(完整版)人教版第七章《平面直角坐标系》单元测试题
人教版七年级数学下册第7章-平面直角坐标系-单元测试卷(解析版)

第7章平面直角坐标系期末考好题精选训练一、选择题1.已知点P(2a﹣5,a+2)在第二象限,则符合条件的a的所有整数的和的立方根是()A.1 B.﹣1 C.0 D.2.平面直角坐标系中,点A(﹣3,2),B(3,4),C(x,y),若AC∥x轴,则线段BC的最小值及此时点C的坐标分别为()A.6,(﹣3,4)B.2,(3,2) C.2,(3,0) D.1,(4,2)3.已知点P(2﹣a,3a+6)到两坐标轴距离相等,则P点坐标为() A.(3,3)B.(6,﹣6)C.(3,3)或(6,﹣6)D.(3,﹣3)4.已知点A(1,0),B(0,2),点P在x轴上,且△PAB的面积为5,则点P的坐标是()A.(﹣4,0) B.(6,0)C.(﹣4,0)或(6,0) D.(0,12)或(0,﹣8)5.已知:岛P位于岛Q的正西方,由岛P,Q分别测得船R位于南偏东30°和南偏西45°方向上,符合条件的示意图是()A.B.C.D.6.下列命题是真命题的是()①a,b为实数,若a2=b2,则=②的平方根是±4③三角形ABC中,∠C=90°,则点到直线的距离是线段BC④建立一个平面直角坐标,点A(﹣2,4),点B(3,4),画直线AB,若点C在直线AB上,且AC=4,则C点坐标(1,4),(﹣6,4)A.0 B.1 C.2 D.37.如图,在平面直角坐标系上有点A(1,0),点A第一次向右跳动至A1(﹣1,1),第二次向左跳动至A2(2,1),第三次向右跳动至A3(﹣2,2),第四次向左跳动至A4(3,2)…依照此规律跳动下去,点A第100次跳动至A100的坐标()A.(50,49)B.(51,50)C.(﹣50,49)D.8.下列说法正确的是()A.若ab=0,则点P(a,b)表示原点B.点(1,﹣a2)在第四象限C.已知点A(2,3)与点B(2,﹣3),则直线AB平行x轴D.坐标轴上的点不属于任何象限9.在平面直角坐标系中,孔明做走棋的游戏,其走法是:棋子从原点出发,第1步向右走1个单位,第2步向右走2个单位,第3步向上走1个单位,第4步向右走1个单位…依此类推,第n步的走法是:当n能被3整除时,则向上走1个单位;当n 被3除,余数为1时,则向右走1个单位;当n被3除,余数为2时,则向右走2个单位,当走完第100步时,棋子所处位置的坐标是()A.(66,34)B.(67,33)C.D.(99,34)10.在△ABC内任意一点P(a,b)经过平移后对应点P1(c,d),已知A(3,2)在经过此次平移后对应点A1的坐标为(5,﹣1),则a+b﹣c﹣d的值为()A.﹣5 B.﹣1 C.1 D.511.周末,小明与小文相约一起到游乐园去游玩,如图是他俩在微信中的一段对话:根据上面两人的对话纪录,小文能从M超市走到游乐园门口的路线是()A.向北直走700米,再向西直走300米B.向北直走300米,再向西直走700米C.向北直走500米,再向西直走200米D.向南直走500米,再向西直走200米二、填空题12.如图,将边长为1个单位长度的正方形ABCD置于平面直角坐标系内,如果BC与x轴平行,且点A的坐标是(2,2),那么点C的坐标为.第12题图第13题图13.如图,所有正方形的中心均在坐标原点,且各边与x轴或y轴平行,从内到外,它们的边长依次为2,4,6,8,…,顶点依次为A1,A2,A3,A4,…表示,则顶点A2018的坐标是.14.在平面直角坐标系中,一蚂蚁从原点O出发,按向上、向右、向下、向右的方向依次不断移动,每次移动1个单位,其行走路线如图.则A20(,);点A4n的坐标为(,)(n是正整数).15.如图所示,直线BC经过原点O,点A在x轴上,AD⊥BC于D,若B(m,3),C(n,﹣5),A(4,0),则AD•BC=.16.平面直角坐标系中有两点M(a,b),N(c,d),规定(a,b)⊕(c,d)=(a+c,b+d),则称点Q(a+c,b+d)为M,N的“和点”.若以坐标原点O与任意两点及它们的“和点”为顶点能构成四边形,则称这个四边形为“和点四边形",现有点A(2,5),B(﹣1,3),若以O,A,B,C四点为顶点的四边形是“和点四边形”,则点C的坐标是.17.如图,一个机器人从点O出发,向正东方向走3m到达点A1,再向正北方向走6m到达点A2,再向正西方向走9m到达点A3,再向正南方向走12m到达点A4,再向正东方向走15m到达点A5.按如此规律下去,当机器人走到点A6时,离点O的距离是m.18.定义:若点M、N分别是两条线段a和b上任意一点,则线段MN长度的最小值叫做线段a与线段b的“理想距离”.已知O(0,0),A(1,1),B(3,k),C(3,k+2)是平面直角坐标系中的4个点.根据上述概念,若线段BC与线段OA的理想距离为2,则k的取值范围是.三、解答题19.如图,这是某市部分简图,为了确定各建筑物的位置:(1)请你以火车站为原点建立平面直角坐标系.(2)写出市场、超市的坐标.(3)请将体育场、宾馆和火车站看作三点用线段连起来,得△ABC,然后将此三角形向下平移4个单位长度,画出平移后的△A1B1C1,并求出其面积.20.如图,在平面直角坐标系中,已知A(0,a),B(b,0),其中a,b满足|a ﹣2|+(b﹣3)2=0.(1)求a,b的值;(2)如果在第二象限内有一点M(m,1),请用含m的式子表示四边形ABOM的面积;(3)在(2)条件下,当m=﹣时,在坐标轴的负半轴上是否存在点N,使得四边形ABOM的面积与△ABN的面积相等?若存在,求出点N的坐标;若不存在,请说明理由.21.如图1,在平面直角坐标系中,第一象限内长方形ABCD,AB∥y轴,点A(1,1),点C(a,b),满足+|b﹣3|=0.(1)求长方形ABCD的面积.(2)如图2,长方形ABCD以每秒1个单位长度的速度向右平移,同时点E从原点O出发沿x轴以每秒2个单位长度的速度向右运动,设运动时间为t秒.①当t=4时,直接写出三角形OAC的面积为;②若AC∥ED,求t的值;(3)在平面直角坐标系中,对于点P(x,y),我们把点P′(﹣y+1,x+1)叫做点P的伴随点,已知点A1的伴随点为A2,点A2的伴随点为A3,点A3的伴随点为A4,…,这样依次得到点A1,A2,A3,…,A n.①若点A1的坐标为(3,1),则点A3的坐标为,点A2014的坐标为;②若点A1的坐标为(a,b),对于任意的正整数n,点A n均在x轴上方,则a,b 应满足的条件为.22.在平面直角坐标系xOy中,对于点P(x,y),我们把P'(y﹣1,﹣x﹣1)叫做点P的友好点,已知点A1的友好点为A2,点A2的友好点为A3,点A3的友好点为A4,…,这样依次得到点.(1)当点A1的坐标为(2,1),则点A3的坐标为,点A2016的坐标为;(2)若A2016的坐标为(﹣3,2),则设A1(x,y),求x+y的值;(3)设点A1的坐标为(a,b ),若A1,A2,A3,…A n,点A n均在y轴左侧,求a、b的取值范围.23.在平面直角坐标系xOy中,对于任意三点A,B,C的“矩面积”,给出如下定义:“水平底"a:任意两点横坐标差的最大值,“铅垂高”h:任意两点纵坐标差的最大值,则“矩面积”S=ah.例如:三点坐标分别为A(1,2),B(﹣3,1),C(2,﹣2),则“水平底"a=5,“铅垂高"h=4,“矩面积”S=ah=20.已知点A(1,2),B(﹣3,1),P(0,t).(1)若A,B,P三点的“矩面积"为12,求点P的坐标;(2)直接写出A,B,P三点的“矩面积”的最小值.一、选择题1.已知点P(2a﹣5,a+2)在第二象限,则符合条件的a的所有整数的和的立方根是()A.1 B.﹣1 C.0 D.【解答】解:∵点P(2a﹣5,a+2)在第二象限,∴解得:符合条件的a的所有整数为﹣1,0,1,2,∴﹣1+0+1+2=2,∴2的立方根为:,故选:D.2.平面直角坐标系中,点A(﹣3,2),B(3,4),C(x,y),若AC∥x轴,则线段BC的最小值及此时点C的坐标分别为()A.6,(﹣3,4)B.2,(3,2)C.2,(3,0) D.1,(4,2)【解答】解:如图所示:由垂线段最短可知:当BC⊥AC时,BC有最小值.∴点C的坐标为(3,2),线段的最小值为2.故选:B.3.已知点P(2﹣a,3a+6)到两坐标轴距离相等,则P点坐标为()A.(3,3) B.(6,﹣6)C.(3,3)或(6,﹣6)D.(3,﹣3)【解答】解:∵点P(2﹣a,3a+6)到两坐标轴距离相等,∴|2﹣a|=|3a+6|,∴2﹣a=3a+6或2﹣a=﹣(3a+6),解得a=﹣1或a=﹣4,当a=﹣1时,2﹣a=2﹣(﹣1)=3,3a+6=3×(﹣1)+6=3,当a=﹣4时,2﹣a=2﹣(﹣4)=6,3a+6=3×(﹣4)+6=﹣6,∴点P的坐标为(3,3)或(6,﹣6).故选C.4.已知点A(1,0),B(0,2),点P在x轴上,且△PAB的面积为5,则点P的坐标是()A.(﹣4,0)B.(6,0)C.(﹣4,0)或(6,0) D.(0,12)或(0,﹣8)【解答】解:∵A(1,0),B(0,2),点P在x轴上,∴AP边上的高为2,又△PAB的面积为5,∴AP=5,而点P可能在点A(1,0)的左边或者右边,∴P(﹣4,0)或(6,0).故选C5.已知:岛P位于岛Q的正西方,由岛P,Q分别测得船R位于南偏东30°和南偏西45°方向上,符合条件的示意图是()A.B.C.D.【解答】解:根据岛P,Q分别测得船R位于南偏东30°和南偏西45°方向上,故D 符合.故选:D.6.