中考数学试题2006年无锡市初中毕业高级中等学校招生考试数学试题
2006年无锡市高级中等学校招生考试

2006年无锡市高级中等学校招生考试化学试题注意事项:①答案全部填在答题卷上。
填写在试题纸上一律无效。
②选用的相对原子质量在答题卷首。
③考试时间:100分钟;试卷满分:100分。
一、选择题(本题包括20小题,每小题只有l个选项符合题意,每小题1分,共20分) 1.古代“山顶洞人”从事的生产活动中,发生化学变化的是A.采集野果 B.钻木取火 C.狩猎捕鱼 D.缝制衣服2.吸烟有害健康,香烟烟气中能与血红蛋白结合的有毒气体是A.氮气 B.氧气 C.二氧化碳 D.一氧化碳3.下列物质属于纯净物的是A.河水 B.蒸馏水 C.软水 D.硬水4.100mL酒精与100mL水充分混合后的总体积小于200mL,这一事实说明A.分子之间有一定的间隔 B.分子是可以再分的C.分子在不断地运动 D.分子是保持物质化学性质的最小粒子5.下列不属于缓慢氧化的是A.动物呼吸 B.酿造米酒 C.食物腐败 D.红磷燃烧6.硅酸三钙(Ca3SiO5)是水泥的成分之一,硅酸三钙中硅元素的化合价为A.+3价 B.+4价 C.+5价 D.+6价7 下列物质相同的是A.银和水银 B.冰和干冰 C.生石灰和熟石灰 D.火碱和烧碱8.在四个小烧杯中分别盛放下列物质,在空气中放置一段时间后,质量会增加的是A.汽水 B.浓盐酸 C.浓硫酸 D.饱和食盐水9.下列物质和空气混合后遇到明火,不可能发生爆炸的是A.氮气 B.天然气 C.氢气 D.面粉粉尘10.下图是四位同学对某化学式意义的描述他们描述的化学式是A.CO B.O2 C.N2 D.H2O11.有一首赞美某种气体的诗,其中的几句是:“她营造了云雾缭绕的仙景;她驱散了炎炎夏日的暑气;她奋不顾身扑向烈火;她带给大地勃勃生机……。
”这首诗所赞美的气体是 A.氧气 B.氮气 C.二氧化碳 D.甲烷12.下列化学反应中,符合右图卡通画情景的是高温A.C+2CuO====2Cu+COB .Cu+2AgNO 3====Cu(NO 3)2+2AgC .Fe 2O 3+3CO====2Fe+3CO 2D .BaCl 2+Na 2SO 4====BaSO 4↓+2NaClA .牛奶B .苹果C .豆制品D .番茄 14.下列物质的用途是利用其化学性质的是A .稀有气体用于霓虹灯 B.金属铝制易拉罐 C .碳酸氢钠用于焙制糕点 D .铜线用于制电缆 15.下列叙述正确的是A .将pH 试纸浸入溶液中测溶液的pHB .用100mL 量筒量取5.55mL 的稀硫酸C .将氢氧化钠固体直接放在托盘天平的托盘上称量D .配制10%的氯化钠溶液的主要步骤是:计算、称量、溶解16.自来水厂净水过程示意图为:天然水———→沉降—→过滤—→吸附———→自来水,其中常用的絮凝剂是A .氯气B .活性炭C .明矾D .漂白粉 17.下列叙述错误的是A .唾液中的淀粉酶是一种生物催化剂B .人体所需的能量全部由糖类提供C 食用加碘盐可预防甲状腺肿大D .蔬菜、水果、鱼肝油等富含维生素 18.下列灭火方法不恰当的是A .酒精灯不慎打翻起火,立即用湿抹布扑灭B .图书档案起火,用二氧化碳灭火器扑灭C .炒菜时油锅中的油不慎着火,可用锅盖盖灭D .石油油井着火,用大量水浇灭19.下图是初中化学常见的实验操作,其中错误的是20.根据实践经验,你认为下列家庭小实验不能成功的是 A .用缝衣针淬火处理后制钓鱼钩 B .用6B 铅笔芯做导电性实验C .用食品干燥剂(CaO)加入水中制取石灰水D .用冷碟子放在蜡烛火焰上方制取炭黑二、选择题(本题包括5小题,每小题2分,共10分。
历年江苏省无锡市中考数学试卷(含答案)

2017年江苏省无锡市中考数学试卷一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)﹣5的倒数是()A .B.±5 C.5 D .﹣2.(3分)函数y=中自变量x的取值范围是()A.x≠2 B.x≥2 C.x≤2 D.x>23.(3分)下列运算正确的是()A.(a2)3=a5B.(ab)2=ab2C.a6÷a3=a2D.a2•a3=a54.(3分)下列图形中,是中心对称图形的是()A .B .C .D .5.(3分)若a﹣b=2,b﹣c=﹣3,则a﹣c等于()A.1 B.﹣1 C.5 D.﹣56.(3分)如表为初三(1)班全部43名同学某次数学测验成绩的统计结果,则下列说法正确的是()A.男生的平均成绩大于女生的平均成绩B.男生的平均成绩小于女生的平均成绩C.男生成绩的中位数大于女生成绩的中位数D.男生成绩的中位数小于女生成绩的中位数7.(3分)某商店今年1月份的销售额是2万元,3月份的销售额是4.5万元,从1月份到3月份,该店销售额平均每月的增长率是()A.20% B.25% C.50% D.62.5%8.(3分)对于命题“若a2>b2,则a>b”,下面四组关于a,b的值中,能说明这个命题是假命题的是()A.a=3,b=2 B.a=﹣3,b=2 C.a=3,b=﹣1 D.a=﹣1,b=39.(3分)如图,菱形ABCD的边AB=20,面积为320,∠BAD<90°,⊙O与边AB,AD都相切,AO=10,则⊙O的半径长等于()A.5 B.6 C.2 D.310.(3分)如图,△ABC中,∠BAC=90°,AB=3,AC=4,点D是BC的中点,将△ABD沿AD翻折得到△AED,连CE,则线段CE的长等于()A.2 B.C.D.二、填空题(本大题共8小题,每小题2分,共16分)11.(2分)计算×的值是.12.(2分)分解因式:3a2﹣6a+3=.13.(2分)贵州FAST望远镜是目前世界第一大单口径射电望远镜,反射面总面积约250000m2,这个数据用科学记数法可表示为.14.(2分)如图是我市某连续7天的最高气温与最低气温的变化图,根据图中信息可知,这7天中最大的日温差是℃.15.(2分)若反比例函数y=的图象经过点(﹣1,﹣2),则k的值为.16.(2分)若圆锥的底面半径为3cm,母线长是5cm,则它的侧面展开图的面积为cm2.17.(2分)如图,已知矩形ABCD中,AB=3,AD=2,分别以边AD,BC为直径在矩形ABCD的内部作半圆O1和半圆O2,一平行于AB的直线EF与这两个半圆分别交于点E、点F,且EF=2(EF与AB在圆心O1和O2的同侧),则由,EF,,AB所围成图形(图中阴影部分)的面积等于.18.(2分)在如图的正方形方格纸中,每个小的四边形都是相同的正方形,A,B,C,D都在格点处,AB与CD相交于O,则tan∠BOD的值等于.三、解答题(本大题共10小题,共84分)19.(8分)计算:(1)|﹣6|+(﹣2)3+()0;(2)(a+b)(a﹣b)﹣a(a﹣b)20.(8分)(1)解不等式组:(2)解方程:=.21.(8分)已知,如图,平行四边形ABCD中,E是BC边的中点,连DE并延长交AB的延长线于点F,求证:AB=BF.22.(8分)甲、乙、丙、丁四人玩扑克牌游戏,他们先取出两张红心和两张黑桃共四张扑克牌,洗匀后背面朝上放在桌面上,每人抽取其中一张,拿到相同颜色的即为游戏搭档,现甲、乙两人各抽取了一张,求两人恰好成为游戏搭档的概率.(请用“画树状图”或“列表”等方法写出分析过程)23.(8分)某数学学习网站为吸引更多人注册加入,举行了一个为期5天的推广活动,在活动期间,加入该网站的人数变化情况如下表所示:(1)表格中a=,b=;(2)请把下面的条形统计图补充完整;(3)根据以上信息,下列说法正确的是(只要填写正确说法前的序号).①在活动之前,该网站已有3200人加入;②在活动期间,每天新加入人数逐天递增;③在活动期间,该网站新加入的总人数为2528人.24.