模具钢的单点金刚石切削技术
衍射光学元件金刚石单点车削加工技术研究的开题报告

衍射光学元件金刚石单点车削加工技术研究的开题报告一、研究背景及意义光学元件广泛应用于现代照明、通讯、医疗、检测等领域,而金刚石作为硬度和耐磨性能极佳的材料,被广泛用于制作光学元件。
然而,金刚石材料的特殊性质和高硬度使得其加工困难,传统的金刚石加工方式如磨削、抛光、电解加工等存在效率低、成本高、表面质量差等问题,导致金刚石制品的加工难度大、生产周期长、产品品质难以保障。
采用单点车削加工技术制备金刚石光学元件能够提高加工效率和产品质量,具有重要的应用价值和研究意义。
因此,本研究旨在探究衍射光学元件金刚石单点车削加工技术,提高金刚石光学元件的制造质量和生产效率。
二、研究内容与研究目标本研究将通过对金刚石单点车削加工过程进行分析和实验研究,包括材料选取、单点车削加工工艺参数优化、金刚石单点刀具的制备等方面,探究衍射光学元件金刚石单点车削加工技术。
具体研究内容如下:1.研究金刚石单点车削加工的机理和方法,探讨单点刀具的制备工艺。
2.分析单点车削加工中的刀具磨损和切削力变化规律,选择适合的加工工艺参数,优化金刚石单点车削加工工艺。
3.制备不同形状和尺寸的金刚石单点刀具,对其进行磨损测试和性能评估。
4.通过实验验证金刚石单点车削加工过程中的最佳工艺参数和刀具选择方案,并对加工的光学元件进行表面粗糙度、表面形貌和表面质量等方面的检测,对加工的光学元件进行性能测试。
本研究旨在探究衍射光学元件金刚石单点车削加工技术,优化金刚石制品的加工工艺,提高其生产效率和产品质量。
通过实验验证最佳工艺参数和刀具选择方案,为实际生产中金刚石单点车削加工提供参考和指导,具有重要的理论和实践价值。
三、研究方法本研究将采用实验研究和数据统计分析相结合的方法,对衍射光学元件金刚石单点车削加工技术进行探究。
具体方法如下:1.准备金刚石材料,并制备不同形状和尺寸的金刚石单点刀具。
2.在数控车床上进行金刚石单点车削加工,记录切削力、主轴电流、进给速度等关键工艺参数数据。
金刚石切削与精密磨削

2.0.1 金刚石超精密切削
1.金刚石超精密切削技术的进展
金刚石超精密切削是超精密加工技术的一个重要组成部分,早期主 要用来加工有色金属如无氧铀或铝合金等。 采用金刚石超精密切削技术可达到纳米级加工水平,不少国防尖端 产品零件(如陀螺仪、各种平面及曲面反射镜和透镜、精密仪器仪表和大 功率激光系统中的多种零件等)都需要利用金刚石超精密切削来加工。
最大进给速度mm/min 数控系统分辩率/mm
3000、5000或7000
5000 0.0001或0.00005
重复精度(±2σ)/mm
主轴径向圆跳动/mm 主轴轴向圆跳动/mm
≤0.0002/100
≤0.0001 ≤0.0001
滑台运动的直线度/mm
横滑台对主轴的垂直度/mm 主轴前静压轴承(φ100mm)的刚度/(N/μm) 主轴后静压轴承(φ80mm)的刚度/(N/μm) 纵横滑台的静压支承刚度/(N/μm) 径向
3. 误差补偿
2.0.4 精密与超精密加工机床
1.精密与超精密切削机床的性能要求
(1) 很高的精度(包括高的静精度和动精度) 主要指标有主轴的回转精度、导轨运动精度、定位精度、重复定 位精度,分辨率及分度精度。精密车床主轴回转精度一般在1μm之内 ,导轨直线度小于10μm /100mm,精密坐标磨床的定位精度在1~3μm ,分辨率一般为0.01μm ,具有能够进行微量切削并具有在线误差补偿 的微量进给系统。而超精密车床主轴的回转精度大多在0.03~0.05μm ,导轨直线度为0.1~0.2μm /250mm,定位精度为0.01μm ,重复定位 精度为0.006μm ,进给分辨率为0.003~0.008μm ,分度精度为0.5″。 (2) 具有较高的刚度(包括静刚度、动刚度和热刚度)
影响单点金刚石切削表面质量的因素

