2020数学二模试卷及答案
2020年中考数学二模试卷 (含答案解析)(解析版)

2020年中考数学二模试卷一.选择题(共10小题)1.的平方根是()A.B.﹣C.±D.±2.下列四种图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.3.下列因式分解正确的是()A.3ax2﹣6ax=3(ax2﹣2ax)B.x2+y2=(﹣x+y)(﹣x﹣y)C.a2+2ab﹣4b2=(a+2b)2D.﹣ax2+2ax﹣a=﹣a(x﹣1)24.一种病毒的直径约为0.0000001m,将0.0000001m用科学记数法表示为()A.1×107B.1×10﹣6C.1×10﹣7D.10×10﹣85.若关于x的不等式组恰有两个整数解,求实数a的取值范围是()A.﹣4<a<﹣3B.﹣4≤a<﹣3C.﹣4<a≤﹣3D.﹣4<a<﹣3 6.下列图形中,主视图为图①的是()A.B.C.D.7.某机械厂七月份生产零件50万个,第三季度生产零件196万个.设该厂八、九月份平均每月的增长率为x,那么x满足的方程是()A.50(1+x2)=196B.50+50(1+x2)=196C.50+50(1+x)+50(1+x)2=196D.50+50(1+x)+50(1+2x)=1968.在同一坐标系内,一次函数y=ax+b与二次函数y=ax2+8x+b的图象可能是()A.B.C.D.9.如图,在纸上剪下一个圆形和一个扇形的纸片,使之恰好能围成一个圆锥模型,若圆的半径为r,扇形的圆心角等于120°,则围成的圆锥模型的高为()A.r B.2r C.r D.3r10.如图,在矩形ABCD中,AD=AB,∠BAD的平分线交BC于点E,DH⊥AE于点H,连接BH并延长交CD于点F,连接DE交BF于点O,下列结论:①∠AED=∠CED;②OE=OD;③BH=HF;④BC﹣CF=2HE;⑤AB=HF,其中正确的有()A.2个B.3个C.4个D.5个二.填空题(共4小题)11.一组数据15,20,25,30,20,这组数据的中位数为.12.分解因式:9x﹣x3=.13.如图,Rt△AOB中,∠AOB=90°,顶点A,B分别在反比例函数y=(x>0)与y =(x<0)的图象上,则tan∠BAO的值为.14.如图,在直角坐标系中,矩形OABC的顶点O在坐标原点,边OA在x轴上,OC在y 轴上,如果矩形OA'B'C'与矩形OABC关于点O位似,且矩形OA'B'C'的面积等于矩形OABC 面积的,那么点B'的坐标是.三.解答题(共9小题)15.计算:16.先化简,再求值:,其中,a=﹣1.17.如图,线段OB放置在正方形网格中,现请你分别在图1、图2、图3添画(工具只能用直尺)射线OA,使tan∠AOB的值分别为1、2、3.18.已知点P(x0,y0)和直线y=kx+b,则点P到直线y=kx+b的距离证明可用公式d=计算.例如:求点P(﹣1,2)到直线y=3x+7的距离.解:因为直线y=3x+7,其中k=3,b=7.所以点P(﹣1,2)到直线y=3x+7的距离为:d====.根据以上材料,解答下列问题:(1)求点P(1,﹣1)到直线y=x﹣1的距离;(2)已知⊙Q的圆心Q坐标为(0,5),半径r为2,判断⊙Q与直线y=x+9的位置关系并说明理由;(3)已知直线y=﹣2x+4与y=﹣2x﹣6平行,求这两条直线之间的距离.19.如图,在一笔直的海岸线l上有A、B两个观测站,AB=2km,从A测得船C在北偏东45°的方向,从B测得船C在北偏东22.5°的方向.(1)求∠ACB的度数;(2)船C离海岸线l的距离(即CD的长)为多少?(不取近似值)20.如图,在Rt△ABC中,∠B=90°,∠BAC的平分线AD交BC于点D,点E在AC上,以AE为直径的⊙O经过点D.(1)求证:①BC是⊙O的切线;②CD2=CE•CA;(2)若点F是劣弧AD的中点,且CE=3,试求阴影部分的面积.21.为培养学生良好学习习惯,某学校计划举行一次“整理错题集”的展示活动,对该校部分学生“整理错题集”的情况进行了一次抽样调查,根据收集的数据绘制了下面不完整的统计图表.整理情况频数频率非常好0.21较好700.35一般m不好36请根据图表中提供的信息,解答下列问题:(1)本次抽样共调查了名学生;(2)m=;(3)该校有1500名学生,估计该校学生整理错题集情况“非常好”和“较好”的学生一共约多少名?(4)某学习小组4名学生的错题集中,有2本“非常好”(记为A1、A2),1本“较好”(记为B),1本“一般”(记为C),这些错题集封面无姓名,而且形状、大小、颜色等外表特征完全相同,从中抽取一本,不放回,从余下的3本错题集中再抽取一本,请用“列表法”或“画树形图”的方法求出两次抽到的错题集都是“非常好”的概率.22.浩然文具店新到一种计算器,进价为25元,营销时发现:当销售单价定为30元时,每天的销售量为150件,若销售单价每上涨1元,每天的销售量就会减少10件.(1)写出商店销售这种计算器,每天所得的销售利润w(元)与销售单价x(元)之间的函数关系式;(2)求销售单价定为多少元时,每天的销售利润最大?最大值是多少?(3)商店的营销部结合上述情况,提出了A、B两种营销方案:方案A:为了让利学生,该计算器的销售利润不超过进价的24%;方案B:为了满足市场需要,每天的销售量不少于120件.请比较哪种方案的最大利润更高,并说明理由.23.如图,在△ABC中,AC=,tan A=3,∠ABC=45°,射线BD从与射线BA重合的位置开始,绕点B按顺时针方向旋转,与射线BC重合时就停止旋转,射线BD与线段AC相交于点D,点M是线段BD的中点.(1)求线段BC的长;(2)①当点D与点A、点C不重合时,过点D作DE⊥AB于点E,DF⊥BC于点F,连接ME,MF,在射线BD旋转的过程中,∠EMF的大小是否发生变化?若不变,求∠EMF的度数;若变化,请说明理由.②在①的条件下,连接EF,直接写出△EFM面积的最小值.参考答案与试题解析一.选择题(共10小题)1.的平方根是()A.B.﹣C.±D.±【分析】先化简,再根据平方根的定义即可求解.【解答】解:=,的平方根是±.故选:D.2.下列四种图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、不是轴对称图形,是中心对称图形,故此选项不合题意;B、是轴对称图形,是中心对称图形,故此选项符合题意;C、不是轴对称图形,是中心对称图形,故此选项不合题意;D、不是轴对称图形,不是中心对称图形,故此选项不符合题意;故选:B.3.下列因式分解正确的是()A.3ax2﹣6ax=3(ax2﹣2ax)B.x2+y2=(﹣x+y)(﹣x﹣y)C.a2+2ab﹣4b2=(a+2b)2D.﹣ax2+2ax﹣a=﹣a(x﹣1)2【分析】直接利用提取公因式法以及公式法分解因式进而判断即可.【解答】解:A、3ax2﹣6ax=3ax(x﹣2),故此选项错误;B、x2+y2,无法分解因式,故此选项错误;C、a2+2ab﹣4b2,无法分解因式,故此选项错误;D、﹣ax2+2ax﹣a=﹣a(x﹣1)2,正确.故选:D.4.一种病毒的直径约为0.0000001m,将0.0000001m用科学记数法表示为()A.1×107B.1×10﹣6C.1×10﹣7D.10×10﹣8【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负整指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.0000001=1×10﹣7,故选:C.5.若关于x的不等式组恰有两个整数解,求实数a的取值范围是()A.﹣4<a<﹣3B.﹣4≤a<﹣3C.﹣4<a≤﹣3D.﹣4<a<﹣3【分析】先解不等式组求得﹣2<x≤4+a,根据不等式组恰有两个整数解知不等式组的整数解为﹣1、0,据此得0≤4+a<1,解之即可.【解答】解:解不等式1+5x>3(x﹣1),得:x>﹣2,解不等式≤8﹣+2a,得:x≤4+a,则不等式组的解集为﹣2<x≤4+a,∵不等式组恰有两个整数解,∴不等式组的整数解为﹣1、0,则0≤4+a<1,解得﹣4≤a<﹣3,故选:B.6.下列图形中,主视图为图①的是()A.B.C.D.【分析】主视图是从物体的正面看得到的图形,分别写出每个选项中的主视图,即可得到答案.【解答】解:A、主视图是等腰梯形,故此选项错误;B、主视图是长方形,故此选项正确;C、主视图是等腰梯形,故此选项错误;D、主视图是三角形,故此选项错误;故选:B.7.某机械厂七月份生产零件50万个,第三季度生产零件196万个.设该厂八、九月份平均每月的增长率为x,那么x满足的方程是()A.50(1+x2)=196B.50+50(1+x2)=196C.50+50(1+x)+50(1+x)2=196D.50+50(1+x)+50(1+2x)=196【分析】主要考查增长率问题,一般增长后的量=增长前的量×(1+增长率),如果该厂八、九月份平均每月的增长率为x,那么可以用x分别表示八、九月份的产量,然后根据题意可得出方程.【解答】解:依题意得八、九月份的产量为50(1+x)、50(1+x)2,∴50+50(1+x)+50(1+x)2=196.故选:C.8.在同一坐标系内,一次函数y=ax+b与二次函数y=ax2+8x+b的图象可能是()A.B.C.D.【分析】令x=0,求出两个函数图象在y轴上相交于同一点,再根据抛物线开口方向向上确定出a>0,然后确定出一次函数图象经过第一三象限,从而得解.【解答】解:x=0时,两个函数的函数值y=b,所以,两个函数图象与y轴相交于同一点,故B、D选项错误;由A、C选项可知,抛物线开口方向向上,所以,a>0,所以,一次函数y=ax+b经过第一三象限,所以,A选项错误,C选项正确.故选:C.9.如图,在纸上剪下一个圆形和一个扇形的纸片,使之恰好能围成一个圆锥模型,若圆的半径为r,扇形的圆心角等于120°,则围成的圆锥模型的高为()A.r B.2r C.r D.3r【分析】首先求得围成的圆锥的母线长,然后利用勾股定理求得其高即可.【解答】解:∵圆的半径为r,扇形的弧长等于底面圆的周长得出2πr.设圆锥的母线长为R,则=2πr,解得:R=3r.根据勾股定理得圆锥的高为2r,故选:B.10.如图,在矩形ABCD中,AD=AB,∠BAD的平分线交BC于点E,DH⊥AE于点H,连接BH并延长交CD于点F,连接DE交BF于点O,下列结论:①∠AED=∠CED;②OE=OD;③BH=HF;④BC﹣CF=2HE;⑤AB=HF,其中正确的有()A.2个B.3个C.4个D.5个【分析】①根据角平分线的定义可得∠BAE=∠DAE=45°,然后利用求出△ABE是等腰直角三角形,根据等腰直角三角形的性质可得AE=AB,从而得到AE=AD,然后利用“角角边”证明△ABE和△AHD全等,根据全等三角形对应边相等可得BE=DH,再根据等腰三角形两底角相等求出∠ADE=∠AED=67.5°,根据平角等于180°求出∠CED=67.5°,从而判断出①正确;②求出∠AHB=67.5°,∠DHO=∠ODH=22.5°,然后根据等角对等边可得OE=OD =OH,判断出②正确;③求出∠EBH=∠OHD=22.5°,∠AEB=∠HDF=45°,然后利用“角边角”证明△BEH和△HDF全等,根据全等三角形对应边相等可得BH=HF,判断出③正确;④根据全等三角形对应边相等可得DF=HE,然后根据HE=AE﹣AH=BC﹣CD,BC﹣CF=BC﹣(CD﹣DF)=2HE,判断出④正确;⑤判断出△ABH不是等边三角形,从而得到AB≠BH,即AB≠HF,得到⑤错误.【解答】解:∵在矩形ABCD中,AE平分∠BAD,∴∠BAE=∠DAE=45°,∴△ABE是等腰直角三角形,∴AE=AB,∵AD=AB,∴AE=AD,在△ABE和△AHD中,,∴△ABE≌△AHD(AAS),∴BE=DH,∴AB=BE=AH=HD,∴∠ADE=∠AED=(180°﹣45°)=67.5°,∴∠CED=180°﹣45°﹣67.5°=67.5°,∴∠AED=∠CED,故①正确;∵AB=AH,∵∠AHB=(180°﹣45°)=67.5°,∠OHE=∠AHB(对顶角相等),∴∠OHE=67.5°=∠AED,∴OE=OH,∵∠DHO=90°﹣67.5°=22.5°,∠ODH=67.5°﹣45°=22.5°,∴∠DHO=∠ODH,∴OH=OD,∴OE=OD=OH,故②正确;∵∠EBH=90°﹣67.5°=22.5°,∴∠EBH=∠OHD,在△BEH和△HDF中,,∴△BEH≌△HDF(ASA),∴BH=HF,HE=DF,故③正确;∵HE=AE﹣AH=BC﹣CD,∴BC﹣CF=BC﹣(CD﹣DF)=BC﹣(CD﹣HE)=(BC﹣CD)+HE=HE+HE=2HE.