(6分)如图,已知等边△ABC,请用直尺(不带刻度)和圆规,按下列要求作图(不要求写作法,但要保留作图痕迹):(1)作△ABC的外心O;(2)设D是AB边上一点,在图中作出一个正六边形DEFGHI,使点F,点H分别在边BC和AC上.25.(10分)操作:“如图1,P是平面直角坐标系中一点(x轴上的点除外),过点P作PC⊥x轴于点C,点C绕点P逆时针旋转60°得到点Q.”我们将此由点P 得到点Q的操作称为点的T变换.(1)点P(a,b)经过T变换后得到的点Q的坐标为;若点M经过T 变换后得到点N(6,﹣),则点M的坐标为.(2)A是函数y=x图象上异于原点O的任意一点,经过T变换后得到点B.①求经过点O,点B的直线的函数表达式;②如图2,直线AB交y轴于点D,求△OAB的面积与△OAD的面积之比.26.(10分)某地新建的一个企业,每月将生产1960吨污水,为保护环境,该企业计划购置污水处理器,并在如下两个型号中选择:已知商家售出的2台A型、3台B型污水处理器的总价为44万元,售出的1台A型、4台B型污水处理器的总价为42万元.(1)求每台A型、B型污水处理器的价格;(2)为确保将每月产生的污水全部处理完,该企业决定购买上述的污水处理器,那么他们至少要支付多少钱?27.(10分)如图,以原点O为圆心,3为半径的圆与x轴分别交于A,B两点(点B在点A的右边),P是半径OB上一点,过P且垂直于AB的直线与⊙O分别交于C,D两点(点C在点D的上方),直线AC,DB交于点E.若AC:CE=1:2.(1)求点P的坐标;(2)求过点A和点E,且顶点在直线CD上的抛物线的函数表达式.28.(8分)如图,已知矩形ABCD中,AB=4,AD=m,动点P从点D出发,在边DA上以每秒1个单位的速度向点A运动,连接CP,作点D关于直线PC的对称点E,设点P的运动时间为t(s).(1)若m=6,求当P,E,B三点在同一直线上时对应的t的值.(2)已知m满足:在动点P从点D到点A的整个运动过程中,有且只有一个时刻t,使点E到直线BC的距离等于3,求所有这样的m的取值范围.2017年江苏省无锡市中考数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)(2017•无锡)﹣5的倒数是()A.B.±5 C.5 D.﹣【分析】根据倒数的定义,即可求出﹣5的倒数.【解答】解:∵﹣5×(﹣)=1,∴﹣5的倒数是﹣.故选D.【点评】本题考查了倒数,熟练掌握倒数的定义是解题的关键.2.(3分)(2017•无锡)函数y=中自变量x的取值范围是()A.x≠2 B.x≥2 C.x≤2 D.x>2【分析】根据分式有意义的条件,分母不等于0,可以求出x的范围.【解答】解:根据题意得:2﹣x≠0,解得:x≠2.故函数y=中自变量x的取值范围是x≠2.故选A.【点评】本题考查了求函数自变量取值范围,求函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.3.(3分)(2017•无锡)下列运算正确的是()A.(a2)3=a5B.(ab)2=ab2C.a6÷a3=a2D.a2•a3=a5【分析】利用幂的运算性质直接计算后即可确定正确的选项.【解答】解:A、(a2)3=a6,故错误,不符合题意;B、(ab)2=a2b2,故错误,不符合题意;C、a6÷a3=a3,故错误,不符合题意;D、a2•a3=a5,正确,符合题意,故选D.【点评】本题考查了幂的运算性质,解题的关键是了解这些性质并能正确的计算,难度不大.4.(3分)(2017•无锡)下列图形中,是中心对称图形的是()A.B.C. D.【分析】根据中心对称图形的定义逐个判断即可.【解答】解:A、不是中心对称图形,故本选项不符合题意;B、不是中心对称图形,故本选项不符合题意;C、是中心对称图形,故本选项符合题意;D、不是中心对称图形,故本选项不符合题意;故选C.【点评】本题考查了对中心对称图形的定义,能熟知中心对称图形的定义是解此题的关键.5.(3分)(2017•无锡)若a﹣b=2,b﹣c=﹣3,则a﹣c等于()A.1 B.﹣1 C.5 D.﹣5【分析】根据题中等式确定出所求即可.【解答】解:∵a﹣b=2,b﹣c=﹣3,∴a﹣c=(a﹣b)+(b﹣c)=2﹣3=﹣1,故选B【点评】此题考查了整式的加减,熟练掌握运算法则是解本题的关键.6.(3分)(2017•无锡)如表为初三(1)班全部43名同学某次数学测验成绩的统计结果,则下列说法正确的是()A.男生的平均成绩大于女生的平均成绩B.男生的平均成绩小于女生的平均成绩C.男生成绩的中位数大于女生成绩的中位数D.男生成绩的中位数小于女生成绩的中位数【分析】根据平均数的定义分别求出男生与女生的平均成绩,再根据中位数的定义分别求出男生与女生成绩的中位数即可求解.【解答】解:∵男生的平均成绩是:(70×5+80×10+90×7)÷22=1780÷22=80,女生的平均成绩是:(70×4+80×13+90×4)÷21=1680÷21=80,∴男生的平均成绩大于女生的平均成绩.∵男生一共22人,位于中间的两个数都是80,所以中位数是(80+80)÷2=80,女生一共21人,位于最中间的一个数是80,所以中位数是80,∴男生成绩的中位数等于女生成绩的中位数.故选A.【点评】本题为统计题,考查平均数与中位数的意义,平均数是指在一组数据中所有数据之和再除以数据的个数.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会错误地将这组数据最中间的那个数当作中位数.7.(3分)(2017•无锡)某商店今年1月份的销售额是2万元,3月份的销售额是4.5万元,从1月份到3月份,该店销售额平均每月的增长率是()A.20% B.25% C.50% D.62.5%【分析】设每月增长率为x,据题意可知:三月份销售额为2(1+x)2万元,依此等量关系列出方程,求解即可.【解答】解:设该店销售额平均每月的增长率为x,则二月份销售额为2(1+x)万元,三月份销售额为2(1+x)2万元,由题意可得:2(1+x)2=4.5,解得:x1=0.5=50%,x2=﹣2.5(不合题意舍去),答:该店销售额平均每月的增长率为50%;故选:C.【点评】本题考查了一元二次方程的应用;解题的关键在于理解清楚题目的意思,根据条件找出等量关系,列出方程求解.本题需注意根据题意分别列出二、三月份销售额的代数式.8.(3分)(2017•无锡)对于命题“若a2>b2,则a>b”,下面四组关于a,b的值中,能说明这个命题是假命题的是()A.a=3,b=2 B.a=﹣3,b=2 C.a=3,b=﹣1 D.a=﹣1,b=3【分析】说明命题为假命题,即a、b的值满足a2>b2,但a>b不成立,把四个选项中的a、b的值分别代入验证即可.【解答】解:在A中,a2=9,b2=4,且3>2,满足“若a2>b2,则a>b”,故A选项中a、b的值不能说明命题为假命题;在B中,a2=9,b2=4,且﹣3<2,此时虽然满足a2>b2,但a>b不成立,故B 选项中a、b的值可以说明命题为假命题;在C中,a2=9,b2=1,且3>﹣1,满足“若a2>b2,则a>b”,故C选项中a、b 的值不能说明命题为假命题;在D中,a2=1,b2=9,且﹣1<3,此时满足a2<b2,得出a<b,即意味着命题“若a2>b2,则a>b”成立,故D选项中a、b的值不能说明命题为假命题;故选B.【点评】本题主要考查假命题的判断,举反例是说明假命题不成立的常用方法,但需要注意所举反例需要满足命题的题设,但结论不成立.9.(3分)(2017•无锡)如图,菱形ABCD的边AB=20,面积为320,∠BAD<90°,⊙O与边AB,AD都相切,AO=10,则⊙O的半径长等于()A.5 B.6 C.2 D.3【分析】如图作DH⊥AB于H,连接BD,延长AO交BD于E.