高等数学练习题(附答案)

合集下载

高等数学练习题(附答案)

高等数学练习题(附答案)

《高等数学》专业年级学号姓名一、判断题.将√或×填入相应的括号内.(每题2分,共20分)()1.收敛的数列必有界.()2.无穷大量与有界量之积是无穷大量.()3.闭区间上的间断函数必无界.()4.单调函数的导函数也是单调函数.()5.若f (x )在x 0点可导,则f (x )也在x 0点可导.()6.若连续函数y =f (x )在x 0点不可导,则曲线y =f (x )在(x 0,f (x 0))点没有切线.()7.若f (x )在[a ,b ]上可积,则f (x )在[a ,b ]上连续.()8.若z =f (x ,y )在(x 0,y 0)处的两个一阶偏导数存在,则函数z =f (x ,y )在(x 0,y 0)处可微.()9.微分方程的含有任意常数的解是该微分方程的通解.()10.设偶函数f (x )在区间(-1,1)内具有二阶导数,且f ''(0)=f '(0)+1,则f (0)为f (x )的一个极小值.二、填空题.(每题2分,共20分)1.设f (x -1)=x ,则f (x +1)=.22.若f (x )=2-12+11x1x,则lim +=.x →03.设单调可微函数f (x )的反函数为g (x ),f (1)=3,f '(1)=2,f ''(3)=6则---------------------------------------------------------------------------------------------------------------------------------g '(3)=.4.设u =xy +2x,则du =.y35.曲线x =6y -y 在(-2,2)点切线的斜率为.6.设f (x )为可导函数,f '(1)=1,F (x )=f ()+f (x ),则F '(1)=.7.若1x2⎰f (x )0t 2dt =x 2(1+x ),则f (2)=.8.f (x )=x +2x 在[0,4]上的最大值为.9.广义积分⎰+∞0e -2x dx =.2210.设D 为圆形区域x +y ≤1,⎰⎰y D1+x 5dxdy =.三、计算题(每题5分,共40分)111+Λ+).1.计算lim(2+22n →∞n (n +1)(2n )2.求y =(x +1)(x +2)(x +3)ΛΛ(x +10)在(0,+∞)内的导数.23103.求不定积分⎰1x (1-x )dx .4.计算定积分⎰πsin 3x -sin 5xdx .3225.求函数f (x ,y )=x -4x +2xy -y 的极值.6.设平面区域D 是由y =x ,y =x 围成,计算⎰⎰Dsin ydxdy .y7.计算由曲线xy =1,xy =2,y =x ,y =3x 围成的平面图形在第一象限的面积.---------------------------------------------------------------------------------------------------------------------------------8.求微分方程y '=y -2x的通解.y四、证明题(每题10分,共20分)1.证明:arc tan x=arcsinx 1+x 2(-∞<x <+∞).2.设f (x )在闭区间[a ,b ]上连续,且f (x )>0,F (x )=⎰f (t )dt +⎰x xb1dt f (t )证明:方程F (x )=0在区间(a ,b )内有且仅有一个实根.《高等数学》参考答案一、判断题.将√或×填入相应的括号内(每题2分,共20分)1.√;2.×;3.×;4.×;5.×;6.×;7.×;8.×;9.√;10.√.二、填空题.(每题2分,共20分)21.x +4x +4; 2.1; 3.1/2;4.(y +1/y )dx +(x -x /y )dy ;25.2/3;6. 1;7.336;8.8;9.1/2;10.0.三、计算题(每题5分,共40分)n +1111n +1<++L +<1.解:因为(2n )2n 2(n +1)2(2n )2n 2且lim 由迫敛性定理知:lim(n →∞n +1n +1=0lim ,=0n →∞(2n )2n →∞n 2111++Λ+)=0222n (n +1)(2n )2.解:先求对数ln y =ln(x +1)+2ln(x +2)Λ+10ln(x +10)---------------------------------------------------------------------------------------------------------------------------------∴11210y '=++Λ+y x +1x +2x +10∴y '=(x +1)Λ(x +10)(3.解:原式=21210++Λ+)x +1x +2x +10⎰11-xd x =2⎰11-(x )2d x=2arcsin4.解:原式=x +c⎰πsin 3x cos 2xdxπ32=⎰π2020cos x sin xdx -⎰cos x sin xdx232ππ32=⎰sin xd sin x -⎰ππ2sin xd sin x32222-[sin 2x ]π=[sin 2x ]0π552=4/525.解:f x'=3x -8x -2y =0f y'=2x -2y =05π5故⎨⎧x =0⎧x =2或⎨⎩y =0⎩y =2当⎨⎧x =0''(0,0)=-2,f xy ''(0,0)=2''(0,0)=-8,f yy 时f xx⎩y =0---------------------------------------------------------------------------------------------------------------------------------Θ∆=(-8)⨯(-2)-22>0且A=-8<0∴(0,0)为极大值点且f (0,0)=0当⎨⎧x =2''(2,2)=-2,f xy ''(2,2)=2''(2,2)=4,f yy 时f xxy =2⎩Θ∆=4⨯(-2)-22<0∴无法判断6.解:D=(x ,y )0≤y ≤1,y 2≤x ≤y{}∴⎰⎰D1y sin y 1sin y sin y dxdy =⎰dy ⎰2dx =⎰[x ]y dyy 20y 0y y y =⎰(sin y -y sin y )dy1=[-cos y ]+10⎰1yd cos y 1=1-cos1+[y cos y ]0-⎰cos ydy 01=1-sin17.解:令u =xy ,v =y;则1≤u ≤2,1≤v ≤3x1x uJ =yuxv =2uv y vv-u 2v v =12v u2u v231dv =ln 3∴A =⎰⎰d σ=⎰du ⎰112v D8.解:令y =u ,知(u )'=2u -4x由微分公式知:u =y =e ⎰22dx 2(⎰-4xe ⎰-2dx dx +c )---------------------------------------------------------------------------------------------------------------------------------=e 2x (⎰-4xe -2x dx +c )=e 2x (2xe -2x +e -2x +c )四.证明题(每题10分,共20分)1.解:设f (x )=arctan x -arcsinx 1+x 221Θf '(x )=-21+x 1x 1-1+x 221+x -⋅1+x 2x 21+x 2=0∴f (x )=c-∞<x <+∞令x =0Θf (0)=0-0=0∴c =0即:原式成立。

