一道自主招生数学试题的多种解法

合集下载

2011年北大自主招生联考数学试题及解答

2011年北大自主招生联考数学试题及解答

()()1132,(123x +的交点的直线方程()()1132得⎧⎪⎪⎨⎪⎪⎩252x x -++解析:因为222cos 2a b c C ab +-=22222a b a b ab +⎛⎫+- ⎪⎝⎭≥()2231422a b ab ab +-= 312422ab ab ab⋅-≥12=,当且仅当a b =时,""=成立,又因为()0,C π∈,所以060C ∠≤。

所以211212CC CC r r C C -=-<,由双曲线的定义,C 的圆心的轨迹是以1C ,2C 为焦点、实轴长为12r r -的双曲线;所以211212CC CC r r C C -=+<,由双曲线的定义,C 的圆心的轨迹是以1C ,2C 为焦点、实轴长为12r r +的双曲线;21121212点、实轴长为12r r -的双曲线;所以211212CC CC r r C C -=+=或211212CC CC r r C C +=+=,所以C 的圆心的轨迹是过1C ,2C 的直线(除直线与圆1C 、2C 的交点外);所以211212CC CC r r C C -=-<,由双曲线的定义,C 的圆心的轨迹是以1C ,2C 为焦点、实轴长为12r r -的双曲线(圆1C 、2C 的交点除外);21121212实轴长为12r r +的椭圆(圆1C 、2C 的交点除外);所以211212CC CC r r C C -=-=或2112CC CC r r +=-,所以C 的圆心的轨迹是过1C ,2C 的直线(除直线与圆1C 、2C 的交点外);(ⅱ)若C 与1C 内切,2C 外切,则11CC r r =-,22CC r r =+,所以211212CC CC r r C C +=+>,所以C 的圆心的轨迹是以1C ,2C 为焦点、实轴长为12r r +的椭圆(两圆1C 、2C 的交点除外);(ⅰ)若C 与1C ,2C 都内切,则11CC r r =-,22CC r r =-,所以211212CC CC r r C C +=->,所以C 的圆心的轨迹是以1C ,2C 为焦点、实轴长为12r r -的椭圆;(ⅱ)若C 与1C 内切,2C 外切,则11CC r r =-,22CC r r =+,所以211212CC CC r r C C +=+>,所以C 的圆心的轨迹是以1C ,2C 为焦点、实轴长为12r r +的椭圆。

