东南大学固体物理基础课后习题解答

合集下载

固体物理习题解答

固体物理习题解答

《固体物理学》部分习题解答补充:证明“晶体的对称性定律”。

证明:晶体中对称轴的轴次n并不是任意的,而是仅限于 n=1,2,3,4,6这一原理称为“晶体的对称性定律”。

现证明如下:设晶体中有一旋转轴n 通过某点O,根据前一条原理必有一平面点阵与你n 垂直,而在其中必可找出与 n垂直的属于平移群的素向量a,将a作用于O得到A 点将-a作用于O点得到A’点:若a= ,则L( )及L(- )必能使点阵复原,这样就可得点阵点B,B’,可得向量BB’,显然BB与a平行,因为空间点阵中任意互相平行的两个直线点阵的素向量一定相等,因而向量BB’的长度必为素向量a的整数倍即:BB’= ma由图形关系可得:=即m=0,±1,±2m n-2 -1 p 2-1 - 30 0 41 62 1 2p 1所以 n=1,2,3,4,6综上所述可得结论:在晶体结构中,任何对称轴或轴性对称元素的轴次只有一重,二种,三重,四重或六重等五种,而不可能存在五重和七重及更高的其它轴次,这就是晶体对称性定律。

晶体的对称性定律证明:1.3 证明:体心立方晶格的倒格子是面心立方;面心立方晶格的倒格子是体心立方 。

解 由倒格子定义2311232a a b a a a π⨯=⋅⨯ 3121232a a b a a a π⨯=⋅⨯ 1231232a a b a a a π⨯=⋅⨯体心立方格子原胞基矢123(),(),()222a a a a i j k a i j k a i j k =-++=-+=-+倒格子基矢231123022()()22a a a ab i j k i j k a a a v ππ⨯==⋅-+⨯+-⋅⨯202()()4a i j k i j k v π=⋅-+⨯+-2()j k a π=+ 同理31212322()a a b i k a a a aππ⨯==+⋅⨯32()b i j a π=+ 可见由123,,b b b为基矢构成的格子为面心立方格子 面心立方格子原胞基矢123()/2()/2()/2a a j k a a k i a a i j =+=+=+倒格子基矢2311232a a b a a a π⨯=⋅⨯ 12()b i j k a π=-++同理22()b i j k a π=-+ 32()b i j k a π=-+可见由123,,b b b为基矢构成的格子为体心立方格子1.4 证明倒格子原胞的体积为03(2)v π,其中0v 为正格子原胞体积证 倒格子基矢2311232a a b a a a π⨯=⋅⨯3121232a a b a a a π⨯=⋅⨯1231232a a b a a a π⨯=⋅⨯倒格子体积*0123()v b b b =⋅⨯3*23311230(2)()()()v a a a a a a v π=⨯⋅⨯⨯⨯ 3*00(2)v v π=1.5 证明:倒格子矢量112233G hb h b h b =++垂直于密勒指数为123()hh h 的晶面系。

固体物理学部分习题解答

固体物理学部分习题解答

《固体物理学》部分习题解答1.3 证明:体心立方晶格的倒格子是面心立方;面心立方晶格的倒格子是体心立方 。

解 由倒格子定义2311232a a b a a a π⨯=⋅⨯ 3121232a a b a a a π⨯=⋅⨯ 1231232a a b a a a π⨯=⋅⨯体心立方格子原胞基矢123(),(),()222a a aa i j k a i j k a i j k =-++=-+=-+ 倒格子基矢231123022()()22a a a ab i j k i j k a a a v ππ⨯==⋅-+⨯+-⋅⨯202()()4a i j k i j k v π=⋅-+⨯+-2()j k a π=+ 同理31212322()a ab i k a a a aππ⨯==+⋅⨯ 32()b i j a π=+ 可见由123,,b b b 为基矢构成的格子为面心立方格子 面心立方格子原胞基矢123()/2()/2()/2a a j k a a k i a a i j =+=+=+ 倒格子基矢2311232a a b a a a π⨯=⋅⨯ 12()b i j k a π=-++ 同理22()b i j k a π=-+ 32()b i j k aπ=-+ 可见由123,,b b b 为基矢构成的格子为体心立方格子1.4 证明倒格子原胞的体积为03(2)v π,其中0v 为正格子原胞体积证 倒格子基矢2311232a a b a a a π⨯=⋅⨯3121232a a b a a a π⨯=⋅⨯1231232a a b a a a π⨯=⋅⨯倒格子体积*0123()v b b b =⋅⨯3*23311230(2)()()()v a a a a a a v π=⨯⋅⨯⨯⨯ 3*00(2)v v π=1.5 证明:倒格子矢量112233G hb h b h b =++垂直于密勒指数为123()hh h 的晶面系。

