2012固体物理复习题及答案(修改版)
固体物理809真题1997-2012 含部分答案(整理版)

du d 2 u (r ) = 0, > 0, dr dr 2 d 2 u (r ) m(m + 1)α n(n + 1) mα =− + n + 2 = m + 2 ( n − m) > 0 2 dr r0m+ 2 r0 r0
所以 n>m。 三 解:1 根据态密度定义可以给出 g (ω )dω =
α
r
m
+
β
rn
,其中α,β,m,n 均为>0 的常数,试证明此
系统可以处于稳定平衡态的条件是 n>m。 三 已知由 N 个质量为 m,间距为的相同原子组成的一维单原子链的色散关系为
qa ⎛ 4β ⎞ 2 ω = ⎜ ⎟ sin 2 ⎝ m ⎠
1 试给出它的格波态密度 g (ω ) ,并作图表示 2 试绘出其色散曲线形状,并说明存在截止频率 ωmax 的意义 四 半导体材料的价带基本上填满了电子(近满带) ,价带中电子能量表示式
得: g (ω ) =
ωm
ω
2N
π
(ω
2 =
4β m
2
截 止 频 率 是 只 有 频 率 在 ω 到 ω m 之间的格波才能在晶体中传播,其它 频率的格波被强烈衰减,一维单原子 晶格看作成低通滤波器。
L dq (这里 L=Na) 2π
一维原子链应考虑正负两支 所以 g (ω ) = 2 ×
L 2π
dω L = dq π
dω dq
g(ω)
⎛ 4β ⎞ 将ω = ⎜ ⎟ ⎝ m ⎠
1
2
sin
qa 代入得: 2
1
dω a qa a 2 = ωm cos = (ωm − ω 2 ) 2 dq 2 2 2
固体物理复习题答案完整版

一·简答题1.晶格常数为a 的体心立方、面心立方结构,分别表示出它们的基矢、原胞体积以及最近邻的格点数。
(答案参考教材P7-8)(1)体心立方基矢:123()2()2()2ai j k a i j k ai j k ααα=+-=-++=-+,体积:312a ,最近邻格点数:8(2)面心立方基矢:123()2()2()2a i j a j k ak i ααα=+=+=+,体积:314a ,最近邻格点数:122.习题1.5、证明倒格子矢量112233G h b h b h b =++垂直于密勒指数为123()h h h 的晶面系。
证明:因为33121323,a aa a CA CB h h h h =-=-,112233G h b h b h b =++ 利用2i j ij a b πδ⋅=,容易证明12312300h h h h h h G CA G CB ⋅=⋅=所以,倒格子矢量112233G h b h b h b =++垂直于密勒指数为123()h h h 的晶面系。
3.习题 1.6、对于简单立方晶格,证明密勒指数为(,,)h k l 的晶面系,面间距d 满足:22222()d a h k l =++,其中a 为立方边长;解:简单立方晶格:123a a a ⊥⊥,123,,a ai a aj a ak ===由倒格子基矢的定义:2311232a a b a a a π⨯=⋅⨯,3121232a a b a a a π⨯=⋅⨯,1231232a a b a a a π⨯=⋅⨯倒格子基矢:123222,,b i b j b k a a aπππ=== 倒格子矢量:123G hb kb lb =++,222G hi k j l k a a aπππ=++ 晶面族()hkl 的面间距:2d Gπ=2221()()()h k l a a a=++4.习题1.9、画出立方晶格(111)面、(100)面、(110)面,并指出(111)面与(100)面、(111)面与(110)面的交线的晶向。
固体物理学考试题及答案

固体物理学考试题及答案一、选择题(每题2分,共20分)1. 固体物理学中,描述晶体中原子排列的周期性规律的数学表达式是()。
A. 布洛赫定理B. 薛定谔方程C. 泡利不相容原理D. 费米-狄拉克统计答案:A2. 固体中电子的能带结构是由()决定的。