故④正确;∵AB=AH,∠BAE=45°,∴△ABH不是等边三角形,∴AB≠BH,∴即AB≠HF,故⑤错误;综上所述,结论正确的是①②③④共4个.故选:C.二.填空题(共4小题)11.一组数据15,20,25,30,20,这组数据的中位数为20.【分析】根据中位数的定义求解可得.【解答】解:将数据重新排列为15、20、20、25、30,所以这组数据的中位数为20,故答案为:20.12.分解因式:9x﹣x3=x(3+x)(3﹣x).【分析】首先提取公因式x,金进而利用平方差公式分解因式得出答案.【解答】解:原式=x(9﹣x2)=x(3﹣x)(3+x).故答案为:x(3﹣x)(3+x).13.如图,Rt△AOB中,∠AOB=90°,顶点A,B分别在反比例函数y=(x>0)与y =(x<0)的图象上,则tan∠BAO的值为.【分析】过A作AC⊥x轴,过B作BD⊥x轴于D,于是得到∠BDO=∠ACO=90°,根据反比例函数的性质得到S△BDO=,S△AOC=,根据相似三角形的性质得到=()2==5,求得=,根据三角函数的定义即可得到结论.【解答】解:过A作AC⊥x轴,过B作BD⊥x轴于D,则∠BDO=∠ACO=90°,∵顶点A,B分别在反比例函数y=(x>0)与y=(x<0)的图象上,∴S△BDO=,S△AOC=,∵∠AOB=90°,∴∠BOD+∠DBO=∠BOD+∠AOC=90°,∴∠DBO=∠AOC,∴△BDO∽△OCA,∴=()2==5,∴=,∴tan∠BAO==,故答案为:.14.如图,在直角坐标系中,矩形OABC的顶点O在坐标原点,边OA在x轴上,OC在y 轴上,如果矩形OA'B'C'与矩形OABC关于点O位似,且矩形OA'B'C'的面积等于矩形OABC 面积的,那么点B'的坐标是(﹣2,3)或(2,﹣3).【分析】根据位似图形的概念得到矩形OA'B'C'∽矩形OABC,根据相似多边形的性质求出相似比,根据位似图形与坐标的关系计算,得到答案.【解答】解:∵矩形OA'B'C'与矩形OABC关于点O位似,∴矩形OA'B'C'∽矩形OABC,∵矩形OA'B'C'的面积等于矩形OABC面积的,∴矩形OA'B'C'与矩形OABC的相似比为,∵点B的坐标为(﹣4,6),∴点B'的坐标为(﹣4×,6×)或(4×,﹣6×),即(﹣2,3)或(2,﹣3),故答案为:(﹣2,3)或(2,﹣3).三.解答题(共9小题)15.计算:【分析】首先计算乘方、开方,然后计算乘法,最后从左向右依次计算,求出算式的值是多少即可.【解答】解:=1+﹣2+(﹣1)﹣×3=﹣216.先化简,再求值:,其中,a=﹣1.【分析】先化简分式,然后将a=﹣1代入求值.【解答】解:原式=,当时,原式=.17.如图,线段OB放置在正方形网格中,现请你分别在图1、图2、图3添画(工具只能用直尺)射线OA,使tan∠AOB的值分别为1、2、3.【分析】根据勾股定理以及正切值对应边关系得出答案即可.【解答】解:如图1所示:tan∠AOB===1,如图2所示:tan∠AOB===2,如图3所示:tan∠AOB===3,故tan∠AOB的值分别为1、2、3..18.已知点P(x0,y0)和直线y=kx+b,则点P到直线y=kx+b的距离证明可用公式d=计算.例如:求点P(﹣1,2)到直线y=3x+7的距离.解:因为直线y=3x+7,其中k=3,b=7.所以点P(﹣1,2)到直线y=3x+7的距离为:d====.根据以上材料,解答下列问题:(1)求点P(1,﹣1)到直线y=x﹣1的距离;(2)已知⊙Q的圆心Q坐标为(0,5),半径r为2,判断⊙Q与直线y=x+9的位置关系并说明理由;(3)已知直线y=﹣2x+4与y=﹣2x﹣6平行,求这两条直线之间的距离.【分析】(1)根据点P到直线y=kx+b的距离公式直接计算即可;(2)先利用点到直线的距离公式计算出圆心Q到直线y=x+9,然后根据切线的判定方法可判断⊙Q与直线y=x+9相切;(3)利用两平行线间的距离定义,在直线y=﹣2x+4上任意取一点,然后计算这个点到直线y=﹣2x﹣6的距离即可.【解答】解:(1)因为直线y=x﹣1,其中k=1,b=﹣1,所以点P(1,﹣1)到直线y=x﹣1的距离为:d====;(2)⊙Q与直线y=x+9的位置关系为相切.理由如下:圆心Q(0,5)到直线y=x+9的距离为:d===2,而⊙O的半径r为2,即d=r,所以⊙Q与直线y=x+9相切;(3)当x=0时,y=﹣2x+4=4,即点(0,4)在直线y=﹣2x+4,因为点(0,4)到直线y=﹣2x﹣6的距离为:d===2,因为直线y=﹣2x+4与y=﹣2x﹣6平行,所以这两条直线之间的距离为2.19.如图,在一笔直的海岸线l上有A、B两个观测站,AB=2km,从A测得船C在北偏东45°的方向,从B测得船C在北偏东22.5°的方向.(1)求∠ACB的度数;(2)船C离海岸线l的距离(即CD的长)为多少?(不取近似值)【分析】(1)根据三角形的外角的性质计算;(2)作BE∥AC交CD于E,求出CE=AB=2,根据正弦的定义求出DE,计算即可.【解答】解:(1)由题意得,∠CBD=90°﹣22.5°=67.5°,∠CAD=45°,∴∠ACB=∠CBD﹣∠CAD=22.5°;(2)作BE∥AC交CD于E,则∠EBD=∠CAD=45°,∴DB=DE,∵DA=DC,∴CE=AB=2,∵∠ACD=45°,∠ACB=22.5°,∴∠BCD=22.5°,∴∠CBE=∠BED﹣∠BCD=22.5°,∴∠CBE=∠BCE,∴BE=CE=2,∴DE=BE=,∴CD+DE+CE=2+,答:船C离海岸线l的距离为(2+)km.20.如图,在Rt△ABC中,∠B=90°,∠BAC的平分线AD交BC于点D,点E在AC上,以AE为直径的⊙O经过点D.(1)求证:①BC是⊙O的切线;②CD2=CE•CA;(2)若点F是劣弧AD的中点,且CE=3,试求阴影部分的面积.【分析】(1)①证明DO∥AB,即可求解;②证明CDE∽△CAD,即可求解;(2)证明△OFD、△OF A是等边三角形,S阴影=S扇形DFO,即可求解.【解答】解:(1)①连接OD,∵AD是∠BAC的平分线,∴∠DAB=∠DAO,∵OD=OA,∴∠DAO=∠ODA,则∠DAB=∠ODA,∴DO∥AB,而∠B=90°,∴∠ODB=90°,∴BC是⊙O的切线;②连接DE,∵BC是⊙O的切线,∴∠CDE=∠DAC,∠C=∠C,∴△CDE∽△CAD,∴CD2=CE•CA;(2)连接DE、OD、DF、OF,设圆的半径为R,∵点F是劣弧AD的中点,∴是OF是DA中垂线,∴DF=AF,∴∠FDA=∠F AD,∵DO∥AB,∴∠ODA=∠DAF,∴∠ADO=∠DAO=∠FDA=∠F AD,∴AF=DF=OA=OD,∴△OFD、△OF A是等边三角形,则DF∥AC,故S阴影=S扇形DFO,∴∠C=30°,∴OD=OC=(OE+EC),而OE=OD,∴CE=OE=R=3,S阴影=S扇形DFO=×π×32=.21.为培养学生良好学习习惯,某学校计划举行一次“整理错题集”的展示活动,对该校部分学生“整理错题集”的情况进行了一次抽样调查,根据收集的数据绘制了下面不完整的统计图表.整理情况频数频率非常好0.21较好700.35一般m不好36请根据图表中提供的信息,解答下列问题:(1)本次抽样共调查了200名学生;(2)m=52;(3)该校有1500名学生,估计该校学生整理错题集情况“非常好”和“较好”的学生一共约多少名?(4)某学习小组4名学生的错题集中,有2本“非常好”(记为A1、A2),1本“较好”(记为B),1本“一般”(记为C),这些错题集封面无姓名,而且形状、大小、颜色等外表特征完全相同,从中抽取一本,不放回,从余下的3本错题集中再抽取一本,请用“列表法”或“画树形图”的方法求出两次抽到的错题集都是“非常好”的概率.【分析】(1)用较好的频数除以较好的频率.即可求出本次抽样调查的总人数;(2)用总人数乘以非常好的频率,求出非常好的频数,再用总人数减去其它频数即可求出m的值;(3)利用总人数乘以对应的频率即可;(4)利用树形图方法,利用概率公式即可求解.【解答】解:(1)本次抽样共调查的人数是:70÷0.35=200(人);(2)非常好的频数是:200×0.21=42(人),一般的频数是:m=200﹣42﹣70﹣36=52(人),(3)该校学生整理错题集情况“非常好”和“较好”的学生一共约有:1500×(0.21+0.35)=840(人);(4)根据题意画图如下:∵所有可能出现的结果共12种情况,并且每种情况出现的可能性相等,其中两次抽到的错题集都是“非常好”的情况有2种,∴两次抽到的错题集都是“非常好”的概率是=.22.浩然文具店新到一种计算器,进价为25元,营销时发现:当销售单价定为30元时,每天的销售量为150件,若销售单价每上涨1元,每天的销售量就会减少10件.(1)写出商店销售这种计算器,每天所得的销售利润w(元)与销售单价x(元)之间的函数关系式;(2)求销售单价定为多少元时,每天的销售利润最大?最大值是多少?(3)商店的营销部结合上述情况,提出了A、B两种营销方案:方案A:为了让利学生,该计算器的销售利润不超过进价的24%;方案B:为了满足市场需要,每天的销售量不少于120件.请比较哪种方案的最大利润更高,并说明理由.【分析】(1)根据利润=(单价﹣进价)×销售量,列出函数关系式即可;(2)根据(1)式列出的函数关系式,运用配方法求最大值;(3)分别求出方案A、B中x的取值,然后分别求出A、B方案的最大利润,然后进行比较.【解答】解:(1)由题意得,销售量=150﹣10(x﹣30)=﹣10x+450,则w=(x﹣25)(﹣10x+450)=﹣10x2+700x﹣11250;(2)w=﹣10x2+700x﹣11250=﹣10(x﹣35)2+1000,∵﹣10<0,∴函数图象开口向下,w有最大值,当x=35时,w最大=1000元,故当单价为35元时,该计算器每天的利润最大;(3)B方案利润高.理由如下:A方案中:∵25×24%=6,此时w A=6×(150﹣10)=840元,B方案中:每天的销售量为120件,单价为33元,∴最大利润是120×(33﹣25)=960元,此时w B=960元,∵w B>w A,∴B方案利润更高.23.如图,在△ABC中,AC=,tan A=3,∠ABC=45°,射线BD从与射线BA重合的位置开始,绕点B按顺时针方向旋转,与射线BC重合时就停止旋转,射线BD与线段AC相交于点D,点M是线段BD的中点.(1)求线段BC的长;(2)①当点D与点A、点C不重合时,过点D作DE⊥AB于点E,DF⊥BC于点F,连接ME,MF,在射线BD旋转的过程中,∠EMF的大小是否发生变化?若不变,求∠EMF的度数;若变化,请说明理由.②在①的条件下,连接EF,直接写出△EFM面积的最小值.【分析】(1)如图1中,作CH⊥AB于H.解直角三角形求出CH,证明△CHB是等腰直角三角形即可解决问题.(2)①利用直角三角形斜边中线定理,证明△MEF是等腰直角三角形即可解决问题.②如图2中,由①可知△MEF是等腰直角三角形,当ME的值最小时,△MEF的面积最小,因为ME=BD,推出当BD⊥AC时,ME的值最小,此时BD=.【解答】解:(1)如图1中,作CH⊥AB于H.在Rt△ACH中,∵∠AHC=90°,AC=,tan A==3,∴AH=1,CH=3,∵∠CBH=45°,∠CHB=90°,∴∠HCB=∠CBH=45°,∴CH=BH=3,∴BC=CH=3.(2)①结论:∠EMF=90°不变.理由:如图2中,∵DE⊥AB,DF⊥BC,∴∠DEB=∠DFB=90°,∵DM=MB,∴ME=BD,MF=BD,∴ME=MF=BM,∴∠MBE=∠MEB,∠MBF=∠MFB,∵∠DME=∠MEB+∠MBE,∠DMF=∠MFB+∠MBF,∴∠EMF=∠DME+∠DMF=2(∠MBE+∠MBF)=90°,②如图2中,作CH⊥AB于H,由①可知△MEF是等腰直角三角形,∴当ME的值最小时,△MEF的面积最小,∵ME=BD,∴当BD⊥AC时,ME的值最小,此时BD===,∴EM的最小值=,∴△MEF的面积的最小值=××=.故答案为.。
河北省邢台市2020年中考数学二模试卷(解析版)