固体物理基础答案解析吴代鸣

固体物理基础答案解析吴代鸣

1.试证理想六方密堆结构中c/a=1.633. 证明:如图所示,六方密堆结构的两个晶格常数为a 和c 。

右边为底面的俯视图。

而三个正三角形构成的立体结构,其高度为2.若晶胞基矢c b a,,互相垂直,试求晶面族(hkl )的面间距。

解:c b a ,,互相垂直,可令k c c j b b i a a===,,晶胞体积abc c b a v =⨯⋅=)(倒格子基矢:kcj b i a abc b a v b j b i a k c abc a c v b ia k c jb abc c b v bπππππππππ2)(2)(22)(2)(22)(2)(2321=⨯=⨯==⨯=⨯==⨯=⨯=而与 (hkl )晶面族垂直的倒格矢222321)()()(2)(2cl b k a h G k c l j b k i a h b l b k b h G ++=∴++=++=ππ 故(hkl ) 晶面族的面间距222222)()()(1)()()(222cl b k a h cl b k a h G d ++=++==πππ3.若在体心立方晶胞的每个面中心处加一个同类原子,试说明这种晶体的原胞应如何选择?每个原胞含有几个原子? 答:通过分析我们知道,原胞可选为简单立方,每个原胞中含有5个原子。

体心,八个顶点中取一个,对面面心各取一个原子(即三个)作为基元。

布拉菲晶格是简单立方格子。

4.试求面心立方结构的(111)和(110)面的原子面密度。

解:(111)面平均每个(111)面有2213613=⨯+⨯个原子。

(111)面面积()222232322)22()2(221a a a a a a =⋅=-⋅ 所以原子面密度22)111(34232aa ==σ(110)面平均每个(110)面有2212414=⨯+⨯个原子。

(110)面面积222a a a =⋅所以(110)面原子面密度22)110(222a a==σ5.设二维矩形格子的基矢为j a a i a a 2,21==,试画出第一、二、三、布里渊区。

固体物理习题解答

固体物理习题解答

《固体物理学》部分习题解答1.3 证明:体心立方晶格的倒格子是面心立方;面心立方晶格的倒格子是体心立方 。

解 由倒格子定义2311232a a b a a a π⨯=⋅⨯ 3121232a a b a a a π⨯=⋅⨯ 1231232a a b a a a π⨯=⋅⨯体心立方格子原胞基矢123(),(),()222a a aa i j k a i j k a i j k =-++=-+=-+ 倒格子基矢231123022()()22a a a ab i j k i j k a a a v ππ⨯==⋅-+⨯+-⋅⨯202()()4a i j k i j k v π=⋅-+⨯+-2()j k a π=+ 同理31212322()a ab i k a a a aππ⨯==+⋅⨯ 32()b i j a π=+ 可见由123,,b b b 为基矢构成的格子为面心立方格子 面心立方格子原胞基矢123()/2()/2()/2a a j k a a k i a a i j =+=+=+ 倒格子基矢2311232a a b a a a π⨯=⋅⨯ 12()b i j k a π=-++ 同理22()b i j k a π=-+ 32()b i j k aπ=-+ 可见由123,,b b b 为基矢构成的格子为体心立方格子1.4 证明倒格子原胞的体积为03(2)v π,其中0v 为正格子原胞体积证 倒格子基矢2311232a a b a a a π⨯=⋅⨯3121232a a b a a a π⨯=⋅⨯1231232a a b a a a π⨯=⋅⨯倒格子体积*0123()v b b b =⋅⨯3*23311230(2)()()()v a a a a a a v π=⨯⋅⨯⨯⨯ 3*00(2)v v π=1.5 证明:倒格子矢量112233G hb h b h b =++垂直于密勒指数为123()hh h 的晶面系. 证: 33121323,a aa a CA CB h h h h =-=- 容易证明12312300h h h h h h G CA G CB ⋅=⋅=112233G hb h b h b =++与晶面系123()hh h 正交。