利用菱形的面积公式求出DH,再利用勾股定理求出AH,BD,由△AOF∽△DBH,可得=,即可解决问题.【解答】解:如图作DH⊥AB于H,连接BD,延长AO交BD于E.∵菱形ABCD的边AB=20,面积为320,∴AB•DH=32O,∴DH=16,在Rt△ADH中,AH==12,∴HB=AB﹣AH=8,在Rt△BDH中,BD==8,设⊙O与AB相切于F,连接OF.∵AD=AB,OA平分∠DAB,∴AE⊥BD,∵∠OAF+∠ABE=90°,∠ABE+∠BDH=90°,∴∠OAF=∠BDH,∵∠AFO=∠DHB=90°,∴△AOF∽△DBH,∴=,∴=,∴OF=2.故选C.【点评】本题考查切线的性质、菱形的性质、勾股定理、相似三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.10.(3分)(2017•无锡)如图,△ABC中,∠BAC=90°,AB=3,AC=4,点D是BC的中点,将△ABD沿AD翻折得到△AED,连CE,则线段CE的长等于()A.2 B.C.D.【分析】如图连接BE交AD于O,作AH⊥BC于H.首先证明AD垂直平分线段BE,△BCE是直角三角形,求出BC、BE,在Rt△BCE中,利用勾股定理即可解决问题.【解答】解:如图连接BE交AD于O,作AH⊥BC于H.在Rt△ABC中,∵AC=4,AB=3,∴BC==5,∵CD=DB,∴AD=DC=DB=,∵•BC•AH=•AB•AC,∴AH=,∵AE=AB,DE=DB=DC,∴AD垂直平分线段BE,△BCE是直角三角形,∵•AD•BO=•BD•AH,∴OB=,∴BE=2OB=,在Rt△BCE中,EC===,故选D.【点评】本题考查翻折变换、直角三角形的斜边中线的性质、勾股定理等知识,解题的关键是学会利用面积法求高,属于中考常考题型.二、填空题(本大题共8小题,每小题2分,共16分)11.(2分)(2017•无锡)计算×的值是6.【分析】根据•=(a≥0,b≥0)进行计算即可得出答案.【解答】解:×===6;故答案为:6.【点评】此题考查了二次根式的乘除,掌握二次根式乘除的法则是解题的关键,是一道基础题.12.(2分)(2017•无锡)分解因式:3a2﹣6a+3=3(a﹣1)2.【分析】首先提取公因式3,进而利用完全平方公式分解因式得出答案.【解答】解:原式=3(a2﹣2a+1)=3(a﹣1)2.故答案为:3(a﹣1)2.【点评】此题主要考查了提取公因式法以及公式法分解因式,熟练应用乘法公式是解题关键.13.(2分)(2017•无锡)贵州FAST望远镜是目前世界第一大单口径射电望远镜,反射面总面积约250000m2,这个数据用科学记数法可表示为 2.5×105.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥1时,n是非负数;当原数的绝对值<1时,n 是负数.【解答】解:将250000用科学记数法表示为:2.5×105.故答案为:2.5×105.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.14.(2分)(2017•无锡)如图是我市某连续7天的最高气温与最低气温的变化图,根据图中信息可知,这7天中最大的日温差是11℃.【分析】求出每天的最高气温与最低气温的差,再比较大小即可.【解答】解:∵由折线统计图可知,周一的日温差=8℃+1℃=9℃;周二的日温差=7℃+1℃=8℃;周三的日温差=8℃+1℃=9℃;周四的日温差=9℃;周五的日温差=13℃﹣5℃=8℃;周六的日温差=15℃﹣71℃=8℃;周日的日温差=16℃﹣5℃=11℃,∴这7天中最大的日温差是11℃.故答案为:11.【点评】本题考查的是有理数的大小比较,熟知有理数比较大小的法则是解答此题的关键.15.(2分)(2017•无锡)若反比例函数y=的图象经过点(﹣1,﹣2),则k的值为2.【分析】由一个已知点来求反比例函数解析式,只要把已知点的坐标代入解析式就可求出比例系数.【解答】解:把点(﹣1,﹣2)代入解析式可得k=2.【点评】主要考查了用待定系数法求反比例函数的解析式.先设y=,再把已知点的坐标代入可求出k值,即得到反比例函数的解析式.16.(2分)(2017•无锡)若圆锥的底面半径为3cm,母线长是5cm,则它的侧面展开图的面积为15πcm2.【分析】圆锥的侧面积=底面周长×母线长÷2.【解答】解:底面半径为3cm,则底面周长=6πcm,侧面面积=×6π×5=15πcm2.【点评】本题利用了圆的周长公式和扇形面积公式求解.17.(2分)(2017•无锡)如图,已知矩形ABCD中,AB=3,AD=2,分别以边AD,BC为直径在矩形ABCD的内部作半圆O1和半圆O2,一平行于AB的直线EF与这两个半圆分别交于点E、点F,且EF=2(EF与AB在圆心O1和O2的同侧),则由,EF,,AB所围成图形(图中阴影部分)的面积等于3﹣﹣.【分析】连接O1O2,O1E,O2F,过E作EG⊥O1O2,过F⊥O1O2,得到四边形EGHF 是矩形,根据矩形的性质得到GH=EF=2,求得O1G=,得到∠O1EG=30°,根据三角形、梯形、扇形的面积公式即可得到结论.【解答】解:连接O1O2,O1E,O2F,则四边形O1O2FE是等腰梯形,过E作EG⊥O1O2,过FH⊥O1O2,∴四边形EGHF是矩形,∴GH=EF=2,∴O1G=,∵O1E=1,∴GE=,∴=;∴∠O1EG=30°,∴∠AO1E=30°,同理∠BO2F=30°,∴阴影部分的面积=S﹣2S﹣S=3×1﹣2×﹣(2+3)×=3﹣﹣.故答案为:3﹣﹣.【点评】本题考查了扇形面积的计算,矩形的性质,梯形的性质,正确的作出辅助线是解题的关键.18.(2分)(2017•无锡)在如图的正方形方格纸中,每个小的四边形都是相同的正方形,A,B,C,D都在格点处,AB与CD相交于O,则tan∠BOD的值等于3.【分析】根据平移的性质和锐角三角函数以及勾股定理,通过转化的数学思想可以求得tan∠BOD的值,本题得以解决.【解答】解:平移CD到C′D′交AB于O′,如右图所示,则∠BO′D′=∠BOD,∴tan∠BOD=tan∠BO′D′,设每个小正方形的边长为a,则O′B=,O′D′=,BD′=3a,作BE⊥O′D′于点E,则BE=,∴O′E==,∴tanBO′E=,∴tan∠BOD=3,故答案为:3.【点评】本题考查解直角三角形,解答本题的关键是明确题意,作出合适的辅助线,利用勾股定理和等积法解答.三、解答题(本大题共10小题,共84分)19.(8分)(2017•无锡)计算:(1)|﹣6|+(﹣2)3+()0;(2)(a+b)(a﹣b)﹣a(a﹣b)【分析】(1)根据零指数幂的意义以及绝对值的意义即可求出答案;(2)根据平方差公式以及单项式乘以多项式法则即可求出答案.【解答】解:(1)原式=6﹣8+1=﹣1(2)原式=a2﹣b2﹣a2+ab=ab﹣b2【点评】本题考查学生的计算能力,解题的关键是熟练运用运算法则,本题属于基础题型.20.(8分)(2017•无锡)(1)解不等式组:(2)解方程:=.【分析】(1)分别解不等式,进而得出不等式组的解集;(2)直接利用分式方程的解法去分母,进而求出x的值,再检验得出答案.【解答】解:(1)解①得:x>﹣1,解②得:x≤6,故不等式组的解集为:﹣1<x≤6;(2)由题意可得:5(x+2)=3(2x﹣1),解得:x=13,检验:当x=13时,(x+2)≠0,2x﹣1≠0,故x=13是原方程的解.【点评】此题主要考查了解分式方程以及解不等式组,正确掌握基本解题方法是解题关键.21.