下列命题是真命题的是()①a,b为实数,若a2=b2,则=②的平方根是±4③三角形ABC中,∠C=90°,则点到直线的距离是线段BC④建立一个平面直角坐标,点A(﹣2,4),点B(3,4),画直线AB,若点C在直线AB上,且AC=4,则C点坐标(1,4),(﹣6,4)A.0 B.1 C.2 D.3【解答】解:a,b为实数,若a2=b2,则a=b或a=﹣b,所以①错误;的平方根是±2,所以②错误;三角形ABC中,∠C=90°,则点B到直线AC的距离是线段BC的长,所以③错误;建立一个平面直角坐标,点A(﹣2,4),点B(3,4),画直线AB,若点C在直线AB上,且AC=4,则C点坐标(2,4),(﹣6,4),所以④错误.故选A.7.如图,在平面直角坐标系上有点A(1,0),点A第一次向右跳动至A1(﹣1,1),第二次向左跳动至A2(2,1),第三次向右跳动至A3(﹣2,2),第四次向左跳动至A4(3,2)…依照此规律跳动下去,点A第100次跳动至A100的坐标()A.(50,49)B.(51,50)C.(﹣50,49)D.【解答】解:观察发现,第2次跳动至点的坐标是(2,1),第4次跳动至点的坐标是(3,2),第6次跳动至点的坐标是(4,3),第8次跳动至点的坐标是(5,4),…第2n次跳动至点的坐标是(n+1,n),∴第100次跳动至点的坐标是(51,50).故选B.8.下列说法正确的是()A.若ab=0,则点P(a,b)表示原点B.点(1,﹣a2)在第四象限C.已知点A(2,3)与点B(2,﹣3),则直线AB平行x轴D.坐标轴上的点不属于任何象限【解答】解:A、a=0,b≠0时,点P(a,b)在y轴上,a≠0,b=0时,点P(a,b)在x轴上,a=b=0时,点P(a,b)表示原点,故本选项错误;B、a=0时,点(1,﹣a2)在x轴上,a≠0时,点(1,﹣a2)在第四象限,故本选项错误;C、∵点A(2,3)与点B(2,﹣3)的横坐标相同,∴直线AB平行y轴,故本选项错误;D、坐标轴上的点不属于任何象限正确,故本选项正确.故选D.9.在平面直角坐标系中,孔明做走棋的游戏,其走法是:棋子从原点出发,第1步向右走1个单位,第2步向右走2个单位,第3步向上走1个单位,第4步向右走1个单位…依此类推,第n步的走法是:当n能被3整除时,则向上走1个单位;当n被3除,余数为1时,则向右走1个单位;当n被3除,余数为2时,则向右走2个单位,当走完第100步时,棋子所处位置的坐标是()A.(66,34)B.(67,33) C.D.(99,34)【解答】解:由题意得,每3步为一个循环组依次循环,且一个循环组内向右3个单位,向上1个单位,∵100÷3=33余1,∴走完第100步,为第34个循环组的第1步,所处位置的横坐标为33×3+1=100,纵坐标为33×1=33,∴棋子所处位置的坐标是.故选:C.10.在△ABC内任意一点P(a,b)经过平移后对应点P1(c,d),已知A(3,2)在经过此次平移后对应点A1的坐标为(5,﹣1),则a+b﹣c﹣d的值为()A.﹣5 B.﹣1 C.1 D.5【解答】解:∵A(3,2)在经过此次平移后对应点A1的坐标为(5,﹣1),∴△ABC的平移规律为:向右平移个单位,向下平移3个单位,∵点P(a,b)经过平移后对应点P1(c,d),∴a+2=c,b﹣3=d,∴a﹣c=﹣2,b﹣d=3,∴a+b﹣c﹣d=﹣2+3=1,故选C.11.周末,小明与小文相约一起到游乐园去游玩,如图是他俩在微信中的一段对话:根据上面两人的对话纪录,小文能从M超市走到游乐园门口的路线是()A.向北直走700米,再向西直走300米B.向北直走300米,再向西直走700米C.向北直走500米,再向西直走200米D.向南直走500米,再向西直走200米【解答】解:根据题意建立平面直角坐标系如图所示,小文能从M超市走到游乐园门口的路线是:向北直走700米,再向西直走300米.故选A.二、填空题12.如图,将边长为1个单位长度的正方形ABCD置于平面直角坐标系内,如果BC与x轴平行,且点A的坐标是(2,2),那么点C的坐标为.【解答】解:∵点A的坐标是(2,2),BC∥x轴,且AB=1,∴点B坐标为(2,1),又BC=1,∴点C的坐标为(3,1),故答案为:(3,1).13.如图,所有正方形的中心均在坐标原点,且各边与x轴或y轴平行,从内到外,它们的边长依次为2,4,6,8,…,顶点依次为A1,A2,A3,A4,…表示,则顶点A2018的坐标是.【解答】解:∵每个正方形都有4个顶点,∴每4个点为一个循环组依次循环,∵2018÷4=504…2,∴点A2018是第505个正方形的第2个顶点,在第二象限,∵从内到外正方形的边长依次为2,4,6,8,…,∴A2(﹣1,1),A6(﹣2,2),A10(﹣3,3),…,A2018(﹣505,505).故答案为(﹣505,505).14.在平面直角坐标系中,一蚂蚁从原点O出发,按向上、向右、向下、向右的方向依次不断移动,每次移动1个单位,其行走路线如图.则A20(,);点A4n的坐标为(,)(n是正整数).【解答】解:由图可知,A4,A8都在x轴上,∵小蚂蚁每次移动1个单位,∴OA4=2,OA8=4,则OA20=10,∴A20(10,0);根据以上可得:OA4n=4n÷2=2n,∴点A4n的坐标(2n,0).故答案为:10,0;2n,0.15.如图所示,直线BC经过原点O,点A在x轴上,AD⊥BC于D,若B(m,3),C(n,﹣5),A(4,0),则AD•BC=.【解答】解:过B作BE⊥x轴于E,过C作CF⊥y轴于F,∵B(m,3),∴BE=3,∵A(4,0),∴AO=4,∵C(n,﹣5),∴OF=5,∵S△AOB=AO•BE=×4×3=6,S△AOC=AO•OF=×4×5=10,∴S△AOB +S△AOC=6+10=16,∵S△ABC=S△AOB+S△AOC,∴BC•AD=16,∴BC•AD=32,故答案为:32.16.平面直角坐标系中有两点M(a,b),N(c,d),规定(a,b)⊕(c,d)=(a+c,b+d),则称点Q(a+c,b+d)为M,N的“和点”.若以坐标原点O与任意两点及它们的“和点”为顶点能构成四边形,则称这个四边形为“和点四边形",现有点A(2,5),B (﹣1,3),若以O,A,B,C四点为顶点的四边形是“和点四边形”,则点C的坐标是.【解答】解:∵以O,A,B,C四点为顶点的四边形是“和点四边形”,①当C为A、B的“和点”时,C点的坐标为(2﹣1,5+3),即C(1,8);②当B为A、C的“和点”时,设C点的坐标为(x1,y1),则,解得C(﹣3,﹣2);③当A为B、C的“和点"时,设C点的坐标为(x2,y2),则,解得C(3,2);∴点C的坐标为(1,8)或(﹣3,﹣2)或(3,2).故答案为:(1,8)或(﹣3,﹣2)或(3,2).17.如图,一个机器人从点O出发,向正东方向走3m到达点A1,再向正北方向走6m到达点A2,再向正西方向走9m到达点A3,再向正南方向走12m到达点A4,再向正东方向走15m到达点A5.按如此规律下去,当机器人走到点A6时,离点O的距离是m.【解答】解:根据题意可知当机器人走到A6点时,A5A6=18米,点A6的坐标是(6+3=9,18﹣6=12),即(9,12).所以,当机器人走到点A6时,离点O的距离是=15.故答案为:15.18.定义:若点M、N分别是两条线段a和b上任意一点,则线段MN长度的最小值叫做线段a与线段b的“理想距离".已知O(0,0),A(1,1),B(3,k),C(3,k+2)是平面直角坐标系中的4个点.根据上述概念,若线段BC与线段OA的理想距离为2,则k的取值范围是.【解答】解:由题意可得,,解得,﹣1≤k≤1,故答案为:﹣1≤k≤1.三、解答题19.如图,这是某市部分简图,为了确定各建筑物的位置:(1)请你以火车站为原点建立平面直角坐标系.(2)写出市场、超市的坐标.(3)请将体育场、宾馆和火车站看作三点用线段连起来,得△ABC,然后将此三角形向下平移4个单位长度,画出平移后的△A1B1C1,并求出其面积.【解答】解:(1)如图所示:(2)如图所示:市场(4,3)、超市(2,﹣3);(3)如图所示,△A1B1C1的面积是:3×6﹣×1×6﹣×2×2﹣×3×4=7.20.如图,在平面直角坐标系中,已知A(0,a),B(b,0),其中a,b满足|a﹣2|+(b﹣3)2=0.(1)求a,b的值;(2)如果在第二象限内有一点M(m,1),请用含m的式子表示四边形ABOM的面积;(3)在(2)条件下,当m=﹣时,在坐标轴的负半轴上是否存在点N,使得四边形ABOM的面积与△ABN的面积相等?若存在,求出点N的坐标;若不存在,请说明理由.【解答】解:(1)∵a ,b 满足|a ﹣2|+(b ﹣3)2=0, ∴a ﹣2=0,b ﹣3=0,解得a=2,b=3.故a 的值是2,b 的值是3;(2)过点M 作MN 丄y 轴于点N .四边形AMOB 面积=S △AMO +S △AOB =MN•OA +OA•OB =×(﹣m )×2+×2×3=﹣m +3;(3)当m=﹣时,四边形ABOM 的面积=4。
精选七年级下册数学第七章平面直角坐标系单元测试卷(含答案解析)(1)

人教版七年级下册 第七章 平面直角坐标系提升训练七下平面直角坐标系相关提高训练(含答案)解决平面直角坐标系相关综合题,第一,需要认真审题,分析、挖掘题目的隐含条件,翻译并转化为显性条件;第二,要善于将复杂问题分解为基本问题,逐个击破;第三,要善于联想和转化,将以上得到的显性条件进行恰当的组合,进一步得到新的结论,尤其要注意的是,恰当地使用分析综合法及方程和函数的思想、转化思想、数形结合思想、分类与整合思想等数学思想方法,能更有效地解决问题。
1、在平面直角坐标系中,0A=7,OC=18,现将点C 向上平移7个单位长度再向左平移4个单位长度,得到对应点B 。