清华大学自主招生数学试题解析

清华大学自主招生数学试题解析

清华大学自主招生数学试题解析一、引言近年来,自主招生考试逐渐成为高等教育选拔的重要方式之一。

作为中国顶尖的学府之一,清华大学在自主招生中具有极高的影响力和标准制定地位。

数学作为基础学科,是清华大学自主招生考试的重要科目。

本文将对清华大学自主招生数学试题进行解析,探讨其考察内容、特点及应对策略。

二、考察内容1、基础知识:清华大学自主招生数学试题中,基础知识考察占据较大比例。

包括但不限于高中数学中的函数、数列、三角函数、概率与统计等。

2、知识运用:除了基础知识外,试题还注重考察考生对数学知识的运用能力。

例如,通过实际应用题或几何题的形式,要求考生运用数学知识解决实际问题。

3、思维能力:清华大学自主招生数学试题注重考察考生的思维能力,包括逻辑推理、归纳分类、化归等能力。

这类题目通常需要考生灵活运用数学知识,通过猜想、归纳、推理等方式寻找解题思路。

4、创新精神:自主招生数学试题还注重考察考生的创新精神和实践能力。

这类题目通常以开放式问题的形式出现,要求考生从不同角度思考问题,寻找独特的解题方法。

三、特点分析1、覆盖面广:清华大学自主招生数学试题涉及的知识面较广,要求考生具备扎实的数学基础和广泛的知识储备。

2、难度适中:试题难度适中,既考察了考生的基础知识,又对其思维能力、创新能力进行了充分挑战。

3、突出重点:试题突出对重点知识的考察,如函数与方程、数列与不等式、平面几何等,要求考生对重点知识有深入理解和掌握。

4、强调应用:试题强调对数学知识的应用能力,通过设置实际应用题等方式,引导考生数学在实际生活中的应用价值。

四、应对策略1、巩固基础知识:针对清华大学自主招生数学试题中基础知识的考察,考生应注重巩固高中阶段的基础知识,尤其是函数、数列、三角函数等重点内容。

2、提高运用能力:在掌握基础知识的前提下,考生应注重提高对数学知识的运用能力。

通过练习实际应用题、几何题等类型,提高解决实际问题的能力。

3、培养思维能力:考生应在平时的学习中注重培养逻辑推理、归纳分类、化归等思维能力。

2011年北京大学等13所大学自主招生数学试题解答

2011年北京大学等13所大学自主招生数学试题解答
5, 1 1 6, 0, 6.
的二次 函数 表达式 , 后实 现 2个解题 目标. 最
解 法 2 设 等差 数列 { 的公 差 为 d, 3 口} 则 一a 一
a + 4 = 一 1 44 ,解 得 =4 0 则 通 项 。 d 3 -d = > , =
a 一 a 4 (z 3 d一 4 一 2 . 3 - ,一 ) n 5
1 .解 法 1 思路 提示 ) 两次运 用余 弦定 理 . (
解 法 2 设题设 的平行 四边 形 的另一 条对 角 线 的 长 度等 于 z, 运用 结论 “ 则 平行 四边 形两 条对 角线 长 的 平 方等 于 四边长 的平 方 和” z 4 6 一2 3 +5 ) 解 得 - ( ,
6 .设 C 和 c 是 平 面上 两 个不 重 合 的 固定 圆周 , 。 设 c是该 平 面上 的一个 动 圆 , 与 c 它 和 C 均 相 切 , 。 问 C的 圆心轨 迹是 何种 曲线 ?请 证 明你 的结论 . 7 .求 l 一1 + lz一 1 + … + 1 1 z 1 的最 小 z I 2 l 01 一 2 l
f v一 2 — 2 x2 x一 】。
≤ 2 i q B一 snA -



解 法 2 联 立 方程 组
一 - 5 ̄ + 2 52 z+ 3 .
消去
 ̄ 2sn —8 i 1O
- —
2 。s-Ⅲ c C


同理得 6 2 —1 . z +7 2 —0

1 .已知平 行 四边 形 的 两 边 长 分别 是 3和 5 一 条 对 , 角线 长是 6 求 另一 条对 角线 的长 度. ,
① ×5 +② ×2 7 1 得 y 一一6 1 - , 6 +7 1 =0 x 1 即 l —1 . 4 所 以, 两交 点 A、 都 在直 线 6 B z+7 一 1 0上 , . y —

中科大自主招生试题数学

中科大自主招生试题数学

中科大自主招生试题数学中科大自主招生数学试题通常会涵盖广泛的数学知识点,旨在考察学生的数学思维能力、创新能力以及解决实际问题的能力。

以下是一道典型的中科大自主招生数学试题,将会对题目进行详细的解析。

题目:设函数f(x)在区间[a, b]上连续,存在唯一的最大值点x0,最大值为M,即f(x0) = M,且f'(x0) = 0。

若对于任意的x∈[a, b],f(x)满足下列不等式:f(x) ≤ f(a) + 3(x-a)^2 - 5(x-a)^31.证明函数f(x)在区间[a, b]上是减函数。

2.求f(x)在区间[a, b]上的最大值。

解析:1.首先,我们证明函数f(x)在区间[a, b]上是减函数。

根据题目中的条件,可以得到f'(x0) = 0,即函数在最大值点处的导数为零。

由于导数的定义,导数为零意味着函数在该点处的变化率为零,也就是说函数在该点处是取得极值的可能性最大的地方。

由于函数在最大值点处是取得极值,使得函数在最大值点两侧的变化率相反。

根据函数的凹凸性质,我们可以得出在最大值点左侧的函数是递增的,在最大值点右侧的函数是递减的。

而对于任意的x∈[a, b],我们都满足条件f(x) ≤ f(a) + 3(x-a)^2 - 5(x-a)^3。

可以发现右侧的式子是一个关于(x-a)的二次减三次函数,也就是说它是一个开口向下的函数图像,这意味着对于任意的x∈[a, b],都有f(x)的值要小于该函数值,因此函数f(x)在区间[a, b]上是减函数。