高等数学练习题及答案

高等数学练习题及答案

一、单项选择题1.0lim()x x f x A →=,则必有( ).(A )()f x 在0x 点的某个去心邻域内有界. (B) ()f x 在0x 点的任一去心邻域内有界.(C)()f x 在0x 点的某个去心邻域内无界. (D) ()f x 在0x 点的任一去心邻域内无界.2.函数⎩⎨⎧≥+<=0)(x x a x e x f x ,要使()f x 在0x =处连续,则a =( ).(A) 2. (B) 1. (C) 0. (D) -1.3.若()()F x f x '=,则()dF x =⎰( ).(A )()f x . (B) ()F x . (C) ()f x C +. (D) ()F x C +4.方程 410xx --=至少有一根的区间是( ).(A ) 10,2⎛⎫ ⎪⎝⎭. (B )1,12⎛⎫⎪⎝⎭. (C )(2,3). (D )(1,2).二、填空题1. 设()f x 在0x x =处可导,则0lim x x y →∆= .2. 某需求曲线为1002000Q P =-+,则当10P =时的弹性为 .3. 曲线3267yx x =+-在0x =处的法线方程为 .4.2sin 2x t d e dt dx⎰= . 三、求下列极限(1)2211lim 21x x x x →---.(2)1lim(1)2x x x→∞-.(3) 0sin 2lim ln(1)x xx →+. 四、求下列导数和微分(1)已知3cos x y x=, 求dy . (2)求由方程l n2xyy e =+所确定的函数()y f x =的导数dy dx .五、求下列积分(1)221(sec )1x dx x++⎰.(2)20⎰ . (3)sin ⎰. 六、求函数()x f x xe -=的单调区间和极值.七、求由直线2yx =和抛物线2y x =所围成的平面图形的面积.八、证明:当0x >时,(1)l n (1)x x x++>.九、某种商品的成本函数23()200030.010.0002c x x x x =+++(单位:元),求生产100件产品时的平均成本和边际成本.一、 A . B . D . D . 二、(1)0. (2)-1. (3)0x=. (4)] 2sin cos x e x ⋅.三、求极限(1)解:原式=11(1)(1)12limlim (21)(1)213x x x x x x x x →→-++==+-+ (2)解:原式= 111222220011lim[(1)][lim(1)]22x xx x e x x -----→→-=-= (3)解:这是未定型,由洛必达法则原式=00cos 22limlim2(1)cos 2211x x x x x x →→⋅=+=+四、求导数和微分(1)解:23l n3c os 3sin(c os )x xx xy x +'=,23ln3cos 3sin (cos )x x x x dy dx x += (2)解:方程两边对x 求导,()xyy e y xy ''=+, 1xyxyye y xe '=-五、积分1.原式=221sec xdx dx +⎰⎰=tan arctan x x c ++ 2.原式=220118(4)x --=-=⎰3.t =,2,2x t dx tdt ==原式=sin 22(cos )2cos 2cos t tdt td t t t tdt⋅=-=-+⎰⎰⎰2c o s 2s in 2int t t C C=-++=-六、解: 函数定义域为(),-∞+∞,()(1)x x x f x e xe e x ---'=-=- 1x =是驻点 可列表讨论:单调增区间(,1)-∞单调减区间(1,)+∞极大值1(1)f e=. 七、解:解方程组22y x y x =⎧⎨=⎩得交点坐标(0,0) (2,4) 23222004(2)33x A x x dx x ⎡⎤=-=-=⎢⎥⎣⎦⎰ 八、 证明:设 ()(1)ln(1)f x x x x =++- 当0>x 时,()l n (1)11l n (1)0f x x x '=++-=+>故原函数是增函数,0>x ,即()(0)0f x f >= 即(1)ln(1)0x x x ++-> 故 当0x >时,(1)l n (1)x x x++>.九、解:23200030.010.0002()x x x c x x+++=, 23200031000.011000.0002100(100)100c +⨯+⨯+⨯==262'()30.020.0006c x x x =++ 2'(100)30.021000.000610011c =+⨯+⨯=一、单项选择题1. 无穷小量是( ). (A )比零稍大一点的一个数. (B )一个很小很小的数.(C )以零为极限的一个变量. (D )数零.2.下列函数中当0x +→时为无穷大的函数是( ). (A) 21x--. (B) sin 1sec x x+. (C) xe -. (D) 1x e .3.()f x x =在点0x =处的导数( ). (A)1 . (B) 0. (C) -1.. (D) 不存在.4. x 0为驻点是可导函数f x ()在x 0处取得极值的( ). (A) 充要条件. (B) 充分条件. (C) 必要条件. (D) 即非充分又非必要.二、填空题1.0x =是函数1,10(),01x x f x x ⎧--≤<⎪=≤<的第 类间断点.2.设某种商品的需求函数为220Q P =-,则5P =时的边际需求为 . 3.已知曲线3223x y x =-+,则其上切线平行于x 轴的点的坐标为 .4.1-=⎰ . 三、求下列极限1.1lim x →23321x x x +++. 2.23lim(1)x x x →∞-.3.00lim sin xtx e dt x -→⎰. 