2 0 1 4年
第 1期
影 响 单 点金 刚 石切 削 表面 质量 的 因素
王 昊
( 昆 理 工 大 学 机 电工 程 学 院 , 云南 昆明 6 5 0 5 0 0 )
摘 要 : 单 点金 刚石 切 削( s i n g l e p o i n t d i a mo n d t u r n i n g , 简称 S P D T) 是 一种 使 / , 1 纳 米金 刚 石 刀具进
头和 扫描反 射镜 。虽然 单点金 刚石 切 削满足 了很 多高精 密零 件 的制 造 需求 , 但 目前所 了解 的影 响 因素和
表 面生成 的机 制仍 不 完善 , 在 生产 中有很 多 因素 会影 响 到 单 点金 刚 石 的表 面质 量 和 面 形精 度 , 如 主 轴 转
速、 进 给 速度 和切 削深度 等 , 本文 对此进 行 了分析 。
o f p r e c i s i o n me c h a n i c a l a n d o p t i c a l p a r t s s u c h a s s c a n n e r mi r r o r s a n d mo u l d i n s e r t s f o r i n j e c t i o n mo u l d p l a s t i c c a me r a l e n s e s .
W A NG Ha o
( F a c u l t y o f Me c h a n i c a l a n d E l e c t r i c a l E n g i n e e r i n g ,Ku n mi n g Un i v e r s i t y o f S c i e n c e a n d T e c h n o l o g y, Ku n mi n g 6 5 0 5 0 0 ,Ch i n a ) Ab s t r a c t :S i n g l e ~ p o i n t d i a mo n d t u r n i n g( S P DT)i s a ma c h i n i n g p r o c e s s t h a t ma k i n g u s e o f a mo n o c r y s t a l d i a mo n d t o o l
在单点金刚石机床上用刨削加工微槽的方法

在单点金刚石机床上用刨削加工微槽的方法李伟国;周欢伟;李克天【摘要】以单点金刚石作为切削刀具的数控机床是一种新型的超精密加工机床,与普通数控机床有许多不同.通过刨削加工微槽的过程介绍该超精密机床的原理和特点.采用刨削加工方式加工微微槽的过程主要分为端面加工和微槽加工两个步骤,具体有:刀具中心调整、主轴调动平衡、数控编程、工件端面加工、侧刀设置、微槽刨削加工等.刀具的尖端与主轴轴线的精准度决定了加工端面中心的微凸点的大小,左右和上下的误差必须在几微米以内.机床主轴转速选择2000 r/min,该气浮主轴在加工之前必须调节动平衡,要求X向和Y向跳动在100 nm以内.数控程序与普遍数控机床的基本相同,但精度高,NC代码的有效数值一般在小数点后六位.端面加工后表面为镜面,表面粗糙度Ra在100以下,为微槽加工提供了良好的端面.微槽加工时装夹工件的主轴设为C轴模式,完成刨削加工的刀具要侧面安装,刀具沿X轴切削工件表面.实际加工的微槽表面粗糙度Ra为63.573 nm,达到镜面效果.该加工微槽的过程和参数设置可为类似的加工工艺应用提供参考.【期刊名称】《机电工程技术》【年(卷),期】2018(049)010【总页数】5页(P7-10,86)【关键词】金刚石刀具;V槽;刨削;加工工艺【作者】李伟国;周欢伟;李克天【作者单位】广东机械技师学院,广东广州 510450;广州铁路职业技术学院,广东广州 510430;广东工业大学,广东省微纳加工技术与装备重点实验室,广东广州510060【正文语种】中文【中图分类】TG55美国摩尔公司生产的NanoTech 350FG机床是一种超精密自由曲面加工机床,具有三条直线运动轴X、Y和Z以及两个旋转轴B和C。
可实现的加工方式有两轴车削、铣削、飞刀切削、刨削和磨削等,还可以实现快刀伺服和慢刀伺服加工。
用于加工球面、非球面以及自由曲面的光学镜面以及其他高精度机械零件,例如模具的模仁。
单点金刚石铣削KDP晶体实验研究