2.接下来,我们来求解f(x)在区间[a, b]上的最大值。

根据题目中的条件,我们已经知道函数f(x)的最大值点为x0,最大值为M。

通过导数的定义,我们知道x0是f(x)的临界点,即f'(x0) = 0。

由于函数在最大值点处的导数为零,因此可以推断出函数在最大值点左侧是递增的,在最大值点右侧是递减的。

所以我们只需要找到函数f(x)在区间[a, b]上的临界点即可求得最大值。

清华大学自主招生数学试题解析

清华大学自主招生数学试题解析

• 1・2017年清华大学自主招生暨领军计划试题解析已知-•根绳子放在数轴的[0・斗」区阳丄二线密度二皿-护.求绳子的质屋- 解答加解答 件先冇cos 単十 i iin 4?5二(cos 警cos 夸一 sin 警sin 弩: 二 cos + isin再I ] i 归纳法,可得3 警+ Tn 警,1 E.世到 ttJ -' = 1,则 cw 1 — w -' TW " - C4J _':7W + ru _l —2 COS 〒 T tv ' + ⑴ 二 2cCrS 号.战/(tw )/(a/ )f( OJ ? )/(oi 1)/(w)/(w _1 )/(w 2 )/(«"*)(4?十 W 十 2)(^~2十 J 十 2)(^ 十 y + 2)(W _1 + 胪 + 2) (1 十洞十2^ + w -] + 1 + 2M + 2w a 十 2w l + 4)(1 十 4 2^ + OJ -2 + 1 + 2^ + 2^ + 2M _r + 4)(6 + Gcos^ + 4cos 警)(6 + g 警 + Seos 警)(6 + ficos y - 4tos yj(6 + 4cOH 弩- E 阮、(6 - 6孕y + isin ^,/(x) = x z 十龙+若则f (川)几』〉的值为+ i^cos ^sin 警 + sin 警cos 弩 5-75-l)(6 + ?5- 1、4• 1・《高校自主招生一数学》 贾广素工作室• 2 •=11.若 0「门 +flCOS (A :-l )= 0 有唯--解,则(A.厲的值唯• B. 口的值不唯一C 门的值不存在D.以上都不对解答选A.因为f (兀)=217 +acos (A :-l )关于x = l 对称,所以若f (x )^唯一零点,则零点只 能为1.将兀=1彳弋入,得到a = T,此时f (x ) =2|x_11 -cos (x-l ),^检验« = -1符合 题意"04已知皿1 *2 ,衍皿&€ {1、Z ,3,4:} ,口3皿4》为口I ■吐.心皿4中不同数字的种类哀如N (1J23) =3,N (122,1}二2,求所有的256个(血心gg )的排列所得 7V ("l 山2 ,如■心)的平均值为().解答选D-N 5\心、a 3心)为1的个数为4;N (心•如,為虫J 为2的个数为CS (CS+2Q ) = 84; N (尙0 心皿Q 为3的个数为二144*N (Q i *2 *麻3皿4 )为球的个数为A] — 24.117^从而 iijfR^^6(4xi + 84X2+114X3 + 24X1) = ^.在△/WC 中 *sinZ/l + sinz^/?sinz^C 的最大值为(解答选E市积化和差公式得sin^A + sin^Bsm^C=sin^A + y (cost^B - ZC) - cos(^B + 乙CM-sin^A - -^COB ^A + ~|~cos(Z 百—乙 C) 冬 sin^A - -^-cosZ^/4 + 令Y I s + (_ 4)- Z 卩)+ YA - 32175 64A- iB.1 +75D.无报大值4《高校自主招生一数学》贾广素工作室在= = + j时取等号*四人做一道选项为A.B,C.D的选择题•四牛同学的对话知厂赵:我选A.钱:我选B,GD当屮的-个一孙古我选C李古我选6四个人毎人只选了…个选项川1' R倂不相同'我中貝有一个人说谥•则说谎的人町能是诽1 解答孙或李.用列衣法•只中O代表选该选项.X代表没有选该选项一如赵说谎•则无人选A(见表1八弟盾一表1A B C D赵XX孙0O如钱说谎,则赵、钱均选A(见表2)-矛曲.表2A H C赵O践O如孙说谎.则可得如表3所示的情况:成7..O _______X• 3 *《高校自主招生一数学》贾广素工作室如李说谎.则川'得in* 4所示的悄况•成立.