四、求下列导数和微分1.已知ta n c o s2y x x =⋅, 求dy .2.求由参数方程233cos 2sin x ty t⎧=⎪⎨=⎪⎩所确定的函数()y f x =的导数 dy dx .五、求下列积分1.32x x e dx ⎰. 2.3(dxx +⎰. 3.21ln x xdx ⎰. 六、求函数arctan yx =的凹凸区间和拐点.七、求由抛物线 2x y=与直线22y x =-所围成平面图形的面积.八、证明:当0x >时,2ln(1)2x x x -<+.九、某商品每月销售x 件的收入函数为100()1000,xR x xe-=问每月销售多少件商品时,可使收入最大?一、C. D . D . C . 二、(1)一. (2)—10 . (3)()0,2、22,3⎛⎫⎪⎝⎭.(4)0. 三、求极限 (1)解:因为函数()f x =23321x x x +++在点1x =处连续,故1lim x →2332132(1)3111x x f x ++++===++(2) 原式=(3)2663333lim[1()][lim(1)]xxx x e xx --⋅---→∞→∞+-=-= (3)解: 这是一个未定型,由洛必达法则原式=000lim lim 1cos limcos xxx x x e ex x--→→→== 四、求导数和微分(1)解:22seccos2tan (sin 2)2sec cos22tan sin 2y x x x x x x x x '=+-⋅=-2sec cos 22tan sin 2dy x x x x dx ⎡⎤=-⎣⎦(2)解:2236sin ,6cos dx dy t t t t dt dt=-=,233226cos cos 6sin sin dy t t t t dx t t t ==--五、积分1.原式=33311()33x x e d x e C =+⎰ 2.原式=1323ln 2arcsin dx x x C x +=++⎰3.原式=222222211111ln ln ()ln 222x x x x xdx xd x dx x ⎡⎤==-⋅⎢⎥⎣⎦⎰⎰⎰=22132ln 22ln 244x ⎡⎤-=-⎢⎥⎣⎦六、解:函数定义域为(,)-∞+∞,211y x '=+,222(1)xy x -''=+,令0y ''=得0x =,0x =把定义区间分成两部分(,0)(0,)-∞⋃+∞.可表示为:凹区间(,0)-∞,凸区间(0,)+∞,拐点(0,0).七、解:222y x y x⎧=⎪⎨=-⎪⎩交点()1,1-,()1,1 由定积分的几何意义可得1122210(2))4(1)A x x dx x dx -⎡⎤=--=-⎣⎦⎰⎰1308433x x ⎡⎤=-=⎢⎥⎣⎦八、证:设2()ln(1)2x f x x x =+-+当0x > 21()1011x f x x x x'=-+=>++ 故)(x f 在定义域内单增,即()(0)0f x f >=2ln(1)02x x x +-+>,即当0x >时,2ln(1)2x x x -<+ 九、解:1001001'()1000()100x xR x e xe --⎡⎤=+⋅-⎢⎥⎣⎦=1001000(1)100x x e --令'()0R x =,得驻点x=100 由于收入的最大值存在,而收入函数的驻点仅有一个,故函数在驻点x=100处取得最大值,最大值为:R(100)=1005100101000100e e-⨯⨯=36862≈ 即每月销售100件商品时,可使收入最大为36862.一、单项选择题 1.任意给定0M>,总存在着0X >,当x X<-时,()f x M<-,则( ).(A )lim ()x f x →-∞=-∞ . (B )lim ()x f x →∞=-∞.(C )lim ()x f x →-∞=∞.(D )lim ()x f x →+∞=∞.2.点1x =是函数31,1()1,13,1x x f x x x x ⎧-<⎪==⎨⎪->⎩ 的( ). (A) 连续点. (B) 第一类非可去间断点. (C) 可去间断点. (D) 第二类间断点. 3.设0()2f x '=,则000()()limh f x h f x h →--= ( ).(A )-2. (B )4. (C )2. (D )12.4.罗尔定理中的条件:()f x 在[],a b 上连续,在(,)a b 内可导,且()()f a f b =,是()f x 在(,)a b 内至少存在一点ξ,使得()0f ξ'=成立的( ).(A)必要条件. (B) 充分条件. (C)充要条件. (D)无关条件.二、填空题1.0x →时,2352x x -是x 的 阶无穷小. 2.设某种商品的成本函数C(x)= 210004x ++x=100件产品的边际成本是 . 3.()f x dx '=⎰=. 4.2cos x d tdt dx =⎰.三、求下列极限1.sin lim n xx →∞. 2.[]lim ln(2)ln x x x x →∞+-. 3.201lim cos31x x e x →--. 四、求下列导数和微分(1)已知ln(y x =, 求dy .(2)求由方程cos sin y y x =+所确定的函数()y f x =的导数dydx. 五、求下列积分(1)()xxeex dx --⎰.(2)2. (3)1ln 1e x dx x +⎰. 六、求函数32231214y x x x =+-+的单调区间和极值.七、求由直线x y =和曲线y =所围成的平面图形绕x 轴旋转所得旋转体的体积.八、证明:当1x>时,2(1)2x e e x >+.(7分)九、设某商品的需求函数为402Q p =-,其中p 为价格,试求:(1)需求量对价格的弹性;(2)价格p=15元时需求量对价格的弹性,此时是提价还是降价会使收入增加。