(8分)(2017•无锡)已知,如图,平行四边形ABCD中,E是BC边的中点,连DE并延长交AB的延长线于点F,求证:AB=BF.【分析】根据线段中点的定义可得CE=BE,根据平行四边形的对边平行且相等可得AB∥CD,AB=CD,再根据两直线平行,内错角相等可得∠DCB=∠FBE,然后利用“角边角”证明△CED和△BEF全等,根据全等三角形对应边相等可得CD=BF,从而得证.【解答】证明:∵E是BC的中点,∴CE=BE,∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD,∴∠DCB=∠FBE,在△CED和△BEF中,,∴△CED≌△BEF(ASA),∴CD=BF,∴AB=BF.【点评】本题考查了全等三角形的判定与性质,平行四边形的性质,熟记性质并确定出三角形全等的条件是解题的关键.22.(8分)(2017•无锡)甲、乙、丙、丁四人玩扑克牌游戏,他们先取出两张红心和两张黑桃共四张扑克牌,洗匀后背面朝上放在桌面上,每人抽取其中一张,拿到相同颜色的即为游戏搭档,现甲、乙两人各抽取了一张,求两人恰好成为游戏搭档的概率.(请用“画树状图”或“列表”等方法写出分析过程)【分析】利用列举法即可列举出所有各种可能的情况,然后利用概率公式即可求解.【解答】解:根据题意画图如下:共有12中情况,从4张牌中任意摸出2张牌花色相同颜色4种可能,所以两人恰好成为游戏搭档的概率==.【点评】此题考查的是用列表法或树状图法求概率.注意树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比.23.(8分)(2017•无锡)某数学学习网站为吸引更多人注册加入,举行了一个为期5天的推广活动,在活动期间,加入该网站的人数变化情况如下表所示:(1)表格中a=4556,b=600;(2)请把下面的条形统计图补充完整;(3)根据以上信息,下列说法正确的是①(只要填写正确说法前的序号).①在活动之前,该网站已有3200人加入;②在活动期间,每天新加入人数逐天递增;③在活动期间,该网站新加入的总人数为2528人.【分析】(1)观察表格中的数据即可解决问题;(2)根据第4天的人数600,画出条形图即可;(3)根据题意一一判断即可;【解答】解:(1)由题意a=3903+653=4556,b=5156﹣4556=600.故答案为4556,600.(2)统计图如图所示,(3)①正确.3353﹣153=3200.故正确.②错误.第4天增加的人数600<第3天653,故错误.③错误.增加的人数=153+550+653+600+725=2681,故错误.故答案为①【点评】本题考查条形统计图,解题的关键是能读懂表格以及条形图的信息,属于中考常考题型.24.(6分)(2017•无锡)如图,已知等边△ABC,请用直尺(不带刻度)和圆规,按下列要求作图(不要求写作法,但要保留作图痕迹):(1)作△ABC的外心O;(2)设D是AB边上一点,在图中作出一个正六边形DEFGHI,使点F,点H分别在边BC和AC上.【分析】(1)根据垂直平分线的作法作出AB,AC的垂直平分线交于点O即为所求;(2)取BF=CH=AD构成等边三角形,作新等边三角形边的垂直平分,确定外心,再作圆确定另外三点,六边形DEFGHI即为所求正六边形.【解答】解:(1)如图所示:点O即为所求.(2)如图所示:六边形DEFGHI即为所求正六边形.【点评】本题考查了作图﹣复杂作图.解决此类题目的关键是熟悉基本几何图形的性质.25.(10分)(2017•无锡)操作:“如图1,P是平面直角坐标系中一点(x轴上的点除外),过点P作PC⊥x轴于点C,点C绕点P逆时针旋转60°得到点Q.”我们将此由点P得到点Q的操作称为点的T变换.(1)点P(a,b)经过T变换后得到的点Q的坐标为(a+b,b);若点M经过T变换后得到点N(6,﹣),则点M的坐标为(9,﹣2).(2)A是函数y=x图象上异于原点O的任意一点,经过T变换后得到点B.①求经过点O,点B的直线的函数表达式;②如图2,直线AB交y轴于点D,求△OAB的面积与△OAD的面积之比.【分析】(1)连接CQ可知△PCQ为等边三角形,过Q作QD⊥PC,利用等边三角形的性质可求得CD和QD的长,则可求得Q点坐标;设出M点的坐标,利用P、Q坐标之间的关系可得到点M的方程,可求得M点的坐标;(2)①可设A(t,t),利用T变换可求得B点坐标,利用待定系数示可求得直线OB的函数表达式;②方法1、由待定系数示可求得直线AB的解析式,可求得D点坐标,则可求得AB、AD的长,可求得△OAB的面积与△OAD的面积之比.方法2、先确定出△BOD比△OAD(B与A横坐标绝对值的比更简单)得出面积关系,即可得出结论.【解答】解:(1)如图1,连接CQ,过Q作QD⊥PC于点D,由旋转的性质可得PC=PQ,且∠CPQ=60°,∴△PCQ为等边三角形,∵P(a,b),∴OC=a,PC=b,∴CD=PC=b,DQ=PQ=b,∴Q(a+b,b);设M(x,y),则N点坐标为(x+y,y),∵N(6,﹣),∴,解得,∴M(9,﹣2);故答案为:(a+b,b);(9,﹣2);(2)①∵A是函数y=x图象上异于原点O的任意一点,∴可设A(t,t),∴t+×t=t,×t=t,∴B(t,t),设直线OB的函数表达式为y=kx,则tk=t,解得k=,∴直线OB的函数表达式为y=x;②方法1、设直线AB解析式为y=k′x+b,把A、B坐标代入可得,解得,∴直线AB解析式为y=﹣x+t,∴D(0,t),且A(t,t),B(t,t),∴AB==|t|,AD==|t|,∴===.方法2、由(1)知,A(t,t),B(t,t),∴==,∵△AOB、△AOD和△BOD的边AB、AD和BD上的高相同,∴=.【点评】本题为一次函数的综合应用,涉及等边三角形的判定和性质、待定系数法、三角形的面积及方程思想等知识,理解题目中的T变换是解题的关键.本题考查知识点较多,综合性较强,难度适中.26.(10分)(2017•无锡)某地新建的一个企业,每月将生产1960吨污水,为保护环境,该企业计划购置污水处理器,并在如下两个型号中选择:已知商家售出的2台A型、3台B型污水处理器的总价为44万元,售出的1台A型、4台B型污水处理器的总价为42万元.(1)求每台A型、B型污水处理器的价格;(2)为确保将每月产生的污水全部处理完,该企业决定购买上述的污水处理器,那么他们至少要支付多少钱?【分析】(1)可设每台A型污水处理器的价格是x万元,每台B型污水处理器的价格是y万元,根据等量关系:①2台A型、3台B型污水处理器的总价为44万元,②1台A型、4台B型污水处理器的总价为42万元,列出方程组求解即可;(2)由于求至少要支付的钱数,可知购买6台A型污水处理器、3台B型污水处理器,费用最少,进而求解即可.【解答】解:(1)可设每台A型污水处理器的价格是x万元,每台B型污水处理器的价格是y万元,依题意有,解得.答:每台A型污水处理器的价格是10万元,每台B型污水处理器的价格是8万元;(2)购买9台A型污水处理器,费用为10×9=90(万元);购买8台A型污水处理器、1台B型污水处理器,费用为=80+8=88(万元);购买7台A型污水处理器、2台B型污水处理器,费用为10×7+8×2=70+16=86(万元);购买6台A型污水处理器、3台B型污水处理器,费用为10×6+8×3=60+24=84(万元);购买5台A型污水处理器、5台B型污水处理器,费用为10×5+8×5=50+40=90(万元);购买4台A型污水处理器、6台B型污水处理器,费用为10×4+8×6=40+48=88(万元);购买3台A型污水处理器、7台B型污水处理器,费用为10×3+8×7=30+56=86(万元);购买2台A型污水处理器、9台B型污水处理器,费用为10×2+8×9=20+72=92(万元);购买1台A型污水处理器、10台B型污水处理器,费用为10×1+8×10=90(万元);.