河北省邢台市2020年中考数学二模试卷(解析版)一、选择题(本大题有16个小题,共42分.1~10小题各3分;11~16小题各2分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列四个数中,最小的数是()A.0B.﹣3C.﹣πD.﹣2.如图,a∥b,则下列结论中,不一定正确的是()A.∠4=∠5B.∠1+∠2=180°C.∠2+∠3=180°D.∠2+∠4=180°3.下列关于代数式“3+a”的说法,正确的是()A.表示3个a相加B.代数式的值比a大C.代数式的值比3大D.代数式的值随a的增大而减小4.如图,光线由上向下照射正五棱柱时的正投影是()A.B.C.D.5.体育老师对亮亮和薇薇两名同学的立定跳远进行了五次测试(满分为10分),把他们的成绩绘制成如统计图.根据图中信息,下列说法正确的是()A.亮亮的跳远成绩比薇薇的跳远成绩稳定B.亮亮的成绩越来越好,如果再跳一次一定还是10分C.亮亮的第三次成绩与第二次成绩相比,增长率超过50%D.亮亮和薇薇的成绩都在8分上下波动,两个人的成绩稳定性一样6.下列计算正确的是()A.|﹣2|=﹣2B.=±2C.=﹣2D.7.如图,在正方形ABCD中,AB=6,点Q是AB边上的一个动点(点Q不与点B重合),点M,N分别是DQ,BQ的中点,则线段MN=()A.3B.C.3D.68.由于新冠肺炎得到了有效控制,省教育厅要求各学校做好复课准备.某校计划对学校60个相同大小的教室进行全面清扫和消毒,在实际进行消毒时,每天消毒的教室数量是原计划的1.2倍,使得完成全部教室消毒的时间缩短了2天.设原计划每天可以清扫、消毒x个教室,则下列符合题意的方程是()A.﹣1.2=B.+2=C.+1.2=D.+2=9.如图,在△ABC中,∠ACB=45°,∠BAC=30°,过点A,C的圆的圆心在边AB上,点M是优弧AC(不与点A,C重合)上的一点,则∠AMC=()A.75°B.60°C.55°D.52.5°10.能说明命题“关于x的不等式组的解集为无解”是假命题的反例是()A.m=﹣3B.m=﹣2C.m=﹣1D.m=011.(2分)如图,有n个全等的正五边形按如下方式拼接,使相邻的两个正五边形有公共顶点,所夹的锐角为24°,拼接一圈后,中间形成一个正多边形,则n的值为()A.5B.6C.8D.1012.(2分)关于x的一元二次方程x2﹣2x=1﹣k,下列结论不正确的是()A.当方程有实数根时k≤2B.当k>0时,方程一定有两个不相等的实数根C.当k=1时,方程的实数根为x1=0,x2=2D.若x1,x2为方程的两个实数根,则有|x1﹣1|=|x2﹣1|13.(2分)如图,将直角三角板ABC放在平面直角坐标系中,点A,B的坐标分别为(2,1),(7,1).将三角板ABC沿x轴正方向平移,点B的对应点B'刚好落在反比例函数y =(x>0)的图象上,则点C平移的距离CC'=()A.3B.5C.7D.1014.(2分)将两张面积分别为64和36的正方形纸片按两种方式放置在矩形ABCD中,如图1,图2.AB=m,AD=n,条形波纹表示两正方形的重叠部分,L形阴影表示未被两张正方形纸片覆盖的部分,图1,图2中L形阴影部分的面积分别为S1,S2.则下列结论:①BF=m﹣8;②S1=mn﹣6m﹣16;③S2=mn﹣6n﹣16;④若m﹣n=2,则S2﹣S1=12.其中正确的个数是()A.1B.2C.3D.415.(2分)在平行四边形ABCD中,AB=3,BC=4.5,在图中按下列步骤进行尺规作图:①以A为圆心,AB长为半径画弧交AD于点M;②分别以M,B为圆心,以大于MB的长为半径画弧,两弧相交于点P;③画射线AP交CB于点E,交DC的延长线于点F,连接ME.下列说法错误的是()A.EF=BEB.=2C.D.若cos∠AEB=,则AE=5.416.(2分)如图,点A(﹣5,m),B(3,n)在直线l:y=﹣上.抛物线L:y=ax2﹣2x+2(a≠0)与线段AB围成封闭图形G(包括边界),则G内的整点(横、纵坐标都为整数)最多有()A.4个B.5个C.6个D.7个二、填空题(本大题有3个小题,共11分.17小题3分;18~19小题各有2个空,每空2分.)17.x15÷x3•x5=.18.(4分)已知关于x的方程5x﹣2=3x+16的解与方程4a+1=4(x+a)﹣5a的解相同,则a=;若[m]表示不大于m的最大整数,那么[﹣1]=.19.(4分)如图1,在三角形纸板ABC中,∠C=90°,AC=1cm,BC=cm,点M是边AB上的一个点(不与点A,B重合),沿CM折叠纸板,点B的对应点是点B'.(1)如图2,当点B'在射线BA上时,∠BCM=.(2)若∠AMB'=30°,且点B'不在直线AC右侧,则点M到BC的距离是cm.三、解答题(本大题有7个小题,共67分,解答应写出文字说明、证明过程或演算步骤)20.(8分)(1)计算:+(﹣)﹣2﹣3tan60°+(π﹣)0;(2)先化简,再求值:,其中x=+2.21.(8分)如果a,b都是非零整数,且a=4b,那么就称a是“4倍数”.(1)30到35之间的“4倍数”是,小明说:232﹣212是“4倍数”,嘉淇说:122﹣6×12+9也是“4倍数”,他们谁说的对?.(2)设x是不为零的整数.①x(x+1)是的倍数;②任意两个连续的“4倍数”的积可表示为,它(填“是”或“不是”)32的倍数.(3)设三个连续偶数的中间一个数是2n(n是整数),写出它们的平方和,并说明它们的平方和是“4倍数”.22.(8分)今年在2月27日国务院对外新闻发布会上,中国疾控中心发言人提到:“在新冠肺炎低风险区域出行仍需戴口罩.”某单位复工,采购了一批医用外科口罩,单价分别为1元、1.5元、3元、5元、10元,每天随机配发给每位在岗员工一个口罩.现将连续10天口罩配发量的情况制成如统计表.配发量/个30252015天数/天2x y1已知配发量的平均数是23个,中位数是m个,众数是n个.(1)求x,y的值,并计算m﹣n;(2)将配发15个口罩那一天中不同型号的口罩发放情况进行统计,绘制成如图所示的尚不完整的统计图.补全统计图,并求小李当天获得不低于3元口罩的概率;(3)若继续发放两天口罩,且这12天口罩配发量的众数与前10天口罩配发量的众数不同(例如:只要在第11天,第12天都发放30个口罩,则这12天口罩发放量的众数为30个和20个),写出这12天口罩配发量的众数(括号内示例情况不必再述).23.(8分)如图,直线l1经过点A(0,2)和C(6,﹣2),点B的坐标为(4,2),点P 是线段AB上的动点(点P不与点A重合),直线l2:y=kx+2k经过点P,并与l1交于点M,过点P作PN⊥l2,交l1于点N.(1)求l1的函数表达式;(2)当k=时,①求点M的坐标;②求S△APM.(3)将点N的横坐标记为x n,在点P移动的过程中,直接写出x n的范围.24.(4分)如图,扇形AOB的半径为3,面积为3π.点C是的中点,连接AC,BC.求证:四边形OACB是菱形.25.(5分)如图1,扇形AOB的半径为3,面积为3π,点C是的中点,连接AC,BC,(1)求证四边形OACB是菱形;(2)如图2,∠POQ=60°,∠POQ绕点O旋转,与AC,BC分别交于点M,N(点M,N与点A,B,C均不重合),与交于E,F两点.①求MC+NC的值;②如图2,连接FC,EC,若∠ECF的度数是定值,则直接写出∠ECF的度数;若不是,请说明理由.26.(12分)一家经营打印耗材的门店经销各种打印耗材,其中某一品牌硒鼓的进价为a元/个,售价为x元/个(a≤x≤48).下面是门店在销售一段时间后销售情况的反馈:①若每个硒鼓按定价30元的8折出售,可获20%的利润;②如果硒鼓按30元/个的价格出售,每月可售出500个,在此基础上,售价每增加5元,月销售量就减少50个.(1)求a的值,并写出该品牌硒鼓每月的销售量y(个)与售价x(元/个)之间的函数关系式,并注明自变量x的取值范围;(2)求该耗材店销售这种硒鼓每月获得的利润W(元)与售价x(元/个)之间的函数关系式,并求每月获得的最大利润;(3)在新冠肺炎流行期间,这种硒鼓的进价降低为n元/个,售价为x元/个(n≤x≤48).耗材店在2月份仍然按照销售量与售价关系不变的方式销售,并决定将当月销售这种硒鼓获得的利润全部捐赠给火神山医院,支援武汉抗击新冠肺炎.若要使这个月销售这种硒鼓获得的利润G(元)随售价x(元/个)的增大而增大,请直接写出n的取值范围.27.(14分)如图1,直角三角形MPN的直角顶点P在矩形ABCD的对角线AC上(点P 不与点C重合,可与点A重合),满足tan N=,PM⊥CD于点M,已知CD=12,AD=16.(1)若CP=5,则MD=;(2)当点M在∠DAC的平分线上时,求CM的长;(3)当点P的位置发生改变时:①如图2,△MPN的外接圆是否与AC一直保持相切?说明理由;②直接写出△MPN的外接圆与AD相切时CM的长.2020年河北省邢台市中考数学二模试卷参考答案与试题解析一、选择题(本大题有16个小题,共42分.1~10小题各3分;11~16小题各2分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列四个数中,最小的数是()A.0B.﹣3C.﹣πD.﹣【分析】实数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,据此判断即可.【解答】解:∵,∴最小的数是﹣π.故选:C.【点评】本题考查了实数的大小比较法则的应用,主要考查学生的理解能力和比较能力,注意:正数都大于0,负数都小于0,正数大于一切负数,两个负数比较大小,绝对值大的反而小.2.如图,a∥b,则下列结论中,不一定正确的是()A.∠4=∠5B.∠1+∠2=180°C.∠2+∠3=180°D.∠2+∠4=180°【分析】由a∥b,利用平行线的性质可得出∠4=∠5,∠2+∠3=180°,结合∠1=∠3可得出∠1+∠2=180°,再对照四个选项即可得出结论.【解答】解:∵a∥b,∴∠4=∠5,∠2+∠3=180°.又∵∠1=∠3,∴∠1+∠2=180°.故选:D.【点评】本题考查了平行线的性质以及对顶角,牢记各平行线的性质定理是解题的关键.3.下列关于代数式“3+a”的说法,正确的是()A.表示3个a相加B.代数式的值比a大C.代数式的值比3大D.代数式的值随a的增大而减小【分析】说出代数式的意义,实际上就是把代数式用语言叙述出来.叙述时,要求既要表明运算的顺序,又要说出运算的最终结果.【解答】解:由于a是任意实数,所以代数式“3+a”的值不一定比3大,但随a的增大而增大.故选:B.【点评】本题考查了用语言表达代数式的意义,一定要理清代数式中含有的各种运算及其顺序.具体说法没有统一规定,以简明而不引起误会为出发点.4.如图,光线由上向下照射正五棱柱时的正投影是()A.B.C.D.【分析】直接利用正投影的定义得出答案.【解答】解析:光线由上向下照射正五棱柱时的正投影与俯视图一致.故选:C.【点评】此题主要考查了平行投影,正确掌握相关定义是解题关键.5.体育老师对亮亮和薇薇两名同学的立定跳远进行了五次测试(满分为10分),把他们的成绩绘制成如统计图.根据图中信息,下列说法正确的是()A.亮亮的跳远成绩比薇薇的跳远成绩稳定B.亮亮的成绩越来越好,如果再跳一次一定还是10分C.亮亮的第三次成绩与第二次成绩相比,增长率超过50%D.亮亮和薇薇的成绩都在8分上下波动,两个人的成绩稳定性一样【分析】根据方差的意义即可判断A、D;根据随机事件的不确定性即可判断B;求出亮亮的第三次成绩与第二次成绩相比的增长率,即可判断C.【解答】解:从两个折线图可以直观看出薇薇的跳远成绩较稳定,故A、D两个选项说法均错误,不符合题意;由于跳远成绩具有随机性,如果再跳一次不一定还是10分,故B选项说法错误,不符合题意;亮亮的第三次成绩与第二次成绩相比,增长率为,故C选项说法正确,符合题意;故选:C.【点评】本题主要考查方差的定义:一般地设n个数据,x1,x2,…x n的平均数为,则方差S2=[(x1﹣)2+(x2﹣)2+…+(x n﹣)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.6.下列计算正确的是()A.|﹣2|=﹣2B.=±2C.=﹣2D.【分析】根据绝对值,二次根式的性质,立方根以及有理数的运算逐项进行计算即可.【解答】解:因为|﹣2|=2,因此A不正确,因为=2,因此B不正确,因为=﹣2,因此C正确,因为(﹣1)÷(﹣)=1×2=2,因此D不正确,故选:C.【点评】本题考查绝对值,二次根式的性质,立方根以及有理数的运算,掌握绝对值,二次根式的性质,立方根以及有理数的运算法则是正确判断的前提.7.如图,在正方形ABCD中,AB=6,点Q是AB边上的一个动点(点Q不与点B重合),点M,N分别是DQ,BQ的中点,则线段MN=()A.3B.C.3D.6【分析】根据正方形的性质和勾股定理,可以得到DB的长,然后三角形中位线,可以得到MN的长,本题得以解决.