高等数学习题集及答案

高等数学习题集及答案

D. 无关条件
A. 若 { un} 有界,则 { un} 发散 C. 若 { un} 单调,则 { un} 收敛
B. 若 {un} 有界,则 { un} 收敛 D. 若 { un} 收敛,则 { un} 有界
22. 下面命题错误的是 【 】
A. 若 { un} 收敛,则 { un} 有界
C. 若 { un} 有界,则 { un} 收敛
A. y arcsin x
B. y arccosx
C. y arctan x
D. y arccot x
7. 已知函数 y arcsin( x 1) ,则函数的定义域是 【 】
A. ( , )
B. [ 1,1]
C. ( , )
D. [ 2,0]
8. 已知函数 y arcsin( x 1) ,则函数的定义域是 【 】
A. 连续点
B. 可去间断点
C.跳跃间断点
47. lim xsin 1 的 值为 【
x0
x
A. 1
B.
】 C. 不存在
D. 0
48. 当 x
时下列函数是无穷小量的是 【 】
x cos x
A.
sin x
x2
B.
C.
sin x D. (1 1) x
x
x
x
x
x2 1 x 0
49. 设 f ( x)
, 则下列结论正确的是 【 】
C. e 3

D. e3
4
A. e
B. 1
2
C. e
D.
4
e
26. x 1是函数 f ( x)
x x3 的 【 x2 x 2

A. 连续点

高等数学练习题(附答案)

高等数学练习题(附答案)

高等数学练习题(附答案)高等数学一、判断题(每题2分,共20分)1.√2.√3.×4.√5.×6.√7.×8.√9.√ 10.√二、填空题(每题2分,共20分)1.f(x+2)=x+12.03.g'(3)=1/64.du=ydx+xdy5.-1/26.5/47.9/48.69.-2 10.π/2三、计算题(每题5分,共40分)1.1/42.y'=(∑(i=1 to 10) i/(x+i))^23.ln|x-1|+ln|x|+C4.2π5.(2,2)6.1-cos(1)7.ln3/28.y=e^x-x-1/2x^2+C一、判断题1.√2.×3.×4.×5.×二、填空题1.22.13.14.15.1三、改写后的文章2.根据函数的定义,f(x)在点x处有定义是指该点的函数值存在,而f(x)在点x处连续是指当x在该点附近时,函数值的变化趋势与x的变化趋势一致。

因此,f(x)在点x处有定义是f(x)在点x处连续的充分条件,但不是必要条件。

3.若y=f(x)在点x不可导,则曲线y=f(x)在(x,f(x))处可能有切线,也可能没有切线。

因此,该说法是错误的。

4.若f(x)在[a,b]上可积,g(x)在[a,b]上不可积,则f(x)+g(x)在[a,b]上可能可积,也可能不可积。

因此,该说法是错误的。

=0和x+y+z=0在空间直角坐标系中分别表示一个坐标轴和一个平面,而不是三个坐标轴和一个点。

因此,该说法是错误的。

四、证明题1.设f(x)=arctanx-arcsin(x/(1+x^2)^(1/2)),则f'(x)=1/(1+x^2)-x/(1+x^2)(1-x^2/(1+x^2))=0.化简可得x^2=1,即x=±1.因此,f(x)在(-∞,1)和(1,+∞)上单调递减,故在(-∞,+∞)上存在唯一实根。

(完整版)高等数学测试题及解答(分章)

(完整版)高等数学测试题及解答(分章)

第一单元 函数与极限一、填空题1、已知x x f cos 1)2(sin +=,则=)(cos x f 。

2、=-+→∞)1()34(lim22x x x x 。

3、0→x 时,x x sin tan -是x 的 阶无穷小。

4、01sinlim 0=→xx kx 成立的k 为 。

5、=-∞→x e xx arctan lim 。

6、⎩⎨⎧≤+>+=0,0,1)(x b x x e x f x 在0=x 处连续,则=b 。

7、=+→xx x 6)13ln(lim0 。

8、设)(x f 的定义域是]1,0[,则)(ln x f 的定义域是__________。

9、函数)2ln(1++=x y 的反函数为_________。

10、设a 是非零常数,则________)(lim =-+∞→xx ax a x 。

11、已知当0→x 时,1)1(312-+ax 与1cos -x 是等价无穷小,则常数________=a 。

12、函数xxx f +=13arcsin )(的定义域是__________。

13、____________22lim22=--++∞→x x n 。

14、设8)2(lim =-+∞→xx ax a x ,则=a ________。

15、)2)(1(lim n n n n n -++++∞→=____________。

二、选择题1、设)(),(x g x f 是],[l l -上的偶函数,)(x h 是],[l l -上的奇函数,则 中所给的函数必为奇函数。

(A))()(x g x f +;(B))()(x h x f +;(C ))]()()[(x h x g x f +;(D ))()()(x h x g x f 。