A. 原子的核外电子B. 晶体的周期性势场C. 原子的核电荷D. 原子的电子云答案:B3. 在固体物理学中,金属导电的原因是()。
A. 金属中存在自由电子B. 金属原子的电子云重叠C. 金属原子的价电子可以自由移动D. 金属原子的电子云完全重叠答案:C4. 半导体材料的导电性介于导体和绝缘体之间,这是因为()。
A. 半导体材料中没有自由电子B. 半导体材料的能带结构中存在带隙C. 半导体材料的原子排列无序D. 半导体材料的电子云完全重叠答案:B5. 固体物理学中,描述固体中电子的波动性的数学表达式是()。
A. 薛定谔方程B. 麦克斯韦方程C. 牛顿第二定律D. 热力学第一定律答案:A6. 固体中声子的概念是由()提出的。
A. 爱因斯坦B. 德拜C. 玻尔D. 费米答案:B7. 固体中电子的费米能级是指()。
A. 电子在固体中的最大能量B. 电子在固体中的最小能量C. 电子在固体中的平均水平能量D. 电子在固体中的动能答案:A8. 固体物理学中,描述固体中电子的分布的统计规律是()。
A. 麦克斯韦-玻尔兹曼统计B. 费米-狄拉克统计C. 玻色-爱因斯坦统计D. 高斯统计答案:B9. 固体中电子的能带理论是由()提出的。
A. 薛定谔B. 泡利C. 费米D. 索末菲答案:D10. 固体中电子的跃迁导致()的发射或吸收。
A. 光子B. 声子C. 电子D. 质子答案:A二、填空题(每题2分,共20分)1. 固体物理学中,晶体的周期性势场是由原子的______产生的。
答案:周期性排列2. 固体中电子的能带结构中,导带和价带之间的能量区域称为______。
答案:带隙3. 金属导电的原因是金属原子的价电子可以______。
固体物理学考试试题及答案

固体物理学考试试题及答案题目一:1. 介绍固体物理学的定义和基本研究对象。
答案:固体物理学是研究固态物质行为和性质的学科领域。
它主要研究固态物质的结构、形态、力学性质、磁学性质、电学性质、热学性质等方面的现象和规律。
2. 简述晶体和非晶体的区别。
答案:晶体是具有有序结构的固体,其原子、离子或分子排列规则且呈现周期性重复的结构。
非晶体则是没有明显周期性重复结构的固体,其原子、离子或分子呈现无序排列。
3. 解释晶体中“倒易格”和“布里渊区”的概念。
答案:倒易格是晶体中倒格矢所围成的区域,在倒易格中同样存在周期性的结构。
布里渊区是倒易格中包含所有倒格矢的最小单元。
4. 介绍固体中的声子。
答案:声子是固体中传递声波和热传导的一种元激发。
它可以看作是晶体振动的一种量子,具有能量和动量。
5. 解释“价带”和“能带”之间的关系。
答案:价带是材料中的电子可能占据的最高能量带。
能带是电子能量允许的范围,它由连续的价带和导带组成。
6. 说明禁带的概念及其在材料中的作用。
答案:禁带是能带中不允许电子存在的能量范围。
禁带的存在影响着材料的导电性和光学性质,决定了材料是绝缘体、导体还是半导体。
题目二:1. 论述X射线衍射测定晶体结构的原理。
答案:X射线衍射利用了X射线与晶体的相互作用来测定晶体结构。
当X 射线遇到晶体时,晶体中的晶格会将X射线发生衍射,衍射图样可以提供关于晶体的结构信息。
2. 解释滑移运动及其对晶体的影响。
答案:滑移运动是晶体中原子沿晶格面滑动而发生的变形过程。
滑移运动会导致晶体的塑性变形和晶体内部产生位错,影响了晶体的力学性质和导电性能。
3. 简述离子的间隙、亚格子和空位的概念。
答案:间隙是晶体结构中两个相邻原子之间的空间,可以包含其他原子或分子。
亚格子是晶体结构中一个位置上可能有不同种类原子或离子存在的情况。
空位是晶体结构中存在的缺陷,即某个原子或离子缺失。
4. 解释拓扑绝缘体的特点和其应用前景。
答案:拓扑绝缘体是一种特殊的绝缘体,其表面或边界上存在不同于体内的非平庸的拓扑态。
固体物理练习(2012)附答案

一、简要回答以下问题:(每小题6分,共30分)1.试述晶态、非晶态、准晶、多晶和单晶的特征性质。