固体物理课后答案

固体物理课后答案

如果将等体积球分别排列成下列结构,设x 表示钢球所占体积与总体积之比,证明结构x简单立方π/ 6 ≈体心立方3π/ 8 ≈面心立方2π/ 6 ≈六方密排2π/ 6 ≈金刚石3π/16 ≈解:设钢球半径为r ,根据不同晶体结构原子球的排列,晶格常数a 与r 的关系不同,分别为:简单立方:a = 2r金刚石:根据金刚石结构的特点,因为体对角线四分之一处的原子与角上的原子紧贴,因此有证明:体心立方晶格的倒格子是面心立方;面心立方晶格的倒格子是体心立方。

证明:体心立方格子的基矢可以写为面心立方格子的基矢可以写为根据定义,体心立方晶格的倒格子基矢为同理与面心立方晶格基矢对比,正是晶格常数为4π/ a的面心立方的基矢,说明体心立方晶格的倒格子确实是面心立方。

注意,倒格子不是真实空间的几何分布,因此该面心立方只是形式上的,或者说是倒格子空间中的布拉菲格子。

根据定义,面心立方的倒格子基矢为同理而把以上结果与体心立方基矢比较,这正是晶格常数为4πa的体心立方晶格的基矢。

证明:根据定义,密勒指数为的晶面系中距离原点最近的平面ABC 交于基矢的截距分别为即为平面的法线根据定义,倒格子基矢为则倒格子原胞的体积为对于简单立方晶格,证明密勒指数为(h, k,l)的晶面系,面间距d 满足其中a 为立方边长。

解:根据倒格子的特点,倒格子与晶面族(h, k,l)的面间距有如下关系因此只要先求出倒格,求出其大小即可。

因为倒格子基矢互相正交,因此其大小为则带入前边的关系式,即得晶面族的面间距。

写出体心立方和面心立方晶格结构的金属中,最近邻和次近邻的原子数。

若立方边长为a ,写出最近邻和次近邻的原子间距。

答:体心立方晶格的最近邻原子数(配位数)为8,最近邻原子间距等于次近邻原子数为6,次近邻原子间距为a ;面心立方晶格的最近邻原子数(配位数)为12,最近邻原子间距等于次近邻原子数为6,次近邻原子间距为a 。

证明两种一价离子组成的一维晶格的马德隆常数为α= 2ln 2证明:设一个由正负两种离子相间等距排列的无限一维长链,取一负离子作参考离子,用r表示相邻离子间的距离,于是有根据假设,马德隆常数求和中的正负号这样选取,即遇正离子取正号,遇负离子取负号。

固体物理课后答案

固体物理课后答案

1.1 如果将等体积球分别排列成下列结构,设x 表示钢球所占体积与总体积之比,证明结构x简单立方π / 6 ≈ 0.52 体心立方 3π / 8 ≈ 0.68 面心立方 2π / 6 ≈ 0.74六方密排 2π / 6 ≈ 0.74 金刚石 3π /16 ≈ 0.34 解:设钢球半径为r ,根据不同晶体结构原子球的排列,晶格常数a 与r 的关系不同,分别为:简单立方:a = 2r金刚石:根据金刚石结构的特点,因为体对角线四分之一处的原子与角上的原子紧贴,因此有1.3 证明:体心立方晶格的倒格子是面心立方;面心立方晶格的倒格子是体心立方。