(1)求点B 的坐标(2)若点P 从点C 以2个单位长度秒的速度沿C0方向移动,同时点Q 从点0以1个单位长度秒的速度沿0A 方向移动,设移动的时间为t 秒(0<t<7),四边形0PBA 与△0QB 的面积分别记为OPBA S 四边形与OQB S ∆,是否存在时间t,使OQB S OPBA S ∆≤2四边形,若存在,求出t 的范围,若不存在,试说明理由。
(3)在(2)的条件下,OPBQ S 四边形的值是否不变,若不变,求出其值,若变化,求出其范围2、如图,在平面直角坐标新中,AB//CD//x 轴,BC//DE//y 轴,且AB=CD=4cm ,OA=5cm ,DE=2cm,动点P 从点A 出发,沿C B A →→路线运动到点C 停止;动点Q 从点O 出发,沿C D E O →→→路线运动到点C 停止;若P 、Q 两点同时出发,且点P 的运动速度为1cm/s,点Q 的运动速度为2cm/s.(1) 、直接写出B 、C 、D 三个点的坐标; (2) 、当P 、Q 两点出发s 211时,试求的面积PQC ∆; (3) 、设两点运动的时间为t s,用t 的式子表示运动过程中S OPQ 的面积∆.3、如图,在平面直角坐标系中,A(a,0)为x 轴正半轴上一点,B(0,b)为y 轴正半轴上一点,且a 、b 满足()0382=-+-+b a b a(1)求S △AOB(2)点P(m,n)为直线L 上一动点,满足m-2n+2=0. ①若P 点正好在AB 上,求此时P 点坐标;②若B A S PAB S 0∆≥∆,试求m 的取值范围. L4、如图,已知点A ():51,3个单位,右移轴上,将点在A x m m --上移3个单位得到点B; (1) ,则m= ;B 点坐标( );(2) 连接AB 交y 轴于点C ,点D 是X 轴上一点,点坐标;,求的面积为D DAB 9∆(3) 求ABAC5、如图,在平面直角坐标系中,()().,2,1,6,4P y AB B A 轴于点交线段---(1) ,点A 到x 轴的距离是 ;点B 到x 轴的距离是 ;p 点坐标是 ; (2) ,延长AB 交x 轴于点M ,求点M 的坐标;(3) ,在坐标轴上是否存在一点T,使点坐标;?若存在,求的面积等于T ABT 6∆ 若不存在,说明理由。
2022年最新人教版初中数学七年级下册第七章平面直角坐标系单元测试试题(含答案解析)

初中数学七年级下册第七章平面直角坐标系单元测试(2021-2022学年 考试时间:90分钟,总分100分)班级:__________ 姓名:__________ 总分:__________一、单选题(10小题,每小题3分,共计30分)1、如图所示,已知棋子“车”的坐标为(2-,1-),棋子“马”的坐标为(1,1-),则棋子“炮”的坐标为( )A .(3,2)B .(3-,2)C .(3,2-)D .(3-,2-)2、根据下列表述,能确定位置的是( )A .红星电影院2排B .北京市四环路C .北偏东30D .东经118︒,北纬40︒3、根据下列表述,不能确定具体位置的是( )A .电影院一层的3排4座B .太原市解放路85号C .南偏西30D .东经108︒,北纬53︒4、若点M 在第四象限,且M 到x 轴的距离为1,到y 轴的距离为2,则点M 的坐标为( )A .(1,-2)B .(2,1)C .(-2,1)D .(2,-1)5、点()2021,2022A --在( )A .第一象限B .第二象限C .第三象限D .第四象限6、如图,将一把直尺斜放在平面直角坐标系中,下列四点中,一定不会被直尺盖住的点的坐标是( )A .()2,1B .()2,1-C .()2,1--D .()2,1-7、点P (3+a ,a +1)在x 轴上,则点P 坐标为( )A .(2,0)B .(0,﹣2)C .(0,2)D .(﹣2,0)8、点P (−2,−3)向上平移3个单位,再向左平移1个单位,则所得到的点的坐标为( )A .()1,0-B .()1,6-C .()3,6--D .()3,0-9、若点(),5A a a +在x 轴上,则点A 到原点的距离为( )A .5B .C .0D .5-10、将点()4,3-先向右平移7个单位,再向下平移5个单位,得到的点的坐标是( )A .()3,2-B .()3,2-C .()10,2--D .()3,8二、填空题(5小题,每小题4分,共计20分)1、已知线段 AB =4,AB ∥x 轴,若点A 坐标为(-1,2),且点B 在第一象限,则B 点坐标为______.2、已知点()2,1P m m -在第二、四象限的角平分线上,则m 的值为______.3、已知点A 在x 轴上,且3OA =,则点A 的坐标为______.4、如图,动点P 从()0,3出发,沿所示方向运动,每当碰到长方形OABC 的边时反弹,反弹时反射角等于入射角,当点P 第2020次碰到长方形OABC 的边时,点P 的坐标为________.5、在平面直角坐标系中,将点P (-3,4)先向右平移1个单位长度,再向下平移2个单位长度后所得到的坐标为__________.三、解答题(5小题,每小题10分,共计50分)1、在直角坐标系中描出各组点,并将各组内的点用线段依次连接起来.①()2,5,()0,3,()4,3,()2,5;②()1,3,()2,0-,()6,0,()3,3;③()1,0,()1,6-,()3,6-,()3,0.(1)观察得到的图形,你觉得它像什么?(2)找出图象上位于坐标轴上的点,与同伴进行交流;(3)上面三组点分别位于哪个象限,你是如何判断的?(4)图形上一些点之间具有特殊的位置关系,找出几对,它们的坐标有何特点?说说你的发现.2、已知点A (3a +2,2a ﹣4),试分别根据下列条件,求出a 的值.(1)点A 在y 轴上;(2)经过点A (3a +2,2a ﹣4),B (3,4)的直线,与x 轴平行;(3)点A 到两坐标轴的距离相等.3、在平面直角坐标系中,点A 的坐标是(2x -,1y +)2(2)0y -=.求点A 的坐标.4、如图,把△ABC 向上平移4个单位,再向右平移2个单位长度得△A 1B 1C 1,解答下列各题:(1)在图上画出△A 1B 1C 1;(2)写出点A 1、B 1、C 1的坐标;(3)△A 1B 1C 1的面积是______.5、如图所示,在平面直角坐标系中,△ABC 的三个顶点分别为A (-1,-1),B (-3,3),C (-4,1).画出△ABC 关于y 轴对称的△A 1B 1C 1, 并写出点B 的对应点B 1的坐标.---------参考答案-----------一、单选题1、C【分析】先根据棋子“车”的坐标画出直角坐标系,然后写出棋子“炮”的坐标.【详解】解:如图,棋子“炮”的坐标为(3,−2).故选:C.本题考查了坐标确定位置:平面坐标系中的点与有序实数对一一对应;记住平面内特殊位置的点的坐标特征.2、D【分析】根据位置的确定需要两个条件对各选项分析判断即可.【详解】解:A、红星电影院2排,具体位置不能确定,不符合题意;B、北京市四环路,具体位置不能确定,不符合题意;C、北偏东30,具体位置不能确定,不符合题意;D、东经118︒,北纬40︒,很明确能确定具体位置,符合题意;故选:D.【点睛】本题考查了坐标确定位置,理解位置的确定需要两个条件是解题的关键.3、C【分析】根据有序实数对表示位置,逐项分析即可【详解】解:A. 电影院一层的3排4座,能确定具体位置,故该选项不符合题意;B. 太原市解放路85号,能确定具体位置,故该选项不符合题意;C. 南偏西30,不能确定具体位置,故该选项符合题意;D. 东经108︒,北纬53︒,能确定具体位置,故该选项不符合题意;【点睛】本题考查了有序实数对表示位置,理解有序实数对表示位置是解题的关键.4、D【分析】先判断出点M 的横、纵坐标的符号,再根据点M 到x 轴、y 轴的距离即可得.【详解】 解:点M 在第四象限,∴点M 的横坐标为正数,纵坐标为负数,点M 到x 轴的距离为1,到y 轴的距离为2,∴点M 的纵坐标为1-,横坐标为2,即(2,1)M -,故选:D .【点睛】本题考查了点坐标,熟练掌握各象限内的点坐标的符号规律是解题关键.5、C【分析】根据各象限内点的坐标特征解答.【详解】解:点()2021,2022A --的横坐标小于0,纵坐标小于0,点()2021,2022A --所在的象限是第三象限. 故选:C .【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(−,+);第三象限(−,−);第四象限(+,−).6、D【分析】根据点的坐标,判断出点所在的象限,进而即可求解.【详解】解:∵直尺没有经过第四象限,而()2,1-在第四象限,∴一定不会被直尺盖住的点的坐标是()2,1-,故选D .【点睛】本题主要考查点的坐标特征,掌握点所在象限和点的坐标特征,是解题的关键.7、A【分析】根据x 轴上点的纵坐标为0列式计算求出a 的值,然后求解即可.【详解】解:∵点P (3+a ,a +1)在x 轴上,∴a +1=0,∴a =-1,3+a =3-1=2,∴点P 的坐标为(2,0).故选:A .【点睛】本题考查了点的坐标,主要利用了x轴上点的纵坐标为0的特点.8、D【分析】根据平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减求解即可.【详解】解:将点P(-2,-3)向上平移3个单位,再向左平移1个单位,所得到的点的坐标为(-2-1,-3+3),即(-3,0),故选:D.【点睛】本题考查了坐标与图形变化-平移,平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.9、A【分析】根据x轴上点的纵坐标为0列式求出a,从而得到点A的坐标,然后解答即可.