表4A B C D赵O钱X OO0X已知2・ lvC?C, I 2 + IV I = 1 H, I z2 + H'2 I 二4?则I ZW I (解答选注意到1 - | z + w | - - | (z w)21 = \ z2w2+ 2zw | , 从【对冇1 | z2 + | - 21 ziv | 与I $ 21 砂| 一]护+ \沪从而(最小值可以取测例如辽二捋7.⑷二上尹,最大值亦可以取到’例如辽二今+寺人⑷二-3 +丄)2 21往四面体PABC ABC为等边三角形,边长为乳“二乳珂?二4./V二乳贝W四而体P/W0的体积为().A. 3B. 2屈C. /1TD. /10解答选C件先PC2= PB Z+ BC\故PB±反\设P到底而的高足PH.则BC± UH ZABH =30°设PH = h.AH =a^H^b,CH = c”山余弦定理得+ A2= 32・护+护二学,+ h2 -5\07A.有最大值普B有最大值号C有最小值另 D.有最小值号* 5 *如图[所示,已知曲线+ / = l 以及直线i lt y =弄仏;y = _yx,曲线E 与八交于A,B 两点“与h 交于C-D 两点.在E 上任找一点P (不与A^.C-D 重合几直线AP.M 分 别与仏交于M,N两点,则(A,B. C, D. 解答选BC•设P 的坐标为(利小八则乎+冗二I •此吋PA 的方程为v 42ya - -7—匕-找)・Xo - V2円?的方程为+ ©)•分别与方程尸-专工联立,可得_ 72 y a + ~2X ^尤 M 二-; -------_号-列+屈09二 yri .对于函数=e i (jt-l)a (x-2),H 下选项正确的是( A.冇2个极大值 B冇2个扱小值 U 1是极大值点 解答BC, 求导数:/"(x) = e^ECx - l)2(x -2) -- I)C A -2) +=c T (x + /3)(x -^/3)(JT - 1).则f 〔C 右2个极小值门是极大值点.D. 1是极小值点(x - I}2]10在椭圆上存在2个不同的点Q,使得丨021,二丨OM I 丨(釈 在椭圆上存在4个不同的点Q,使得丨%]—|OM| |QV| 在椭圆上存在2亍不同的点0使得住椭圆上存在4个不同的点0使得△NfAsAQMO rfl 对称性,不奶设A RC D 的塑标分别为-罟- - 72图!0M\ \ 0N\ - 0M - ON -\OM\\ON\ = \ 0A\\可^\OQ\2= \o^\ \o^\’可选Wt A/.C2四点.若△MXIsAQTfO.则只能选耽刈•觸足A + 2y + 3z- 100的非负整数解的组数为(A 883B 884 C. 885).D 886Zy种数00—5C5110—484920-474830—4546h・・h・・33u1表5解的组数为51 + 49 + 4W + 46 + 45 + - + 4 + 3 + 1 + 0 =百甘 4.{(x t y,z) | x +2y + 3z^l,JC,y T z>0} ■求V的体积+这是-个玄角呗休•三条玄角边丘是1以寺.故休积为春一已知f(x)=c2x +e -ax.^ X^).均右只站孑厶求a的取值范围一解答rtl f (X) = c21 + c1- m符/CO) = 2,又f (JC ) =2c^J + c J- ◎该导歯数在[th +«■)上递増‘故贾求 f (0)=3-^>0,即a<3.州图2所小』为闘山II屈心• f E在岡.11运动JL满出/AM-艸+则-W)* 6 ** 7・的中点E 的轨迹为()-A.圆B.稱圆 U 双曲线的一支 D.线段解答选入 由E 为中点'得PE Z + QE& 二 BE 2 十 OE 2 BO-=厝.做动点到两疋点距离的平方和为足f (因此动点E 的轨迹为慎1 一15L_已知椭圜方程为为苴右准线上一点,过P 向椭圆作切蜒,切点分别为恻的左恆点対几则( 人解答选AU汁先汴.意到结论:在椭圆准线上作取一点•过该点作椭•圆的两条切线*那么两切点的连 线必过该准线村应的倩点(虚明略)-应用结论•可知/XF/W 的周氏九定值•且越AH 乖胃于横轴吋它的值忌小.此时JT] Xi 码,骷"百€ (1,2,3,4,5,6? T 且 JC],x z T x 3T x 4,嘉■站各不相同,则禰足心一5忌+ 10x a - 10氐+ 5x s -x a = 0的解的组数为參少?