解:晶态固体材料中的原子有规律的周期性排列,或称为长程有序。
非晶态固体材料中的原子不是长程有序地排列,但在几个原子的范围内保持着有序性,或称为短程有序。
准晶态是介于晶态和非晶态之间的固体材料,其特点是原子有序排列,但不具有平移周期性。
另外,晶体又分为单晶体和多晶体:整块晶体内原子排列的规律完全一致的晶体称为单晶体;而多晶体则是由许多取向不同的单晶体颗粒无规则堆积而成的。
2.试述离子键、共价键、金属键、范德瓦尔斯和氢键的基本特征。
解:(1)离子键:无方向性,键能相当强;(2)共价键:饱和性和方向性,其键能也非常强;(3)金属键:有一定的方向性和饱和性,其价电子不定域于2个原子实之间,而是在整个晶体中巡游,处于非定域状态,为所有原子所“共有”;(4)范德瓦尔斯键:依靠瞬时偶极距或固有偶极距而形成,其结合力一般与7r 成反比函数关系,该键结合能较弱;(5)氢键:依靠氢原子与2个电负性较大而原子半径较小的原子(如O ,F ,N 等)相结合形成的。
该键也既有方向性,也有饱和性,并且是一种较弱的键,其结合能约为50kJ/mol 。
3. 什么叫声子?对于一给定的晶体,它是否拥有一定种类和一定数目的声子?解:声子就是晶格振动中的简谐振子的能量量子,它是一种玻色子,服从玻色-爱因斯坦统计,即具有能量为)(q w j 的声子平均数为11)()/()(-=T k q w j B j e q n对于一给定的晶体,它所对应的声子种类和数目不是固定不变的,而是在一定的条件下发生变化。
4. 周期性边界条件的物理含义是什么?引入这个条件后导致什么结果?如果晶体是无限大,q 的取值将会怎样?解:由于实际晶体的大小总是有限的,总存在边界,而显然边界上原子所处的环境与体内原子的不同,从而造成边界处原子的振动状态应该和内部原子有所差别。
考虑到边界对内部原子振动状态的影响,波恩和卡门引入了周期性边界条件。
2012年武汉科技大学考研试题固体物理与参考答案

报考学科、专业:
4、 (20 分)二维正方格子,晶格常数为 a ,单位面积里的电子数为 n (1)画出扩展布里渊区图 (2)求 T 0 K 费米面上电子的波长;
姓名:
5、 (20 分)用紧束缚近似方法计算二维正方格子 S 态电子带底的有效质量。
密 封 线 内 不 要 写 题
准考证号码:
二、计算题(每小题 20 分) 1、 (20 分)一维单原子链,原子质量为 m ,原子间距为 a ,力常数为 ,求: (1)德拜模型下的模式密度 (2)德拜下模型的零点振动能 2、 (20 分) N 个电子组成自由电子费密气体,体积为 V ,求: T 0 K 时,电子气 体的体积弹性模量。 3、 (20 分)设2 N 个离子(电荷为 e )组成一维晶体,若最近邻粒子间的排斥能 为
4
kF (
(2) F 5
2 kF
解: (k ) Es C 2J (cosk x a cosk y a) 底部
2 m 2 Ja 2
*
顶部
2 m 2 Ja 2
*
第 2 页 共 2 页
第 1 页 共 2 页
试题参考答案
一、答案(略) 二、计算题 1、解: (1) g ( )
L , v v
m
a
D
vN
LHale Waihona Puke (2) E 2、 E 0 F
1 N D 4
2 N 2 23 (3 ) 2m V
P V
E k i n
3 0 EF 5
P
2 U0 3 V
k V
二 O 一二年招收硕士研究生入学考试试题
固体物理参考答案(修正版)

固体物理试题及参考答案注意:本答案仅供参考作答,名词解释部分有个别题不是很精确,如有自己的想法请自己把握,作图题由于不专业只能表示大概意思,但应该不会有错,一、名词解释1布里渊区:布里渊区是空间中由倒格矢的中垂面所围成的区域,按序号由倒空间的原点逐步向外扩展,可分为第一布里渊区、第二布里渊区、第三布里渊区等等。
2倒格子:晶格经傅里叶变换所得到的几何格子,其倒格子基矢定义:3声子:格波的能量量子,声子的能量为ħω,准动量为4声学波和光学波:声学波是晶格振动中频率比较低的、而且频率随波矢变化较大的那一支格波,描述的是晶体中原胞的整体运动;描述的是晶体中原胞内原子之间的相对运动。
