最新电工学简明教程第三版第3章课件ppt
合集下载
电工学课件--第三章 正弦交流电路

U • o I= U =U 0 ∠ R
• •
u =Um sinω t u Um i = = sinω = Im sinω t t R R
U =I R
U =I R
•
•
可见: 可见:电压与电流同相位 ui
i
u
•
IU
•
I
•
U
+−
2.功率关系
ui
i
⑴ 瞬时功率
•
u
IU
p=ui=UmImsin2ωt =UI(1-cos2ωt)
角频率ω: 单位时间里正弦量变化的角度 称为角频率。单位是弧度/秒 (rad/s). ω=2π/T=2πf 周期,频率,角频率从不同角度描 述了正弦量变化的快慢。三者只要知 道其中之一便可以求出另外两时值, 瞬时值中最大的称为最大值。Im、 U m 、E m 分别表示电流、电压和电动 势的最大值. 表示交流电的大小常用有效值的概 念。
单位是乏尔(Var) 单位是乏尔(Var)
第四节 RLC串联交流电路 串联交流电路 一.电压与电流关系
i R u L C
uR uL
u =uR +uL +uC
U =UR+UL+UC
• • • •
uC
以电流为参考相量, 以电流为参考相量, 相量图为: 相量图为:
•
UL UL+UC
φ
• • • •
•
U I
•
U
φ UR
UL-UC
UR
UC
2 可见: 可见: U = UR +(UL −UC)2
U L −UC X L − XC = arctg = arctg UR R
《电工技术》课件_第3章

第3章 正弦交流电路
3.1 正弦交流电的基本概念 3.2 正弦量的相量表示法 3.3 单一参数电路元件的交流电路 3.4 电阻电感电容串联电路 3.5 正弦交流电路的一般分析方法 3.6 电路的谐振 3.7 功率因数的提高 本章小结 思考题与习题
3.1 正弦交流电的基本概念
3.1.1 电力生产过程介绍
p ui U
sin(
t
90
o
)
I
sin t UI sin 2 t
m
m
电感元件的功率变化曲线如图3-14所示。 从功率曲线可 以看出, 曲线所包围的正、 负面积相等, 故平均功率(有
功功率)为
1T
p pdt 0 T0
图3-14 电感元件的功率
[例3-5] 已知一个电感线圈, 电感L=0.5H, 电阻可 略去不计, 接在50 Hz、 220 V的电源上, 试求:
图3-2 水力发电及输送过程示意图
3.1.2 发电机的工作原理
图3-3是一个最简单的交流发电机的原理示意图。 交流发 电机的结构, 主要由一对能够产生磁场的磁极(定子)和能 够产生感应电动势的线圈(转子)组成。 转子线圈的两端分 别接到两只互相绝缘的铜滑环上, 铜环与连接外电路的电刷 相接触。 图3-4是线圈在磁场运动中切割磁力线的情况。
(3-18)
di
uL
LI
cos t U
sin(
t
90
o
)
m
m
dt
(3-19)
.
u、i的相量关系如下: 若电流相量为 I i j , 根据 i
前面的关系式可得电压相量为
.
U Uj
X
I (j
o
90 ) ( X
3.1 正弦交流电的基本概念 3.2 正弦量的相量表示法 3.3 单一参数电路元件的交流电路 3.4 电阻电感电容串联电路 3.5 正弦交流电路的一般分析方法 3.6 电路的谐振 3.7 功率因数的提高 本章小结 思考题与习题
3.1 正弦交流电的基本概念
3.1.1 电力生产过程介绍
p ui U
sin(
t
90
o
)
I
sin t UI sin 2 t
m
m
电感元件的功率变化曲线如图3-14所示。 从功率曲线可 以看出, 曲线所包围的正、 负面积相等, 故平均功率(有
功功率)为
1T
p pdt 0 T0
图3-14 电感元件的功率
[例3-5] 已知一个电感线圈, 电感L=0.5H, 电阻可 略去不计, 接在50 Hz、 220 V的电源上, 试求:
图3-2 水力发电及输送过程示意图
3.1.2 发电机的工作原理
图3-3是一个最简单的交流发电机的原理示意图。 交流发 电机的结构, 主要由一对能够产生磁场的磁极(定子)和能 够产生感应电动势的线圈(转子)组成。 转子线圈的两端分 别接到两只互相绝缘的铜滑环上, 铜环与连接外电路的电刷 相接触。 图3-4是线圈在磁场运动中切割磁力线的情况。
(3-18)
di
uL
LI
cos t U
sin(
t
90
o
)
m
m
dt
(3-19)
.