解答6.首先心-应是5的倍数点x 产1皿之或机=6t x fi = L 考虑方程-+ 10的—10盟」5心 一 5 或-5x-i + 10氏 一 W 鹤 + 5嘉二一 5* 即-x 2 - 2X 3 - 2x x + A :5 = I或—X2 + 2^3 — 2也 + Jts - — 1注意到肌-乱不足2的倍数•战由上面的方服有也-耳厂乳軌-心一 -1或若砧-应一 -1心-占二]・或者X 5 _ X? = -3、心-心=1或若也-也二】* -工4二-1故这个方程有M+3二6纽解.已知 A e { - KOJ ZV e (2,3,4,5,映射 f : A^B. li^ 足 x 十 f(x) +球J )为壷数.求f 的个数. 解答50.A. \AB\的扯小值为1 C. AFA13的周艮为定值B. \AB\的毘小值师 D. A MB 的面积为定值' 8 -注意到 X + /(JC ) +xf(x) = <x + l)(f(x) +1)-1. + 十 1)为偶数. 故若x 为偶数,则f (巧为奇数•即f(0)二3或和N - “的取值任意,由乘法原 理可得,答案为2x5a ^50.解答选匚一注总到公式fm 二故dH 错误.另一方血M ©/? *从而川门币二0-故F (丽}=- 最后•如 A 二 0•则 P(AB)>0.U 知实数厲』满足a 2+ a =3b 2 +2乩且 H 则C 解答a ACD若 a<b,则 / + a<h~ + b<2( b 2+ b)<3b~ + = 矛盾.另一方面■若3b 2 + 2b= a 2 + a^(2h)2 + 2b>3b 2 +2乩矛盾.最U 若 b^2a 侧 a 2a ~ 3b~ + 2b^3(2a¥ +4a^>a - + a * 矛盾. 故得选项为ACD1 + A :| 4 1 + A2 +I + X t0]7 ~卿( hA.显窍有】个乩小于1 B 虽务有2个在小于2 C. mHx {, --■, x 2 di?} ^2 (J17D. max { x } T , JC 2 AU \ ^2 016解答ABD.如有2个绪小于】・则上式左边大于占 + j ])•矛盾一 如有3个摘小于厶则匕式左边大于占+出+占■不质. 再注意到x t =^=-= ^01T = 2O16是一组解点匚不陇立. 如 max{jt! ,Xi»***tX aM7 }<2 Olfii 则―-—+ ―1— + ■■■ + -------- ! ----- > --------- 1 --- + -------- - ---- + ■■■ + ------ ! -----1 + 利 h1 + X 2O I 7 1 +2 0161 +2 0161 +2 016矛质.已知事件月—n<P<l?)<lt!WiJ(A . /n = i -re/?)C, H 丽=0B . p(^|A)= i-r(B)D. P(J\B)=QA. b<aB a<bC a<2b D. b<2a已知严■,总期均为大于o 的实数.a故答案选AB6 ' 8 -《高校自主招生一数学》 贾广素工作室入{和 + 几 + zd 是等比数列B.若存在 m .>1— y… - z m ,则 JCi = yi = Zi1 q 1U 若心二-才忌二才则= ( - 1)"亠尹D 以上均不正确解答选BC首先*当首项^i = ^i-zi= 0时・皿+几十為}不是等比数列.其次,若存在啣>l,s = % =昭,解方程组可得x…L -i = y^-i = z^-t =2x Mt 从而递推 可得Xi 二力=巧,一 1 弓 ’ 1出次*由Xi = 一忑心二亍得}■] + Zi - 2x2 + X] =2,则幷“*斗爲二3 •不,根据递推式用為=(-1)”十右.故答棗选BCA 3 n r., =0. 5 B. 3 H * r h =0,6 C. 3 M r fl = () 7 [>, 3 » < =0,8 解答选2假设不存在航’便得 仏=0 5.则山H =O^ioo =0. 85,必存亦「使得hVU •硏5.若k 是偶数•不妨设血二三⑴汀汕笆筈於3<*・不符令题意;若血是奇数"设氐二加T-l.f炭厂+,只能f 矛氐所以选项A 正确 4= 08同理可得选项D 正确. 如果此人第2、86次全部投中•排除B,C.一同学打球■记g 为投起次后的命中率,已知心—AsFL 版则一足有().。