【详解】解:∵点A(a,a+5)在x轴上,∴a+5=0,解得a=-5,所以,点A的坐标为(-5,0),所以,点A到原点的距离为5.故选:A.【点睛】本题考查了点的坐标,熟记x轴上点的纵坐标为0是解题的关键.10、A【分析】让点A 的横坐标加7,纵坐标减5即可得到平移后点的坐标.【详解】解:点()4,3A -先向右平移7个单位,再向下平移5个单位,得到的点坐标是(47,35)-+-,即(3,2)-, 故选A .【点睛】本题考查了坐标与图形变化-平移,解题的关键是掌握点的平移,左右平移只改变点的横坐标,左减右加;上下平移只改变点的纵坐标,上加下减.二、填空题1、(3,2)【解析】【分析】线段AB ∥x 轴,A 、B 两点纵坐标相等,又AB =4,B 点可能在A 点左边或者右边,根据距离确定B 点坐标.【详解】解:∵AB ∥x 轴,∴A 、B 两点纵坐标都为2,又∵AB =4,∴当B 点在A 点左边时,B (-5,2),B (-5,2)在第二象限,与点B 在第一象限,不相符,舍去;当B 点在A 点右边时,B (3,2);故答案为:(3,2).【点睛】本题考查了平行于x 轴的直线上的点纵坐标相等,再根据两点相对的位置及两点距离确定点的坐标.2、-1【解析】【分析】根据第二、四象限的角平分线上点的特点即可得到关于a 的方程,进行求解即可.【详解】解:点()2,1P m m -在第二、四象限的角平分线上,∴210m m +-=,解得:1m =-,故答案为:1-.【点睛】题目主要考查了二、四象限角平分线上点的特点,掌握象限角平分线上点的特点是解题的关键.3、(3,0)或(-3,0)##(-3,0)或(3,0)【解析】【分析】根据题意可得点A 在x 轴上,且到原点的距离为3,这样的点有两个,分别在x 轴的正半轴和负半轴,即可得出答案.【详解】解:根据题意可得:点A 在x 轴上,且到原点的距离为3,这样的点有两个,分别在x 轴的正半轴和负半轴,∴点A 的坐标为(3,0)或(-3,0),故答案为:(3,0)或(-3,0).【点睛】题目主要考查点在坐标系中的位置,理解点在坐标系中的距离分两种情况是解题关键.5,04、()【解析】【分析】根据反射角与入射角的定义作出图形,可知每6次反弹为一个循环组依次循环,用2020除以6,根据商和余数的情况确定所对应的点的坐标即可.【详解】解:如图,根据题意得:P0(0,3),P1(3,0),P2(7,4),P3(8,3),P4(5,0),P5(1,4),P6(0,3),P7(3,0),…,∴点P n的坐标6次一循环.经过6次反弹后动点回到出发点(0,3),∵2020÷6=336…4,∴当点P第2020次碰到矩形的边时为第336个循环组的第4次反弹,点P的坐标为(5,0).故答案为:(5,0).【点睛】此题主要考查了点的坐标的规律,作出图形,观察出每6次反弹为一个循环组依次循环是解题的关键.5、()2,2-【解析】【分析】根据向右平移横坐标加,向下平移纵坐标减,计算即可得解.【详解】解:将点P (-3,4)先向右平移1个单位长度,再向下平移2个单位长度后所得到的坐标为()2,2-. 故答案为:()2,2-【点睛】本题考查了坐标与图形的变化—平移,熟记平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减是解题的关键.三、解答题1、(1)像一棵树;(2)x 轴上的点有:()2,0-,()1,0,()3,0,()6,0;y 轴上的点有:()0,3;(3)点()2,5,()4,3,()1,3,()3,3在第一象限内,因为它们的横坐标与纵坐标都是正实数;点()1,6-,()3,6-在第四象限内,因为它们的横坐标是正实数,纵坐标是负实数;(4)点()0,3与()3,3的纵坐标相同,它们的连线段与x 轴平行;点()1,3,()1,0,()1,6-的横坐标相同,它们的连线段与y 轴平行.【解析】【分析】(1)依此描出各组点的坐标,然后依此连接,由图象可进行求解;(2)根据图象可直接进行求解;(3)根据平面直角坐标系中象限的符号特点可直接进行求解;(4)根据图象可直接进行求解.解:(1)描出各组点的坐标并依此连接,如图所示:由图象可知:像一棵树;(2)x 轴上的点有:()2,0-,()1,0,()3,0,()6,0;y 轴上的点有:()0,3;(3)点()2,5,()4,3,()1,3,()3,3在第一象限内,因为它们的横坐标与纵坐标都是正实数;点()1,6-,()3,6-在第四象限内,因为它们的横坐标是正实数,纵坐标是负实数;(4)学生的发现可以多样.例如,点()0,3与()3,3的纵坐标相同,它们的连线段与x 轴平行;点()1,3,()1,0,()1,6-的横坐标相同,它们的连线段与y 轴平行.【点睛】本题主要考查平面直角坐标系,解题的关键是在平面直角坐标系中描出各点的坐标.2、(1)(0,163-)(2)(14,4)(3)(−16,−16)或(3.2,−3.2) 【解析】(1)根据y轴上的点的纵坐标等于零,可得方程,解方程可得答案;(2)根据平行于x轴直线上的点纵坐标相等,可得方程,解方程可得答案;(3)根据点A到两坐标轴的距离相等,可得关于a的方程,解方程可得答案.【详解】解:(1)依题意有3a+2=0,解得a=23 -,2a﹣4=2×(23-)﹣4=163-.故点A的坐标为(0,163 -);(2)依题意有2a−4=4,解得a=4,3a+2=3×4+2=14,故点A的坐标为(14,4);(3)依题意有|3a+2|=|2a−4|,则3a+2=2a−4或3a+2+2a−4=0,解得a=−6或a=0.4,当a=−6时,3a+2=3×(−6)+2=−16,当a=0.4时,3a+2=3×0.4+2=3.2,2a−4=−3.2.故点A的坐标为(−16,−16)或(3.2,−3.2).【点睛】本题考查了点的坐标,x轴上的点的纵坐标等于零;平行于x轴直线上的点纵坐标相等.【解析】【分析】2(2)0y -=得出30x +=,20y -=,解出x ,y 即可得出点A 的坐标.【详解】30x +≥,2(2)0y -≥2(2)0y -=,30x ∴+=,20y -=,解得:3x =-,2y =,2325x ∴-=--=-,1213y +=+=,(5,3)A ∴-.【点睛】本题考查非负数的性质,几个非负数之和等于零,则每一个非负数都为0.4、(1)见解析;(2)A 1、B 1、C 1的坐标分别为(0,6),(-1,2),(5,2);(3)12.【解析】【分析】(1)把△ABC 的各顶点向上平移4个单位,再向右平移2个单位,顺次连接各顶点即为△A 1B 1C 1;(2)利用各象限点的坐标特征写出点A 1、B 1、C 1的坐标;(3)根据三角形面积公式求解.【详解】解:(1)如图,△A 1B 1C 1为所作;(2)点A 1、B 1、C 1的坐标分别为(0,6),(-1,2),(5,2);×6×4=12,(3)△A1B1C1的面积=12故答案为:12.【点睛】本题考查了作图-平移变换:确定平移后图形的基本要素有两个:平移方向、平移距离.作图时要先找到图形的关键点,分别把这几个关键点按照平移的方向和距离确定对应点后,再顺次连接对应点即可得到平移后的图形.5、见解析,点B的对应点B1的坐标为(3,3)【解析】【分析】根据轴对称的性质画出图形并写出坐标即可.【详解】如图所示,B1的坐标为(3,3).【点睛】本题考查了作图−轴对称,属于基础题.关键是确定对称点的位置.。
第七章 平面直角坐标系单元测试卷(含答案)

第七章平面直角坐标系单元测试卷一、选择题(每题3分,共30分)1.在平面直角坐标系中,点P(-3,4)到x轴的距离为()A.3B.-3C.4D.-42.设点A(m,n)在x轴上,且位于原点的左侧,则下列结论正确的是()A.m=0,n为任意实数;B.m=0,n<0C.m为任意实数,n=0;D.m<0,n=03.如图,若在象棋棋盘上建立平面直角坐标系,使“帅”位于点(-2,-2),“马”位于点(1,-2),则“兵”位于点()A.(-1,1)B.(-2,-1)C.(-4,1)D.(1,-2)4.在平面直角坐标系中,将点P(-2,3)沿x轴方向向右平移3个单位长度得到点Q,则点Q的坐标是()A.(-2,6)B.(-2,0)C.(-5,3)D.(1,3)5.如图,将三角形向右平移2个单位长度,再向上平移3个单位长度,则平移后三个顶点的坐标分别是()A.(2,2),(3,4),(1,7)B.(2,2),(4,3),(1,7)C.(-2,2),(3,4),(1,7)D.(2,-2),(4,3),(1,7)6.如图,将长为3的长方形ABCD放在平面直角坐标系中,若点D(6,3),则A点的坐标为()A.(5,3)B.(4,3)C.(4,2)D.(3,3)7.在平面直角坐标系xOy中,若点A的坐标为(-3,3),点B的坐标为(2,0),则三角形ABO的面积是()8.如图,坐标平面上有P,Q两点,其坐标分别为(5,a),(b,7),根据图中P,Q两点的位置,则点(6-b,a -10)在()A.第一象限B.第二象限C.第三象限D.第四象限9.已知点P的坐标为(2-a,3a+6),且点P到两坐标轴的距离相等,则点P的坐标是()A.(3,3)B.(3,-3)C.(6,-6)D.(3,3)或(6,-6)10.如图,已知正方形ABCD,顶点A(1,3),B(1,1),C(3,1),规定“把正方形ABCD先沿x轴翻折,再向左平移1个单位长度”为一次变换,如此这样,连续经过2 017次变换后,正方形ABCD的对角线交点M的坐标变为()A.(-2 015,2)B.(-2 015,-2)C.(-2 016,-2)D.(-2 016,2)二、填空题(每题3分,共30分)11.