2、xxx +-=11)(α,31)(x x -=β,则当1→x 时有 。

(A)α是比β高阶的无穷小; (B)α是比β低阶的无穷小; (C )α与β是同阶无穷小; (D )βα~。

高等数学试题(含答案)

高等数学试题(含答案)

高等数学试题(含答案)高等数学试题(含答案)一、选择题1.已知函数f(x)=x^2+3x+2,下列哪个选项是f(x)的导数?A. 2x+3B. 2x+2C. x^2+3D. 3x+22.若函数f(x)=e^x,那么f'(x)等于:A. e^-xB. e^xC. ln(x)D. e^x+13.设函数y=f(x)在点x=2处可导,且f'(2)=3,则曲线y=f(x)在点(2,f(2))处的切线斜率为:A. 2B. 3C. 1D. 6二、计算题1.计算极限lim(x→1) [(x-1)/(x^2-1)]答案:1/22.计算积分∫(0 to 1) (2x+1) dx答案:3/23.设曲线C的方程为y=x^3,计算曲线C的弧长。

答案:∫(0 to 1) √(1+9x^4) dx三、证明题证明:若函数f(x)在区间[a,b]上连续,且在(a,b)可导,那么必然存在c∈(a,b),使得 f'(c) = [f(b)-f(a)] / (b-a)。

证明过程:由于f(x)在区间[a,b]上连续,根据连续函数的介值定理,f(x)在[a,b]上会取到最大值M和最小值m。

设在点x=c处取得最大值M(即f(c)=M)。

根据费马定理,如果f(x)在点x=c处可导,并且f'(c)存在,那么f'(c)=0。

由于f(x)在(a,b)可导,故f'(c)存在。

那么,根据导数的定义,f'(c)=[f(c)-f(a)]/(c-a)。

又因为f(c)=M,将其代入上式得到f'(c)=(M-f(a))/(c-a)。

同理,根据费马定理,如果f(x)在点x=d处取得最小值m(即f(d)=m),那么f'(d)也等于0。

将f(d)=m代入上式得到f'(d)=(m-f(a))/(d-a)。

由于f(x)是连续函数,故在区间[a,b]上必然存在一个点c∈(a,b),使得它处于最大值M和最小值m之间,即m<f(c)<M。

完整)高等数学练习题附答案

完整)高等数学练习题附答案

完整)高等数学练习题附答案第一章自测题一、填空题(每小题3分,共18分)1.lim (sinx-tanx)/(3xln(1+2x)) = 1/22.lim (2x^2+ax+b)/(x-1) =3.a = 5.b = 123.lim (sin2x+e^(2ax)-1)/(x+1) = 2a4.若f(x)在(-∞,+∞)上连续,则a=05.曲线f(x) = (x-1)/(2x-4x+3)的水平渐近线是y=1/2,铅直渐近线是x=3/26.曲线y=(2x-1)/(x+1)的斜渐近线方程为y=2x-3二、单项选择题(每小题3分,共18分)1.“对任意给定的ε∈(0,1),总存在整数N,当n≥N时,恒有|x_n-a|≤2ε”是数列{x_n}收敛于a的充分条件但非必要条件2.设g(x)={x+2,x<1.2-x^2,1≤x<2.-x,x≥2},f(x)={2-x,x<1.x^2,x≥1},则g(f(x))=2-x^2,x≥13.下列各式中正确的是 lim (1-cosx)/x = 04.设x→0时,e^(tanx-x-1)与x^n是等价无穷小,则正整数n=35.曲线y=(1+e^(-x))/(1-e^(-x^2))没有渐近线6.下列函数在给定区间上无界的是 sin(1/x),x∈(0,1]三、求下列极限(每小题5分,共35分)1.lim (x^2-x-2)/(4x+1-3) = 3/42.lim x+e^(-x)/(2x-x^2) = 03.lim (1+2+3+。

+n)/(n^2 ln n) = 04.lim x^2sin(1/x) = 01.设函数$f(x)=ax(a>0,a\neq1)$,求$\lim\limits_{n\to\infty}\frac{1}{\ln\left(\frac{f(1)f(2)\cdotsf(n)}{n^2}\right)}$。

2.求$\lim\limits_{4x\to1}\frac{x^2+e\sin x+6}{1+e^x-\cosx}$。

高等数学试题及答案解析

高等数学试题及答案解析

高等数学试题及答案解析一、选择题1. 函数f(x) = x^2 - 4x + 3在区间[0, 5]上的最大值是:A. 3B. 5C. 7D. 9答案:D解析:首先求导f'(x) = 2x - 4,令f'(x) = 0得到x = 2,这是函数的极值点。

计算f(2) = 2^2 - 4*2 + 3 = -1。

接下来检查区间端点,f(0) = 3,f(5) = 5^2 - 4*5 + 3 = 9。

因此,最大值为f(5) = 9。

2. 若f(x) = sin(x) + cos(x),则f'(x)等于:A. cos(x) - sin(x)B. cos(x) + sin(x)C. -sin(x) + cos(x)D. -sin(x) - cos(x)答案:A解析:根据导数的基本公式,sin(x)的导数是cos(x),cos(x)的导数是-sin(x)。