【解答】解:连接DB,∵四边形ABCD是正方形,AB=6,∴∠A=90°,AD=AB=6,∴DB===6,∵点M,N分别是DQ,BQ的中点,∴MN是△DQB的中位线,∴MN=DB=3,故选:A.【点评】本题考查正方形的性质、三角形的中位线,解答本题的关键是明确题意,利用数形结合的思想解答.8.由于新冠肺炎得到了有效控制,省教育厅要求各学校做好复课准备.某校计划对学校60个相同大小的教室进行全面清扫和消毒,在实际进行消毒时,每天消毒的教室数量是原计划的1.2倍,使得完成全部教室消毒的时间缩短了2天.设原计划每天可以清扫、消毒x个教室,则下列符合题意的方程是()A.﹣1.2=B.+2=C.+1.2=D.+2=【分析】设原计划每天可以清扫、消毒x个教室,则实际每天清扫、消毒1.2x个教室.根据实际完成消毒时间缩短2天建立等量关系,列出方程即可.【解答】解析:设原计划每天可以清扫、消毒x个教室,则实际每天清扫、消毒1.2x个教室.根据题意,得.故选:D.【点评】本题考查了由实际问题抽象出分式方程,关键是读懂题意,设出未知数,找出合适的等量关系,列出方程.9.如图,在△ABC中,∠ACB=45°,∠BAC=30°,过点A,C的圆的圆心在边AB上,点M是优弧AC(不与点A,C重合)上的一点,则∠AMC=()A.75°B.60°C.55°D.52.5°【分析】过点A,C的圆的圆心为O,连接OC,如图,利用等腰三角形的性质和三角形内角和计算出∠AOC=120°,然后根据圆周角定理得到∠AMC的度数.【解答】解:过点A,C的圆的圆心为O,连接OC,如图,∵OA=OC,∴∠OCA=∠OAC=30°,∴∠AOC=180°﹣∠OAC﹣∠OCA=120°,∴∠AMC=∠AOC=60°.【点评】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.10.能说明命题“关于x的不等式组的解集为无解”是假命题的反例是()A.m=﹣3B.m=﹣2C.m=﹣1D.m=0【分析】先解出不等式组,根据不等式组的解集解答.【解答】解:,解①得,x≤1,解②得,x>3+m,当3+m≥1,即m≥﹣2时,不等式组无解,则当m=﹣3时,不等式组有解,∴当m=﹣3时,不等式组无解是假命题,故选:A.【点评】本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.11.(2分)如图,有n个全等的正五边形按如下方式拼接,使相邻的两个正五边形有公共顶点,所夹的锐角为24°,拼接一圈后,中间形成一个正多边形,则n的值为()A.5B.6C.8D.10【分析】先求出正五边形每个内角,求得在每个顶点处的度数,再求得正六边形的每个内角,依此即可求解.【解答】解:正五边形每个内角的度数为108°,在每个顶点处有360°﹣108°×2﹣24°正六边形的每个内角为120°,因此这n个正五边形拼接一圈围成的内部为正六边形.故选:B.【点评】本题考查了正多边形和圆、多边形的内角与外角等知识;熟练掌握多边形内角和和外角和是解题的关键.12.(2分)关于x的一元二次方程x2﹣2x=1﹣k,下列结论不正确的是()A.当方程有实数根时k≤2B.当k>0时,方程一定有两个不相等的实数根C.当k=1时,方程的实数根为x1=0,x2=2D.若x1,x2为方程的两个实数根,则有|x1﹣1|=|x2﹣1|【分析】根据一元二次方程的解,结合根的判别式解答即可.【解答】解:A、原方程可以化为(x﹣1)2=2﹣k,当2﹣k≥0时,方程有实数解,即k ≤2,故A正确.B、∵当k≤2时,方程有实数根,∴当k>2时,方程没有实数个;故B不正确;C、当k=1时,则x2﹣2x=0,解得x1=0,x2=2.故C正确;D、当k≤2时,由(x﹣1)2=2﹣k可以求得,则有|x1﹣1|=|x2﹣1|.故D正确;故选:B.【点评】本题考查的是一元二次方程根的判别式,熟知一元二次方程根的判别与方程解的关系是解题的关键.13.(2分)如图,将直角三角板ABC放在平面直角坐标系中,点A,B的坐标分别为(2,1),(7,1).将三角板ABC沿x轴正方向平移,点B的对应点B'刚好落在反比例函数y =(x>0)的图象上,则点C平移的距离CC'=()A.3B.5C.7D.10【分析】先根据平移的性质得到点B'的纵坐标为1,BB′=CC′,则利用反比例函数解析式可确定B'(10,1),则BB'=3,从而得到CC'的长度.【解答】解:∵点A,B的坐标分别为(2,1),(7,1).将三角板ABC沿x轴正方向平移,∴点B'的纵坐标为1,BB′=CC′,当y=1时,=1,解得x=10,∴B'(10,1),∴BB'=10﹣7=3,∴CC'=3.故选:A.【点评】本题考查了反比例函数图象上点的坐标特征:反比例函数y=(k为常数,k ≠0)的图象是双曲线,图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.也考查了平移的性质.14.(2分)将两张面积分别为64和36的正方形纸片按两种方式放置在矩形ABCD中,如图1,图2.AB=m,AD=n,条形波纹表示两正方形的重叠部分,L形阴影表示未被两张正方形纸片覆盖的部分,图1,图2中L形阴影部分的面积分别为S1,S2.则下列结论:①BF=m﹣8;②S1=mn﹣6m﹣16;③S2=mn﹣6n﹣16;④若m﹣n=2,则S2﹣S1=12.其中正确的个数是()A.1B.2C.3D.4【分析】①根据图形中线段的数量关系,可表示BF的长度;②利用图1中的面积关系可以表示出S1;③利用图1中的面积关系可以表示出S2;④将②和③中计算出的S1和S2相减,利用整式的混合运算计算它们的差即可.【解答】解:①BF=AB﹣AF=m﹣8,正确;②,正确;③,正确;④若m﹣n=2,则S2﹣S1=mn﹣6n﹣16﹣(mn﹣6m﹣16)=6(m﹣n)=6×2=12,正确.故选:D.【点评】本题考查了整式的混合运算,利用图形,正确列式,是解题的关键.15.(2分)在平行四边形ABCD中,AB=3,BC=4.5,在图中按下列步骤进行尺规作图:①以A为圆心,AB长为半径画弧交AD于点M;②分别以M,B为圆心,以大于MB的长为半径画弧,两弧相交于点P;③画射线AP交CB于点E,交DC的延长线于点F,连接ME.下列说法错误的是()A.EF=BEB.=2C.D.若cos∠AEB=,则AE=5.4【分析】利用等腰三角形的判定和性质,菱形的性质,解直角三角形等知识,一一判断即可.【解答】解:由尺规作图可知,AF平分∠DAB,由AB∥CD,AD∥CB,可知△DAF,△ABE,△FCE都为等腰三角形,且四边形ABEM为菱形.EB=AB=3,DF=AD=4.5,CE=CF=1.5.∴,.连接MB,MB垂直平分AE于点O.在Rt△EBO中,,∴EO=2.7,∴AE=5.4.故B,C,D正确,故选:A.【点评】本题考查作图﹣基本作图,角平分线的性质,等腰三角形的判定等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.16.(2分)如图,点A(﹣5,m),B(3,n)在直线l:y=﹣上.抛物线L:y=ax2﹣2x+2(a≠0)与线段AB围成封闭图形G(包括边界),则G内的整点(横、纵坐标都为整数)最多有()A.4个B.5个C.6个D.7个【分析】求得A、B的坐标,然后分两种情况讨论画出函数的图象,根据图象即可得到结论.【解答】解:∵点A(﹣5,m),B(3,n)在直线l:y=﹣上.∴m=﹣×(﹣5)+=5,n=﹣×3+=1,∴A(﹣5,5),B(3,1),线段AB上的整点有(3,1),(1,2),(﹣1,3),(﹣3,4),(﹣5,5).当a<0,图象过点A时,G中的整数点最多,把A(﹣5,5)代入y=ax2﹣2x+2得,5=25a+10+2,解得a=﹣,∴y=﹣x2﹣2x+2,∴顶点(﹣,),画出函数图象如图1:由图象可知,G内的整点(横、纵坐标都为整数)有6个;当a>0,图象过点B时,G中的整数点最多,把B(3,1)代入y=ax2﹣2x+2得,1=9a﹣6+2,解得a=,∴y=x2﹣2x+2,画出图象如图2:由图象可知,G内的整点(横、纵坐标都为整数)有5个;故G内的整点(横、纵坐标都为整数)最多有6个,故选:C.【点评】本题考查了一次函数图象上点的坐标特征,二次函数图象上点的坐标特征,二次函数的图象和性质,分类讨论是解题的关键.二、填空题(本大题有3个小题,共11分.17小题3分;18~19小题各有2个空,每空2分.)17.x15÷x3•x5=x17.【分析】直接利用同底数幂的乘除运算法则计算得出答案.【解答】解析:x15÷x3•x5=x15﹣3+5=x17.故答案为:x17.【点评】此题主要考查了同底数幂的乘除运算,正确掌握相关运算法则是解题关键.18.(4分)已知关于x的方程5x﹣2=3x+16的解与方程4a+1=4(x+a)﹣5a的解相同,则a=7;若[m]表示不大于m的最大整数,那么[﹣1]=2.【分析】先解方程5x﹣2=3x+16,得x=9,将x=9代入4a+1=4(x+a)﹣5a,求出a 的值,代入a的值进而可得结果.【解答】解:解方程5x﹣2=3x+16,得x=9,将x=9代入4a+1=4(x+a)﹣5a,得a=7,所以.故答案为:7;2.【点评】本题考查了同解方程,本题的关键是正确解一元一次方程.理解方程的解的定义,就是能够使方程左右两边相等的未知数的值.19.(4分)如图1,在三角形纸板ABC中,∠C=90°,AC=1cm,BC=cm,点M是边AB上的一个点(不与点A,B重合),沿CM折叠纸板,点B的对应点是点B'.(1)如图2,当点B'在射线BA上时,∠BCM=60°.(2)若∠AMB'=30°,且点B'不在直线AC右侧,则点M到BC的距离是cm.【分析】(1)由锐角三角函数可求∠B=30°,由折叠的性质可得点M是BB'的中点,BC =B'C,由等腰三角形的性质可求CM⊥BB',即可求解;(2)过点M作MN⊥BC于N,由题意可得点C,点A,点B'共线,由直角三角形的性质可求解.【解答】解:(1)如图2,当点B'在射线BA上时,由折叠的性质可得点M是BB'的中点,BC=B'C,∴CM⊥BB',∵∠C=90°,AC=1cm,BC=cm,∴tan B==,∴∠B=30°,∴∠BCM=60°,故答案为:60°;(2)如图3,过点M作MN⊥BC于N,由折叠的性质可得∠B=∠B'=30°,∵∠B'+∠B'MA=60°,∴∠B'+∠B'MA=60°=∠BAC,∴点C,点A,点B'共线,∴∠ACM=∠BCM=45°,∵MN⊥BC,∴BN=MN,MN=NC,∵BN+NC=BC=cm,∴MN=(cm),故答案为.【点评】本题考查了翻折变换,锐角三角函数,直角三角形的性质等知识,灵活运用这些性质解决问题是本题的关键.三、解答题(本大题有7个小题,共67分,解答应写出文字说明、证明过程或演算步骤)20.(8分)(1)计算:+(﹣)﹣2﹣3tan60°+(π﹣)0;(2)先化简,再求值:,其中x=+2.【分析】(1)先计算立方根、负整数指数幂、零指数幂、代入三角函数值,再计算加减即可;(2)先根据分式的混合运算顺序和运算法则化简原式,再将x的值代入计算即可.【解答】解:(1)原式=;(2)===x(x﹣2).当时,原式=.【点评】本题主要考查实数的运算和分式的化简求值,解题的关键是掌握分式的混合运算顺序和运算法则、立方根、负整数指数幂、零指数幂、熟记特殊锐角的三角函数值.21.(8分)如果a,b都是非零整数,且a=4b,那么就称a是“4倍数”.(1)30到35之间的“4倍数”是32,小明说:232﹣212是“4倍数”,嘉淇说:122﹣6×12+9也是“4倍数”,他们谁说的对?小明.(2)设x是不为零的整数.①x(x+1)是2的倍数;②任意两个连续的“4倍数”的积可表示为4x(4x+4)或16x(x+1),它是(填“是”或“不是”)32的倍数.(3)设三个连续偶数的中间一个数是2n(n是整数),写出它们的平方和,并说明它们的平方和是“4倍数”.【分析】(1)根据“4倍数”的定义即可求解;(2)①可得x和(x+1)必有1个是偶数,依此即可求解;②根据“4倍数”的定义即可求解;(3)根据因式分解的进行计算,然后进行分解即可求解.【解答】解:(1)30到35之间的“4倍数”是32;小明:232﹣212=(23﹣21)×(23+21)=2×44=4×22,是“4倍数”,嘉淇:122﹣6×12+9=(12﹣3)2=92=81,不是“4倍数”.