u、i的相量关系如下: 若电流相量为 I i j , 根据 i
前面的关系式可得电压相量为
.
U Uj
X
I (j
o
90 ) ( X
电工学课件:第3章 正弦交流电路

(1) i1 5sin(314t 600 )
(2) i2 5sin(314t 600 )
I1 5 600 2.5 2600 2
I 2 5 600 2.5 2 600 2
(3) i3 5sin(314t 600 )
i3 5sin(314t 600 1800 ) = 5sin(314t 1200 )
振幅相量的关系:
Im
2 I
U m 2U
例:1、写出下列正弦电压的相量(用直角坐标式表示):
(1) u 10 2 sint V
2
解:(1)
U
j
10e 2V
10
V
2
(2) u 10 2 sint 3 V
4
(2)
U
j 3
10e 4 V
10
3
V
4
2.将下述正弦量用相量表示:
相量图: 相量也可以在复平面上用矢量表示。
图中相量Ė 的长度为E代表正弦量的有效值,与实
轴夹角 0 等于正弦量的初相位。
五、用相量法求同频率正弦量的代数和..
例3-1 已知 u1 (t) 20 2 sin( 100t 1200 ) V
u2 (t) 15 2 cos(100t 600 ) V
式中 U m U me ju U mu
称为u(t)的相量
同理,设i(t) Im sin( t i )
则 Im I me ji I m i 称为i(t)的相量
从式子: Um sin(t ) Im[U me j t ]
说明一个三角函数等于一个旋转向量在虚轴上的投 影。考虑正弦交流线性电路中,电压和电流的频率 是不会改变的,为化简计算,将旋转向量的投影中 的旋转因子去掉,剩下相量部分代表一个三角函数 。且为了与数学上的复数区别开来,将相量符号上 方加˙标号。即:
电工学简明教程 ppt课件

R- +
u C ( ) U S 40 V
US
-
u C
-
u C
+-
R C 0 .0s 1
t
t
u C (t) u C (0 )e u C ( )(1 e )
40 6e010t0V iC(t)Cdd utC1e210t0A
2、图示电路在换路前处于稳定状态,在t=0瞬
间将开关S闭合,
则iC(0)为( c )。 (a)0.6A
(b)0A (c)-0.6A
+
US
6V
-
6v
S
iC
+
C F
-
3、在图示电路中,已知US=2V,IS=2A。A、B
两点间的电压UAB为( a )。B
.
(a)1V
(b)1V (c)2V
IS A+
1
1基尔霍夫定律基尔霍夫定律kclkclkvlkvl22支路电流法支路电流法33叠加原理叠加原理44电压源与电流源及其等效变换电压源与电流源及其等效变换55戴维宁定理戴维宁定理66rcrc电路的暂态分析三要素法电路的暂态分析三要素法a电压源发出功率b电流源发出功率c电压源和电流源都不发出功率2图示电路在换路前处于稳定状态在t0瞬间将开关s闭合a06ab0ac06a2aab两点间的电压uaba1vb1vc2v4在换路瞬间下列各项中除不能跃变a电感电压b电容电压c电容电流5rc电路初始储能为零而由初始时刻施加于电路的外部激励引起的响应称为响应
I
R1
.
+
-
U S1
IS
.
+
. US2 - R 24
.