2013年华约自主招生数学试题解析

2013年华约自主招生数学试题解析

2013年华约自主招生数学试题解析戴又发1.设},10|{Z x x x A ∈≥=,A B ⊆,且B 中元素满足:任意一个元素各数位的数字互不相同;任意一个元素的任意两个数字之和不等于9. (1)求B 中的两位数和三位数的个数; (2)是否存在五位数,六位数?(3)将B 中的元素从小到大排列,求第1081个元素.解析(1)所有的两位数共90个,其中数字相同的有9个,两数字之和为9的有9个, 所以B 中的两位数有90―9―9=72个;所有的各数位的数字互不相同三位数共9×9×8=648个,其中含有数字0和9的有4×8=32个,含有数字1和8,2和7,3和6,4和5的各有4×8+2×7=46个, 所以B 中的三位数有648―32―46×4=432个;另解(1)将10个数字分为5组:(0,9),(1,8),(2,7),(3,6),(4,5),每组中的两数不能同时出现在一个元素中.对于两位数,若最高位为9,则共有2×4=8个,若最高位不为9,则共有2×4×4×2=64个,所以B 中的两位数有72个; 对于三位数,若最高位为9,则共有24A ×2×2=48个, 若最高位不为9,则共有14A ×2×24A ×2×2=384个, 所以B 中的三位数有48+384=432个;(2)对于五位数,若最高位为9,则共有44A ×2×2×2×2=384个, 若最高位不为9,则共有14A ×2×44A ×2×2×2×2=3072个, 所以B 中的五位数有3072+384=3456个; 显然B 中不存在六位数.(3)B 中的两位数和三位数共有72+432=504个,在B 中的四位数中,千位上为1,2,3的各有192个, 而504+192×3=1080个,所以第1081个元素应为四位数中,千位上为4的最小数,即4012.2.已知31sin sin =+y x ,51cos cos =-y x ,求)cos(y x +,)sin(y x -. 解析 由31sin sin =+y x ,得91=sin sin 2+sin +sin 22y x y x ……①由51cos cos =-y x ,得251=2cosx cosy cos +cos 22-y x ……② 两式相加,得22534=251+91=)+cos(22y x -, 所以 225208=225171=)+cos(-y x . 又由31sin sin =+y x ,得31=2cos 2+sin 2y x y x - ……③由51cos cos =-y x ,得51=2sin 2+sin 2y x y x -- ……④两式相除,得53=2tan --y x ,所以 1715=259+153×2=2tan +12tan2=)sin(2-----y x yx y x .3.点A 在kx y =上,点B 在kx y -=上,其中0>k ,12+=k OB OA ,且A ,B 在y 轴同侧.(1)求AB 中点M 的轨迹C 的方程;(2)曲线C 与抛物线)0(22>=p py x 相切,求证:切点分别在两定直线上,并求切线方程.解析 (1)设),(11kx x A ,),(22kx x B -,021>x x , 由 12+=k OB OA ,得222222221221)1+(=)+)(+(k x k x x k x ,所以1=21x x .设点M 的坐标为),(y x M ,则2+=21x x x ,2=2=2121x x kkx kx y -- 所以 1==)y(2122x x k x -,即点M 的轨迹C 的方程为 1=222ky x -.(2)因为曲线C 与抛物线)0(22>=p py x 相切,得 222=2k y y pk -,由 0=4)2(=222k pk --∆,得pk 1=,此时p y 1=,两切点坐标为)1,2(p ,)1,2(p - ,即切点分别在两定直线2±=x 上.切线方程分别为0=12--py x 和0=1++2py x .4.7个红球,8个黑球,任取4个. (1)求恰有1个红球的概率;(2)记取黑球个数为x ,求其分布列和期望; (3)取出4球同色,求全为黑球的概率. 解析 (1)恰有1个红球的概率为4153817C C C 13×15×756×7=19556=; (2)黑球个数为4,3,2,1,0=x ,黑球数为0的概率为4150847C C C 13×15×735=1955=; 黑球数为1的概率为4151837C C C 13×15×78×35=19540=; 黑球数为2的概率为4152827C C C 13×15×728×21=19584=; 黑球数为3的概率为4153817C C C 13×15×756×7=19556=;黑球数为4的概率为4154807C C C 13×15×710×7=19510=; 其分布列为x 的数学期望为0×1955+1×19540+2×19584+3×19556+4×19510=1532.