锐角三角函数的概念如图,在ABC 中,∠C 为直角, 则锐角A 的各三角函数的定义如下:(1)角A 的正弦:锐角A 的对边与斜边的比叫做∠A 的正弦,记作sinA ,即sinA =ca(2)角A 的余弦:锐角A 的邻边与斜边的比叫做∠A 的余弦,记作cosA ,即cosA =c b(3)角A 的正切:锐角A 的对边与邻边的比叫做∠A 的正切,记作tanA ,即tanA =ba(4)角A 的余切:锐角A 的邻边与对边的比叫做∠A 的余切,记作cotA ,即cotA =ab2.三角函数的关系(1)同角的三角函数的关系1)平方关系:sinA 2+cosA 2=1 2)倒数关系:tanA·cotA =13)商的关系:tanA =A A cos sin ,cotA =AAsin cos(2)互为余角的函数之间的关系 sin(90°-A)=cosA , cos(90°-A)=sinA tan(90°-A)=cotA , cot(90°-A)=tanA 3.一些特殊角的三角函数值0°30°45°60°90°sinα0 1cosα 1 0tanα0 1 -----cotα----- 1 05.锐角α的三角函数值的符号及变化规律.(1)锐角α的三角函数值都是正值(2)若0<α<90° 则sinα,tanα随α的增大而增大,cosα,cotα随α的增大而减小.6.解直角三角形(1)直角三角形中的元素:除直角外,共有5个元素,即3条边和2个锐角.(2)解直角三角形:由直角三角形中除直角外的已知元素,求出所有未知的元素的过程叫做解直角三角形.7.解直角三角形的应用,解直角三角形的应用,主要是测量两点间的距离,测量物体的高度等,常用到下面几个概念:(1)仰角、俯角视线与水平线所成的角中,视线在水平线上方的叫做仰角,在水平线下方的叫做俯角(2)坡度.坡面的铅直高度h与水平宽度l的比叫做坡度,常用字母i表示,h即i=l(3)坡角h 坡面与水平面的夹角叫做坡角,用字母α表示,则tanα=i=l(4)方位角从某点的指北方向线,按顺时针方向转到目标方向线所成的角.例题选讲:1、在Rt△ABC中,∠C=90°(1)已知∠A、c, 则a=__________;b=_________.(2)已知∠A、b, 则a=__________;c=_________.(3)已知∠A、a,则b=__________;c=_________.(4)已知a、b,则c=__________.(5)已知a、c,则b=__________.2、在下列直角三角形中,不能解的是( )A 、已知一直角边和所对的角B 、已知两个锐角C 、已知斜边和一个锐角D 、已知两直角边3、如图,在△ABC 中,已知AC=6,∠C=75°,∠B=45°,求△ABC 的面积.4、求证:平行四边形ABCD 的面积S=AB ·BC ·sinB(∠B 为锐角).5、山顶上有一旗杆,在地面上一点A 处测得杆顶B 的俯角α =600,杆底C 的俯角β =450,已知旗杆高BC=20米,求山高CD.课堂练习1、如图:P 是∠α的边OA 上一点,且P 点的坐标为(3,4),则sin (900 - α)=_____________.2、下列说法正确的是( )A 、a 为锐角则 0≤sina ≤1B 、cos30°+cos30°=cos60°C 、若tanA =cot(90°-B), 则∠A 与∠B 互余D 、若α1,α2为锐角,且α1<α2则c osα1>c osα2 3、已知0°<α<45° 则s inα,c osα的大小关系为( )A 、s inα>c osαB 、s inα<c osαC 、s inα≥c osαD 、s inα≤c osα.4、∠C =90° 且tanA =31,则cosB 的值为( )A 、1013 B 、310 C 、1010 D 10103 5、直角梯形ABCD 中,AD ∥BC ,CD =10,∠B =90°,∠C =30°则AB =( )A 、53B 、5C 、25D 2356、一个三角形的一边长为2,这边上的中线长为1, 另两边长之和为1+, 则这个三角形的面积为( )A. 1B.23C. D.437、外国船只,除特许外,不得进入我国海洋100海里以内的区域.如图,设A 、B 是我们的观察站,A 和B 之间的距离为160海里,海岸线是过A 、B 的一条直线.一外国船只在P 点,在A 点测得∠BAP=450,同时在B 点测得6BCACDABAB CDABP∠ABP=600,问此时是否要向外国船只发出警告,令其退出我国海域. 本课小结本章的重点是直角三角形中锐角三角函数的定义,特殊锐角的三角函数值,及互余两角的三角函数关系,运用这些知识解直角三角形的实际应用,既是重点也是难点.解直角三角形四类基本问题的方法是:(1)已知斜边和一直角边(如斜边c ,直角边a):由sinA =ca,求A, B =90°-A , b =(2)已知斜边和一锐角(如斜边c ,锐角A); B =90°-A , a =c·sinA , b =c·cosA(3)已知一直角边和一锐角(如a ,A): B =90°-A ,b =a·cotA , c =Aasin(4)已知两直角边(如a ,b): c =,由tanA =ba,求A, B =90°-A解直角三角形的思路是:(1)解直角三角形的方法可以概括为“有弦(斜边)用弦(正弦,余弦),无弦用切(正切,余切),取原避中”其意指:当已知或求解中有斜边时,可用正弦或余弦;既可由已知数据又可由中间数据求解时,取原始数据,忌用中间数据.(2)解含有非基本元素的直角三角形(即直角三角形的中线,高,角平分线,周长,面积等)一般将非基本元素转化为基本元素,或转化为基本元素间的关系式,再通过解方程组求解.解直角三角形在实际应用中的解题步骤如下:(1)审题:要弄清仰角,俯角,坡度,坡角,水平距离,垂直距离,水平等概念的意义,要审清题意.(2)画图并构造要求解的直角三角形,对于非直角三角形的图形可添加适当的辅助线把它们分割成一些直角三角形和矩形(包括正方形).(3)选择合适的边角关系式,使运算尽可能简便,不易出错.(4)按照题中已知数的精确度进行近似计算,并按照题目要求的精确度确定答案及注明单位.。