设各支路电流的正方
向如下图所.示:
电工学第三章

第3章 正弦交流电路
本章内容
●正弦交流电的基本概念 ●正弦交流电的相量表示法 ●单一参数交流电路
●串联交流电路
●并联交流电路 ●交流电路的功率 ●电路的功率因数
●电路中的谐振
第3章 交流电路
3.1 正弦交流电的基本概念
3.1 正弦交流电的基本概念
正弦交流电—其大小和方向随时间按正弦函数变化的电
动势、电压和电流总称为正弦交流电。其函数表达式(又 为瞬时表达式)和波形图如下所示
阻抗串联电路及其等效电路
= Ri + X i
(2)分压原理
U1 = U
Z1 Z1 + Z 2
U1 = U
Z1 Z1 + Z 2
第3章 交流电路
3.5 并联交流电路
3.5 并联交流电路
(1)等效阻抗的计算 U U I = I1 + I 2 = + Z1 Z 2 ( 1 + 1 ) = U =U Z1 Z 2 Z
第3章 交流电路
3.4 UL
串联交流电路
① u与i的大小关系
2 U = U R + (U L U C ) 2 = ( IR) 2 + ( IX L IXC ) 2
U
UL+ UC UR I
= I R + (X L XC )
2
2
U = R 2 + ( X L X C )2 = R 2 + X 2 = Z I
.
I L
.
u i
i u ωt 2π
U = jIX L d ( I m sin wt ) di u=L =L dt dt U = wLI m coswt
本章内容
●正弦交流电的基本概念 ●正弦交流电的相量表示法 ●单一参数交流电路
●串联交流电路
●并联交流电路 ●交流电路的功率 ●电路的功率因数
●电路中的谐振
第3章 交流电路
3.1 正弦交流电的基本概念
3.1 正弦交流电的基本概念
正弦交流电—其大小和方向随时间按正弦函数变化的电
动势、电压和电流总称为正弦交流电。其函数表达式(又 为瞬时表达式)和波形图如下所示
阻抗串联电路及其等效电路
= Ri + X i
(2)分压原理
U1 = U
Z1 Z1 + Z 2
U1 = U
Z1 Z1 + Z 2
第3章 交流电路
3.5 并联交流电路
3.5 并联交流电路
(1)等效阻抗的计算 U U I = I1 + I 2 = + Z1 Z 2 ( 1 + 1 ) = U =U Z1 Z 2 Z
第3章 交流电路
3.4 UL
串联交流电路
① u与i的大小关系
2 U = U R + (U L U C ) 2 = ( IR) 2 + ( IX L IXC ) 2
U
UL+ UC UR I
= I R + (X L XC )
2
2
U = R 2 + ( X L X C )2 = R 2 + X 2 = Z I
.
I L
.
u i
i u ωt 2π
U = jIX L d ( I m sin wt ) di u=L =L dt dt U = wLI m coswt
(简洁版)电工学-第3章交流电路-70页文档资料

i
ψ = ±180°
O
ωt
O
ωt
ψ
一、交流电的周期、频率、角频率
i
2π
O
ωt
T
周期 T :变化一周所需要的时间(s)。
频率 f :1s 内变化的周数(Hz)。
f
=
1 T
角频率ω : 正弦量 1s 内变化的弧度数。
ω = 2πf
=
2π T
(rad/s)
常见的频率值
各国电网频率:中国和欧洲国家 50 Hz, 美国 、日本 60 Hz
解: =ψu -ψi =-60o -150o =-210o
-210o i, u
究竟谁超前?