七年级三班座位按7排8列排列,王东的座位是3排4列,简记为(3,4),张三的座位是5排2列,可简记为_________.12.在平面直角坐标系中,将点A(4,1)向左平移_________个单位长度得到点B(-1,1).13.如图,在平面直角坐标系中,点A的坐标为(1,3),将线段OA向左平移2个单位长度,得到线段O'A',则点A的对应点A'的坐标为_________.14.在平面直角坐标系中,将点A(-1,2)向右平移3个单位长度得到点B,则点B关于x轴的对称点C的坐标是________.15.已知点N的坐标为(a,a-1),则点N一定不在第________象限.16.已知点A的坐标(x,y)满足+(y+3)2=0,则点A的坐标是________.17.已知点A(a,0)和点B(0,5),且直线AB与坐标轴围成的三角形的面积等于10,则a的值是________.18.如图,在5×4的方格纸中,每个小正方形边长为1,点O,A,B在方格纸的格点上,在第四象限内坐标为________.19.如图,长方形OABC的边OA,OC分别在x轴、y轴上,点B的坐标为(3,2).点D,E分别在AB,BC边上,BD=BE=1.沿直线DE将三角形BDE翻折,点B落在点B'处,则点B'的坐标为________.20.如图,在平面直角坐标系中,一动点从原点O出发,按向上、向右、向下、向右的方向不断地移动,每移动一个单位长度,得到点A1(0,1),A2(1,1),A3(1,0),A4(2,0),…,那么点A4n+1(n为自然数)的坐标为(用n表示).三、解答题(21题6分,22题8分,25题12分,26题14分,其余每题10分,共60分)21.如果规定北偏东30°的方向记作30°,从O点出发沿这个方向走50米记作50,图中点A记作(30°,50);北偏西45°记作-45°,从O点出发沿着该方向的反方向走20米记作-20,图中点B 记作(-45°,-20).(1)(-75°,-15),(10°,-25)分别表示什么意义?(2)在图中标出点(60°,-30)和(-30°,40).22.如图,已知火车站的坐标为(2,1),文化宫的坐标为(-1,2).(1)请你根据题目条件,画出平面直角坐标系;(2)写出体育场、市场、超市的坐标.23.在平面直角坐标系中,点A(2,m+1)和点B(m+3,-4)都在直线l上,且直线l∥x轴.(1)求A,B两点间的距离;(2)若过点P(-1,2)的直线l'与直线l垂直,求垂足C点的坐标.24.如图,在平面直角坐标系中,已知点A(-3,3),B(-5,1),C(-2,0),P(a,b)是△ABC的边AC上任意一点,△ABC经过平移后得到△A1B1C1,点P的对应点为P1(a+6,b-2).(1)直接写出点C1的坐标;(2)在图中画出△A1B1C1;(3)求△AOA1的面积.25.如图,长阳公园有四棵古树A,B,C,D(单位:米).(1)请写出A,B,C,D四点的坐标;(2)为了更好地保护古树,公园决定将如图所示的四边形EFGH用围栏圈起来,划为保护区,请你计算保护区的面积.参考答案一、1.【答案】C2.【答案】D解:因为点A(m,n)在x轴上,所以纵坐标是0,即n=0.因为点A位于原点的左侧,所以横坐标小于0,即m<0.所以m<0,n=0,故选D.3.【答案】C解:由“帅”与“马”的位置可以确定平面直角坐标系,进而可知“兵”位于点(-4,1),故选C.4.【答案】D解:点P(-2,3)沿x轴方向向右平移3个单位长度,即横坐标加上3,纵坐标不变,则Q点的坐标为(1,3),选D.5.【答案】C解:三角形向右平移2个单位长度,再向上平移3个单位长度,即(-4,-1),(1,1),(-1,4)的横坐标分别加上2,纵坐标分别加上3,得(-2,2),(3,4),(1,7).故选C.6.【答案】D解:由长为3,可知A点的横坐标为6-3=3,纵坐标与D点相同,即坐标为(3,3).故选D.7.【答案】D解:此题首先运用数形结合思想,在平面直角坐标系中描点连线画出三角形ABO,然后运用转化思想将点的坐标转化为线段的长度,底BO=2,高为3,所以三角形ABO的面积=×2×3=3.8.【答案】D解:由P,Q在图中的位置可知a<7,b<5,所以6-b>0,a-10<0,故点(6-b,a-10)在第四象限.9.【答案】D解:因为点P到两坐标轴的距离相等,所以|2-a|=|3a+6|,所以a=-1或a=-4,当a=-1时,P点坐标为(3,3),当a=-4时,P点坐标为(6,-6).10.【答案】B二、11.【答案】(5,2)12.【答案】513.【答案】(-1,3)14.【答案】(2,-2)解:将点A(-1,2)向右平移3个单位长度得到点B的坐标为(-1+3,2),即(2,2),则点B关于x轴15.【答案】二16.【答案】(2,-3)17.【答案】4或-4解:由三角形的面积=底×高×得,5|a|·=10,解得|a|=4,所以a=4或a=-4.此处学生容易只考虑一种情况.18.【答案】3;(1,-1)(答案不唯一)19.【答案】(2,1)解:由题意知四边形BEB'D是正方形,∴点B'的横坐标与点E的横坐标相同,点B'的纵坐标与点D的纵坐标相同,∴点B'的坐标为(2,1).20.【答案】(2n,1)解:由图可知n=1时,4×1+1=5,点A5(2,1),n=2时,4×2+1=9,点A9(4,1),n=3时,4×3+1=13,点A13(6,1),…,所以点A4n+1(2n,1).三、21.解:(1)(-75°,-15)表示南偏东75°距O点15米处,(10°,-25)表示南偏西10°距O点25米处.(2)如图.22.解:(1)如图.(2)体育场、市场、超市的坐标分别为(-2,4),(6,4),(4,-2).23.解:(1)∵l∥x轴,点A,B都在l上,∴m+1=-4,∴m=-5,∴A(2,-4),B(-2,-4),∴A,B两点间的距离为4.(2)∵l∥x轴,PC⊥l,x轴⊥y轴,∴PC∥y轴,∴C点横坐标为-1.又点C在l上,∴C(-1,-4).24.解:(1)C1(4,-2).(2)△A1B1C1如图所示.(3)如图,△AOA1的面积=6×3-×3×3-×3×1-×6×2=18---6=6.25.解:(1)A(10,10),B(20,30),C(40,40),D(50,20).(2)如图,E(0,10),F(0,30),G(50,50),H(60,0),另外令M(0,50),N(60,50),则S=S-S△OEH-S△FMG-S△HGN=50×60-×10×60-×20×50-×10×50=1 950(平方米),所以保护OMNH区的面积为1 950平方米.。
精选人教版七年级下册数学第七章平面直角坐标系单元检测试卷(含答案)(1)

人教版七年级数学下册第7章平面直角坐标系能力提升卷一.选择题(共10小题)1.如图,小手盖住的点的坐标可能为()A.(5,2) B.(-7,9) C.(-6,-8) D.(7,-1)2.若线段AB∥x轴且AB=3,点A的坐标为(2,1),则点B的坐标为()A.(5,1) B.(-1,1)C.(5,1)或(-1,1) D.(2,4)或(2,-2)3.若点A(a+1,b-2)在第二象限,则点B(1-b,-a)在()A.第一象限B.第二象限C.第三象限D.第四象限4.在平面直角坐标系中,点D(-5,4)到x轴的距离为()A.5 B.-5 C.4 D.-45.已知点A(2x-4,x+2)在坐标轴上,则x的值等于()A.2或-2 B.-2 C.2 D.非上述答案6.根据下列表述,能确定一个点位置的是()A.北偏东40°B.某地江滨路C.光明电影院6排D.东经116°,北纬42°7.如图是某动物园的平面示意图,若以大门为原点,向右的方向为x轴正方向,向上的方向为y轴正方向建立平面直角坐标系,则驼峰所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限8.若线段AB∥y轴,且AB=3,点A的坐标为(2,1),现将线段AB先向左平移1个单位,再向下平移两个单位,则平移后B点的坐标为()A.(1,2) B.(1,-4)C.(-1,-1)或(5,-1) D.(1,2)或(1,-4)9.课间操时,小明、小丽、小亮的位置如图所示,小明对小亮说:如果我的位置用(0,0)表示,小丽的位置用(2,1)表示,那么你的位置可以表示成()A.(5,4) B.(4,5) C.(3,4) D.(4,3)10.已知点A(-1,2)和点B(3,m-1),如果直线AB∥x轴,那么m的值为()A.1 B.-4 C.-1 D.3二.填空题(共6小题)11.若P(a-2,a+1)在x轴上,则a的值是.12.在平面直角坐标系中,把点A(-10,1)向上平移4个单位,得到点A′,则点A′的坐标为.13.在平面直角坐标系中,对于点P(x,y),若点Q的坐标为(ax+y,x+ay),其中a为常数,则称点Q是点P的“a级关联点”,例如,点P(1,4)的3级关联点”为Q(3×1+4,1+3×4)即Q(7,13),若点B的“2级关联点”是B'(3,3),则点B的坐标为;已知点M(m-1,2m)的“-3级关联点”M′位于y轴上,则M′的坐标为.14.已知点A(m-1,-5)和点B(2,m+1),若直线AB∥x轴,则线段AB的长为.15.小刚家位于某住宅楼A座16层,记为:A16,按这种方法,小红家住B座10层,可记为.16.如图,矩形BCDE的各边分别平行于x轴或y轴,物体甲和物体乙分别由点A(2,0)同时出发,沿矩形BCDE的边作环绕运动,物体甲按逆时针方向以1个单位/秒匀速运动,物体乙按顺时针方向以2个单位/秒匀速运动,则两个物体运动后的第2012次相遇地点的坐标是.三.解答题(共7小题)17.