购买11台B型污水处理器,费用为8×11=88(万元).故购买6台A型污水处理器、3台B型污水处理器,费用最少.答:他们至少要支付84万元钱.【点评】本题考查一元一次不等式及二元一次方程组的应用,解决本题的关键是读懂题意,找到符合题意的不等关系式及所求量的等量关系.27.(10分)(2017•无锡)如图,以原点O为圆心,3为半径的圆与x轴分别交于A,B两点(点B在点A的右边),P是半径OB上一点,过P且垂直于AB的直线与⊙O分别交于C,D两点(点C在点D的上方),直线AC,DB交于点E.若AC:CE=1:2.(1)求点P的坐标;(2)求过点A和点E,且顶点在直线CD上的抛物线的函数表达式.【分析】(1)如图,作EF⊥y轴于F,DC的延长线交EF于H.设C(m,n),则P(m,0),PA=m+3,PB=3﹣m.首先证明△ACP∽△ECH,推出===,推出CH=2n,EH=2m+6,再证明△DPB∽△DHE,推出===,可得=,求出m即可解决问题;(2)由题意设抛物线的解析式为y=a(x+3)(x﹣5),求出E点坐标代入即可解决问题;【解答】解:(1)如图,作EF⊥y轴于F,DC的延长线交EF于H.设C(m,n),则P(m,0),PA=m+3,PB=3﹣m.∵EH∥AP,∴△ACP∽△ECH,∴===,∴CH=2n,EH=2m+6,∵CD⊥AB,∴PC=PD=n,∵PB∥HE,∴△DPB∽△DHE,∴===,∴=,∴m=1,∴P(1,0).(2)由(1)可知,PA=4,HE=8,EF=9,连接OC,在Rt△OCP中,PC==2,∴CH=2PC=4,PH=6,∴E(9,6),∵抛物线的对称轴为CD,∴(﹣3,0)和(5,0)在抛物线上,设抛物线的解析式为y=a(x+3)(x﹣5),把E(9,6)代入得到a=,∴抛物线的解析式为y=(x+3)(x﹣5),即y=x2﹣x﹣.【点评】本题考查圆综合题、平行线的性质、相似三角形的判定和性质、勾股定理、二次函数的性质等知识,解题的关键是学会添加辅助线,构造相似三角形解决问题,学会用方程的思想思考问题,属于中考压轴题.28.(8分)(2017•无锡)如图,已知矩形ABCD中,AB=4,AD=m,动点P从点D出发,在边DA上以每秒1个单位的速度向点A运动,连接CP,作点D关于直线PC的对称点E,设点P的运动时间为t(s).(1)若m=6,求当P,E,B三点在同一直线上时对应的t的值.(2)已知m满足:在动点P从点D到点A的整个运动过程中,有且只有一个时刻t,使点E到直线BC的距离等于3,求所有这样的m的取值范围.【分析】(1)如图1中,设PD=t.则PA=6﹣t.首先证明BP=BC=6,在Rt△ABP 中利用勾股定理即可解决问题;(2)分两种情形求出AD的值即可解决问题:①如图2中,当点P与A重合时,点E在BC的下方,点E到BC的距离为3.②如图3中,当点P与A重合时,点E在BC的上方,点E到BC的距离为3;【解答】解:(1)如图1中,设PD=t.则PA=6﹣t.。
江苏省无锡市初中毕业高级中等学校招生考试数学试题与答案

2005年无锡市初中毕业、高级中等学校招生考试数学试题与答案注意事项:1、本试卷满分130分,考试时间为120分钟.2、卷中除要求近似计算的结果取近似值外,其余各题均应给出精确结果.一、细心填一填(本大题共有12小题,17空,每空2分,共34分.请把结果直接填在题中的横线上.只要你理解概念,仔细运算,相信你一定会填对的!)1、(1)-5的相反数是_________,4的平方根是__________. (2)分解因式:x 3-x =___________.2、我市2004年一季度城镇居民人均消费支出约2500元,这个数据用科学记数法可表示为___________元.3、设x 1、x 2是方程0222=--x x 的两个实数根,则x 1+x 2=_____;x 1·x 2=_____.4、函数y =13-x 中,自变量x 的取值范围是___________; 函数y =3+x 中,自变量x 的取值范围是____________.5、反比例函数xky =的图象经过点(2,-1),则k 的值为 . 6、一射击运动员在一次射击练习中打出的成绩是(单位:环):7,8,9,8,6,8,10,7,这组数据的众数是_________.7、 如图,P 是∠AOB 的平分线上的一点,PC ⊥AO 于C ,PD ⊥OB 于D ,写出图中一组相等的线段 (只需写出一组即可)8、用同一种正多边形地砖镶嵌成平整的地面,那么这种正多边形地砖的形状可以是 . (只需写出一种即可)9、若梯形的面积为6㎝2,高为2㎝,则此梯形地中位线长 为 ㎝.10、如图,AB 是⊙O 的直径,若AB=4㎝,∠D=30°,则 ∠B= °,AC= ㎝.11、某商场为了解本商场的服务质量,随机调查了本商场的100名顾客,调查的结果如图所示. 根据图中给出的信息,这100名顾客中对该商场的服务质量表示不满意的有 人. 12、一跳蚤在一直线上从O 点开始,第1次向右跳1个单位,紧接着第2次向左跳2个单位,第3次向右跳3个单位,第4次向左跳4个单位,……,依此规律跳下去,当它跳第100次落下时,落点处离O 点的距离是 个单位.。
江苏省无锡市中考数学真题试题(带解析)

2011年无锡市初中毕业升学考试数学试题一、选择题(本大题共l0小题.每小题3分.共30分.在每小题所给出的四个选项中,只有一项是正确的,请用2B 铅笔把答题卡上相应的选项标号涂黑)1.︳-3︳的值等于 ( ▲ ) A .3 8.-3 C .±3 D .3【答案】A .【考点】绝对值。
【分析】利用绝对值的定义,直接得出结果2.若a>b ,则 ( ▲ ) A .a>-b B .a<-b C .-2a>-2b D .-2a<-2b 【答案】D .【考点】不等式。
【分析】利用不等式的性质,直接得出结果3.分解因式2x 2—4x+2的最终结果是 ( ▲ )A .2x(x -2)B .2(x 2-2x+1)C .2(x -1)2D .(2x -2)2【答案】C .【考点】因式分解。
【分析】利用提公因式法和运用公式法,直接得出结果 ()()22224222121x x x x x -+=-+=-4.已知圆柱的底面半径为2cm ,高为5cm ,则圆柱的侧面积是 ( ▲ )A .20 cm 2 8.20兀cm 2 C .10兀cm 2 D .5兀cm 2【答案】B .【考点】图形的展开。
【分析】把圆柱的侧面展开,利用圆的周长和长方形面积公式得出结果. 圆的周长=24R ππ=,圆柱的侧面积=圆的周长×高=4520ππ⋅=5.菱形具有而矩形不一定具有的性质是 ( ▲ ) A .对角线互相垂直 B .对角线相等 C .对角线互相平分 D .对角互补 【答案】A .【考点】菱形和矩形的性质。
【分析】区分菱形和矩形的性质,直接得出结果6.一名同学想用正方形和圆设计一个图案,要求整个图案关于正方形的某条对角线对称,那么下列图案中不符合...要求的是 ( ▲ )【答案】D .【考点】轴对称图形。
【分析】利用轴对称的定义,直接得出结果 【点评】主要考查对轴对称图形的理解。
7.如图,四边形ABCD 的对角线AC 、BD 相交于O ,且将这个四边形分成①、②、③、④四个三角形.若OA :OC-=0B :OD ,则下列结论中一定正确的是 ( ▲ )A .①与②相似B .①与③相似C .①与④相似D .②与④相似 【答案】B .【考点】相似三角形。
2006-2008年江苏省各市中考数学试卷大汇编--圆.