u 滞后于 i 210o
O
ωt
-210o
150o
150o
u 超前于 i 150o
规定 ≤
>0 —— u 超前于 i ; =0 —— u 与 i 同相位; <0 —— u 滞后于 i ; =±π—— u 与 i 反相(相位相反)。
3.2 正弦电量的相量表示法
问题 同频率正弦电量之间的运算,是用函数表达 式呢?还是用波形呢? 例如:i = 3sin (314 t+45o )+5sin (314 t-70o )
Im
复数平面
ω
实
轴0
Re O
ωt
虚轴
Amsin(ωt+ψ)
旋转矢量 正弦量
一、相量的定义
旋转矢量
固定矢量
正弦量
Im
bቤተ መጻሕፍቲ ባይዱ
=
c1 c2
ψ1-ψ2
由于: e±j90 = 1 ±90 =±j
则
j I = I e j90 = I ejψ ·ej90 = I e j(ψ + 90 )
电工学简明教程ppt课件

电路模型
用理想电路元件组成的电路,称为实际电路的 电路模型。
2021/4/24
1.3 电压和电流的参考方向
对电路进行分析计算时,不仅要算出电压、电流、 功率值的大小,还要确定这些量在电路中的实际方向。
但是,在电路中各处电位的高低、电流的方向等很 难事先判断出来。因此电路中各处电压、电流的实际方 向也就不能确定。为此引入参考方向的规定。
R0
_
b
2021/4/24
c
电源开路时的特征
I
I=0
R
U = U0 = E
P=0
d
1.4.3 电源短路 当电源两端由于某种原因连在一起时,电源路时的特征
+
U=0
E_
I = IS = E/R0
UR
P=0
R0
PE = P = R0IS2
电流过大,将烧毁电源!
b
d
为防止事故发生,需在电路中接入熔断器或自动断
路器,用以保护电路。
2021/4/24
1.4 电源有载工作、开路与短路
1.4.3 电源短路
由于某种需要将电路的某一段短路,称为短接。
I
+
R1
E_
UR R0
I 视电路而定
有
源
电
U=0
路
2021/4/24
1.5 基尔霍夫定律
支路 电路中的每一分支
I1
I2
c
a
d
如 acb ab adb
R1
R2
结点 电路中三条或三条
电压不等于电源电压的一半,而是 73.5 V。
2021/4/24
+ e d
Uc b a
电工学第三章

3. ψ >0 矢量从正实轴逆时针转ψ角; ψ <0 矢量从正实轴顺时针转ψ角; 4.计算时换成合适的表示形式:加减运算——复数式 乘除运算——极坐标式。
5.参考相量辐角为 0 度;
返回 上一节 下一节 上一页 下一页
【例】电路如图所示,设u1=100√2sin(ωt+30o)V, u2=60√2sin(ωt+120o)V,求两电压之和。
返回 下一节 上一页 下一页
3.2 正弦交流电的相量表示法
+j
ψ
O
+1 O
ωt
ψ
返回
上一节
下一节
上一页
下一页
Im
ψ O
ωt
ψ
★ 相量法既可表示最大值 Im ,又可表示有效值 I
返回 上一节 下一节 上一页 下一页
▲ 复数的表示方法和计算方法: 1. 复数的表示方法
代数式 三角式 极坐标式 指数式 b A= a +j b
100sin314311sin314t60三交流电的相位初相位相位差上一页下一页上一页下一页上一页下一页32正弦交流电的相量表示法上一页下一页下一节上一节上一页下一页下一节上一节相量法既可表示最大值又可表示有效值代数式三角式极坐标式指数式上一页下一页下一节上一节cosjsin复数的运算方法加减乘除加减
+j
A
= c (cosψ+ jsinψ ) = c∠ψ = c e jψ
ψ
O a
+1
返回
上一节
下一节
上一页
下一页
2. 复数的运算方法(加、减、乘、除)
设: A1= a1+j b1 = c1∠ψ1 A2= a2+j b2 = c2∠ψ2 ; j (b1〒 b2)
5.参考相量辐角为 0 度;
返回 上一节 下一节 上一页 下一页