证明:体心立方格子的基矢可以写为面心立方格子的基矢可以写为根据定义,体心立方晶格的倒格子基矢为同理与面心立方晶格基矢对比,正是晶格常数为4π/ a的面心立方的基矢,说明体心立方晶格的倒格子确实是面心立方。

注意,倒格子不是真实空间的几何分布,因此该面心立方只是形式上的,或者说是倒格子空间中的布拉菲格子。

根据定义,面心立方的倒格子基矢为同理而把以上结果与体心立方基矢比较,这正是晶格常数为4πa的体心立方晶格的基矢。

证明:根据定义,密勒指数为的晶面系中距离原点最近的平面ABC 交于基矢的截距分别为即为平面的法线根据定义,倒格子基矢为则倒格子原胞的体积为1.6 对于简单立方晶格,证明密勒指数为(h, k,l)的晶面系,面间距d 满足其中a 为立方边长。

解:根据倒格子的特点,倒格子与晶面族(h, k,l)的面间距有如下关系因此只要先求出倒格,求出其大小即可。

因为倒格子基矢互相正交,因此其大小为则带入前边的关系式,即得晶面族的面间距。

1.7 写出体心立方和面心立方晶格结构的金属中,最近邻和次近邻的原子数。

若立方边长为a ,写出最近邻和次近邻的原子间距。

答:体心立方晶格的最近邻原子数(配位数)为8,最近邻原子间距等于次近邻原子数为6,次近邻原子间距为a ;面心立方晶格的最近邻原子数(配位数)为12,最近邻原子间距等于次近邻原子数为6,次近邻原子间距为a 。

固体物理课后问题详解

固体物理课后问题详解

1.1 如果将等体积球分别排列成下列结构,设x 表示钢球所占体积与总体积之比,证明结构x简单立方π/ 6 ≈0.52 体心立方3π/ 8 ≈0.68 面心立方2π/6 ≈0.74六方密排2π/ 6 ≈0.74 金刚石3π/16 ≈0.34解:设钢球半径为r ,根据不同晶体结构原子球的排列,晶格常数a 与r 的关系不同,分别为:简单立方:a = 2r金刚石:根据金刚石结构的特点,因为体对角线四分之一处的原子与角上的原子紧贴,因此有1.3 证明:体心立方晶格的倒格子是面心立方;面心立方晶格的倒格子是体心立方。

证明:体心立方格子的基矢可以写为面心立方格子的基矢可以写为根据定义,体心立方晶格的倒格子基矢为同理与面心立方晶格基矢对比,正是晶格常数为4π/ a的面心立方的基矢,说明体心立方晶格的倒格子确实是面心立方。

注意,倒格子不是真实空间的几何分布,因此该面心立方只是形式上的,或者说是倒格子空间中的布拉菲格子。

根据定义,面心立方的倒格子基矢为同理而把以上结果与体心立方基矢比较,这正是晶格常数为4πa的体心立方晶格的基矢。

证明:根据定义,密勒指数为的晶面系中距离原点最近的平面ABC 交于基矢的截距分别为即为平面的法线根据定义,倒格子基矢为则倒格子原胞的体积为1.6 对于简单立方晶格,证明密勒指数为(h, k,l)的晶面系,面间距d 满足其中a 为立方边长。

解:根据倒格子的特点,倒格子与晶面族(h, k,l)的面间距有如下关系因此只要先求出倒格,求出其大小即可。

因为倒格子基矢互相正交,因此其大小为则带入前边的关系式,即得晶面族的面间距。

1.7 写出体心立方和面心立方晶格结构的金属中,最近邻和次近邻的原子数。

若立方边长为a ,写出最近邻和次近邻的原子间距。

答:体心立方晶格的最近邻原子数(配位数)为8,最近邻原子间距等于次近邻原子数为6,次近邻原子间距为a ;面心立方晶格的最近邻原子数(配位数)为12,最近邻原子间距等于次近邻原子数为6,次近邻原子间距为a 。

固体物理基础(吴代鸣之高教版)课后1到10题答案

固体物理基础(吴代鸣之高教版)课后1到10题答案

固体物理基础(吴代鸣之高教版)课后1到10题答案-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN一. 本章习题P272习题1.试证理想六方密堆结构中c/a=1.633.一. 说明:C 是上下底面距离,a 是六边形边长。