因此,f'(x) = cos(x) - sin(x)。

二、填空题1. 求不定积分∫(2x + 1)dx = __________。

答案:x^2 + x + C解析:根据不定积分的基本公式,∫x^n dx = (x^(n+1))/(n+1) + C,其中n ≠ -1。

将n = 1代入公式,得到∫(2x + 1)dx = ∫2x dx + ∫1 dx = x^2 + x + C。

2. 若y = ln(x),则dy/dx = __________。

答案:1/x解析:对自然对数函数求导,根据对数函数的导数公式,ln(x)的导数是1/x。

三、解答题1. 求函数f(x) = x^3 - 6x^2 + 9x - 2的极值点。

答案:极值点为x = 3。

解析:首先求导f'(x) = 3x^2 - 12x + 9。

令f'(x) = 0,解得x = 1 和 x = 3。

计算二阶导数f''(x) = 6x - 12,代入x = 1得到f''(1) = -6 < 0,说明x = 1是极大值点;代入x = 3得到f''(3) = 18 > 0,说明x = 3是极小值点。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

------------------------------------------------------------------------------------------------------------------------《高等数学》专业 年级 学号 姓名一、判断题. 将√或×填入相应的括号内.(每题2分,共20分)( )1. 收敛的数列必有界.( )2. 无穷大量与有界量之积是无穷大量. ( )3. 闭区间上的间断函数必无界. ( )4. 单调函数的导函数也是单调函数.( )5. 若)(x f 在0x 点可导,则)(x f 也在0x 点可导.( )6. 若连续函数)(x f y =在0x 点不可导,则曲线)(x f y =在))(,(00x f x 点没有切线.( )7. 若)(x f 在[b a ,]上可积,则)(x f 在[b a ,]上连续.( )8. 若),(y x f z =在(00,y x )处的两个一阶偏导数存在,则函数),(y x f z =在(00,y x )处可微.( )9. 微分方程的含有任意常数的解是该微分方程的通解.( )10. 设偶函数)(x f 在区间)1,1(-内具有二阶导数,且 1)0()0(+'=''f f , 则)0(f 为)(x f 的一个极小值.二、填空题.(每题2分,共20分)1. 设2)1(x x f =-,则=+)1(x f .2. 若1212)(11+-=xxx f ,则=+→0lim x .3. 设单调可微函数)(x f 的反函数为)(x g , 6)3(,2)1(,3)1(=''='=f f f 则------------------------------------------------------------------------------------------------------------------------=')3(g .4. 设yxxy u +=, 则=du . 5. 曲线326y y x -=在)2,2(-点切线的斜率为 .6. 设)(x f 为可导函数,)()1()(,1)1(2x f xf x F f +==',则=')1(F . 7. 若),1(2)(02x x dt t x f +=⎰则=)2(f .8. x x x f 2)(+=在[0,4]上的最大值为 . 9. 广义积分=-+∞⎰dx e x 20.10. 设D 为圆形区域=+≤+⎰⎰dxdy x yy x D5221,1 .三、计算题(每题5分,共40分)1. 计算))2(1)1(11(lim 222n n n n ++++∞→Λ. 2. 求1032)10()3()2)(1(++++=x x x x y ΛΛ在(0,+∞)内的导数.3. 求不定积分dx x x ⎰-)1(1.4. 计算定积分dx x x ⎰-π53sin sin .5. 求函数22324),(y xy x x y x f -+-=的极值. 6. 设平面区域D 是由x y x y ==,围成,计算dxdy yyD⎰⎰sin . 7. 计算由曲线x y x y xy xy 3,,2,1====围成的平面图形在第一象限的面积.------------------------------------------------------------------------------------------------------------------------8. 求微分方程yxy y 2-='的通解. 四、证明题(每题10分,共20分)1.证明:tan arc x = )(+∞<<-∞x .2. 设)(x f 在闭区间[],b a 上连续,且,0)(>x fdt t f dt t f x F x xb⎰⎰+=0)(1)()( 证明:方程0)(=x F 在区间),(b a 内有且仅有一个实根.《高等数学》参考答案一、判断题. 将√或×填入相应的括号内(每题2分,共20分)1.√ ;2.× ;3.×;4.× ;5.×;6.× ;7.× ;8.× ;9.√ ;10.√.二、 填空题.(每题2分,共20分)1.442++x x ; 2. 1; 3. 1/2; 4.dy y x x dx y y )/()/1(2-++;5. 2/3 ;6. 1 ;7.336 ; 8. 8 ; 9. 1/2 ; 10. 0.三、计算题(每题5分,共40分)1.解:因为 21(2)n n +222111(1)(2)n n n <+++<+L 21n n + 且 21lim 0(2)n n n →∞+=,21lim n n n →∞+=0由迫敛性定理知: ))2(1)1(11(lim 222n n n n ++++∞→Λ=0 2.解:先求对数)10ln(10)2ln(2)1ln(ln +++++=x x x y Λ------------------------------------------------------------------------------------------------------------------------101022111++++++='∴x x x y y Λ )(10()1(++='∴x x y Λ)10102211++++++x x x Λ 3.解:原式=⎰-x d x112=⎰-x d x 2)(112=2c x +arcsin4.解:原式=dx x x ⎰π23cos sin=⎰-2023sin cos πxdx x ⎰ππ223sin cos xdx x=⎰-2023sin sin πx xd ⎰ππ223sin sin x xd=2025][sin 52πx ππ225][sin 52x -=4/55.解: 02832=--='y x x f x 022=-='y x f y故 ⎩⎨⎧==00y x 或⎩⎨⎧==22y x当 ⎩⎨⎧==0y x 时8)0,0(-=''xxf ,2)0,0(-=''yy f ,2)0,0(=''xy f------------------------------------------------------------------------------------------------------------------------02)2()8(2>--⨯-=∆Θ 且A=08<-∴ (0,0)为极大值点 且0)0,0(=f当 ⎩⎨⎧==22y x 时4)2,2(=''xxf , 2)2,2(-=''yy f ,2)2,2(=''xy f 02)2(42<--⨯=∆Θ ∴无法判断6.解:D={}y x y y y x ≤≤≤≤2,10),(⎰⎰⎰⎰=∴102sin sin y y Ddx y y dy dxdy y y=dy x yy y y 2][sin 10⎰ =dy y y y )sin (sin 1⎰-=⎰+-11cos ]cos [y yd y=⎰-+-110cos ]cos [1cos 1ydy y y=1sin 1- 7.解:令xy u =,xyv =;则21≤≤u ,31≤≤v v vuu vv v uuv y y x x J v uvu212221=-==∴ 3ln 212131===⎰⎰⎰⎰Ddv v du d A σ 8.解:令 u y =2,知x u u 42)(-=' 由微分公式知:)4(222c dx xe e y u dxdx+⎰-⎰==⎰-------------------------------------------------------------------------------------------------------------------------)4(22c dx xe e x x +-=⎰-)2(222c e xe e x x x ++=--四.证明题(每题10分,共20分)1.解:设 21arcsinarctan )(xx x x f +-=222222211111111)(xx x x x x xx f ++-+⋅+--+='Θ=0c x f =∴)( +∞<<∞-x令0=x 0000)0(=∴=-=c f Θ 即:原式成立。