5能带:由于原子之间的相互作用,当若干个原子相互靠近时,由于彼此之间的力的作用,原子原有能级发生分裂,由一条变成多条,形成的众多能级间的间隔很小,故可近似看成连续的,即称之为能带。
6布洛赫函数:当势场具有晶格周期性时,对于含有晶格周期势的薛定谔方程,其解必定具有形式,则晶体中的波函数具有调幅的平面波形式,称其波函数为布洛赫函数。
7电负性:电负性是原子对核外电子束缚能力大小的量度,通常用电离能与亲合能之和表示。
8布拉伐格子:晶体结构中全同原子构成的晶格称为布拉伐格子。
9等效晶面:简单立方晶格中晶面的密勒指数和晶面法线的晶向指数完全相同的面。
10赝势:在离子实内部,用假想的势能取代真实的势能,求解波动方程时,如不改变其能量本征值及离子实之间的区域的波函数,这个假想的势叫做赝势。
二、证明题11证明:体心立方晶格的倒格子是面心立方。
12、证明倒格子原胞的体积为,其中为正格子原胞的体积。
三、作图题13、在面心立方和体心立方的晶胞图上分别画出其原胞。
答:图如下:14、请在下图中标明[110]、[010]、(100)、(111)晶向和晶面。
答:【注意:由于此图没有相应的作图软件,不能画得和老师一样的立体效果,请同学们对照作图】四、简答题15、通过原子电负性的定义及周期分布,说明离子晶体形成的特征。
12级《固体物理学》期末试卷(A) 答案

2012 级应用物理学专业《固体物理学》期末试卷(A)
************ ************ ************ ************ ************ ************ ************ ************ ************ ************ ************ ************ ************ ************ ************ ************ ********* ********* *** *** 班 级: 班 级: ************ ************ ************ ************ ************ ************ ************ ************ ************ ************ ************ ************ ************ ************ 学 学 号: 号: ************ ************ ************ ************ ************ ************ ************ ************ ************ ************ ************ ************ 姓 姓 名: 名: ************ ************ ************ ************ ************ ************ ************ ************ ************ ************ ************ ************ ************ ************ ************ ************ ************ ************ ************ ************ ************ ************ ************ ************ ************ ************ ************ ************ ************ ************ ************ ************ ************ ************ ************ ************ ************ 考试方式 题 号 得 分 一 二
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