二. 分析:首先看是怎样密堆的。

如图(书图1.10(a),P8),六方密堆结构每个格点有12个近邻。

(同一面上有6个,上下各有3个)上下底面中间各有一个球,共有六个球与之相切,每个球直径为a 。

中间层的三个球相切,又分别与上下底面的各七个球相切。

球心之间距离为a 。

所以球心之间即格点之间距离均为a (不管是同层还是上下层之间)。

三.证明:如图OA=a ,OO ’=C/2(中间层是上下面层的一半),AB=a O ’是ΔABC 的三垂线交点33'aAB AO ==∴(由余弦定理)330cos 2,30cos 230cos 2222a a x x a ax x a x ===-+=633.1322384132)2()2()3()2(2222222222''≈===∴+=+=+=a c c a ac a ac OA AO OO2.若晶胞基矢c b a,,互相垂直,试求晶面族(hkl )的面间距。

一、分析:我们想到倒格矢与面间距的关系G d π2=。

倒格矢与晶面族 (hkl )的关系321b l b k b h G++=写出)(321b b b 与正格子基矢 )(c b a的关系。

即可得与晶面族(hkl ) 垂直的倒格矢G。

进而求得此面间距d 。

二、解:c b a ,,互相垂直,可令k c c j b b i a a===,,晶胞体积abc c b a v =⨯⋅=)(倒格子基矢: kcj b i a abc b a v b j b i a k c abc a c v b ia k c jb abc c b v b πππππππππ2)(2)(22)(2)(22)(2)(2321=⨯=⨯==⨯=⨯==⨯=⨯=而与 (hkl )晶面族垂直的倒格矢 222321)()()(2)(2cl b k a h G k cl j b k i a h b l b k b h G ++=∴++=++=ππ故(hkl ) 晶面族的面间距222222)()()(1)()()(222cl b k a h cl b k a h Gd ++=++==πππ3.若在体心立方晶胞的每个面中心处加一个同类原子,试说明这种晶体的原胞应如何选择每个原胞含有几个原子1.分析:考虑选取原胞的条件:(即布拉菲晶格的最小单元)(1)体积最小的重复结构单元(2)只包含一个格点(3)能反映晶格的周期性应将几个原子组合成一个格点,然后构成原胞。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《电子工程物理基础》课后习题参考答案第一章 微观粒子的状态1-1一维运动的粒子处在下面状态(0,0)()0(0)xAxe x x x λλψ-⎧≥>=⎨<⎩①将此项函数归一化;②求粒子坐标的概率分布函数;③在何处找到粒子的概率最大? 解:(1)由归一化条件,可知22201xAx edx λ∞-=⎰,解得归一化常数322A λ=。

所以归一化波函数为:322(0,0)()0(0)xxex x x λλλψ-⎧⎪≥>=⎨⎪<⎩(2)粒子坐标的概率分布函数为:32224(0,0)()()0(0)xx e x w x x x λλλψ-⎧≥>==⎨<⎩(3)令()0dw x dx =得10x x λ==或,根据题意,在x=0处,()w x =0,所以在1x λ=处找到粒子的概率最大。

1-2若在一维无限深势阱中运动的粒子的量子数为n 。

①距势阱的左壁1/4宽度内发现粒子概率是多少? ②n 取何值时,在此范围内找到粒子的概率最大?③当n→∞时,这个概率的极限是多少?这个结果说明了什么问题?解:(1)假设一维无限深势阱的势函数为U (x ),0x a ≤≤,那么在距势阱的左壁1/4宽度内发现粒子概率为:22440211()()(sin )sin422a a n n P x x dx x dx a a n ππψπ===-⎰⎰。

(2)当n=3时,在此范围内找到粒子的概率最大,且max 11()+46P x π=。

(3)当n→∞时,1()4P x =。

此时,概率分布均匀,接近于宏观情况。

1-3一个势能为221()2V x m x ω=的线性谐振子处在下面状态2212()()x m x Aeαωψα-=求:①归一化常数A ;②在何处发现振子的概率最大;③势能平均值2212U m x ω=。