如图,在平面直角坐标系中,三角形ABC的顶点A、B、C的坐标分别为(0,3)、(-2,1)、(-1,1),如果将三角形ABC先向右平移2个单位长度,再向下平移2个单位长度,会得到三角形A′B′C′,点A'、B′、C′分别为点A、B、C移动后的对应点.(1)请直接写出点A′、B'、C′的坐标;(2)请在图中画出三角形A′B′C′,并直接写出三角形A′B′C′的面积.18.已知平面直角坐标系中有一点M(m-1,2m+3)(1)当m为何值时,点M到x轴的距离为1?(2)当m为何值时,点M到y轴的距离为2?19.如图是某个海岛的平面示意图,如果哨所1的坐标是(1,3),哨所2的坐标是(-2,0),请你先建立平面直角坐标系,并用坐标表示出小广场、雷达、营房、码头的位置.20.已知:点P(2m+4,m-1).试分别根据下列条件,求出P点的坐标.(1)点P在y轴上;(2)点P的纵坐标比横坐标大3;(3)点P在过A(2,-4)点且与x轴平行的直线上.21.阅读材料:象棋在中国有近三千年的历史,如图是中国象棋棋盘的一半,棋子“马”走的规则是沿“日”形的对角线走.(1)若点A位于点(-4,4),点B位于点(3,1),则“帅”所在点的坐标为;"马”所在点的坐标为;"兵”所在点的坐标为.(2)若“马”的位置在点A,为了到达点B,请按“马”走的规则,在图上画出一种你认为合理的行走路线,并用坐标表示出来.22.对有序数对(m,n)定义“f运算”:f(m,n)=11,,22m a n b⎛⎫+-⎪⎝⎭其中a、b为常数.f运算的结果也是一个有序数对,在此基础上,可对平面直角坐标系中的任意一点A(x,y)规定“F 变换”:点A(x,y)在F变换下的对应点即为坐标为f(x,y)的点A′.(1)当a=0,b=0时,f(-2,4)=;(2)若点P(4,-4)在F变换下的对应点是它本身,则a=,b=.答案:1-5 CCBCA6-10 DDDCD11.-112.(-10,5)13. (1,1)(0,-16)14.915. B1016. (-1,-1)17. 解:(1)根据题意知,点A′的坐标为(2,1)、B'的坐标为(0,-1)、C′的坐标为(1,-1);(2)如图所示,△A′B′C′即为所求,S△A′B′C′=×1×2=1.18. 解:(1)∵|2m+3|=12m+3=1或2m+3=-1∴m=-1或m=-2;(2)∵|m-1|=2m-1=2或m-1=-2∴m=3或m=-1.19. 解:建立如图所示的平面直角坐标系:小广场(0,0)、雷达(4,0)、营房(2,-3)、码头(-1,-2).20. 解:(1)∵点P (2m+4,m-1),点P 在y 轴上,∴2m+4=0,解得:m=-2,则m-1=-3,故P (0,-3);21. 解:(1)由点A 位于点(-4,4人教版七年级下册第7章平面直角坐标系水平测试卷一.选择题(共10小题)1.在平面直角坐标系中,点()23,2P x -+所在的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限 2.下列各点中,位于第四象限的点是( )A .(3,-4)B .(3,4)C .(-3,4)D .(-3,-4) 3.已知点P(-4,3),则点P 到y 轴的距离为( )A .4B .-4C .3D .-34.已知m 为任意实数,则点()2,1A m m +不在( )A .第一、二象限B .第一、三象限C .第二、四象限D .第三、四象限5.已知点P 在第二象限,并且到x 轴的距离为1,到y 轴的距离为2.则点P 的坐标是( )A .(1、2)B .(-1,2)C .(2,1)D .(-2,1)6.如图,一个质点在第一象限及x 轴、y 轴上运动,在第一秒钟,它从原点(0,0)运动到(0,1),然后接着按图中箭头所示方向运动,即(0,0)→(0,1)→(1,1)→(1,0)→…,且每秒移动一个单位,那么第80秒时质点所在位置的坐标是( )A .(0,9)B .(9,0)C .(0,8)D .( 8,0)7.已知点A(-3,0),则A 点在( )A .x 轴的正半轴上B .x 轴的负半轴上C .y 轴的正半轴上D .y 轴的负半轴上8.在平面直角坐标系中,将点P(3,2)向右平移2个单位长度,再向下平移2个单位长度所得到的点坐标为( )A .(1,0)B .(1,2)C .(5,4)D .(5,0)9.将以A(-2,7),B(-2,2)为端点的线段AB 向右平移2个单位得线段11,A B 以下点在线段11A B 上的是( )A .(0,3)B .(-2,1)C .(0,8)D .(-2,0)10.课间操时,小明、小丽、小亮的位置如图所示,小明对小亮说:如果我的位置用(0,0)表示,小丽的位置用(2,1)表示,那么你的位置可以表示成( )A .(5,4)B .(4,5)C .(3,4)D .(4,3)二.填空题(共6小题)11.若P(a-2,a+1)在x 轴上,则a 的值是 .12.在平面直角坐标系中,点A(-5,4)在第 象限.13.点P(3,-2)到y 轴的距离为 个单位.14.小刚画了一张对称的脸谱,他对妹妹说:“如果我用(1,4)表示一只眼,用(2,2)表示嘴,那么另一只眼的位置可以表示成 .15.已知点A(m-1,-5)和点B(2,m+1),若直线AB ∥x 轴,则线段AB 的长为 .16.在平面直角坐标系中,已知点(A B 点C 在x 轴上,且AC+BC=6,写出满足条件的所有点C 的坐标三.解答题(共7小题)17.如图,在平面直角坐标系中,点A 、B 、C 、D 都在坐标格点上,点D 的坐标是(-3,1),点A 的坐标是(4,3).(1)将三角形ABC 平移后使点C 与点D 重合,点A ,B 分别与点E ,F 重合,画出三角形EFD .并直接写出E ,F 的坐标;(2)若AB 上的点M 坐标为(x,y),则平移后的对应点M 的坐标为.18.如图,在正方形网格中建立平面直角坐标系,已知点A(3,2),(4,-3),C(1,-2),请按下列要求操作:(1)请在图中画出△ABC;(2)将△ABC 向左平移5个单位长度,再向上平移4个单位长度,得到111,A B C 在图中画出111,A B C 并直接写出点1A 、1B 、1C 的坐标.19.已知平面直角坐标系中有一点M(m-1,2m+3).(1)当点M到x轴的距离为1时,求点M的坐标;(2)当点M到y轴的距离为2时,求点M的坐标.20.已知平面直角坐标系中有一点M(2m-3,m+1).(1)点M到y轴的距离为l时,M的坐标?(2)点N(5,-1)且MN∥x轴时,M的坐标?21.【阅读材料】平面直角坐标系中,点P(x,y)的横坐标x的绝对值表示为|x|,纵坐标y的绝对值表示为|y|,我们把点P(x,y)的横坐标与纵坐标的绝对值之和叫做点P(x,y)的勾股值,记为[P],即[P]=|x|+|y|(其中的“+“是四则运算中的加法),例如点P(1,2)的勾股值[P]=|1|+|2|=3 【解决问题】(1)求点(2,4),A B -+的勾股值[A],[B];(2)若点M 在x 轴的上方,其横,纵坐标均为整数,且[M]=3,请直接写出点M 的坐标.22.如图是学校的平面示意图,已知旗杆的位置是(-2,3),实验室的位置是(1,4).(1)根据所给条件建立适当的平面直角坐标系,并用坐标表示食堂、图书馆的位置;(2)已知办公楼的位置是(-2,1),教学楼的位置是(2,2),在图中标出办公楼和教学楼的位置;(3)如果一个单位长度表示30米,请求出宿舍楼到教学楼的实际距离.23.对有序数对(m,n)定义“f 运算”:f(m,n)=11,,22m a n b ⎛⎫+- ⎪⎝⎭其中a 、b 为常数.f 运算的结果也是一个有序数对,在此基础上,可对平面直角坐标系中的任意一点A(x,y)规定“F变换”:点A(x,y)在F 变换下的对应点即为坐标为f(x,y)的点A ′.(1)当a=0,b=0时,f(-2,4)= ;(2)若点P(4,-4)在F 变换下的对应点是它本身,则a= ,b=.答案:1-5 BAADD6-10 CBDAC11.-112.二13.314. (3,4)15.916.. (3,0)或(-3,0)17. 解:(1)如图所示,△EFD即为所求,其中E(0,2)、F(-1,0).(2)由图形知将△ABC向左平移4个单位、再向下平移1个单位可得△EFD,∴平移后点M的坐标为(x-4,y-1),18. 解:(1)如图所示:(2)如图所示:结合图形可得:A1(-2,6),B1(-1,1),C1(-4,2).19. 解:(1)∵|2m+3|=1,∴2m+3=1或2m+3=-1,解得:m=-1或m=-2,∴点M的坐标是(-2,1)或(-3,-1);(2)∵|m-1|=2,∴m-1=2或m-1=-2,解得:m=3或m=-1,∴点M的坐标是:(2,9)或(-2,1).20. 解:(1)∵点M(2m-3,m+1),点M到y轴的距离为1,∴|2m-3|=1,解得m=1或m=2,当m=1时,点M的坐标为(-1,2),当m=2时,点M的坐标为(1,3);综上所述,点M的坐标为(-1,2)或(1,3);(2)∵点M(2m-3,m+1),点N(5,-1)且MN∥x轴,∴m+1=-1,解得m=-2,故点人教版七年级数学下册第七章平面直角坐标系复习检测试题一、选择题。
试题009——第七章平面直角坐标系单元测试题一