1引言KDP晶体是一种常用的非线性光学材料,大尺寸、高质量的KDP晶体被公认为难加工的光学元件。
美国的劳伦斯・利佛尔国家实验室(LLNL)研究结果表明采用负前角的金刚石刀具超精密切削能够获得光学表面[1]。
铣削过程中,切削力直接影响着切削热的产生,容易导致工件变形,并进一步影响着刀具磨损、耐用度、加工精度和已加工表面质量。
为了提高KDP晶体的表面质量,本文利用哈尔滨工业大学研制的KDP晶体加工专用超精密机床对铣削加工KDP晶体的切削力特性进行了研究。
2超精密机床结构和加工方式KDP晶体属于平面光学元件,由于KDP晶体的各向异性,KDP晶体加工专用超精密机床加工采用立轴平面铣削形式[2],飞刀盘直径大于600mm,这样可以尽量减小刀具的圆弧轨迹对晶体加工的影响。
安装在飞刀盘上的金刚石刀具采用SPDT(singlepointdiamondturning)方式完成对KDP晶体的超精密切削。
伺服进给系统由交流伺服电机通过柔性联轴节带动滚珠丝杠驱动空气静压导轨完成机床工作台的直线进给运动。
主轴电机通过连轴节带动空气静压主轴驱动飞刀盘旋转,工件则通过真空吸盘吸咐夹紧在工作台上。
图1为KDP晶体专用超精密机床结构示意图。
单点金刚石铣削KDP晶体实验研究*孙希威,张飞虎,董申(哈尔滨工业大学哈尔滨,150001)[摘要]通过实验研究了KDP晶体铣削加工的切削力特性,分析了切削深度、进给量对切削力的影响,并对KDP晶体和铝合金的切削力进行了比较。
结果表明,在不影响加工表面质量的前提下,可以适当加大切削深度和进给量从而提高切削效率。
[关键词]KDP晶体;切削力;SPDT[中图分类号]TG501.3[文献标识码]A[文章编号]1003-5451(2006)04-0018-03ResearchonSPDTMillingKDPCrystalsExperimentSUNXi-wei,ZHANGFei-hu,DONGShen(HarbinInstituteofTechnology,Harbin150001)[Abstract]ThecuttingforcecharacterofmillingKDPcrystalshasbeenresearched,theinfluenceofcuttingdepthandfeedoncuttingforcehasbeenanalyzed.ThecuttingforceofKDPcrystalshasbecomparedwithofaluminumalloy.TheexperimentapprovedthatthecuttingdepthorfeedcouldbeenlargedproperlytoincreasemillingefficiencywhensurfaceaccuracywasnotbeenimpactedinmillingKDPcrystals.[Keywords]KDPcrystals;cuttingforce;single-pointdiamondturning*国家高技术研究发展计划(863计划)航空精密制造技术AVIATIONPRECISIONMANUFACTURINGTECHNOLOGY2006年8月第42卷第4期Aug.2006Vol.42No.4《航空精密制造技术》2006年第42卷第4期1主轴电机2主轴3飞刀盘4金刚石刀具5KDP晶体6真空吸盘7工作台8导轨9伺服电机图1KDP晶体专用超精密机床结构示意图3切削力实验原理及实验条件切削力的来源有两方面:一是切削层材料、切屑和工件表面层材料的弹性变形、塑性变形所产生的抗力;二是刀具与切屑、工件表面间的摩擦阻力[3]。
超精密切削及金刚石刀具

二)金刚石刀具的性能特点 极高的硬度,维氏硬度达HV10000。 极高的耐磨性,天然金刚石耐磨性为硬质合金的80-120
倍,人造金刚石为硬质合金的60-80倍。
刀刃非常锋利,天然单晶金刚石刀具刀刃钝园半径可达
纳米级。
摩擦系数低,金刚石与一些有色金属之间摩擦系数比其
它刀具都低,约为硬质合金刀具的一半。
格常数,各边夹角分别
c
b Y
以α、β、γ表示 。
根据6个参数间的相互关
系,可将全部空间晶格 归属于7种类型:三斜、
a
单斜、正交、六方、菱
方、四方、立方。金刚
X
晶格常数 a,b,c
石属于六方晶系。
2、晶体中的晶面和晶轴
晶面:通过原子中心的平面,即晶体中各种方位上 的原子面。 Z
晶轴:与晶面垂直的轴
2、对加工表面组织位错的影响
刃口半径越小,位错密度越小,切削变形越小,表 面质量越高。
四)刀刃锋锐度对加工表面残留应力的影响
刃口半径越小,残留应力越低。 背吃刀量越小,残留应力越小,但当背吃刀量减小到临界 值时,背吃刀量减小,残留应力增大。
五、超精密切削的最小切削厚度
使用极其锋利的金刚石刀具在机床最佳条件下可
导热性能高,导热系数为硬质合金的1.5-9倍,铜的2-6倍
。
热胀系数低,热胀系数比硬质合金小几倍,约为高速钢
的1/10,因此,金刚石刀具不会产生很大的热变形。
各向异性,单晶金刚石晶体不同晶面及晶向的硬度、耐
磨性、微观强度、研磨加工的难易程度以及与工件材料之
间的摩擦系数等相差很大,因此,设计和制造单晶金刚石 刀具时,必须进行晶体定向。
三)金刚石的晶体结构 1、晶体结构
单晶金刚石车刀在超精密单点切削中的磨损分析