解:(1)由归一化条件,可知2221x A e dx α+∞--∞=⎰,得到归一化常数4A απ=。

(2)振子的概率密度222()()xw x x e ααψπ-==,由()0dw x dx=得到在0=x 处振子出现的概率最大。

(3)势能平均值2222222211112244x m U m x m x e dx αωωωωα+∞--∞====⎰。

1-4设质量为m 的粒子在下列势阱中运动,求粒子的能级。

220()102x V x m x x ω∞<⎧⎪=⎨≥⎪⎩ 解:注意到粒子在半势阱中运动,且为半谐振子。

半谐振子与对称谐振子在x>0区域满足同样的波动方程,但根据题意,在x<0区域,势函数为无穷,因此相应的波函数为零,从而破坏了偶宇称的状态。

这样,半谐振子定态解则为谐振子的奇宇称解(仅归一化常数不同)。

即⎪⎩⎪⎨⎧<=≥==-)0(05,3,1)0;()()(221n x n x x m H e A x n ,ωξξψξ,1,1,3,52n E n n ω⎛⎫=+= ⎪⎝⎭。

1-5电子在原子大小的范围(~10-10m )内运动,试用不确定关系估计电子的最小能量。

解: 电子总能量22E 2s e p m r=-,作近似代换,设~~~r r p p r p ∆∆∆∆,,由不确定关系,则2224222222222111E ()()2222s s s s e me me me p m r m r r m r ∆=-=-=--∆∆∆∆。

所以电子的最小能量4min22s me E =-,与薛定谔方程得到的氢原子基态能量表达式相同。

1-6氢原子处在基态030(,,)r a r aψθϕπ-=,求:①r 的平均值;②势能2s e r-的平均值;③最概然半径。

解:(1)r 的平均值:2222230313(,,)sin sin 2r a r r r r d d dr er d d dr a a ππππψθϕθϕθθϕθπ-+∞+∞===⎰⎰⎰⎰⎰⎰(2)势能2s e r-的平均值:0222222223000001(,,)sin sin ra s s s e e e U r r d d dr e r dr d d r a r a ππππψθϕθϕθθθϕπ-+∞∞=-=-=-⎰⎰⎰⎰⎰⎰(3)在球壳dr r r +-的范围内,电子出现的概率为:0022222222330000014()(,,)sin sin rra a w r r r d d e r d d e r a a ππππψθϕθθϕθθϕπ--===⎰⎰⎰⎰,由()0dw r dr=得在0a r =处电子出现的概率最大,即最概然半径为0a 。

1-7设一体系未受微扰作用时,只有两个能级E 01及E 02,受到微扰ˆH'作用,微扰矩阵元 12211122,H H a H H b ''''====。

a ,b 都是实数,用微扰公式求能级的二级修正值。

解:根据非简并微扰公式∑-'+'+=nnk kkkkk k E E H H E E )0()0(2')0(,有:22222121(0)(0)111101222202(0)(0)(0)(0)12010*******H H a a E E H E b E E H E b E E E E E E E E ''''=++=++=++=++----,。

1-8氢分子的振动频率是1.32×1014Hz ,求在5000K 时,下列两种情况下振动态上粒子占据数之比。

①n=0,n=1;②n=1,n=2。

解:将氢分子的振动看作为谐振子,因此振子的能级为1()2n E n ω=+。

振动态上被粒子占据的概率服从麦克斯韦-玻尔兹曼分布,则当n=0,n=1 时,0010001001= 3.55E E E k Tk Tk TE k Tf eeef e ω----===,当n=1,n=2时,1120002012= 3.55E E E k Tk Tk TE k Tf eeef e ω----===。

1-9求在室温下(k 0T=0.025ev)电子处在费米能级以上0.1ev 和费米能级以下0.1ev 的概率各是多少?解:由费米-狄拉克分布,电子处在费米能级以上0.1ev 的概率00.1411= 1.8%11i E E k Tf e e-==++f, 电子处在费米能级以下0.1ev 的概率0-0.1411=98.2%11i E E k Tf e e--==++f 。