固体物理卷(A )第一部分:名词解释(每小题5分,共40分)1.原胞:在完整晶体中,晶格在空间的三个方向上都具有一定的周期对称性,这样可以取一个以结点为顶点,边长等于这三个方向上的周期的平行六面体作为最小的重复单元,来概括晶格的特征,这样的重复单元称为初基原胞或简称原胞。
2.晶面指数:一个晶面得取向可以由这个晶面上的任意三个不共线的点确定,如果这三个点处在不同的晶轴上,则通过有晶格常量321,,a a a 表示这些点的坐标就能标定它们所决定的晶面,它们具有相同比率的最小整数称为晶面指数3.布拉格定律:假设入射波从晶体中的平行原子平面作镜面反射,每个平面反射很少一部分辐射,就像一个轻微镀银的镜子一样。
在这种类似镜子的镜面反射中,其反射角等于入射角。
当来自平行原子平面的反射发生相长干涉时,就得出衍射束。
考虑间距为d 的平行晶面,入射辐射线位于纸面平面内。
相邻平行晶面反射的射线行程差是2dsinx ,式中从镜面开始量度。
当行程差是波长的整数倍时,来自相继平面的辐射就发生了相长干涉。
这就是布拉格定律。
布拉格定律用公式表达为:2dsinx=n*λ(d 为平行原子平面的间距,λ为入射波波长,x 为入射光与晶面之夹角) ,布拉格定律的成立条件是波长小于等于2d 。
布拉格定律是晶格周期性的直接结果。
4.简述三维空间的晶系种类及其所包括的晶格类型三斜1,单斜2,正交 4,四角 2,立方3,三角1,六角1。
5.布里渊区:在固体物理学中,第一布里渊区是动量空间中晶体倒易点阵的原胞。
固体的能带理论中,各种电子态按照它们波矢的分类。
在波矢空间中取某一倒易阵点为原点,作所有倒易点阵矢量的垂直平分面,这些面波矢空间划分为一系列的区域:其中最靠近原点的一组面所围的闭合区称为第一布里渊区;各布里渊区体积相等,都等于倒易点阵的元胞体积。
周期结构中的一切波在布里渊区界面上产生布喇格反射,对于电子德布罗意波,这一反射可能使电子能量在布里渊区界面上(即倒易点阵矢量的中垂面)产生不连续变化。
根据这一特点,1930年L.-N.布里渊首先提出用倒易点阵矢量的中垂面来划分波矢空间的区域,从此被称为布里渊区。
6.惰性气体晶体:惰性气体所形成的晶体是最简单的晶体,其晶态原子的电子分布非常接近于自由态原子的电子分布,在晶体中,这些惰性气体原子尽可能紧密地堆积在一起。
惰性气体原子具有闭合电子壳层,电荷分布是对称的。
7.德拜模型:德拜模型是德拜提出的计算固体热容的原子振动模型。
1912年,德拜改进了爱因斯坦模型,考虑热容应是原子的各种频率振动贡献的总和,得到了同实验结果符合得很好的固体热容公式。
德拜模型把原子排列成晶体点阵的固体看作是一个连续弹性媒质,原子间的作用力遵从胡克定律,组成固体的 n个原子在三维空间中集体振动的效果相当于3n个不同频率的独立线性振子的集合。
8.费米能等于费米子系统在趋于绝对零度时的化学势;但是在半导体物理和电子学领域中,费米能级则经常被当做电子或空穴化学势的代名词。
费米能级的物理意义是,该能级上的一个状态被电子占据的几率是1/2。
费米能级在半导体物理中是个很重要的物理参数,只要知道了他的数值,在一定温度下,电子在各量子态上的统计分布就完全确定了。
它和温度,半导体材料的导电类型,杂质的含量以及能量零点的选取有关。
9.内聚能:所谓晶体的内聚能,是指在绝对零度下将晶体分解为相距无限远的、静止的中性自由原子所需要的能量。
12.离子晶体:由正、负离子或正、负离子集团按一定比例组成的晶体称作离子晶体。
离子晶体中正、负离子或离子集团在空间排列上具有交替相间的结构特征,离子间的相互作用以库仑静电作用为主导。
13.金属晶体:晶格结点上排列金属原子-离子时所构成的晶体。