2006-2008年某某各市中考数学试卷大汇编---圆一:填空:1.(06.某某)如图,矩形ABCD 与与圆心在AB 上的⊙O 交于点G 、B 、F 、E ,GB=8cm ,AG=1cm ,DE=2cm ,则EF=cm.2.(06.某某)已知扇形的圆心角为120°,半径为2cm ,则扇形的弧长是cm ,扇形的面积是2cm 。
3.(06.某某)如图,一宽为2cm 的刻度尺在圆上移动,当刻度尺的一边与圆相切时,另一边与圆两个交点处的读数恰好为“2”和“8”(单位:cm ),则该圆的半径为cm 。
4. (06.某某)半径分别为6cm 和4cm 的两圆内切,则它们的圆心距为cm .5.(06.某某)如图,点A 、B 、C 、D 在⊙O 上,若∠C =60º,则∠D =º,∠O =º.6.(06.某某)已知∠AOB =30º,C 是射线0B 上的一点,且OC =4.若以C 为圆心,r 为半径的圆与射线OA 有两个不同的交点,则r 的取值X 围是。
7.(06.某某)如图,AB 是⊙O 的弦,圆心O 到AB 的距离OD =1,AB=4,则该圆 的半径是.8.(06.某某)如图3,点A 、B 、C 、D 都在⊙O 上,若∠A =65°, 则∠D =°.9.(06.某某)若一个多边形的每一个外角都等于40º,则这个多边形的边数是。
(图3)ODCBA10.(06.某某)正六边形的每一个内角的度数是___________°.11.(06.某某)已知四边形ABCD 内接于⊙O ,且∠A :∠C =1∶2,则∠BOD =. 12.(2007某某)已知扇形的半径为2cm ,面积是24cm 3π,则扇形的弧长是cm ,扇形的圆心角为°.13.(2007宿迁)已知圆锥的底面积和它的侧面积之比为41,则侧面展开后所得扇形的圆心角的度数是。
2006年无锡市滨湖区初三调研考试试卷

2006年无锡市滨湖区初三调研考试试卷数 学 2006.4注意事项:本卷考试时间为120分钟,满分130分. 卷中除要求近似计算的按要求给出近似结果外,其余结果均应给出精确结果.一、细心填一填(本大题共17空,每空2分,共34分. 请把结果直接填在题中的横线上. 只要你理解概念,仔细运算,积极思考,相信你一定会填对的!) 1.(1)-13的相反数是___________,16的算术平方根是___________.(2)分解因式x 2-4x +4=____________.2.国务院总理温家宝3月5日在十届人大四次会议上作政府报告时说,2005年我国社会主义现代化事业取得显著成就,全年国内生产总值达到18.23万亿元,将这一数字用科学记数表示为______________亿元.3.函数y =x -3中,自变量x 的取值范围是___________; 函数y =2x -1中,自变量x 的取值范围是___________. 42567___________. 8________. 9.0),恰能铺满地面,则a 10,则⊙O 的半径=11B 、C ,测得∠ABC =45°,∠ACB =30°,量得BC 为20米,根据以上数据,请帮小明算出河的宽度d =_________________米(结果保留根号).12.小红从A 地去B 地,以每分钟2米的速度运动,她先前进1米,再后退2米,又前进3米,再后退4米,……依此规律走下去,则1小时后她离A 地相距___________米. 二、精心选一选(本大题共8小题,每题3分,共24分.在每题所给出的四个选项中,只有一项符合题意.把所选项前的字母代号填在题后的括号内.相信你一定会选对!) 13.下列运算正确的是 ( ) A . x 2+x 2=x 4 B .(a -1)2=a 2-1 C .a 2²a 3=a 5 D .3x +2y =5xy 14.化简(-2)2的结果是 ( )A .-2B .±2C .2D .415.方程x 2+3x +1=0的根的情况是 ( ) A .有两个相等实数根 B .有两个不等实数根C .有一个实数根D .无实数根 16.已知⊙O 1的半径为3cm ,O 1到直线l 的距离为2cm ,则直线l 与⊙O 1的位置关系为( ) A .相交 B .相切 C .相离 D .不相交17.下列几项调查,适合作普查的是 ( ) A .调查无锡各大超市里“蒙牛”酸奶的细菌含量是否超标B .调查市区5月1日的空气质量C .调查你所在班级全体学生的身高D .调查全市中学生每人每周的零花钱18.如图1,在边长为a 的正方形中剪去一个边长为b 的小正形(a >b ),把剩下部分拼成一个梯形(如图2),利用这两幅图形面积,可以验证的公式是 ( )A .a 2+b 2=(a +b )(a -b )B .(a -b )2=a 2-2ab +b 2C .(a +b )2=a 2+2ab +b 2D .a 2-b 2=(a +b )(a -b )19. ( )20三、认真答一答(本大题共8小题,满分55分.只要你认真思考,仔细运算,一定会解答正确的!) 21.(本题满分7分)(1)3tan60°+|-3|+(6-π)0; (2)化简x -1x (x -1x).B Db b22.(本题满分6分)如图△P AB 中,PA =PB ,C 、D 是直线AB 上两点,连结PC 、PD .(1)请添加一个条件: ,使图中存在两个三角形全等.(2)证明(1)的结论.23.(本题满分6分)已知:网格中的每个小正方形边长都为1.(1)将图中的格点△ABC 平移,使点A 平移至点A ′,画出平移后的三角形. (2)在网格中画一个格点△PQR ,使△PQR ∽△ABC ,且相似比为2∶1.24.相同)个,现从中任意摸出一个是白球的概率为12.(1(2)第一次任意摸一个球(不放回),第二次再摸一个球,请用画树状图或列表格法,求两次摸到都是白球的概率.PDCB A25.(本题满分6分)根据无锡市学校卫生保健所对今年参加中考的学生体检情况,教育局有关部门对今年参加中考的学生的视力进行了一次抽样调查,得到频数分布直方图(如图).(每组数据含最小值,不含最大值) (1)本次抽查的样本是什么?(2)视力正常的学生占被统计人数的百分比是多少?[说明:视力在4.9以上(含4.9)均属正常](3)根据图中提供的信息,谈谈你的感想.26.于点E ,BF ⊥CD 于点F ,交⊙O (1(227.(本题满分8分)近两年无锡外向型经济发展迅速,一些著名跨国公司纷纷落户无锡新区,对各类人才需求不断增加,现一公司面向社会招聘人员,要求如下:①对象:机械制造类和规划设计类人员共150名.②机械类人员工资为600元/月,规划设计类人员为1000元/月.(1)本次招聘规划设计人员不少于机械制造人员的2倍,若要使公司每月所付工资总C额最少,则这两类人员各招多少名?此时最少工资总额是多少?(2)在保证工资总额最少条件下,因这两类人员表现出色,公司领导决定另用20万元奖励他们,其中机械人员人均奖金不得超过规划人员的人均奖金,但不低于200元,试问规划设计类人员的人均奖金的取值范围.28.(1(2)(3使得∠四、实践与探索(本大题共有2小题,满分17分. 只要你开动脑筋,大胆实践,勇于探索,你一定会成功!) 29.(本题满分6分)如图,已知△ABC 中,∠B =∠C =30°,请根据图例,在图(3)和图(4)中另外设计两种不同的分法,将△ABC 分割成四个三角形,使得其中两个是全等三30.(本题满分11 分)已知正方形ABCD 的边长为2,以BC 边为直径作半圆O ,P 为DC 上一动点(可与D 重合但不与C 重合),连结BP 交半圆O 于点E ,过点O 作直线l ∥CE 交AB(或AD )于点Q .P图(3) AB B A图(4)(1)如图1,求证:△OBQ ∽△PEC .(2)设DP =t (0≤t <2),直线l 截正方形所得左侧部分图形的面积为S ,试求S 关于t 的函数关系式.(3)当点Q 落在AD (不含端点)上时,问以O 、P 、Q 为顶点的三角形能否是等腰三角形?若能,请指出此时点P 的位置;若不能,请说明理由.(备用图2)。