故答案为:32,小明;(2)①∵x是不为零的整数,∴x和(x+1)必有1个是偶数,∴x(x+1)是2的倍数;故答案为:2;②任意两个连续的“4倍数”的积可表示为4x(4x+4)或16x(x+1),它是32的倍数.故答案为:4x(4x+4)或16x(x+1),是;(3)三个连续偶数为2n﹣2,2n,2n+2,(2n﹣2)2+(2n)2+(2n+2)2=4n2﹣8n+4+4n2+4n2+8n+4=12n2+8=4(3n2+2),∵n为整数,∴4(3n2+2)是“4倍数”.【点评】本题主要考查了因式分解的应用,熟练掌握因式分解的应用是解答此题的关键.22.(8分)今年在2月27日国务院对外新闻发布会上,中国疾控中心发言人提到:“在新冠肺炎低风险区域出行仍需戴口罩.”某单位复工,采购了一批医用外科口罩,单价分别为1元、1.5元、3元、5元、10元,每天随机配发给每位在岗员工一个口罩.现将连续10天口罩配发量的情况制成如统计表.配发量/个30252015天数/天2x y1已知配发量的平均数是23个,中位数是m个,众数是n个.(1)求x,y的值,并计算m﹣n;(2)将配发15个口罩那一天中不同型号的口罩发放情况进行统计,绘制成如图所示的尚不完整的统计图.补全统计图,并求小李当天获得不低于3元口罩的概率;(3)若继续发放两天口罩,且这12天口罩配发量的众数与前10天口罩配发量的众数不同(例如:只要在第11天,第12天都发放30个口罩,则这12天口罩发放量的众数为30个和20个),写出这12天口罩配发量的众数(括号内示例情况不必再述).【分析】(1)题中有两个等量关系:①配发口罩一共10天,②配发量的平均数是23个.依此列出二元一次方程组,解方程组求出x,y的值,再根据中位数与众数的定义求出m、n,代入m﹣n计算即可;(2)根据各组频数之和等于数据总数15,求出单价为3元的口罩的个数,即可补全统计图,用不低于3元口罩的个数除以15求出小李当天获得不低于3元口罩的概率;(3)根据“若继续发放两天口罩,且这12天口罩配发量的众数与前10天口罩配发量的众数不同”,得出第11天,第12天的口罩发放量,进而求出这12天口罩配发量的众数.【解答】解:(1)∵平均数为23个,∴,解得,将10个数据按从大到小的顺序排列,第5、6个数据分别是25,20,所以中位数m==22.5,数据20出现了4次,次数最多,所以众数n=20.∴m﹣n=2.5.(2)补全统计图如图所示:在这5种型号中,单价不低于3元的有3元、5元、10元三种,∴小李当天获得不低于3元的口罩的概率为:.(3)由表格可知:配发量/个30252015天数/天2341因为这12天口罩配发量的众数发生改变,除示例情况外还有两种情况:情况一:两天都配发25个,众数变为25个;情况二:其中一天配发25个,另一天配发30个或15个,众数变为25个和20个.【点评】本题考查的是概率公式,中位数,众数,条形统计图的综合运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.23.(8分)如图,直线l1经过点A(0,2)和C(6,﹣2),点B的坐标为(4,2),点P 是线段AB上的动点(点P不与点A重合),直线l2:y=kx+2k经过点P,并与l1交于点M,过点P作PN⊥l2,交l1于点N.(1)求l1的函数表达式;(2)当k=时,①求点M的坐标;②求S△APM.(3)将点N的横坐标记为x n,在点P移动的过程中,直接写出x n的范围.【分析】(1)设l1的表达式为:y=k1x+b,把A与C的坐标代入求出k1与b的值,即可确定出l1函数表达式;(2)①把k的值代入确定出l2表达式,与l1表达式联立求出解,得到M的坐标即可;②把y=2代入l2的表达式求出x的值,确定出P的坐标,得到AP的长,求出M到AP的距离,即可求出三角形APM的面积;(3)由y=kx+2k(k≠0)=k(x+2)恒过点(﹣2,0),l2与线段AB有交点,得到点P 的运动范围是线段AB(点P不与点A重合),①点N的横坐标随着P A变小而变小,即x n趋于0;②当l2过点B时,此时点P与点B重合,求出此时x n的值,即可确定出x n 的范围.【解答】解:(1)设l1的表达式为:y=k1x+b,将点A(0,2)和C(6,﹣2)代入得:,。
2020二模数学试卷及答案

(2)求E心两点的距离(结果保留整数) (sin50°=0.7660, cos50°=0.6428, tan50°=1.1918, sin25°=0.4226, C码25°::0.9063, tan25°�.4663)
20. (9分)为了打好疫情期间复工复产攻坚战,某公司决定为员工采购一批口罩和消毒
、 @当LB的度数为___时,以A、O D、F为顶点的四边形为菱形. A
。
19. (9分)图1是某小型汽车的侧面示意图,其中矩形ABCD表示该车的后备箱,在打开
后备箱的过程中,箱盖ADE可以绕点A逆时针方向
转,当旋转角为5铲时,箱盖ADE 落在AD'E' 的
置(如图2所示).已知AD=96cm ,DE=28cm, EC=42cm.
液,经了解,购买4包口罩和 3 瓶消毒液共需185元;购买8包口罩和5瓶消毒液共需335元.
(1)一包口罩和一瓶消毒液各需多少元?
九年级数学 第3页(共8页)
(2)实际购买时,发现厂家有两种优惠方案:方案一:购买口罩不超过20包时,每包都按九 折优惠,超过20包时,超过部分每包按七折优惠,消毒液不优惠;方案二:口罩、消毒液均按原 价的八折优惠
允
备用图
2020年九年级第二次联合质量抽测试卷
数学参考答案及评分标准
一、选择题(每小题3分,共30分)
1:二 I : I : I : I : I�I : I : I : I : I�
二、填空题(每小题3分,共15分)
题号
11
3-21
13
答案
一1
01-
116°
14 12\13:"� 拉 3 1T
2020年山东省青岛市数学二模试卷与详细解析

18.试在① ,② ,③ 三个条件中选两个条件补充在下面的横线处,使得 面ABCD成立,请说明理由,并在此条件下进一步解答该题:
如图,在四棱锥 中, ,底ABCD为菱形,若__________,且 ,异面直线PB与CD所成的角为 ,求二面角 的余弦值.
19.已知数列 的各项均为正数,其前n项和为 , , .
9.B【分析】根据 的取值和椭圆、双曲线的几何性质可确定 的正误;根据方程表示双曲线可构造不等式,确定 的正误;根据直线与圆位置关系的判定可知 的正误.【详解】对于 ,当 时,曲线 的方程为 ,轨迹为椭圆,焦距 , 错误;对于 ,当 时,曲线 的方程为 ,轨迹为双曲线,则 , , 离心率 , 正确;对于 ,若曲线 表示焦点在 轴上的双曲线,则 ,解集为空集, 不存在实数 使得曲线 为焦点在 轴上的双曲线, 错误;对于 ,当 时,曲线 的方程为 ,其渐近线方程为 ,则圆 的圆心到渐近线的距离 , 双曲线渐近线与圆 不相切, 错误.故选: .
因为 ,所以 ,所以 , ,
所以ABCD的面积 .
(2)在 中,由正弦定理知: ,所以 .
因为 ,所以 , .在 中, ,
所以 ,所以 .
18.详见解析;余弦值为 【分析】先分析出只能选择①③,再进行证明和计算.【详解】若选②:由 平面ABCD知,又 ,所以 面PAC,所以 ,所以 , ,这与底面ABCD为菱形矛盾,所以②必不选,故选①③.下面证明: 平面ABCD,因为四边形ABCD为菱形,所以 .因为 , ,所以 平面APC.又因为 平面APC,所以 .因为 ,O为AC中点,所以 .又 ,所以 平面ABCD,因为 面ABCD,以O为坐标原点,以 , , 的方向分别作为x轴,y轴,z轴的正方向,建立如图空间直角坐标系 ,
2020年中考二模数学试卷(含答案)

2020年中考数学二模试卷一.选择题(共12小题)1.2020的相反数是()A.2020B.﹣2020C.D.2.新冠病毒(2019﹣nCoV)是一种新的Sarbecovirus亚属的β冠状病毒,它是一类具有囊膜的正链单股RNA病毒,其遗传物质是所有RNA病毒中最大的,也是自然界广泛存在的一大类病毒.其粒子形状并不规则,直径约60﹣220nm,平均直径为100nm(纳米).1米=109纳米,100nm可以表示为()米.A.0.1×10﹣6B.10×10﹣8C.1×10﹣7D.1×10113.如图所示的几何体是由六个相同的小正方体组合而成的,它的俯视图是()A.B.C.D.4.下列运算正确的是()A.a5+a5=a10B.﹣3(a﹣b)=﹣3a﹣3bC.(mn)﹣3=mn﹣3D.a6÷a2=a45.若点A(m﹣4,1﹣2m)在第三象限,那么m的值满足()A.<m<4B.m>C.m<4D.m>46.下列说法中,正确的是()A.对载人航天器零部件的检查适合采用抽样调查的方式B.某市天气预报中说“明天降雨的概率是80%”,表示明天该市有80%的地区降雨C.通过抛掷1枚质地均匀的硬币,确定谁先发球的比赛规则是公平的D.掷一枚骰子,点数为3的面朝上是确定事件7.如图,AB∥CD,则根据图中标注的角,下列关系中成立的是()A.∠1=∠3B.∠2+∠3=180°C.∠2+∠4<180°D.∠3+∠5=180°8.如图,从圆O外一点P引圆O的两条切线P A,PB,切点分别为A,B.如果∠APB=60°,P A=8,那么弦AB的长是()A.4B.8C.D.9.如图,某风景区为了方便游人参观,计划从主峰A处架设一条缆车线路到另一山峰C处,若在A处测得C处的俯角为30°,两山峰的底部BD相距900米,则缆车线路AC的长为()A.B.C.D.1800米10.设x1,x2是一元二次方程x2﹣2x﹣5=0的两根,则x12+x22的值为()A.6B.8C.14D.1611.已知M,N两点关于y轴对称,且点M在反比例函数的图象上,点N在一次函数y=x+3的图象上,设点M的坐标为(a,b),则二次函数y=abx2+(a+b)x()A.有最小值,且最小值是B.有最大值,且最大值是﹣C.有最大值,且最大值是D.有最小值,且最小值是﹣12.如图,若抛物线y=﹣x2+3与x轴围成封闭区域(边界除外)内整点(点的横、纵坐标都是整数)的个数为k,则反比例函数y=(x>0)的图象是()A.B.C.D.二.填空题(共6小题)13.使分式有意义的x的取值范围.14.不透明袋子中装有5个红色球和3个蓝色球,这些球除了颜色外没有其他差别.从袋子中随机摸出一个球,摸出蓝色球的概率为.15.若△ABC∽△DEF,且相似比为3:1,△ABC的面积为54,则△DEF的面积为.16.如图,AB为圆O的直径,弦CD⊥AB,垂足为E,若∠BCD=22.5°,AB=2cm,则圆O的半径为.17.如图,直线y=kx与双曲线y=交于A、B两点,BC⊥y轴于点C,则△ABC的面积为.18.如图,△ABC中,∠BAC=45°,∠ACB=30°,将△ABC绕点A顺时针旋转得到△A1B1C1,当C,B1,C1三点共线时,旋转角为α,连接BB1,交于AC于点D,下面结论:①△AC1C为等腰三角形;②CA=CB1;③α=135°;④△AB1D∽△ACB1;⑤=中,正确的结论的序号为.三.解答题(共8小题)19.计算:(﹣)﹣2+(π﹣3)0+|1﹣|+tan45°20.先化简再求值:(3x+2y)(3x﹣2y)﹣5x(x﹣y)﹣(2x﹣y)2,其中x=﹣,y=﹣1.21.为响应“书香学校,书香班级”的建设号召,平顶山市某中学积极行动,学校图书角的新书、好书不断增加.下面是随机抽查该校若干名同学捐书情况统计图:请根据下列统计图中的信息,解答下列问题(1)此次随机调查同学所捐图书数的中位数是,众数是;(2)在扇形统计图中,捐2本书的人数所占的扇形圆心角是多少度?(3)若该校有在校生1600名学生,估计该校捐4本书的学生约有多少名?22.如图,矩形ABCD中,CE⊥BD于E,CF平分∠DCE与DB交于点F.(1)求证:BF=BC;(2)若AB=4cm,AD=3cm,求CF的长.23.湘潭市继2017年成功创建全国文明城市之后,又准备争创全国卫生城市.某小区积极响应,决定在小区内安装垃圾分类的温馨提示牌和垃圾箱,若购买2个温馨提示牌和3个垃圾箱共需550元,且垃圾箱的单价是温馨提示牌单价的3倍.(1)求温馨提示牌和垃圾箱的单价各是多少元?(2)该小区至少需要安放48个垃圾箱,如果购买温馨提示牌和垃圾箱共100个,且费用不超过10000元,请你列举出所有购买方案,并指出哪种方案所需资金最少?最少是多少元?24.如图,AB为⊙O的直径,AC切⊙O于点A,连结BC交O于点D,E是⊙O上一点,且与点D在AB异侧,连结DE(1)求证:∠C=∠BED;(2)若∠C=50°,AB=2,则的长为(结果保留π)25.