金属中的原子-离子按金属键结合,因此金属晶体通常具有很高的导电性和导热性、很好的可塑性和机械强度,对光的反射系数大,呈现金属光泽,在酸中可替代氢形成正离子等特性14.氢键晶体的定义:在一定条件下一个氢原子同时与两个原子相结合的力。
氢键晶体以氢键结合的晶体,结合力主要依靠氢原子与电负性很大而原子半径较小的两个原子结合成X—H…Y形式。
氢键晶体的结合能一般比较低、氢键具有饱和性。
16.霍尔效应:固体材料中的载流子在外加磁场中运动时,因为受到洛仑兹力的作用而使轨迹发生偏移,并在材料两侧产生电荷积累,形成垂直于电流方向的电场,最终使载流子受到的洛仑兹力与电场斥力相平衡,从而在两侧建立起一个稳定的电势差即霍尔电压。
正交电场和电流强度与磁场强度的乘积之比就是霍尔系数。
平行电场和电流强度之比就是电阻率。
大量的研究揭示:参加材料导电过程的不仅有带负电的电子,还有带正电的空穴。
17.能带理论是研究固体中电子运动规律的一种近似理论。
固体由原子组成,原子又包括原子实和最外层电子,它们均处于不断的运动状态。
为使问题简化,首先假定固体中的原子实固定不动,并按一定规律作周期性排列,然后进一步认为每个电子都是在固定的原子实周期势场及其他电子的平均势场中运动,这就把整个问题简化成单电子问题。
能带理论就属这种单电子近似理论,它首先由F.布洛赫和L.-N.布里渊在解决金属的导电性问题时提出。
18.爱因斯坦模型把晶体中的N 个原子视为N 个频率相同的各自独立的三维谐振子,完全不考虑使这些原子在平衡位置附近振动,并使它们结合成晶体的原子间相互作用.正是因为忽略了这种由于原子间相互作用而造成的晶体中原子振动的相干性,导致了爱因斯坦模型晶体热容计算结果与实验结果间的系统误差.18. 万尼尔函数可用孤立原子波函数来近似的根据是什么?[解答]万尼尔函数可表示为∑-=k R r k r ,R ) ,(1)(n n N W ααψ.紧束缚模型适用于原子间距较大的晶体. 在这类晶体中的电子有两大特点: (1) 电子被束缚在原子附近的几率大, 在原子附近它的行为同在孤立原子的行为相近, 即当r →R n 时, 电子波函数) ,(n R r k -αψ与孤立原子波函数)(n at R r -αϕ相近. (2) 它远离原子的几率很小, 即r 偏离R n 较大时, 2) ,(n R r k -αψ很小. 考虑到r 偏离R n 较大时,2)(n at R r -αϕ也很小, 所以用)(n at R r -αϕ来描述) ,(n R r k -αψ是很合适的. 取 ) ,(n R r k -αψ=)(k μ)(n at R r -αϕ. 将上式代入万尼尔函数求和中, 再利用万尼尔函数的正交性, 可得=)(r ,R n W α)(n at R r -αϕ. 也就是说, 万尼尔函数可用孤立原子波函数来近似是由紧束缚电子的性质来决定的.19. 紧束缚模型电子的能量是正值还是负值?[解答]紧束缚模型电子在原子附近的几率大, 远离原子的几率很小, 在原子附近它的行为同在孤立原子的行为相近. 因此,紧束缚模型电子的能量与在孤立原子中的能量相近. 孤立原子中电子的能量是一负值, 所以紧束缚模型电子的能量是负值. s 态电子能量(5.60)表达式∑⋅--=ni s s at s s ne J C E E R k k )( 即是例证.其中孤立原子中电子的能量at s E 是主项, 是一负值, s s J C --和是小量, 也是负值.20.为什么价电子的浓度越大, 价电子的平均动能就越大?[解答]由于绝对零度时和常温下电子的平均动能十分相近,我们讨论绝对零度时电子的平均动能与电子浓度的关系.价电子的浓度越大价电子的平均动能就越大, 这是金属中的价电子遵从费密-狄拉克统计分布的必然结果. 在绝对零度时, 电子不可能都处于最低能级上, 而是在费密球中均匀分布. 由(6.4)式3/120)3(πn k F =可知, 价电子的浓度越大费密球的半径就越大,高能量的电子就越多, 价电子的平均动能就越大. 这一点从(6.5)和(6.3)式看得更清楚. 