单晶金刚石车刀在超精密单点切削中的磨损分析磨损分析是评估单晶金刚石车刀在超精密单点切削中使用过程中的性能退化情况。
磨损是由切削力和摩擦力引起的,而超精密单点切削要求较小的切削力和摩擦力。
因此,单晶金刚石车刀的磨损是非常重要的。
首先,单晶金刚石车刀的磨损主要有两种形式:刃口磨损和表面磨损。
刃口磨损会导致车刀的切削边缘变钝,从而降低切削效率和切削质量。
表面磨损主要是由刀具与工件表面接触时产生的摩擦引起的。
这些磨损形式都会导致单晶金刚石车刀的使用寿命减少。
其次,可以通过磨损分析来确定单晶金刚石车刀的磨损程度。
常用的磨损评估方法有:测量切削力和刀具表面形貌、观察工件表面质量等。
测量切削力可以间接评估刃口磨损程度,如果切削力增加,则说明刃口已经磨损。
观察工件表面质量也可以判断磨损情况,如果工件表面粗糙度增加,则说明刃口已经损坏。
最后,还可以通过磨损分析找出导致单晶金刚石车刀磨损的原因。
可能的原因包括:切削条件不合适、切削速度过高、切削液不合适等。
通过找出磨损原因,可以采取相应的措施来减少磨损,延长单晶金刚石车刀的使用寿命。
总之,单晶金刚石车刀在超精密单点切削中的磨损分析是评估其使用寿命和性能的重要手段。
通过磨损分析,可以确定磨损程度,找出导致磨损的原因,并采取相应的措施来延长车刀的使用寿命。
此外,单晶金刚石车刀磨损分析还可以提供对刀具寿命的预测和刀具性能的改进。
通过磨损分析,可以获取关于刀具磨损速率和刀具寿命的重要信息。
这些信息对于制定合理的刀具更换计划非常关键,以避免频繁更换刀具或过度使用磨损严重的刀具。
磨损分析还可以帮助改进单晶金刚石车刀的设计和制造工艺。
通过观察磨损形态和区域,可以了解刀具的磨损机制和影响因素。
这对于优化刀具的材料、几何形状和涂层等方面非常有价值。
例如,可以针对刀具的磨损情况进行改进,使其更耐磨、更耐用,并提高切削效率和切削质量。
此外,磨损分析还可以通过对比不同切削条件下的磨损情况,寻找最佳的切削参数组合。
金钢石的加工方法

金刚石(Diamond)的加工方法主要包括但不限于以下几种:
1. 直接制造法:
- 高温高压法(HPHT): 通过模拟地球深处的极端条件,将石墨等碳质原料在高压(5-10GPa)和高温(1100-3000°C)下直接转化为金刚石。
此方法形成的金刚石通常为微米级别的多晶粉末,也可通过优化工艺制得单晶金刚石。
2. 外延生长法:
- 化学气相沉积法(CVD): CVD技术是在较低的压力下,利用含有碳源(如甲烷、乙醇等)的气体在特定的温度和气氛中分解,并在固体基底(如金属或现有金刚石晶种)上一层层生长出金刚石薄膜或单晶金刚石。
这种技术可以生产出高品质的大面积单晶金刚石薄片,以及用于半导体工业的电子级金刚石。
3. 加工成型法:
- 切割和打磨:对于已经形成的金刚石原石,通过专业的金刚石切割工具进行形状切割,然后通过一系列精细打磨工序,最终制成宝石级的璀璨钻石或工业
级的刀具、磨料等产品。
这一过程中,需要用到专门的金刚石砂轮进行粗磨、细磨和抛光。
4. 聚晶金刚石加工:
- 聚晶金刚石(PCD)是由许多细小的金刚石颗粒在高温高压下烧结并与硬质金属基体复合而成的材料。
加工PCD通常涉及金刚石砂轮的磨削、放电加工(EDM)或电解磨削等特殊工艺。
综上所述,金刚石的加工方法涵盖了从原材料转化、晶体生长到成型和精加工等一系列精密的技术流程。
不同用途的金刚石产品会采用适合其特性的加工方法。