对某一个函数给出如下定义:对于函数y,若当a≤x≤b,函数值y满足m≤y≤n,且满足n﹣m=k(b﹣a),则称此函数为“k型闭函数”.例如:正比例函数y=﹣3x,当1≤x≤3时,﹣9≤y≤﹣3,则﹣3﹣(﹣9)=k(3﹣1),求得:k=3,所以函数y=﹣3x为“3型闭函数”.(1)①已知一次函数y=2x﹣1(1≤x≤5)为“k型闭函数”,则k的值为;②若一次函数y=ax﹣1(1≤x≤5)为“1型闭函数”,则a的值为;(2)反比例函数y=(k>0,.a≤x≤b且0<a<b)是“k型闭函数”,且a+b=,请求a2+b2的值;(3)已知二次函数y=﹣3x2+6ax+a2+2a,当﹣1≤x≤1时,y是“k型闭函数”,求k的取值范围.26.如图,抛物线y=ax2+bx+c(a<0,a、b、c为常数)与x轴交于A、C两点,与y轴交于B点,A(﹣6,0),C(1,0),B(0,).(1)求该抛物线的函数关系式与直线AB的函数关系式;(2)已知点M(m,0)是线段OA上的一个动点,过点M作x轴的垂线l,分别与直线AB和抛物线交于D、E两点,当m为何值时,△BDE恰好是以DE为底边的等腰三角形?(3)在(2)问条件下,当△BDE恰妤是以DE为底边的等腰三角形时,动点M相应位置记为点M′,将OM′绕原点O顺时针旋转得到ON(旋转角在0°到90°之间);i:探究:线段OB上是否存在定点P(P不与O、B重合),无论ON如何旋转,始终保持不变,若存在,试求出P点坐标:若不存在,请说明理由;ii:试求出此旋转过程中,(NA+NB)的最小值.参考答案与试题解析一.选择题(共12小题)1.2020的相反数是()A.2020B.﹣2020C.D.【分析】直接利用相反数的定义得出答案.【解答】解:2020的相反数是:﹣2020.故选:B.2.新冠病毒(2019﹣nCoV)是一种新的Sarbecovirus亚属的β冠状病毒,它是一类具有囊膜的正链单股RNA病毒,其遗传物质是所有RNA病毒中最大的,也是自然界广泛存在的一大类病毒.其粒子形状并不规则,直径约60﹣220nm,平均直径为100nm(纳米).1米=109纳米,100nm可以表示为()米.A.0.1×10﹣6B.10×10﹣8C.1×10﹣7D.1×1011【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:100nm=100×10﹣9m=1×10﹣7m.故选:C.3.如图所示的几何体是由六个相同的小正方体组合而成的,它的俯视图是()A.B.C.D.【分析】根据从上面看得到的图形是俯视图,可得答案.【解答】解:从上面看第一层是两个小正方形,第二层是三个小正方形,故选:D.4.下列运算正确的是()A.a5+a5=a10B.﹣3(a﹣b)=﹣3a﹣3bC.(mn)﹣3=mn﹣3D.a6÷a2=a4【分析】根据合并同类项的法则,积的乘方,同底数幂的除法即可作出判断.【解答】解:A、a5+a5=2a5,故选项错误;B、﹣3(a﹣b)=﹣3a+3b,故选项错误;C、(mn)﹣3=m﹣3n﹣3,则选项错误;D、正确.故选:D.5.若点A(m﹣4,1﹣2m)在第三象限,那么m的值满足()A.<m<4B.m>C.m<4D.m>4【分析】根据第三象限内点的横坐标与纵坐标都是负数列出不等式组,然后求解即可.【解答】解:∵点A(m﹣4,l﹣2m)在第三象限,∴,解不等式①得,m<4,解不等式②得,m>,所以,m的取值范围是<m<4.故选:A.6.下列说法中,正确的是()A.对载人航天器零部件的检查适合采用抽样调查的方式B.某市天气预报中说“明天降雨的概率是80%”,表示明天该市有80%的地区降雨C.通过抛掷1枚质地均匀的硬币,确定谁先发球的比赛规则是公平的D.掷一枚骰子,点数为3的面朝上是确定事件【分析】根据普查和抽样调查的意义可判断出A的正误;根据概率的意义可判断出B、C、的正误;根据必然事件、不可能事件、随机事件的概念可区别各类事件,从而判定D的正误.【解答】解:A、对载人航天器零部件的检查,应采用全面调查的方式,故错误;B、某市天气预报中说“明天降雨的概率是80%”,表示明天该市有80%的可能降水,故错误;C、抛掷一枚质地均匀的硬币,正面朝上的概率为0.5,可以用到实际生活,通过抛掷硬币确定谁先发球的比赛规则是公平的.故正确;D、掷一枚骰子,点数3朝上是随机事件,故错误;故选:C.7.如图,AB∥CD,则根据图中标注的角,下列关系中成立的是()A.∠1=∠3B.∠2+∠3=180°C.∠2+∠4<180°D.∠3+∠5=180°【分析】根据平行线的性质对各选项分析判断利用排除法求解.【解答】解:A、∵OC与OD不平行,∴∠1=∠3不成立,故本选项错误;B、∵OC与OD不平行,∴∠2+∠3=180°不成立,故本选项错误;C、∵AB∥CD,∴∠2+∠4=180°,故本选项错误;D、∵AB∥CD,∴∠3+∠5=180°,故本选项正确.故选:D.8.如图,从圆O外一点P引圆O的两条切线P A,PB,切点分别为A,B.如果∠APB=60°,P A=8,那么弦AB的长是()A.4B.8C.D.【分析】根据切线长定理知P A=PB,而∠P=60°,所以△P AB是等边三角形,由此求得弦AB的长.【解答】解:∵P A、PB都是⊙O的切线,∴P A=PB,又∵∠P=60°,∴△P AB是等边三角形,即AB=P A=8,故选:B.9.如图,某风景区为了方便游人参观,计划从主峰A处架设一条缆车线路到另一山峰C处,若在A处测得C处的俯角为30°,两山峰的底部BD相距900米,则缆车线路AC的长为()A.B.C.D.1800米【分析】此题可利用俯角的余弦函数求得缆车线路AC的长,AC=.【解答】解:由于A处测得C处的俯角为30°,两山峰的底部BD相距900米,则AC==600(米).故选:B.10.设x1,x2是一元二次方程x2﹣2x﹣5=0的两根,则x12+x22的值为()A.6B.8C.14D.16【分析】由根与系数的关系即可求出答案.【解答】解:∵x1,x2是一元二次方程x2﹣2x﹣5=0的两根,∴x1+x2=2,x1x2=﹣5∴原式=(x1+x2)2﹣2x1x2=4+10=14故选:C.11.已知M,N两点关于y轴对称,且点M在反比例函数的图象上,点N在一次函数y=x+3的图象上,设点M的坐标为(a,b),则二次函数y=abx2+(a+b)x()A.有最小值,且最小值是B.有最大值,且最大值是﹣C.有最大值,且最大值是D.有最小值,且最小值是﹣【分析】先用待定系数法求出二次函数的解析式,再根据二次函数图象上点的坐标特点求出其最值即可.【解答】解:因为M,N两点关于y轴对称,所以设点M的坐标为(a,b),则N点的坐标为(﹣a,b),又因为点M在反比例函数的图象上,点N在一次函数y=x+3的图象上,所以,整理得,故二次函数y=abx2+(a+b)x为y=x2+3x,所以二次项系数为>0,故函数有最小值,最小值为y==﹣.故选:D.12.如图,若抛物线y=﹣x2+3与x轴围成封闭区域(边界除外)内整点(点的横、纵坐标都是整数)的个数为k,则反比例函数y=(x>0)的图象是()A.B.C.D.【分析】找到函数图象与x轴、y轴的交点,得出k=8,即可得出答案.【解答】解:抛物线y=﹣x2+3,当y=0时,x=±;当x=0时,y=3,则抛物线y=﹣x2+3与x轴围成封闭区域(边界除外)内整点(点的横、纵坐标都是整数)为(﹣2,1),(﹣1,1),(﹣1,2),(0,1),(0,2),(1,1),(1,2),(2,1);共有8个,∴k=8;故选:C.二.填空题(共6小题)13.使分式有意义的x的取值范围x≠3.【分析】根据分母不为零分式有意义,可得答案.【解答】解:根据题意,得x﹣3≠0,解得x≠3,故答案为:x≠3.14.不透明袋子中装有5个红色球和3个蓝色球,这些球除了颜色外没有其他差别.从袋子中随机摸出一个球,摸出蓝色球的概率为.【分析】根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.【解答】解:由于共有8个球,其中蓝球有5个,则从袋子中随机摸出一个球,摸出蓝球的概率是,故答案为:.15.若△ABC∽△DEF,且相似比为3:1,△ABC的面积为54,则△DEF的面积为6.【分析】根据相似三角形的面积比等于相似比的平方计算,得到答案.【解答】解:∵△ABC∽△DEF,相似比为3:1,∴=32,即=9,解得,△DEF的面积=6,故答案为:6.16.如图,AB为圆O的直径,弦CD⊥AB,垂足为E,若∠BCD=22.5°,AB=2cm,则圆O的半径为.【分析】连接OB,根据垂径定理以及勾股定理即可求出OB的长度.【解答】解:连接OB,∵OC=OB,∠BCD=22.5°,∴∠EOB=45°,∵CD⊥AB,CD是直径,∴由垂径定理可知:EB=AB=1,∴OE=EB=1,∴由勾股定理可知:OB=,故答案为:17.如图,直线y=kx与双曲线y=交于A、B两点,BC⊥y轴于点C,则△ABC的面积为3.【分析】根据反比例函数的性质可判断点A与点B关于原点对称,则S△BOC=S△AOC,再利用反比例函数k的几何意义得到S△BOC=1.5,则易得S△ABC=3.【解答】解:∵直线y=kx与双曲线y=交于A,B两点,∴点A与点B关于原点对称,∴S△BOC=S△AOC,而S△BOC=×3=1.5,∴S△ABC=2S△BOC=3.故答案为:3.18.如图,△ABC中,∠BAC=45°,∠ACB=30°,将△ABC绕点A顺时针旋转得到△A1B1C1,当C,B1,C1三点共线时,旋转角为α,连接BB1,交于AC于点D,下面结论:①△AC1C为等腰三角形;②CA=CB1;③α=135°;④△AB1D∽△ACB1;⑤=中,正确的结论的序号为①②④⑤.【分析】首先根据旋转的性质得出AC1=AC,从而结论①可判断;再通过三角形内部角度及旋转角的计算对②③作出判断;通过∠ABD=∠ACB1,∠AB1D=∠BCD=30°,判定△AB1D∽△ACB1;通过证明△ABD∽△B1CD,利用相似三角形的性质列式计算对⑤作出判断.【解答】解:由旋转的性质可知AC1=AC,∴△AC1C为等腰三角形,即①正确;∵∠ACB=30°,∴∠C1=∠ACB1=30°,又∵B1AC1=∠BAC=45°,∴∠AB1C=75°,∴∠CAB1=180°﹣75°﹣30°=75°,∴CA=CB1;∴②正确;∵∠CAC1=∠CAB1+∠B1AC1=120°,∴旋转角α=120°,故③错误;∵∠BAC=45°,∴∠BAB1=45°+75°=120°,∵AB=AB1,∴∠AB1B=∠ABD=30°,在△AB1D与△BCD中,∵∠ABD=∠ACB1,∠AB1D=∠BCD=30°,∴△AB1D∽△ACB1,即④正确;在△ABD与△B1CD中,∵∠ABD=∠ACB1,∠ADB=∠CDB1,∴△ABD∽△B1CD,∴=,如图,过点D作DM⊥B1C,设DM=x,则B1M=x,B1D=x,DC=2x,DC=2x,CM=x,∴AC=B1C=(+1)x,∴AD=AC﹣CD=(﹣1)x,∴===,即⑤正确.故答案为:①②④⑤.三.解答题(共8小题)19.计算:(﹣)﹣2+(π﹣3)0+|1﹣|+tan45°【分析】第一项利用负指数幂法则计算,第二项利用零指数幂法则计算,第三项去绝对值,最后一项利用特殊角的三角函数值计算,最后合并即可得出结论.【解答】解:(﹣)﹣2+(π﹣3)0+|1﹣|+tan45°=4+1+﹣1+1=+5.20.先化简再求值:(3x+2y)(3x﹣2y)﹣5x(x﹣y)﹣(2x﹣y)2,其中x=﹣,y=﹣1.【分析】原式利用平方差公式,单项式乘多项式法则,以及完全平方公式计算,去括号合并得到最简结果,把x与y的值代入计算即可求出值.【解答】解:原式=9x2﹣4y2﹣5x2+5xy﹣4x2+4xy﹣y2=9xy﹣5y2,当x=﹣,y=﹣1时,原式=3﹣5=﹣2.21.为响应“书香学校,书香班级”的建设号召,平顶山市某中学积极行动,学校图书角的新书、好书不断增加.下面是随机抽查该校若干名同学捐书情况统计图:请根据下列统计图中的信息,解答下列问题(1)此次随机调查同学所捐图书数的中位数是4本,众数是2本;(2)在扇形统计图中,捐2本书的人数所占的扇形圆心角是多少度?(3)若该校有在校生1600名学生,估计该校捐4本书的学生约有多少名?【分析】(1)根据捐2本的学生所占的百分比和人数可以求得本次调查的学生数,从而可以得到中位数和众数;(2)根据统计图中的数据,可以计算出在扇形统计图中,捐2本书的人数所占的扇形圆心角是多少度;(3)根据统计图中的数据可以计算出该校捐4本书的学生约有多少名.