第七章平面直角坐标系单元测试题一姓名:学号:评分:一、选择题(本大题共8小题,每小题4分,共32分,在每小题所给出的四个选1.点P(m,1)在第二象限内,则点Q(-m,0)在()A.x轴正半轴上B.x轴负半轴上C.y轴正半轴上D.y轴负半轴上2.已知点A(a,b)在第四象限,那么点B(b,a)在()A.第一象限B.第二象限C.第三象限D.第四象限3.点P(1,-2)关于y轴的对称点的坐标是()A.(-1,-2)B.(1,2)C.(-1,2)D.(-2,1)4.已知点P(x,y)在第四象限,且│x│=3,│y│=5,则点P的坐标是()A.(-3,5)B.(5,-3)C.(3,-5)D.(-5,3)5.点P(m+3,m+1)在x轴上,则P点坐标为()A.(0,-2)B.(2,0)C.(4,0)D.(0,-4)6.三角形ABC三个顶点的坐标分别是A(-4,-1),B(1,1),C(-1,4),将三角形ABC向右平移2个单位长度,再向上平移3个单位长度,则平移后三个顶点的坐标是()A.(2,2),(3,4),(1,7)B.(-2,2),(4,3),(1,7)C.(-2,2),(3,4),(1,7)D.(2,-2),(3,3),(1,7)7.若点M在第一、三象限的角平分线上,且点M到x轴的距离为2,则点M的坐标是()A.(2,2)B.(-2,-2)C.(2,2)或(-2,-2)D.(2,-2)或(-2,2)8.若点P(a,b)在第四象限,则点M(b-a,a-b)在()A. 第一象限B. 第二象限C. 第三象限D. 第四象限二、填空题(本大题共6小题,每小题4分,共24分)9.已知点P在第二象限,它的横坐标与纵坐标的和为1,点P的坐标是________(写出符合条件的一个点即可).10.已知:A(3,1),B(5,0),E(3,4),则△ABE的面积为________.11.点M(-6,5)到x轴的距离是_____,到y轴的距离是______.12.点A(1-a,5),B(3,b)关于y轴对称,则a+b=_______.13.已知点P(m,n)到x轴的距离为3,到y轴的距离等于5,则点P的坐标是。
部编人教版数学七年级下册第七章《平面直角坐标系单元过关检测试题 》(含答案)

第七章平面直角坐标系单元过关检测题一、选择题1.在平面直角坐标系中,已知线段AB的两个端点分别是A(4,-1),B(1,1)将线段AB平移后得到线段A′B′,若点A′的坐标为(-2,2),则点B′的坐标为()A.(-5,4)B.(4,3)C.(-1,-2)D.(-2,-1)2.如图,把“QQ”笑脸放在直角坐标系中,已知右眼A的坐标是(-2,3),嘴唇C点的坐标为(-1,1),则此“QQ”笑脸左眼B的坐标是()A.(0,3)B.(0,1)1C.(-1,2)D.(-1,3)3.在平面直角坐标系中,点P(-2015,2016)在()A.第一象限B.第二象限C.第三象限D.第四象限4.点M(x,y)在第四象限,且|x|=2,y2=4,则点M的坐标是() A.(2,2)B.(-2,-2)C.(2,-2)D.(-2,2)5.在平面直角坐标系中,若点M的坐标是(m,n),且点M在第二象限,则mn的值()A.<0B.>0C.=02D.不能确定6.如果点P(a+b,ab)在第二象限,那么点Q(a,-b)在第()象限.A.第一象限B.第二象限C.第三象限D.第四象限7.在平面直角坐标系中,点P(-5,0)在()A.第二象限B.x轴上C.第四象限D.y轴上8.如图,三角形ABC经过平移得到三角形DEF,其中A点(-2,4)平移到D点(2,2),则B点(a,b)平移后的对应点E的坐标是()A.(a+2,b)3B.(a+4,b-2)C.(a+2,b-2)D.(a+4,b+2)二、填空题9.在平面直角坐标系中,点P(2,-2)和点Q(2,4)之间的距离等于________个单位长度.线段PQ的中点的坐标是________.10.若点A(x,9)在第二象限,则x的取值范围是________.11.若点A(a,2a+1)在第一、三象限的两坐标轴夹角的平分线上,则a =________.(注:在角的内部,角平分线上的点到角两边的距离相等)12.若点A(a,3)在y轴上,则点B(a-3,a+2)在第________象限.13.如图,在直角坐标系中,右边的蝴蝶是由左边的蝴蝶飞过去以后得到的,左图案中左、右翅尖的坐标分别是(-4,2)、(-2,2),右图案中左翅尖的坐标是(3,4),则右图案中右翅尖的坐标是________.14.如图,矩形ONEF的对角线交于点M,ON、OF分别在x轴和y轴上,O为坐标原点,点E的坐标为(4,3),则点M的坐标为________.415.点M(-1,5)向下平移4个单位得N点坐标是________.16.若点P(2x-2,-x+4)到两坐标轴的距离相等,则点P的坐标为________.三、解答题17.已知点A(a-3,a2-4),求a及A点的坐标:(1)当点A在x轴上;(2)当点A在y轴上.18.已知平面直角坐标系中A、B两点,根据条件求符合条件的点B的坐标.(1)已知点A(2,0),AB=4,点B和点A在同一坐标轴上,求点B的坐标;(2)已知点A(0,0),AB=4,点B和点A在同一坐标轴上,求点B的坐标.19.在平面直角坐标中描出下列各点.A(1,1),B(-3,3),C(1,3),D(-1,3),E(1,-4),F(3,3).由描出点你发现了什么规律?520.如图,已知火车站的坐标为(2,1),文化馆为(-1,2).(1)请你根据题目条件,画出平面直角坐标系;(2)写出体育馆、市场、超市、医院的坐标.21.如图,在下面直角坐标系中,已知A(0,a),B(b,0),C(b,c)三点,其中a、b、c满足关系式|a-2|+(b-3)2=0,(c-4)2≤0.(1)求a、b、c的值;(2)如果在第二象限内有一点P(m ,),请用含m的式子表示四边形ABOP的面积;(3)在(2)的条件下,是否存在点P,使四边形ABOP的面积与三角形ABC的面积相等?若存在,求出点P的坐标,若不存在,请说明理由.6第七章平面直角坐标系单元练习题答案解析1.【答案】A【解析】因为点A(4,-1)向左平移6个单位,再向上平移3个单位得到A′(-2,2),所以点B(1,1)向左平移6个单位,再向上平移3个单位得到的对应点B′的坐标为(-5,4).2.【答案】A【解析】画出直角坐标系如下图所示:则笑脸左眼B的坐标是(0,3).3.【答案】B【解析】点P(-2015,2016)在第二象限.4.【答案】C【解析】因为|x|=2,y2=4,所以x=±2,y=±2,因为点M(x,y)在第四象限,所以x=2,y=-2,所以点M的坐标为7(2,-2).5.【答案】A【解析】由点M的坐标是(m,n),且点M在第二象限,得m<0,n >0.由有理数的乘法,得mn<0.6.【答案】B【解析】因为点P(a+b,ab)在第二象限,所以a+b<0,ab>0,所以a<0,b<0,所以-b>0,所以点Q(a,-b)在第二象限.7.【答案】B【解析】在平面直角坐标系中,点P(-5,0)在x轴上.8.【答案】B【解析】因为A点(-2,4)先右平移4个单位,再向下平移2个单位得到D点(2,2),所以B点(a,b)平移后的对应点E的坐标为(a+4,b-2).9.【答案】6、(2,1)【解析】因为点P(2,-2)和点Q(2,4),8所以P,Q之间的距离等于4-(-2)=6个单位长度;线段PQ的中点的横坐标是2,纵坐标是=1,故中点的坐标是(2,1).10.【答案】x<0【解析】因为点A(x,9)在第二象限,所以x的取值范围是x<0.11.【答案】-1【解析】因为点A(a,2a+1)在第一、三象限的两坐标轴夹角的平分线上,所以a=2a+1,解得a=-1.12.【答案】二【解析】因为点A(a,3)在y轴上,所以a=0,所以点B的坐标为(-3,2),所以点B(-3,2)在第二象限.13.【答案】(5,4)【解析】因为左图案中左翅尖的坐标是(-4,2),右图案中左翅尖的坐标是(3,4),所以变化规律为横坐标加7,纵坐标加2,因为左图案中右翅尖的坐标是(-2,2),所以右图案中右翅尖的坐标是9(5,4).14.【答案】(2,1.5)【解析】因为四边形ONEF是矩形,所以OM=ME,即点M是对角线OE的中点,因为O(0,0),E(4,3),所以M (,),即(2,1.5).15.【答案】(-1,1)【解析】点M(-1,5)向下平移4个单位得N点坐标是(-1,5-4),即为(-1,1).16.【答案】(2,2)或(-6,6)【解析】因为点P到两坐标轴的距离相等,所以2x-2=-x+4或2x-2=-(-x+4),即x=2或x=-2,代入点P,坐标为(2,2)或(-6,6).17.【答案】解:(1)因为点A在x轴上,所以a2-4=0,即a=±2,所以点A的坐标为(-1,0)或(-5,0);(2)因为点A在y轴上,所以a-3=0,解得a=3,所以点A的坐标为(0,5).【解析】(1)在x轴上说明a2-4=0.(2)在y轴上说明a-3=0.1018.【答案】解:(1)因为点A的坐标为(2,0),所以点A在x轴上.当点B在点A的左侧时,点B的坐标为(-2,0),当点B在点A的右侧时,点B的坐标为(6,0).(2)因为点A的坐标为(0,0),所以点A在x轴上也在y轴上.当点A在x轴上时,点B的坐标为(-4,0)或(4,0);当点A在y轴上时,点B的坐标为(0,4)或(0,-4).【解析】(1)由点A的坐标可知点A在x轴上,点B可以在点A的左、右两侧,根据AB=4可求得点B的坐标;(2)由点A的坐标可知点A在x轴和y轴上,符合条件的点B共有4个,根据AB=4可求得点B的坐标.19.【答案】解:如图所示,发现的规律:①关于y轴对称的点的横坐标互为相反数,纵坐标相同,②纵坐标相同的点在平行于x轴的直线上.【解析】建立平面直角坐标系,然后分别描出各点,再根据图形解答.20.【答案】解:(1)如图所示:11(2)体育馆(-2,4)、市场(6,4)、超市(4,-2)、医院(0,-1).【解析】(1)以火车站向左两个单位,向下一个单位为坐标原点建立平面直角坐标系;(2)根据平面直角坐标系写出各场所的坐标即可.21.【答案】解:(1)由已知|a-2|+(b-3)2=0,(c-4)2≤0.(2)因为S三角形ABO =×2×3=3,S三角形APO =×2×(-m)=-m,所以S四边形ABOP=S三角形ABO+S三角形APO=3+(-m)=3-m;(3)因为S三角形ABC =×4×3=6,因为S四边形ABOP=S三角形ABC,所以3-m=6,则m=-3,所以存在点P(-3,)使S四边形ABOP=S三角形ABC.【解析】(1)用非负数的性质求解;(2)把四边形ABOP的面积看成两个三角形面积和,用m来表示;(3)三角形ABC可求,是已知量,根据题意,方程即可.121314。