2.解: ],[)(b a x F 在Θ上连续 且 dt t f a F ab⎰=)(1)(<0,dt t f b F b a ⎰=)()(>0故方程0)(=x F 在),(b a 上至少有一个实根.又 )(1)()(x f x f x F +=' 0)(>x f Θ 2)(≥'∴x F即 )(x F 在区间],[b a 上单调递增∴)(x F 在区间),(b a 上有且仅有一个实根.《高等数学》专业 学号 姓名一、判断题(对的打√,错的打×;每题2分,共10分)------------------------------------------------------------------------------------------------------------------------1.)(x f 在点0x 处有定义是)(x f 在点0x 处连续的必要条件.2. 若)(x f y =在点0x 不可导,则曲线)(x f y =在))(,(00x f x 处一定没有切线.3. 若)(x f 在],[b a 上可积,)(x g 在],[b a 上不可积,则)()(x g x f +在],[b a 上必不可积.4. 方程0=xyz 和0222=++z y x 在空间直角坐标系中分别表示三个坐标轴和一个点. 5. 设*y 是一阶线性非齐次微分方程的一个特解,y 是其所对应的齐次方程的通解,则*y y y +=为一阶线性微分方程的通解.二、填空题(每题2分,共20分)1. 设,5)(,12)3(=+=a f x x f 则=a .2. 设xx x f 3arcsin )21ln()(+=,当=)0(f 时,)(x f 在点0=x 连续.3. 设xtt tx x f 2)11(lim )(+=∞→,则)(x f '' .4.已知)(x f 在ax =处可导,且Aa f =')(,则=--+→hh a f h a f h )3()2(lim.5. 若2)]([cos )(2x f dxdx x f =,并且1)0(=f ,则)(x f . 6. 若)(),(x g x f 在点b 左连续,且)()(),()(x g x f b g b f '>'= )(b x a <<, 则)(x f 与)(x g 大小比较为)(x f ).(x g7. 若2sin x y =,则=)(2x d dy ;=dxdy. 8. 设⎰=x x tdt x f 2ln )(,则=')21(f .------------------------------------------------------------------------------------------------------------------------9. 设yx ez 2=,则=)1,1(dz.10. 累次积分dy y x f dx x R R )(202022-⎰⎰-化为极坐标下的累次积分为 .三、计算题(前6题每题5分,后两题每题6分,共42分)1. ⎰⎰+→xx tx dtt t dtt 0sin 010sin )1(lim; 2. 设1ln 22-=xxe e y ,求y '; 3. dx x x x ⎰+-2sin 1cos sin ;4.⎰-20224dx x x; 5. 设22yx xz +=, 求 y x z y z ∂∂∂∂∂2,. 6. 求由方程)ln()(2y x y x x y --=-所确定的函数)(x y y =的微分dy . 7. 设平面区域D 是由x y x y ==,围成,计算dxdy yyD⎰⎰sin . 8. 求方程0)ln (ln =-+dy y x ydx y 在初始条件e yx ==1下的特解.四、(7分)已知bx ax x x f ++=23)(在1=x 处有极值2-,试确定系数a 、b ,并求出所有的极大值与极小值.五、应用题(每题7分,共14分)1. 一艘轮船在航行中的燃料费和它的速度的立方成正比. 已知当速度为)/(10h km 时,燃料费为每小时6元,而其它与速度无关的费用为每小时96元. 问轮船的速度为多少时, 每航行km 1所消耗的费用最小?2. 过点)0,1(向曲线2-=x y 作切线,求:(1)切线与曲线所围成图形的面积;(2)图形绕y轴旋转所得旋转体的体积.------------------------------------------------------------------------------------------------------------------------六、证明题(7分)设函数)(x f 在a x <≤0上的二阶导数存在,且0)0(=f , 0)(>''x f . 证明xx f x g )()(=在a x <<0上单调增加.高等数学参考答案一、判断题 1.√; 2.×; 3.√ ; 4.× ; 5.√.二、填空题1. 36 ;2. 32 ; 3. xe x 2)1(4+ ; 4. A 5 ; 5. x sin 1+; 6.<; 7. 22cos 2,cos x x x ; 8. 2ln ; 9. dy dx +2 ;10.⎰⎰20)2cos (πθθRrdr r f d .三、计算题1. 原式xxxx xx sin cos )sin 1(limsin 10+=→e e==12.2222222222)1(2)1(212111-⋅--⋅-⋅-='x xx x x xxxxe e e e e e e e e y------------------------------------------------------------------------------------------------------------------------ 22222)1(221--⋅-=xxx x e e e e xe 211-=3.