无锡市中考数学试题专题十年分类汇编

2003-2012年江苏省无锡市中考数学试题分类解析汇编专题1 :实数锦元数学工作室编辑、选择题【答案】2.(江苏省无锡市2004年3分)下列各式中的最简二次根式是【】【答案】A 。
【考点】最简二次根式【分析】判定一个二次根式是不是最简二次根式的方法,就是逐个检 查最简二次根式中的两个条件(被开方数不含分母,也不含能开的尽 方的因数或因式)是否同时满足,同时满足的就是最简二次根式,否 则就不是。
因此。
1.(江苏省无锡市2003年3分)化简的结果是【A..3 .2B. 3-2C.2—3【考分母有理化。
【分将原式分母有理化,将分子、分母同时乘以分母的有理化因式-3 .2,然后化简即可:\3 .3, —2 .3,2務= (2)故本题选A 。
B 、 .12C 、 18•/ .12=2 3 , 58=3、一 2 ,舅」-12 -18和9都不是最简二次根式。
故选A 。
3・(江苏省无锡市2005年3分)比较一丄,」丄的大小,结果正确的是23 4【 】【答案】A【考点】有理数大小比较。
【分析】根据有理数大小比较的方法即可求解:T —1 V 0, —1V 0, 1 >0,二 1 最大;2344又..1 1. 1 1^又* — > —,・ ・ --- ::。
2 32 3••——1 ::: -1 :::丄。
故选 A 。
2344.(江苏省无锡市2006年3分)下列各式中,与 二是同类根式的是【】A . .18B . 24C .12D . 、9【答案】C 。
【考点】同类二次根式。
【分析】将四个选项化简,找出被开方数为 3的选项即可:A 、 & 与 G 被开方数不同,故不是同类二次根式;B 、 24不是二次根式与'、3被开方数不同,故不是同类二 次根式;C 、 12 =2,3与.3被开方数相同,故是同类二次根式;D 、 ■ 9 =3与' 3被开方数不同,故不是同类二次根式。
故选C 。
5.(江苏省无锡市2006年3分)如图,0是原点,实数a 、b 、c 在数C1 1 3 41 1 1 1 1轴上对应的点分别为A、B、C,则下列结论错误的是【】A. a—b>0B. ab< 0C. a+ b v OD. b (a—c) >0 【答案】B。
2006年江苏省无锡市初中毕业暨高级中等学校招生考试思想品德试题及答案

2006年无锡市 考试思想品德试题一.选择题(以下各题的四个选项中,只有一项是最符合题意的,请将该答案前的字母填入第二卷答题表(第5页)相应的空格内。
每小题2分,共50分)1.2005年10月8日,中国共产党第十六届五中全会通过的《中共中央关于制定国民经济和社会发展第十一个五年规划的建议》指出,________ 是建设资源节约型、环境友好型社会和实现可持续发展的重要途径。
A .坚持科学发展观 B.发展循环经济C .建设节约型社会 D.实施科教兴国战略2.2006年1月9日,全国科学技术大会在人民大会堂隆重开幕。
胡锦涛向获得2005年度国家最高科学技术奖的中国科学院院士_________和_________颁发奖励证书和奖金。
A. 叶笃正 吴孟超B. 蒲慕明 戴伟C. 刘东生 王永志D. 金怡濂 黄昆3.2005年9月3日,纪念中国人民抗日战争暨世界反法西斯战争胜利60周年大会在人民大会堂隆重举行。
中共中央总书记胡锦涛在重要讲话中明确指出:_______是中国人民抗日战争胜利的决定性因素。
①中国人民的巨大民族觉醒 ②中国人民的空前民族团结 ③中国人民的英勇民族抗争 ④世界各国的援助和支持A.①②④B.②③④C.①②③D.①③④4.深受海内外关注的_________项目已获得国务院批准。
该项目全长约175公里,工程总概算约350亿元人民币,预计将于2008年建成。
A. 沪杭磁悬浮B. 青藏铁路C. 京沪高速D. 沪宁高速公路5.2006年2月16日,中国选手__________获得中国在都灵冬奥会上的第一枚金牌。
A.王曼丽B. 王濛C. 付天余D. 杨扬6. “你最大的责任是把你这块材料铸造成器”(易卜生语),这句话对你的启示是A .人生最重要的责任莫过于让自己拥有强健的体魄B .人生最大的任务就在于做好自己的事,对自己负责C .只要是做对自己有利的事,就不必在乎别人说什么D .提高自身素质,不仅是对自己负责,也是对社会负责7.我们每个人都生活在社会中。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2006年无锡市 考试数 学 试 题注意事项:1.本试卷满分130分,考试时间为120分钟.2.卷中除要求近似计算的结果取近似值外,其余各题均应给出精确结果.一、细心填一填(本大题共有13小题,16个空,每空2分,共32分.请把结果直接填在题中的横线上.只要你理解概念,仔细运算,相信你一定会填对的!) 1.3-的绝对值是 ,4的算术平方根是 . 2.分解因式:34x x -= .3.温家宝总理在十届全国人大四次会议上谈到解决关于“三农”问题时说,2006年中央财政用于“三农”的支出将达到33 970 000万元,这个数据用科学记数法可表示为 万元. 4.函数22y x =+中,自变量x 的取值范围是 ; 函数3y x =-中,自变量x 的取值范围是 .5.点(21)-,关于x 轴的对称点的坐标为 . 6.函数3y x=-的图象经过点(1)a -,,则a = . 7.如图所示,图中的1∠= .8.如图,点A B C D ,,,在O 上,若60C =∠,则D =∠ ,O =∠9.若一个多边形的每一个外角都等于40,则这个多边形的边数是 .10.在一个不透明的口袋中装有3个红球、1个白球,它们除颜色不相同外,其余均相同.若把它们搅匀后从中任意摸出1个球,则摸到红球的概率是 .11.据国家统计局5月23日发布的公告显示,2006年一季度GDP 值为43390亿元,其中,第一、第二、第三产业所占比例如图所示.根据图中数据可知,今年一季度第一产业的DGP 值约为 亿元(结果精确到0.01). 12.已知30AOB =∠,C 是射线OB 上的一点,且4OC =,若以C 为圆心,r 为半径的圆与射线OA 有两个不同的交点,则r 的取值范围是 .初 中 毕 业 高级中等学校招生(第7题)ADC BO(第8题)49.81% 42.72%第一产业第二产业第三产业 (第11题)13.在实数的原有运算法则中我们补充定义新运算“⊕”如下: 当a b ≥时,2a b b ⊕=;当a b <时,a b a ⊕=.