(3)由(2)知4球同色的概率为 195519510+19515=, 所以,取出4球同色,全为黑球的概率为 32=1951519510.5.已知21++=n n n ca a a , ,3,2,1=n ,0>1a ,0>c .(1)证明对任意的0>M ,存在正整数N ,使得对于N n >,M a n > (2)设1+1=n n ca b ,记n s 为n b 前项和,证明n s 有界,且0>d 时,存在正整数k ,kn >时d ca s n <1<01-. 解析 (1)由0>1a ,0>c ,知0=21+>-n n n ca a a ,于是 11121121+++1=+=------))>()(-(---n n n n n n n n n n n n a a a a c a a ca a ca a a a122111+a a a a a a a a n n n n n n ->>->->----所以2112112211)1(n =))(1(n ++++=ca a a a a a a a a a a n n n n n --->------对任意的0>M ,要使M a n >,只需M ca n >)1(21-,1+>21ca Mn , 取]2+[=21ca MN ,于是N n >,M a n >.(2)1+1=n n ca b n n na ca a +=21+=n n a a 1+2=n n n a ca ca 1+1+=n n n n a ca a a -nca 1=1+1n ca -, 所以 n s 11=ca 1+1n ca -,1+11=1n n ca ca s ->0, 由(1)知211+nca a n >,所以2121+1<1a nc ca n ,即1+11=1n n ca ca s -2121<a nc , 所以n s 有界; 令d 2121=a nc ,得 n 2121=a dc , 取k ]1+1[=212a dc ,则k n >时d ca s n<1<01-.6.设z y x ,,是两两不等且大于1的正整数,求所有使得xyz 整除)1)(1z (1)(---zx y xy 的z y x ,,.解析 因为)1)(1z (1)(---zx y xy =z)+y +z(x z)(2xy xy -+zx y xy +z +-1, 而z)+y +z(x z)(2xy xy -能被xyz 整除, 于是只需zx y xy +z +-1能被xyz 整除即可.又z y x ,,是两两不等且大于1的正整数,不妨设z >>y x∴ ≤xyz zx y xy +z +-1xy 3<,即3<z ,∴2=z . 于是只需x y xy 2+2+-1能被xy 2整除,当然 12+2+≤2-x y xy xy ,即12+2-x y xy ≤,∴x x y xy 4<2+2<. 于是4<y ,∴ 3=y ,进而5≤x ,∴ 5=x ,4. 检验知2、3、5能使zx y xy +z +-1能被xyz 整除,∴ ),,(z y x )5,3,2(=)3,5,2(=)5,2,3(=)2,5,3(=)3,2,5(=)2,3,5(=.7.设1e )1(=)(--xx x f . (1)证明当0>x 时,0<)(x f ;(2)令1e =1+-n n x x n ex ,1=1x ,证明n x 递减且nn x 21>. 解析 (1)因为0=1e )01(=)0(0--f , 又当0>x 时,xxe x e xf )1(+=)('--xxe -=0<, 所以当0>x 时,0<)(x f ;(2)由1e =1+-n n x x n ex ,得nx x x en n 1e =1+-,又x e x+1>,可得0>n x .由(1)知0>x 时,0<)(x f ,0<1e )1(=)(--n xn n x x f , 1+e =1>e n n n x n x x n x e x -,∴1+e >e n n x x ,即n n x x <1+,n x 递减.下面用数学归纳法证明 nn x 21>. 1=n 时显然成立,假设k n =(*∈N k )时,k k x 21>, 构造函数x 1=)(-x e x g ,当0>x 时,)(x g 为增函数,∴)21(>)(k k g x g .又当0>x 时,2+1>2xe x ,再设函数))((=)(2xe x g x x h -,则0))2+1(=2+1=)(222'>-()-(x e e e x e x h xx x x ,)(x h 在)÷∞,0(上是增函数,0>)21(k h ,∴1+21>)21(k e g k , ∴1121++>k k e e x, 1121++>k k x ,由数学归纳法知,对于正整数n ,有n n x 21>.。