原式=dx x x xx ⎰+-2)cos (sin cos sin )cos (sin )cos (sin 12x x d x x ++-=⎰C xx ++=cos sin 14.设 t x sin 2= 则tdt dx cos 2= 原式=⎰⋅⋅202cos 2cos 2sin 4πtdt t t⎰⋅=2022cos sin 16πtdt t⎰⎰-==20202)4cos 1(22sin 4ππdt t tdtππ=-=20)4sin 41(2t t 5.23222222)(22y x xy y x y x y x yz +-=++⋅-=∂∂322212223222)(2)(23)(y x x y x xy y x y y x z +⋅+⋅-+-=∂∂∂ 3222232)()2(y x y x y y x ++-=6.两边同时微分得:------------------------------------------------------------------------------------------------------------------------ )(1)()ln()(2dy dx yx y x y x dy dx dx dy ---+--=- 即 )()ln()ln(2dy dx dy y x dx y x dx dy -+---=-故 dx y x y x dy )ln(3)ln(2-+-+=(本题求出导数后,用dx y dy '=解出结果也可)7.⎰⎰⎰⎰=102sin sin y y Ddx y y dy dxdy y y⎰-=1)sin (sin dy y y y⎰-+-=11010cos cos cos ydy y y y10sin 1cos 1cos 1y -+-=1sin 1-=8.原方程可化为yx y y dy dx 1ln 1=+ 通解为 ]1[ln 1ln 1C dy ye ex dy y y dyy y +⋅⎰⎰=⎰-]1[ln ln ln ln C dy ye ey y+⋅=⎰-]ln 1[ln 1C ydy y y +=⎰])(ln 21[ln 12C y y += yC y ln ln 21+=e y x ==1代入通解得 1=C故所求特解为: 01ln 2)(ln 2=+-y x y------------------------------------------------------------------------------------------------------------------------四、解: b ax x x f ++='23)(2因为)(x f 在1=x 处有极值2-,所以1=x 必为驻点 故 023)1(=++='b a f 又 21)1(-=++=b a f 解得: 3,0-==b a于是 x x x f 3)(3-= )1(3)(2-='x x f x x f 6)(-='' 由0)(='x f 得 1±=x ,从而06)1(>=''f , 在1=x 处有极小值2)1(-=f 06)1(<-=-''f ,在1-=x 处有极大值2)1(=-f五、1.解:设船速为)/(h km x ,依题意每航行km 1的耗费为)96(13+=kx xy 又10=x 时,6103=⋅k 故得006.0=k , 所以有)96006.0(13+=x xy ,),0(∞+∈x 令 0)8000(012.032=-='x xy , 得驻点20=x 由极值第一充分条件检验得20=x 是极小值点.由于在),0(∞+上该函数处处可导,且只有唯一的极值点,当它为极小值点时必为最小值点,所以求得船速为)/(20h km 时,每航行km 1的耗费最少,其值为2.7209620006.02min =+⨯=y (元) 2.解:(1)设切线与抛物线交点为),(00y x ,则切线的斜率为100-x y , 又因为22-=x y 上的切线斜率满足12='⋅y y ,在),(00y x 上即有120='y y 所以112000=-⋅x y y ,即1200-='x y------------------------------------------------------------------------------------------------------------------------又因为),(00y x 满足2020-=x y ,解方程组⎪⎩⎪⎨⎧-=-=212020020x y x y 得 ⎩⎨⎧==1300y x所以切线方程为 )1(21-=x y 则所围成图形的面积为: 61)]12(2[102=+-+=⎰dy y y S (2)图形绕x 轴旋转所得旋转体的体积为:6)2()1(4132102πππ=---=⎰⎰dx x dx x V 六、证: 22)]0()([)()()(])([x f x f x f x x x f x f x x x f --'=-'=' 在],0[x 上,对)(x f 应用拉格朗日中值定理,则存在一点),0(x ∈ξ,使得 )()0()(ξf x f x f '=-代入上式得 2)()(])([xf x f x x x f ξ-'=' 由假设0)(>''x f 知)(x f '为增函数,又ξ>x ,则)()(ξf x f '>',于是0)()(>'-'ξf x f ,从而0])([>'xx f ,故x x f )(在),0(a 内单调增加.《高等数学》试卷专业 学号 姓名一、填空题(每小题1分,共10分)------------------------------------------------------------------------------------------------------------------------1.函数y =的定义域为_______________。

相关文档
最新文档