【解答】解:(1)本次调查的人数为:15÷30%=50(人),捐书四本的学生有50﹣9﹣15﹣6﹣7=13(人),则此次随机调查同学所捐图书数的中位数是4本,众数是2本,故答案为:4本,2本;(2)在扇形统计图中,捐2本书的人数所占的扇形圆心角是:360°×=108°;答:捐2本书的人数所占的扇形圆心角是108度.(3)1600×=416(名),答:该校捐4本书的学生约有416名.22.如图,矩形ABCD中,CE⊥BD于E,CF平分∠DCE与DB交于点F.(1)求证:BF=BC;(2)若AB=4cm,AD=3cm,求CF的长.【分析】(1)要求证:BF=BC只要证明∠CFB=∠FCB就可以,从而转化为证明∠BCE =∠BDC就可以;(2)已知AB=4cm,AD=3cm,就是已知BC=BF=3cm,CD=4cm,在直角△BCD中,根据三角形的面积等于BD•CE=BC•DC,就可以求出CE的长.要求CF的长,可以在直角△CEF中用勾股定理求得.其中EF=BF﹣BE,BE在直角△BCE中根据勾股定理就可以求出,由此解决问题.【解答】证明:(1)∵四边形ABCD是矩形,∴∠BCD=90°,∴∠CDB+∠DBC=90°.∵CE⊥BD,∴∠DBC+∠ECB=90°.∴∠ECB=∠CDB.∵∠CFB=∠CDB+∠DCF,∠BCF=∠ECB+∠ECF,∠DCF=∠ECF,∴∠CFB=∠BCF∴BF=BC(2)∵四边形ABCD是矩形,∴DC=AB=4(cm),BC=AD=3(cm).在Rt△BCD中,由勾股定理得BD==5.又∵BD•CE=BC•DC,∴CE=.∴BE=.∴EF=BF﹣BE=3﹣.∴CF=cm.23.湘潭市继2017年成功创建全国文明城市之后,又准备争创全国卫生城市.某小区积极响应,决定在小区内安装垃圾分类的温馨提示牌和垃圾箱,若购买2个温馨提示牌和3个垃圾箱共需550元,且垃圾箱的单价是温馨提示牌单价的3倍.(1)求温馨提示牌和垃圾箱的单价各是多少元?(2)该小区至少需要安放48个垃圾箱,如果购买温馨提示牌和垃圾箱共100个,且费用不超过10000元,请你列举出所有购买方案,并指出哪种方案所需资金最少?最少是多少元?【分析】(1)根据“购买2个温馨提示牌和3个垃圾箱共需550元”,建立方程求解即可得出结论;(2)根据“费用不超过10000元和至少需要安放48个垃圾箱”,建立不等式即可得出结论.【解答】解:(1)设温馨提示牌的单价为x元,则垃圾箱的单价为3x元,根据题意得,2x+3×3x=550,∴x=50,经检验,符合题意,∴3x=150元,即:温馨提示牌和垃圾箱的单价各是50元和150元;(2)设购买温馨提示牌y个(y为正整数),则垃圾箱为(100﹣y)个,根据题意得,,∴50≤y≤52,∵y为正整数,∴y为50,51,52,共3种方案;即:温馨提示牌50个,垃圾箱50个;温馨提示牌51个,垃圾箱49个;温馨提示牌52个,垃圾箱48个,根据题意,费用为50y+150(100﹣y)=﹣100y+15000,当y=52时,所需资金最少,最少是9800元.24.如图,AB为⊙O的直径,AC切⊙O于点A,连结BC交O于点D,E是⊙O上一点,且与点D在AB异侧,连结DE(1)求证:∠C=∠BED;(2)若∠C=50°,AB=2,则的长为(结果保留π)【分析】(1)连接AD,如图,根据圆周角定理得到∠ADB=90°,根据切线的性质得到∠BAC=90°,则利用等角的余角相等得到∠DAB=∠C,然后根据圆周角定理和等量代换得到结论;(2)连接OD,如图,利用(1)中结论得到∠BED=∠C=50°,再利用圆周角定理得到∠BOD的度数,然后根据弧长公式计算的长度.【解答】(1)证明:连接AD,如图,∵AB为⊙O的直径,∴∠ADB=90°,∵AC切⊙O于点A∴CA⊥AB,∴∠BAC=90°,∴∠C+∠ABD=90°,而∠DAB+∠ABD=90°,∴∠DAB=∠C,∵∠DAB=∠BED,∴∠C=∠BED;(2)解:连接OD,如图,∵∠BED=∠C=50°,∴∠BOD=2∠BED=100°,∴的长度==π.25.对某一个函数给出如下定义:对于函数y,若当a≤x≤b,函数值y满足m≤y≤n,且满足n﹣m=k(b﹣a),则称此函数为“k型闭函数”.例如:正比例函数y=﹣3x,当1≤x≤3时,﹣9≤y≤﹣3,则﹣3﹣(﹣9)=k(3﹣1),求得:k=3,所以函数y=﹣3x为“3型闭函数”.(1)①已知一次函数y=2x﹣1(1≤x≤5)为“k型闭函数”,则k的值为2;②若一次函数y=ax﹣1(1≤x≤5)为“1型闭函数”,则a的值为﹣1;(2)反比例函数y=(k>0,.a≤x≤b且0<a<b)是“k型闭函数”,且a+b=,请求a2+b2的值;(3)已知二次函数y=﹣3x2+6ax+a2+2a,当﹣1≤x≤1时,y是“k型闭函数”,求k的取值范围.【分析】(1)①直接利用“k型闭函数”的定义即可得出结论;②分两种情况:利用“k型闭函数”的定义即可得出结论;(2)先判断出函数的增减性,利用“k型闭函数”的定义得出ab=1,即可得出结论;(3)分四种情况,各自确定出最大值和最小值,最后利用“k型闭函数”的定义即可得出结论;【解答】解:(1)①一次函数y=2x﹣1,当1≤x≤5时,1≤y≤9,∴9﹣1=k(5﹣1),∴k=2,故答案为:2;②当α>0时,∵1≤x≤5,∴a﹣1≤y≤5a﹣1,∵函数y=ax﹣1(1≤x≤5)为“1型闭函数”,∴(5a﹣1)﹣(a﹣1)=5﹣1,∴a=1;当a<0时,(a﹣1)﹣(5a﹣1)=5﹣1,∴a=﹣1;故答案为:﹣1;(2)∵反比例函数y=,∵k>0,∴y随x的增大而减小,当a≤x≤b且1<a<b是“1型闭函数”,∴=k(b﹣a),∴ab=1,∵a+b=,∴a2+b2=(a+b)2﹣2ab=2020﹣2×1=2018;(3)∵二次函数y=﹣3x2+6ax+a2+2a的对称轴为直线x=a,∵当﹣1≤x≤1时,y是“k型闭函数”,∴当x=﹣1时,y=a2﹣4a﹣3,当x=1时,y=a2+8a﹣3,当x=a时,y=4a2+2a,①如图1,当a≤﹣1时,当x=﹣1时,有y max=a2﹣4a﹣3,当x=1时,有y min=a2+8a﹣3∴(a2﹣4a﹣3)﹣(a2+8a﹣3)=2k,∴k=﹣6a,∴k≥6,②如图2,当﹣1<a≤0时,当x=a时,有y max=4a2+2a,当x=1时,有y min=a2+8a﹣3∴(4a2+2a)﹣(a2+8a﹣3)=2k,∴k=(a﹣1)2,∴≤k<6;③如图3,当0<a≤1时,当x=a时,有y max=4a2+2a,当x=﹣1时,有y min=a2﹣4a﹣3∴(4a2+2a)﹣(a2﹣4a﹣3)=2k,∴k=(a+1)2,∴<k≤6,④如图4,当a>1时,当x=1时,有y max=a2+8a﹣3,当x=﹣1时,有y min=a2﹣4a﹣3∴(a2+8a﹣3)﹣(a2﹣4a﹣3)=2k,∴k=﹣6a,∴k>6,即:k的取值范围为k≥.26.如图,抛物线y=ax2+bx+c(a<0,a、b、c为常数)与x轴交于A、C两点,与y轴交于B点,A(﹣6,0),C(1,0),B(0,).(1)求该抛物线的函数关系式与直线AB的函数关系式;(2)已知点M(m,0)是线段OA上的一个动点,过点M作x轴的垂线l,分别与直线AB和抛物线交于D、E两点,当m为何值时,△BDE恰好是以DE为底边的等腰三角形?(3)在(2)问条件下,当△BDE恰妤是以DE为底边的等腰三角形时,动点M相应位置记为点M′,将OM′绕原点O顺时针旋转得到ON(旋转角在0°到90°之间);i:探究:线段OB上是否存在定点P(P不与O、B重合),无论ON如何旋转,始终保持不变,若存在,试求出P点坐标:若不存在,请说明理由;ii:试求出此旋转过程中,(NA+NB)的最小值.【分析】(1)根据已知条件可以设抛物线解析式为y=a(x+6)(x﹣1),然后把点B的坐标代入函数解析式求得系数a的值即可;利用待定系数法求得直线AB的解析式;(2)由点M(m,0),过点M作x轴的垂线l分别与直线AB和抛物线交于D、E两点,得到D(m,m+),当DE为底时,作BG⊥DE于G,根据等腰三角形的性质得到EG=GD=ED,GM=OB=,列方程即可得到结论;(3)i:根据已知条件得到ON=OM′=4,OB=,由∠NOP=∠BON,特殊的当△NOP∽△BON时,根据相似三角形的性质得到===,于是得到结论;ii:根据题意得到N在以O为圆心,4为半径的半圆上,由①知,==,得到NP=NB,于是得到(NA+NB)的最小值=NA+NP,此时N,A,P三点共线,根据勾股定理得到结论.【解答】解:设抛物线解析式为y=a(x+6)(x﹣1),(a≠0).将B(0,)代入,得=a(x+6)(x﹣1),解得a=﹣,∴该抛物线解析式为y=﹣(x+6)(x﹣1)或y=﹣x2﹣x+.设直线AB的解析式为y=kx+n(k≠0).将点A(﹣6,0),B(0,)代入,得,解得,则直线AB的解析式为:y=x+;(2)∵点M(m,0),过点M作x轴的垂线l分别与直线AB和抛物线交于D、E两点,∴D(m,m+),当DE为底时,如图1,作BG⊥DE于G,则EG=GD=ED,GM=OB=,∵DM+DG=GM=OB,∴m++(﹣m2﹣m+﹣m﹣)=,解得:m1=﹣4,m2=0(不合题意,舍去),∴当m=﹣4时,△BDE恰好是以DE为底边的等腰三角形;(3)i:存在,如图2.∵ON=OM′=4,OB=,∵∠NOP=∠BON,∴当△NOP∽△BON时,===,∴不变,即OP=ON=×4=3,∴P(0,3);ii:∵N在以O为圆心,4为半径的半圆上,由i知,==,∴NP=NB,∴(NA+NB)的最小值=NA+NP,∴此时N,A,P三点共线,∴(NA+NB)的最小值==3.。
2020年中考二模考试《数学卷》带答案解析

中考数学综合模拟测试卷学校________ 班级________ 姓名________ 成绩________一、选择题(本大题有10个小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.实数2019的相反数是( )A.2019B.-2019C.12019 D.12019-2.x 的取值范围是( )A. 0x >B. 1x ?C. 1x ³D.1x £3.据统计,2019年全国高考人数再次突破千万,高达1031万人.数据1031万用科学计数法可表示为( ) A. 60.103110´ B. 71.03110´ C. 81.03110´ D.910.3110´ 4.某个几何体的三视图如图所示,该几何体是( )A .B .C .D .5.从长度分别为2,4,5,6的四条线段中随机取三条,能构成三角形的概率是( ) A.13 B. 14 C. 12 D.346.某班6个合作小组的人数分别是4,6,4,5,7,8,现第4小组调出1人去第2小组, 则调动后各组人数分别为:4,7,4,4,7,8,下列关于调配后的数据说法正确的是( ) A .平均数变小了 B .众数变小了 C .中位数变大了D .方差变大了7.若关于x 的不等式组10233544(1)3x x x a x aì+ï+íï++++î>>恰有三个整数解,则a 的取值范围是( ) A .1≤a <32 B .1<a ≤32 C .1<a <32 D .a ≤1或a >328.如图,点C 为扇形OAB 的半径OB 上一点,将△OAC 沿AC 折叠,点O 恰好落在»AB 上的点D 处,且 ¼¼:1:3BD AD ⅱ=(¼BD ¢表示»BD 的长),若将此扇形OAB 围成一个圆锥,则圆锥的底面半径与母线长的比为( )A .1:3B .1:πC .1:4D .2:99.(2019德州)在下列函数图象上任取不同两点P 1(x 1,y 1)、P 2(x 2,y 2),一定能使y 2−y 1x 2−x 1<0成立的是( )A .y =3x ﹣1(x <0)B .y =﹣x 2+2x ﹣1(x >0)C .y =−√3x(x >0)D .y =x 2﹣4x +1(x <0)10.4张长为a 、宽为b (a >b )的长方形纸片,按如图的方式拼成一个边长为(a +b )的正方形,图中空白 部分的面积为S 1,阴影部分的面积为S 2.若S 1=2S 2,则a 、b 满足( )A .2a =5bB .2a =3bC .a =3bD .a =2b二、填空题(本大题有6个小题,每小题4分,共24分) 11.分解因式234x y xy -= .12.某漆器厂接到制作480件漆器的订单,为了尽快完成任务,该厂实际每天制作的件数比原来每天多50%, 结果提前8天完成任务,原来每天制作 件.13.