【例】电路如图所示,设u1=100√2sin(ωt+30o)V, u2=60√2sin(ωt+120o)V,求两电压之和。
返回 下一节 上一页 下一页
3.2 正弦交流电的相量表示法
+j
ψ
O
+1 O
ωt
ψ
返回
上一节
下一节
上一页
下一页
Im
ψ O
ωt
ψ
★ 相量法既可表示最大值 Im ,又可表示有效值 I
返回 上一节 下一节 上一页 下一页
▲ 复数的表示方法和计算方法: 1. 复数的表示方法
代数式 三角式 极坐标式 指数式 b A= a +j b
100sin314311sin314t60三交流电的相位初相位相位差上一页下一页上一页下一页上一页下一页32正弦交流电的相量表示法上一页下一页下一节上一节上一页下一页下一节上一节相量法既可表示最大值又可表示有效值代数式三角式极坐标式指数式上一页下一页下一节上一节cosjsin复数的运算方法加减乘除加减
+j
A
= c (cosψ+ jsinψ ) = c∠ψ = c e jψ
ψ
O a
+1
返回
上一节
下一节
上一页
下一页
2. 复数的运算方法(加、减、乘、除)
设: A1= a1+j b1 = c1∠ψ1 A2= a2+j b2 = c2∠ψ2 ; j (b1〒 b2)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
i
+ u –
– e+ e–+
N
Em = Nm = 2f Nm = 2f NBmS
感应电动势的有效值:
E
Em 2
2f
N m
2
4.44
f
N m
高等教育出版社 高等教育电子音像出版社
3.2.2 外加电压与磁通的关系
Fm = iN → u→
uR = iR
(主磁通) (漏磁通)
→ e N d
dt
→
e
N
+ ZL'
+
•
U1
•
U2
ZL
–
–
U1 I1
ZL
,U2 I2
ZL
结论
ZL
( N1 )2 N2
ZL
可利用变压器进行阻抗匹配
高等教育出版社 高等教育电子音像出版社
(4) 变压器的铭牌数据
① 额定容量 SN
三相变压器
SN = U1NI1N = U2NI2N
单相变压器
SN = U1NI1N = U2NI2N
壳式变压器
心式变压器
线圈
高等教育出版社 高等教育电子音像出版社
(3) 变压器的工作原理
一次绕组
i1
+
– e1 +
u1 –
e1–+
1
N1
N2
二次绕组
S i2
++ –e2 – u20
ZL
d e1 N1 dt 变压器符号
e 1
N1
d 1 dt
U1
u1
d
e2 N 2 dt
U2
u2
高等教育出版社 高等教育电子音像出版社
l N
磁路欧姆定律:
F
磁路磁阻:Rm
Rm 磁路为不同材料组成时
Rm
l S
N H 1 l I 1 H 2 l 2 ( H ) l
高等教育出版社 高等教育电子音像出版社
3.2 交流铁心线圈电路
3.2.1 感应电动势与磁通的关系
设: = msint
e N d
dt
e
N
d dt
e = –Nmcost = Emsin(t – 90)
结论
U—1– = –N—1 = K U20 N2
— 变比
高等教育出版社 高等教育电子音像出版社
② 电流变换
+
•
U1
–
•+
I1
• E1
– +
•
E1
– +
•
N1
N2
S
I•2
+ –+
• E2
•
– E2
+ –
• U2
ZL
变压器接负载:
产生主磁通 的磁通势
N 1 I 1 N 2 I 2N 1 I 0
(
•
I0
电工学简明教程第三版第3章
第 3 章 磁路与变压器
3.1 磁路及其分析方法 3.2 交流铁心线圈电路 3.3 变压器 3.4 电磁铁
高等教育出版社 高等教育电子音像出版社
3.1 磁路及其分析方法
3.1.1 磁场的基本物理量
(1) 磁感应强度 B ——矢量 单位:T 均匀磁场 —— 磁场内各点的 B 大小相等,方向相同。
(2) 变压器的结构 变压器铁心:硅钢片叠压而成。 变压器绕组:高强度漆包线绕制而成。 其他部件:油箱、冷却装置、保护装置等。