电子的平均动能E 正比与费密能0F E , 而费密能又正比与电子浓度3/2n :()3/22232πn m E F =,()3/2220310353πn m E E F ==.所以价电子的浓度越大, 价电子的平均动能就越大.21.在常温下, 两金属接触后, 从一种金属跑到另一种金属的电子, 其能量一定要达到或超过费密能与脱出功之和吗?[解答]电子的能量如果达到或超过费密能与脱出功之和, 该电子将成为脱离金属的热发射电子. 在常温下, 两金属接触后, 从一种金属跑到另一种金属的电子, 其能量通常远低于费密能与脱出功之和. 假设接触前金属1和2的价电子的费密能分别为1F E 和2F E , 且1F E >2F E , 接触平衡后电势分别为1V 和2V . 则两金属接触后, 金属1中能量高于11eV E F -的2中. 由于1V 大于0, 所以在常温下, 两金属接触后, 从金属1跑到金属2的电子, 其能量只小于等于金属1的费密能.22、解理面是面指数低的晶面还是指数高的晶面?为什么?[解答]晶体容易沿解理面劈裂,说明平行于解理面的原子层之间的结合力弱,即平行解理面的原子层的间距大. 因为面间距大的晶面族的指数低, 所以解理面是面指数低的晶面.23、在结晶学中, 晶胞是按晶体的什么特性选取的?[解答]在结晶学中, 晶胞选取的原则是既要考虑晶体结构的周期性又要考虑晶体的宏观对称性.24、如何理解库仑力是原子结合的动力?[解答]晶体结合中, 原子间的排斥力是短程力, 在原子吸引靠近的过程中, 把原本分离的原子拉近的动力只能是长程力, 这个长程吸引力就是库仑力. 所以, 库仑力是原子结合的动力.25、晶体的结合能, 晶体的内能, 原子间的相互作用势能有何区别?[解答]自由粒子结合成晶体过程中释放出的能量, 或者把晶体拆散成一个个自由粒子所需要的能量, 称为晶体的结合能.原子的动能与原子间的相互作用势能之和为晶体的内能.在0K时, 原子还存在零点振动能. 但零点振动能与原子间的相互作用势能的绝对值相比小得多. 所以, 在0K时原子间的相互作用势能的绝对值近似等于晶体的结合能.26、什么叫简正振动模式?简正振动数目、格波数目或格波振动模式数目是否是一回事?[解答]为了使问题既简化又能抓住主要矛盾,在分析讨论晶格振动时,将原子间互作用力的泰勒级数中的非线形项忽略掉的近似称为简谐近似. 在简谐近似下, 由N个原子构成的晶体的晶格振动, 可等效成3N个独立的谐振子的振动. 每个谐振子的振动模式称为简正振动模式, 它对应着所有的原子都以该模式的频率做振动, 它是晶格振动模式中最简单最基本的振动方式. 原子的振动, 或者说格波振动通常是这3N个简正振动模式的线形迭加.简正振动数目、格波数目或格波振动模式数目是一回事, 这个数目等于晶体中所有原子的自由度数之和, 即等于3N.27、长光学支格波与长声学支格波本质上有何差别?[解答]长光学支格波的特征是每个原胞内的不同原子做相对振动, 振动频率较高, 它包含了晶格振动频率最高的振动模式. 长声学支格波的特征是原胞内的不同原子没有相对位移, 原胞做整体运动, 振动频率较低, 它包含了晶格振动频率最低的振动模式, 波速是一常数. 任何晶体都存在声学支格波, 但简单晶格(非复式格子)晶体不存在光学支格波.28、为什么价电子的浓度越高, 电导率越高?[解答]电导σ是金属通流能力的量度. 通流能力取决于单位时间内通过截面积的电子数(参见思考题18). 但并不是所有价电子对导电都有贡献, 对导电有贡献的是费密面附近的电子. 费密球越大, 对导电有贡献的电子数目就越多. 费密球的大小取决于费密半径2)3/1=.k3(πnF可见电子浓度n越高, 费密球越大, 对导电有贡献的电子数目就越多, 该金属的电导率就越高.第二部分:计算(每小题10分,共60分)1. 晶面指数若考虑指数为(100)和(001)的面,其晶格属于面心立方,且指数指的是惯用立方晶胞,若采用初基轴,这些面得指数是多少?初级矢量:)(211y x a +=)(212z y a += )(213x z a +=。