第二章 晶体中原子的状态2-1. 试说明格波和弹性波有何不同?提示:从晶格格点分立取值和晶格周期性特点出发分析与连续介质弹性波的不同。

2-2. 证明:在长波范围内,一维单原子晶格和双原子晶格的声学波传播速度均与一维连续介质弹性波传播速度相同,即ρEv =式中,E 为弹性模量,ρ为介质密度。

2-3. 设有一维原子链,第2n 个原子与第2n+1个原子之间的恢复力常数为β,第2n 个原子与第2n-1个原子之间的恢复力常数为β′(β′<β)。

设两种原子的质量相等,最近邻间距为a ,试求晶格振动的振动谱以及波矢q=0和aq 2π=时的振动频率。

解:根据题意,原子运动方程为:)1()()()()(21221222212212222122⎪⎪⎭⎪⎪⎬⎫-'+-=-+-'=-+++++n n n n n n n n n n x x x x dt x d m x x x x dt x d m ββββ设上两式的行波解为:)2(]2([22])12([12⎪⎭⎪⎬⎫==-+-++t na q i n t a n q i n Be x Ae x ωω)将式(2)代入式(1)并整理得:)3(0))(0)--22⎪⎭⎪⎬⎫='--+'+=+'+'--B m A e e B e e A m iqa iqa iqa iqa ββωββββββω(()((3)中的A 、B 有非零解,则方程组的系数行列式为零,得到:[]qa m2cos 21222ββββββω'+'+±'+=, 所以当0,)(20='+==-+ωββωm q 时,;mm a q βωβωπ'===-+2,22时,。

2-4. 一维双原子晶格振动中,证明在布里渊区边界aq 2π±=处,声频支中所有轻原子m 静止,光频支所有重原子M 静止。

证明:声学波两种格波的振幅比02cos 22>-=⎪⎭⎫⎝⎛--ωββωm qa B A ,光学波两种格波的振幅比0cos 222<-=⎪⎭⎫ ⎝⎛++qa M B A βωβω。

当a q 2π±→时,,可认为轻原子不动,B A B A <<→⎪⎭⎫⎝⎛-0ω,,可认为重原子不动。

,B A B A >>-∞→⎪⎭⎫⎝⎛+ω2-5. 什么叫声子?它和光子有何异同之处?答:声子是晶格振动的简正模能量量子,光子是传递电磁相互作用的基本粒子。

两者均为玻色子,其分布均服从玻色-爱因斯坦分布,但产生的原因、描述的现象、对晶格的作用均不同。

2-6. 一维双原子点阵,已知一种原子的质量m=5×1.67×10-27kg ,另一种原子的质量M=4m ,力常数β=15N·m -1,求:(a) 光学波的最大频率和最小频率0m ax ω、0m in ω; (b) 声学波的最大频率Am ax ω; (c) 相应的声子能量是多少eV?(d) 在300K 可以激发多少个频率0m ax ω、0m in ω、Am ax ω的声子? (e) 如果用电磁波来激发长光学波振动,试问电磁波的波长要多少? 解:(a )m Mm mM8.0=+=μ,即s rad /106.70152130max ⨯==μβω,s rad m/105.9942130min⨯==βω; (b )s rad M/102.997213Amax ⨯==βω; (c )eV E 04417.00max 1==ω ,eV E 0395.00min 2==ω ,eV E A 01975.0max 3==ω ;(d )122.011maxmax =-=kTo en ω ,772.011minmin =-=kToen ω ,287.011maxmax =-=kTAAen ω ; (e )m co 5max10138.22-⨯==ωπλ。

2-7. 设晶体中每个振子的零点振动能量ω 21,试用德拜模型求晶体的零点振动能。

解:晶体的零点振动能0E 是各振动模式零点能之和。

即晶体的零点振动能为:D Nl d v V dE DD ωωωπωωωρωεωω 892321)()(232000=⋅==⎰⎰。

相关文档
最新文档