初中数学 第七章平面直角坐标系单元测试题解析及答案含试题解析

第七章 平面直角坐标系测试题一、填空题(每小题3分,共30分)1.已知点A (0,1)、B (2,0)、C (0,0)、D (-1,0)、E (-3,0),则在y 轴上的点有 个。
2.如果点A ()b a ,在x 轴上,且在原点右侧,那么a ,b3.如果点()1,-a a M 在x 轴下侧,y 轴的右侧,那么a 的取值范围是4..如图所示,○A 表示三经路与一纬路的十字路口,○B 表示一经路与三纬路的十字路口,如果用(3,1)→(3,2)→(3,3)→(2,3)→(1,3)表示由○A 到○B 的一条路径,用同样的方式写出另一条由○A 到○B 的路径:(3,1)→ → → →(1,3)新-课- 标-第 -一 -网○A○B5.如图所示,在一个规格为84⨯的球台上,有两只小球P 和Q ,设小球P 的位置用(1,3)表示,小球Q 的位置用(7,2)表示,若击打小球P 经过球台的边AB 上的点O 反弹后,恰好击中小球Q ,则点O 的位置可以表示为.6.已知两点A ()m ,3-,B ()4,-n ,若AB ∥y 轴,则n = , m 的取值范围是 .7.∆ABC 上有一点P (0,2),将∆ABC 先沿x 轴负方向平移2个单位长度,再沿y 轴正方向平移3个单位长度,得到的新三角形上与点P 相对应的点的坐标是 .8.如图所示,象棋盘上,若“将”位于点 (3,-2),“车”位于点(-1,-2),则“马”位于.9.李明的座位在第5排第4列,简记为(5,4),张扬的座位在第3排第2列,简记为(3,2),若周伟的座位在李明的后面相距2排,同时在他的左边相距3列,则周伟的座位可简记为. X|k |B| 1 . c|O |m10.将∆ABC 绕坐标原点旋转180后,各顶点坐标变化特征是: .路章豫路明明路经三路经二路经一路纬二路纬一路纬三A 马将车4题图 5题图 8题图二、选择题(每小题3分,共30分)11.下列语句:(1)点(3,2)与点(2,3)是同一点;(2)点(2,1)在第二象限;(3)点(2,0) 在第一象限;(4)点(0,2)在x 轴上,其中正确的是()A.(1)(2)B.(2)(3)C.(1)(2)(3)(4)D. 没有12.如果点M ()y x ,的坐标满足0=yx ,那么点M 的可能位置是( ) A.x 轴上的点的全体 B. 除去原点后x 轴上的点的全体C.y 轴上的点的全体D. 除去原点后y 轴上的点的全体13.已知点P 的坐标为()63,-2+a a ,且点P 到两坐标轴的距离相等,则点P 的坐标是( )A.(3,3)B.(3,-3)C. (6,-6)D.(3,3)或(6,-6)14.如果点()3,2+x x 在x 轴上方,y 轴右侧,且该点到x 轴和y 轴的距离相等,则x 的值为( )A.1B.-1C.3D.-315.将某图形的各顶点的横坐标减去2,纵坐标保持不变,可将该图形( )A.横向右平移2个单位B.横向向左平移2个单位16.下面是小明家与小刚家的位置描述:小明家:出校门向东走150m ,再向北走200m ;小刚家:出校门向南走100m ,再向西走300m ,最后向北走50m如果以学校所在位置为原点,分别以正东、正北方向为x 轴,y 轴正方向建立平面直角坐标系, 并取比例尺1∶10 000. 则下列说法正确的是( )①点(150,200)是小明家的位置;② 点(-300,-50)是小刚家的位置;③从小明家向西走200m ,到达点(200,-50);○4从小刚家向东走100m 到达点(50,-300). A.①②B.③○4C.①③D.②○4 17.一条东西向道路与一条南北向道路的交汇处有一座雕像,甲车位于雕像东方5km 处,乙车位于雕像北方7km 处,若甲、乙两车以相同的速度向雕像的方向同时出发,当甲车到雕像西方1km 处乙车在( )A.雕像北方1km 处B.雕像北方3km 处C.雕像南方1km 处D.雕像南方3km 处18.已知如图所示,方格纸中的每个小方格边长为1的正方形,AB 两点在小方格的顶点上,位置分别用(2,2)、(4,3)来表示,请在小方格顶点上确定一点C ,连接AB 、AC 、BC ,使∆ABC 的面积为2个平方单位,则点C 的位置可能为( )A.(4,4)B.(4,2)C.(2,4)D.(3,2)19.如图所示,若三角形ABC 中经平移后任意一点P ()00,y x 的对应点为()3,5001-+y x P ,则点A 的对应点1A 的坐标是( )A.(4,1)B.(9,-4)C.(-6,7)D.(-1,2)20.如图所示,是郑州市某天的温度随时间变化的图象,通过观察可知下列说法错误的是( )A.这天15点温度最高B.这天3点时温度最低C.这天最高温度与最低温度的差是15度D.这天21时温度是30度三、解答题(共40分) 21.(6分)如图所示,是一个规格为88 的球桌,小明用A 球撞击B 球,到C 处反弹,再撞击桌边D 处,请选择适当的平面直角坐标系,并用坐标表示各点的位置.新 课 标第 一 网22.(7分)以点A 为圆心的圆可表示为⊙A 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第七章《平面直角坐标系》单元测试题
班级:
姓名: 得分:
一、选择题(每小题3分,共30分)
1.若,则点P 应在( )
0∠a )2,(a -A .第一象限 B .第二象限 C .第三象限 D .第四象限2.在平面直角坐标系中,点P 一定在( )
)1,1(2+-m A .第一象限 B .第二象限 C .第三象限 D .第四象限3.在平面直角坐标系中,线段B C∥轴,则( )
x A .点B 与C 的横坐标相等 B .点B 与C 的纵坐标相等C .点B 与C 的横坐标与纵坐标分别相等 D .点B 与C 的横坐标、纵坐标都不相等
4.若点P 的坐标满足则点P 必在( )
),(y x 0=xy A .原点 B .轴上 C .轴上 D .轴或轴上
x y x y 5.将△ABC 各顶点的横坐标分别减去3,纵坐标不变,得到的△A B C 相应顶'''点的坐标,则△A B C 可以看成△ABC( )
'''A .向左平移3个单位长度得到 B .向右平移三个单位长度得到C .向上平移3个单位长度得到 D .向下平移3个单位长度得到
6.点P(2,-3)先向上平移2个单位长度,再向左平移3个单位长度,得到点P 的坐标是( )
'
A .(-1,-5)
B .(-1,-1)
C .(5,-1)
D .(5,5)7.过点A (2,-3)且垂直于y 轴的直线交y 轴于点B ,则点B 坐标为( )
A .(0,2)
B .(2,0)
C .(0,-3)
D .(-3,0)
8.已知点B 在四象限内,且到x 轴的距离是2,到y 轴的距离是3,则点B 的坐标是( )
A.(2,-3)
B.(3,-2)
C. (-3,-2)
D.(3, 2)或(3,-2)9.已知点A(3a +6,a -3)在x 轴上,则点A 的坐标为(
)
A.(3,0)
B. (-2,0) C . (0,-5) D. (15,0)
10.如图,把图中△ABC 经过一定的变换得到图中的△A B C ,如果图○
1○2'''的△ABC 上点P 的坐标是,那么这个点在图中的对应点P 的坐标是○1),(b a ○2'( )
A .
B .
C .
D .)3,2(--b a )3,2(--b a )2,3(++b a )
3,2(++b a 二、填空题(每小题4分,共28分)
11.在平面直角坐标系内,点P (2,-2)和点Q (2,4)之间的距离等于________个单位长度,线段PQ 和中点坐标是____________12.在平面直角坐标系中,若点P 在轴上,则点P 的坐标为)5,2(+-b a y ____________
13.已知点P ,Q ,且PQ∥轴,则_________,___________),2(a -)3,(b x =a =b 14.已知三点O (0,0),A (-2,0),B(-2,3)围成的△ABO 的面积为____________
15.点P 在第四象限,则点Q 在第______象限
),(b a ),(a b -16.已知线段AB=3,AB∥轴,若点A 的坐标为(1,2),则点B 的坐标为x _________________
17.已知点P 在第二象限两坐标轴所成角的平分线上,且到轴的距离为3,
x
则点P 的坐标为____________
三、解答题(共42分)
18.(10分)如图,在平面直角坐标系中,分别写出△ABC 的顶点坐标,并求出△ABC 的面积。
19.(10分)在平行四边形ACBO 中,AO=5,则点B 坐标为(-2,4) (1) 写出点C 坐标.
(2) 求出平行四边形ACBO 面积.
20.(10分)如图是小明所在学校的平面示意图,其中食堂的坐标是(2,4)(1)根据题意建立平面直角坐标系(2)写出各地理位置的坐标
21.(12分)如图,△PQR 是△ABC 经过某种变换后得到的图形,分别写出点A 与点P ,点B 与点Q ,点C 与点R 的坐标,并观察它们之间的关系,如果△ABC 中任意一点M 的坐标为(那么),b a 它的对应点N
的坐标是什么?。