则当2x =时,(1)(3)x x x ⊕-⊕的值为 (“· ”和“-”仍为实数运算中的乘号和减号). 二、精心选一选(本大题共有7小题,每小题3分,共21分.在每小题给出的四个选项中,只有一项是正确的,请把正确选项前的字母代号填在题后的括号内.只要你掌握概念,认真思考,相信你一定会选对的!) 14.下列各式中,与3是同类根式的是( ) A .18B .24C .12D .915.如图,O 是原点,实数a b c ,,在数轴上对应的点分别为 A B C ,,,则下列结论错误的是( ) A .0a b -> B .0ab < C .0a b +<D .()0b a c ->16.设一元二次方程2240x x --=的两个实根为1x 和2x ,则下列结论正确的是( ) A .122x x +=B .124x x +=-C .122x x =-D .124x x =17.在下面四个图案中,如果不考虑图中的文字和字母,那么不是..轴对称图形的是( )A. B. C. D. 18.已知1O 和2O 的半径分别为2和5,圆心距123O O =,则这两圆的位置关系是( )A .相离B .外切C .相交D .内切19.现有边长相等的正三角形、正方形、正六边形、正八边形形状的地砖,如果选择其中的两种铺满平整的地面,那么选择的两种地砖形状不能..是( ) A .正三角形与正方形 B .正三角形与正六边形 C .正方形与正六边形 D .正方形与正八边形 20.探索规律:根据下图中箭头指向的规律,从2004到2005再到2006,箭头的方向是( )三、认真答一答(本大题共有8小题,共61分.解答需写出必要的文字说明、演算步骤或1 2 3 0 4 7 8 5 6 9 10 …… (第20题) A . B . C . D . (第15题)证明过程.只要你积极思考,细心运算,你一定会解答正确的!) 21.(本小题满分8分)(1)计算:|3|()tan 45--π-2+;(2)解不等式组:21113x x x +<⎧⎪-⎨⎪⎩,.≥22.(本小题满分7分)已知:如图,ABCD 中,BCD ∠的平分线交AB 于E ,交DA 的延长线于F .求证:AE AF =.23.(本小题满分7分)甲、乙两人都想去买一本某种辞典,到书店后,发现书架上只有一本该辞典,于是两人都想把书让给对方先买,为此两人发生了“争执”.最后两人商店,用掷一枚各面分别标有数字1,2,3,4的正四面体骰子来决定谁先买.若甲赢,则乙买;若乙赢,则甲买.具体规则是:“每人各掷一次,若甲掷得的数字比乙大,则甲赢;若甲掷得的数字不比乙大,则乙赢”.请你用“画树状图”的方法帮他们分析一下,这个规则对甲、乙双方是否公平? 24.(本小题满分6分) (1)如图1,已知ABC △中,AB AC >.试用直尺(不带刻度)和圆规在图1中过点A 作一条直线l ,使点C 关于直线l 的对称点在边AB 上(不要求写作法,也不必说明理由,但要保留作图痕迹). (2)如图2,已知格点ABC △,请在图2中分别画出与ABC △相似的格点111A B C △和格点222A B C △,并使111A B C △与ABC △的相似比等于2,而222A B C △与ABC △的相D AB CE似比等于5.(说明:顶点都在网格线交点处的三角形叫做格点三角形.友情提示:请在画出的三角形的顶点处标上相对应的字母!)25.(本小题满分8分)姚明是我国著名的篮球运动员,他在2005~2006赛季NBA 常规赛中表现非常优异.下面是他在这个赛季中,分别与“超音速队”和“快船队”各四场比赛中的技术统计.场次 对阵超音速对阵快船 得分 篮板 失误 得分 篮板 失误 第一场 22 10 2 25 17 2 第二场 29 10 2 29 15 0 第三场 24 14 2 17 12 4 第四场261022272(1)请分别计算姚明在对阵“超音速”和“快船”两队的各四场比赛中,平均每场得多少分?(2)请你从得分的角度分析,姚明在与“超音速”和“快船”的比赛中,对阵哪一个队的发挥更稳定?(3)如果规定“综合得分”为:平均每场得分⨯1+平均每场篮板⨯1.5+平均每场失误⨯( 1.5)-,且综合得分越高表现越好,那么请你利用这种评价方法,来比较姚明在分别与“超音速”和“快船”的各四场比赛中,对阵哪一个队表现更好?26.(本小题满分7分)一商场计划到计算器生产厂家购进一批A B ,两种型号的计算器.经过商谈,A 型计算器单价为50元,100只起售,超过100只的超过部分,每只优惠20%;B 型计算器单价为22元,150只起售,超过150只的超过部分,每只优惠2元.如果商家计划购进计算器的总量既不少于700只,又不多于800只,且分别用于购买AB ,这两种型号的计算器的金额相等,那么该商场至少需要准备多少资金?A B C图1A B C 图227.(本小题满分9分)如图,ABC △中,901ACB AC BC ===,∠,将ABC △绕点C 逆时针旋转角090αα(<<)得到11A B C △,连结1BB .设1CB 交AB 于D ,11A B 分别交AB AC ,于E F ,.(1)在图中不再添加其它任何线段的情况下,请你找出一对全等的三角形,并加以证明(ABC △与11A B C △全等除外);(2)当1BB D △是等腰三角形时,求α; (3)当60α=时,求BD 的长. 28.(本小题满分9分)已知抛物线2(0)y ax bx c a =++>的顶点是(01)C ,,直线:3l y ax =-+与这条抛物线交于P Q ,两点,与x 轴,y 轴分别交于点M 和N .(1)设点P 到x 轴的距离为2,试求直线l 的函数关系式;(2)若线段MP 与PN 的长度之比为3:1,试求抛物线的函数关系式.四、实践与探索(本大题共有2小题,满分16分.只要你开动脑筋,大胆实践,勇于探索,你一定会成功!) 29.(本小题满分7分)图1是“口子窖”酒的一个由铁皮制成的包装底盒,它是一个无盖的六棱柱形状的盒子(如图2),侧面是矩形或正方形.经测量,底面六边形有三条边的长是9cm ,有三条边的长是3cm ,每个内角都是120,该六棱柱的高为3cm .现沿它的侧棱剪开展平,得到如图3的FABCED平面展形图.(1)制作这种底盒时,可以按图4中虚线裁剪出如图3的模片.现有一块长为17.5cm、宽为16.5cm的长方形铁皮,请问能否按图4的裁剪方法制作这样的无盖底盒?并请你说明理由;(2)如果用一块正三角形铁皮按图5中虚线裁剪出如图3的模片,那么这个正三角形的边长至少应为cm .(说明:以上裁剪均不计接缝处损耗.)图4 图530.(本小题满分9分)如图,在等腰梯形ABCD中,AB DC∥,8cm2cmAB CD==,,6cmAD=.点P从点A出发,以2cm/s的速度沿AB向终点B运动;点Q从点C出发,以1cm/s的速度沿CD DA,向终点A运动(P Q,两点中,有一个点运动到终点时,所有运动即终止).设P Q,同时出发并运动了t秒.(1)当PQ将梯形ABCD分成两个直角梯形时,求t的值;(2)试问是否存在这样的t,使四边形PBCQ的面积是梯形ABCD面积的一半?若存在,求出这样的t的值;若不存在,请说明理由.A BCD QP图1图2图39cm3cm3cm。