直角三角形的边角关系--知识点

直角三角形的边角关系--知识点

直角三角形的边角关系知识考点知识讲解:1.锐角三角函数的概念如图,在ABC 中,∠C 为直角,则锐角A 的各三角函数的定义如下:(1)角A 的正弦:锐角A 的对边与斜边的比叫做∠A 的正弦,记作sinA , 即sinA =a c (2)角A 的余弦:锐角A 的邻边与斜边的比叫做∠A 的余弦,记作cosA , 即cosA =bc (3)角A 的正切:锐角A 的对边与邻边的比叫做∠A 的正切,记作t an A , 即t an A =ab (4)角A 的余切:锐角A 的邻边与对边的比叫做∠A 的余切,记作c ot A , 即c ot A =ba 2.直角三角形中的边角关系(1)三边之间的关系:a 2+b 2=c 2(2)锐角之间的关系:A +B =90°(3)边角之间的关系:sinA =cosB =a c , cosA =sinB =bc t an A =c ot B =a b , cot A =t an B =ba3.三角函数的关系(1)同角的三角函数的关系1)平方关系:sinA 2+cosA 2=12)倒数关系:t an A·c ot A =13)商的关系:t an A =sinA cosA ,c ot A =cosA sinA(2)互为余角的函数之间的关系sin(90°-A)=cosA , cos(90°-A)=sinAt an (90°-A)=c ot A , cot (90°-A)=t an A4.一些特殊角的三角函数值0°30° 45° 60° 90° sin α0 1 cos α1 0 tan α0 1 ----- cot α----- 15.锐角α的三角函数值的符号及变化规律.(1)锐角α的三角函数值都是正值(2)若0<α<90°则sinα,tanα随α的增大而增大,cosα,cotα随α的增大而减小.6.解直角三角形(1)直角三角形中的元素:除直角外,共有5个元素,即3条边和2个锐角.(2)解直角三角形:由直角三角形中除直角外的已知元素,求出所有未知的元素的过程叫做解直角三角形.7.解直角三角形的应用,解直角三角形的应用,主要是测量两点间的距离,测量物体的高度等,常用到下面几个概念:(1)仰角、俯角视线与水平线所成的角中,视线在水平线上方的叫做仰角,在水平线下方的叫做俯角(2)坡度=坡面的铅直高度h与水平宽度l的比叫做坡度,常用字母i表示,即i=hl(3)坡角:坡面与水平面的夹角叫做坡角,用字母α表示,则tanα=i=hl (4)方位角:从某点的指北方向线,按顺时针方向转到目标方向线所成的角.。