自主招生数学典例祥解

自主招生数学典例祥解

( A)(2)(3) (B)(1)(4) (C)(1)(3) (D)(1)(2)(4)
对集合(1), 若取 a = 1 , 则不存在集合中的 n, 使 0 < n - 0 < 1 .
3
n+ 1
3
对集合(4), 若令 a = 1 , 则也不存在 x ? Z, 使 0 x - 0 < 1 .
2
2
显然, 集合(2)(3)以0为聚点.
9 当且仅当 a b 0, c 9时取最大值, a c 0, b 4 时取最小值.
9
典型例题
2、当 a和b取遍所有实数时, 函数 f (a,b) (a 5 3 cos b )2
(a 2 sin b )2 所能取到的最小值为( ).
(A) 1
(B) 2
(C) 3
素的初值 n0 的最大的集合是( ).
( A) 空集 (B) X
(C ) {1, 3, 9}
( D) {1, 3, 7, 9}

显然,要使数列{nk }取遍 X 中所有元素,
只要 n0不是 2与5的倍数,
故初值 n0 的集合是 {1,3,7,9}.
二、试卷特点分析
变知识立意为能力立意 考查数学的基本思想和方法
典型例题
2、设集合 A = {(x, y) loga x + loga y > 0}, B = {(x, y) y + x ? a}, 若 A B = ? , 则a的取值范围是( ). (A)? (B) a 0, a ? 1 (C)0 a 92, a 1 (D)1< a ? 2
A = {(x, y) loga (xy) > 0, x > 0, y > 0}. 若a (0,1), 则xy 1,

合肥168中学2011年自主招生数学试题(含答案)

合肥168中学2011年自主招生数学试题(含答案)

答案一、选择题3、已知:y=1/2(x的平方-100x+196+|x的平方-100x+196|),当x=1,2,到100,求这100个自然数的和的函数值解法一:对于函数x^2-100x+196,它可因式分解为(x-2)(x-98),所以当x=2 x=98时,这个函数为0当2<x<98时,这个函数的x轴的下面,而对于|x的平方-100x+196|,它在x轴的上面,且两者离x轴的距离都相等。

所以当x=2、3、、4、……、98时,y都为0当x=0时,y=1/2*(196+196)=196该函数的抛物线为x=50,所以x=1和x=99的值相等,当x=1时,y=1^2-100+196=97所以这100个自然数的值为196+97*2=390解法二:当2≤x≤98时,因为x^2-100x+196=(x-2)*(x-98)≤0,所以恒有y=[x^2-100x+196-(x^2-100x+196)]/2=0,当x=1,99,100时,y=[x^2-100x+196+(x^2-100x+196)]/2=x^2-100x+196。

y(1)=y(99)=97,y(100)=196。

所以:y(1)+y(2)+y(3)+y(4)+……+y(97)+y(98)+y(99)+y(100)=97+0+0+0+……+0+0+97+196=390。

5、设a平方+1=3a,b平方+1=3b,且a不等于b,则代数式1/a平方+1/b平方的值是解:a²+1=3a,b²+1=3b,则:a、b是方程x²+1=3x即x²-3x+1=0的两个根,则:a+b=3且ab=11/a²+1/b²=[a²+b²]/(ab)²=[(a+b)²-2ab]/(ab)²=76、如图,一个等边三角形的边长与它的一边相外切的圆的周长相等,当这个圆按箭头方向从某一位置沿等边三角形的三边做无滑动旋转,直至回到原出发位置时,则这个圆共转了()解:小球周长和三角形边长相等,因此在每条边转动了360°(即转1圈)三条边一共3圈。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档