高等教育出版社 高等教育电子音像出版社
(2) 变压器的结构
变压器铁心:硅钢片叠压而成。 变压器绕组:高强度漆包线绕制而成。 其他部件:油箱、冷却装置、保护装置等。
线圈
铁心
铁心
I1 I2
I3
磁场强度沿任意闭合路径的线积分,
等于穿过该闭合路径所包围的电流的代数
和。
l H dl I1 I2 I3
高等教育出版社 高等教育电子音像出版社
(3) 磁路的欧姆定律
根据 l H dl I
i
得
Hl=NI
+
u
磁通势:F = N I (单位:安) –
磁压降: H l
BSHSlSHlN l IR F m S
(3) 变压器的工作原理
i1
+
u1
–
–
e1 e1
+–
+
1
N1
N2
2
S
i2
–+e2 +– e2
+ – u2
|Z|
u1 → i1( i1N1)
→e1
e2
1→ e1
i2 (i2N2 )
→ 2→ e2
高等教育出版社 高等教育电子音像出版社
① 电压变换
U•1 + –
I•0
E•E•11+––+
•
•1
N1
高等教育出版社 高等教育电子音像出版社
高等教育出版社 高等教育电子音像出版社
高等教育出版社 高等教育电子音像出版社
3.1.3 磁路的分析方法
(1) 磁通连续性原理
S B dS 0
通过任意闭合面的磁通量 总为 0。即穿入闭合
面的磁感线,必同时穿出该闭合面。
(2) 安培环路定律
l H dl I
+ u –
ee–+–+
(2) 涡流损耗
在铁心中产生的感应电流而
引起的损耗。
(3) 铁心损耗 铁心损耗 = 磁滞损耗 + 涡流损耗
(4) 铜损耗 线圈电阻产生的损耗
PCu = I2R
N
高等教育出版社 高等教育电子音像出版社
3.3 变压器
3.3.1 变压器的工作原理
(1) 变压器的分类 按用途分:电力变压器,特种用途变压器。 按相数分:单相、三相和多相变压器。 按绕组数分:双绕组、多绕组及自耦变压器。
(2) 磁通 ——标量 单位:Wb 对于均匀磁场 = B ·S
(3) 磁导率 真空磁导率 0 = 4 10 –7 H/m (亨/米) 相对磁导率 r = /0 对于铁磁材料 r = 102 105
(4) 磁场强度 H ——矢量 定义 H = B/
单位:A/m (安/米)
高等教育出版社 高等教育电子音像出版社
② 额定电压 U1N 和 U2N
U2N 应比满载运行时的输出电压 U2 高出 5% 10%。
③ 额定电流 I1N 和 I2N 允许通过的最大电流。
④ 额定频率 fN
高等教育出版社 高等教育电子音像出版社
[例 1] 有一台额定容量 50 kV ·A、额定电压 3300/220 V 的 变压器,高压绕组为 6000 匝,试求:(1)低压绕组匝数;(2) 高压边\低压边额定电流;(3)当一次侧保持额定电压不变,二
N2
变压器空载:
U 1 E 1 E 1 R 1 I 0
+ –
E•2
U• 20
U1 E1
E1 = 4.44 f N1m
U 20 E 2
E2 = 4.44 f N2m
U1 E1 U 20 E2
U 1 E1 4.44 fN 1 m N 1 U 20 E 2 4.44 fN 2 m N 2
d
dt
由 KVL: u = iR – e – e 因为 R 和 e 很小 所以 u – e
U 的有效值
U E = 4.44 f Nm
U = 4.44 f NBmS
i
+ e–
u –
e–++
N
高等教育出版社 高等教育电子音像出版社
3.2.3 功率损耗
(1) 磁滞损耗
i
铁心反复磁化时所消耗的 功率。
小)
N 1I1N 2I2 有效值
结论
I1 N2 1 I2 N1 K
I0 = I1N (2.5 5)
N 1I 1N 2I 20
N1I1= N2 I2
高等教育出版社 高等教育电子音像出版社
③ 阻抗变换
U1
N1 N2
U2
( N1 )2 U2
I1
பைடு நூலகம்
N2 N1
I2
N2 I2
Z0
•+ E
–
•
•
I1
K
I2