直角三角形的三边关系.doc

直角三角形的三边关系.doc

直角三角形的三边关系(复习)一.知识要点1.直角三角形边角关系.(1)三边关系:勾股定理:。

2+歹=疽(2)三角关系:ZA+ZB+ZC=180° ,ZA+ZB =ZC=90° .(3)边角美系 tanA二一,s inA——, cosA——, b c c2.解法分类:(1)已知斜边和一个锐角解直角三角形;(2)已知一条直角边和一个锐角解直角三角形;(3)已知两边解直角三角形.3.解直角三角形的应用:关键是把实际问题转化为数学问题来解决解直角三角形的应用,主要是测量两点间的距离,测量物体的高度等,常用到下面几个概念:(1)仰、俯角:视线与水平线所成的角中,视线在水平线上方叫做仰角,在水平线下方叫做俯角(2)坡度:坡面的铅直高度h与水平宽度1的比叫做坡度,常用字母i表示,即i=,(3)坡角:坡面与水平面的夹角叫做坡角,用字母a表示,则tan(x=¥(4)方向角:指北或指南方向线与目标方向线所成的小于90。

的角o(5)方位角:从某点的指北方向线,按顺时针方向转到目标方向线所成的角。

二、课堂练习1、如图,在平面直角坐标系中,已知点A (3, 0)点 B (0, -4),贝ij cosZOAB 等于2、.如图ZXABC电匕C=90° ,A B=8,tanA=4/3 B则AC的长是3、在 RtAABC 中ZC=90° sinA= 4/5则cosB的值等于t4、在正方形网格中,AABC的位置如图所示,则sinB的值为 A C5、如图,在四边形ABCD中,E、F分别是 AB、AD 的中点,若 EF二2, BC二5, CD二3,则tanC等于6.如图,在矩形ABCD中,DE1AC于E,设匕 ADE 二。

,且 cosa = 2, AB 二 4,则 AD 的长为57.如图4,已知正方形刃时的边长为2,如果将线段以绕着点〃旋转后,点〃落在似的延长线上的〃'处,那么tan匕BAD'等于8.比较下列三角函数值的大小:sin40°sin50°9.若是锐角,cosA > VT ,则匕A应满足10.已知ZA为锐角且sinA=1/4,则( )A. 0°< ZA<30°B. 30°< ZA<45°图4C. 45°< ZA<60°D. 60°< ZA<90°11、计算:(-r2-(V3-V2)° +2sin30°+|-312、外国船只,除特许外,不得进入我国海洋100海里以内的区域。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018届初中毕业班基础练习
《直角三角形的边角关系》
姓名:_______________
一、选择题
1.如图,△ABC 的顶点是正方形网格的格点,则sinB 的值为( )
2.若α的余角是30°,则cos α的值是( )
A.1
2 B.32 C.22 D.33
A .100m
B .
C .150m
D .
4. 2.如图4,在△ABC 中,∠BAC =90°,AD 是高,DAC 则AB =( ).
A .5
B
C .
D .
二、填空题
5.在Rt △ABC 中,∠C =90°,tan A =34
,则sin B =________. 6.在Rt △ABC 中,∠C =90°,AB =2BC ,现给出下列结论:
①sin A =
32;②cos B =12;③tan A =33
;④tan B = 3. 其中正确的结论是________(只需填上正确结论的序号). 7.某水库大坝的横断面是梯形,坝内斜坡的坡度i =1∶3,坝外斜坡的坡度i
=1∶1,则两个坡角的和为________. 8.如图,为了测量楼的高度,自楼的顶部A 看地面上的一点B ,俯角为
30°,已知地面上的这点与楼的水平距离BC 为30m ,那么楼的高度AC 为
m (结果保留根号).
9.小兰想测量南塔的高度.她在处仰望塔顶,测得仰角为30°,再往塔
的方向前进50m 至处,测得仰角为60°,那么塔高约为_________m
三、解答题
10.计算:(1)cos 245°+tan 30°•sin 60° (2)102tan30(2010)π---
11.某校研究性学习小组测量学校旗杆AB 的高度,如图,在教学楼一楼C 处测得旗杆顶部的仰角为60°,在教学楼三楼D 处测得旗杆顶部的仰角为30°,旗杆底部与教学楼一楼在同一水平线上,已知每层楼的高度为3米,求旗杆AB 的高度。

12.如图,在△ABC 中,∠A =30°,∠B =45°,AC =4,求AB 的长.求
13.如图:我渔政310船在南海海面上沿正东方向匀速航行,在A 点观测到我
渔船C 在北偏东60°方向的我国某传统渔场捕鱼作业.若渔政310船航向不变,航行半小时后到达B 点,观测到我渔船C 在东北方向上.问:渔政310船再按
原航向航行多长时间,离渔船C 的距离最近?(渔船C 捕鱼时移动距离忽略不
计,结果不取近似值.)。

相关文档
最新文档