如图,分别以边长为2的等边三角形ABC 的三个顶点为圆心,以边长为半径作弧,三段弧所围成的图 形是一个曲边三角形,已知⊙O 是△ABC 的内切圆,则阴影部分面积为 .第16题14.小菁同学在数学实践活动课中测量路灯的高度.如图,已知她的目高AB 为1.5米,她先站在A 处看路灯顶端O 的仰角为35°,再往前走3米站在C 处,看路灯顶端O 的仰角为65°,则路灯顶端O 到地面的距离约为 .(已知sin35°≈0.6,cos35°≈0.8,tan35°≈0.7,sin65°≈0.9,cos65°≈0.4,tan65°≈2.1)15.如图,在由10个完全相同的正三角形构成的网格图中,∠α、∠β如图所示,则cos (α+β)= .16.如图,∠AOB =45°,点M ,N 在边OA 上,OM =x ,ON =x +4,点P 是边OB 上的点.若使点P ,M ,N 构成等腰三角形的点P 恰好有三个,则x 的值是 .三、解答题(本小题7个小题,共66分,17题6分,18-19各8分,20-21各10分,22-23各12分,解答应写出文字说明、证明过程或演算步骤)17.(1)先化简,在求值:2(1)(3)(3)x x x +-+-其中x =2. (2)解分式方程:xx−2−1=4x 2−4x+4.18.如图是由边长为1的小正方形构成的网格,每个小正方形的顶点叫做格点.四边形ABCD的顶点在格点上,点E是边DC与网格线的交点.请选择适当的格点,用无刻度的直尺在网格中完成下列画图,保留连线的痕迹,不要求说明理由.(1)如图1,过点A画线段AF,使AF∥DC,且AF=DC.(2)如图1,在边AB上画一点G,使∠AGD=∠BGC.(3)如图2,过点E画线段EM,使EM∥AB,且EM=AB.19.某校有学生3000人,现欲开展学校社团活动,准备组建摄影社、国学社、篮球社、科技制作社四个社团.每名学生最多只能报一个社团,也可以不报.为了估计各社团人数,现在学校随机抽取了50名学生做问卷调查,得到了如图所示的两个不完全统计图.结合以上信息,回答下列问题:(1)本次抽样调查的样本容量是;(2)请你补全条形统计图,并在图上标明具体数据;(3)求参与科技制作社团所在扇形的圆心角度数;(4)请你估计全校有多少学生报名参加篮球社团活动.20.如图,已知二次函数y=ax2﹣3x+4的图象经过点M(3,4).(1)求a的值和图象的顶点坐标;(2)点Q(m,n)在该二次函数图象上.①当m=﹣2时,求n的值;②若点Q到x轴的距离等于114,直接写出m的值.21. 2月1日上午,沪苏湖铁路南浔交通枢纽工程在湖州南浔举行开工奠基仪式.意味着以后南浔到上海只要半小时左右,极大的方便了人们的出行,甲、乙两城市之间开通了高速列车,如图,OA 是普通列车离开甲城的路程s (km )与行驶时间t (h )的函数图象,BC 是高速列车离开甲城的路程s (km )与行驶时间t (h )的函数图象.请根据图中的信息,解答 下列问题:(1)根据图象信息,普通列车的速度是 km /h ,高速列车的速度是 km /h ;(2)若高速列车在到达乙城1小时后返回甲城,请在图中画出高速列车返回甲城的路程s (km )与时间t (h )的函数图象;并求出高速列车返回时与普通列车相遇的时间;(3)出于安全考虑,两列列车装有告警装置,当两列列车相距20km 时会发出警报,问在上述过程中装置发出警报的时间范围.22.我们定义:有一组领边相等的四边形叫做“等腰四边形”(1)如图1,在四边形ABCD 中,AD ∥BC ,对角线CA 平分∠BCD ,求证:四边形ABCD 是等腰四边形;(2)如图2,在平面直角坐标系中,点A (0,2),点B (4,2)点C 是x 轴正半轴上的动点,当四边形AOCB 是等腰四边形,求出点C 的坐标.BA(3)如图3,在平面直角坐标系中,点A (0,4),点9(,)2B t (t >0),点C 是x 轴正半轴上的动点,且满足∠OAB 与∠OCB 互补,函数ky x=的图像正好经过点B ,当四边形AOCB 是等腰四边形,求k 的值.23.已知:在矩形ABCD 中,E ,F 分别是边AB ,AD 上的点,过点F 作EF 的垂线交DC 于点H ,以EF 为直径作半圆O .(1)填空:点A (填“在”或“不在”)⊙O 上;当»»AE AF =时,tan ∠AEF 的值是; (2)如图1,在△EFH 中,当FE =FH 时,求证:AD =AE +DH ; (3)如图2,当△EFH 的顶点F 是边AD 的中点时,求证:EH =AE +DH ;(4)如图3,点M 在线段FH 的延长线上,若FM =FE ,连接EM 交DC 于点N ,连接FN ,当AE =AD 时,FN =4,HN =3,求tan ∠AEF 的值.答案与解析一、选择题(本大题有10个小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.实数2019的相反数是( )A.2019B.-2019C. 12019D.12019-【答案】B【解析】2019的相反数是-2019 故选:B2.x 的取值范围是( ) A. 0x > B. 1x ? C. 1x ³ D.1x £ 【答案】C【解析】∵10x -?,∴1x ³ 故选:C3.据统计,2019年全国高考人数再次突破千万,高达1031万人.数据1031万用科学计数法可表示为( ) A. 60.103110´ B. 71.03110´ C. 81.03110´ D.910.3110´ 【答案】B【解析】因为1031万=710310000 1.03110=?, 故选:B4.某个几何体的三视图如图所示,该几何体是( )A .B .C .D .【答案】D 【解析】5.从长度分别为2,4,5,6的四条线段中随机取三条,能构成三角形的概率是()A. 13B.14C.12D.34【答案】D【解析】从2,4,5,6人选三条总可能性有4种,其中能构成三角形的情况为:2,4,6;2,5,6;4,5,6共三种;所以构成三角形的概率为:34 P=故选:D6.某班6个合作小组的人数分别是4,6,4,5,7,8,现第4小组调出1人去第2小组,则调动后各组人数分别为:4,7,4,4,7,8,下列关于调配后的数据说法正确的是()A.平均数变小了B.众数变小了C.中位数变大了D.方差变大了【答案】D【解析】A、调配后的平均数不变,故本选项错误;B、原小组的众数是4,调配后的众数仍然是4,故本选项错误;C、把原数从小到大排列为:4,4,5,6,7,8,则中位数是565.52+=,调配后中位数的中位数是475.52+=,则调配后的中位数不变.故本选项错误;D、原方差是:16[2(4﹣5.5)2+(6﹣5.5)2+(5﹣5.5)2+(7﹣5.5)2+(8﹣5.5)2]=94,调配后的方差是16[3(4﹣5.5)2+2(7﹣5.5)2+(8﹣5.5)2]=3512,则调配后方差变大了,故本选项正确;故选:D.7.若关于x的不等式组1233544(1)3x xx a x aì+ï+íï++++î>>恰有三个整数解,则a的取值范围是()A.1≤a<32B.1<a≤32C.1<a<32D.a≤1或a>32【答案】B【解析】解不等式123x x++>,得:x>25-,解不等式3x+5a+4>4(x+1)+3a,得:x<2a,∵不等式组恰有三个整数解,∴这三个整数解为0、1、2,∴2<2a ≤3, 解得1<a ≤32, 故选:B .8.如图,点C 为扇形OAB 的半径OB 上一点,将△OAC 沿AC 折叠,点O 恰好落在»AB 上的点D 处,且 ¼¼:1:3BD AD ⅱ=(¼BD ¢表示»BD 的长),若将此扇形OAB 围成一个圆锥,则圆锥的底面半径与母线长的比为( )A .1:3B .1:πC .1:4D .2:9【答案】D【解析】连接OD 交AC 于M .由折叠的知识可得:OM =12OA ,∠OMA =90°, ∴∠OAM =30°, ∴∠AOM =60°,∵且»»:1:3BDAD =, ∴∠AOB =80°设圆锥的底面半径为r ,母线长为l ,802180l r p p =, ∴r :l =2:9. 故选:D .9.(2019德州)在下列函数图象上任取不同两点P 1(x 1,y 1)、P 2(x 2,y 2),一定能使y 2−y 1x 2−x 1<0成立的是( )A .y =3x ﹣1(x <0)B .y =﹣x 2+2x ﹣1(x >0)C .y =−√3x(x >0)D .y =x 2﹣4x +1(x <0)【答案】D【解析】A 、∵k =3>0∴y 随x 的增大而增大,即当x 1>x 2时,必有y 1>y 2 ∴当x <0时,y 2−y 1x 2−x 1>0,故A 选项不符合;B 、∵对称轴为直线x =1,∴当0<x <1时y 随x 的增大而增大,当x >1时y 随x 的增大而减小, ∴当0<x <1时:当x 1>x 2时,必有y 1>y 2,此时y 2−y 1x 2−x 1>0,故B 选项不符合;C 、当x >0时,y 随x 的增大而增大,即当x 1>x 2时,必有y 1>y 2 此时y 2−y 1x 2−x 1>0,故C 选项不符合;D 、∵对称轴为直线x =2,∴当x <0时y 随x 的增大而减小, 即当x 1>x 2时,必有y 1<y 2 此时y 2−y 1x 2−x 1<0,故D 选项符合; 故选:D .10.4张长为a 、宽为b (a >b )的长方形纸片,按如图的方式拼成一个边长为(a +b )的正方形,图中空白 部分的面积为S 1,阴影部分的面积为S 2.若S 1=2S 2,则a 、b 满足( )A .2a =5bB .2a =3bC .a =3bD .a =2b【答案】D 【解析】222111()22()222S b a b ab a b a b =+??-=+,S 2=(a +b )2﹣S 1=(a +b )2﹣(a 2+2b 2)=2ab ﹣b 2, ∵S 1=2S 2,∴a 2+2b 2=2(2ab ﹣b 2), 整理,得(a ﹣2b )2=0, ∴a ﹣2b =0, ∴a =2b . 故选:D .二、填空题(本大题有6个小题,每小题4分,共24分) 11.分解因式234x y xy -= . 【答案】2(4)xy x y -【解析】2324(4)x y xy xy x y -=- 故答案为:2(4)xy x y -12.某漆器厂接到制作480件漆器的订单,为了尽快完成任务,该厂实际每天制作的件数比原来每天多50%, 结果提前8天完成任务,原来每天制作 件. 【答案】20【解析】设原来每天制作x 件, 根据题意得:4804808(150%)x x-=+,解得:x =20,经检验x =20是原方程的解, 故答案为20.13.如图,分别以边长为2的等边三角形ABC 的三个顶点为圆心,以边长为半径作弧,三段弧所围成的图 形是一个曲边三角形,已知⊙O 是△ABC 的内切圆,则阴影部分面积为 .第16题【答案】53p -【解析】连接OB ,作OH ⊥BC 于H ,如图, ∵△ABC 为等边三角形,∴AB =BC =AC =2,∠ABC =60°, ∵⊙O 是△ABC 的内切圆,∴OH 为⊙O 的半径,∠OBH =30°, ∵O 点为等边三角形的外心, ∴BH =CH =1,在Rt △OBH 中,33OH BH ==, ∵S 弓形AB =S 扇形ACB ﹣S △ABC , ∴阴影部分面积=3S弓形AB +S △ABC ﹣S ⊙O =3(S扇形ACB ﹣S △ABC )+S △ABC ﹣S ⊙O =3S扇形ACB ﹣2S △ABC ﹣S ⊙O =2226025322(360433p p p 创?创-?-故答案为:53p -14.小菁同学在数学实践活动课中测量路灯的高度.如图,已知她的目高AB 为1.5米,她先站在A 处看路灯顶端O 的仰角为35°,再往前走3米站在C 处,看路灯顶端O 的仰角为65°,则路灯顶端O 到地面的距离约为 .(已知sin35°≈0.6,cos35°≈0.8,tan35°≈0.7,sin65°≈0.9,cos65°≈0.4,tan65°≈2.1)【答案】4.7米【解析】过点O 作OE ⊥AC 于点E ,延长BD 交OE 于点F ,设DF =x∵tan65°=OFDF,∴OF=x tan65° ∴BF=3+x ∵tan35°=OFBF,∴OF=(3+x )tan35° ∴2.1x =0,7(3+x ) ∴x =1.5∴OF=1.5×2.1=3.15 ∴OE=3.15+1.5=4.65≈4.7 故答案为:4.7米15.如图,在由10个完全相同的正三角形构成的网格图中,∠α、∠β如图所示,则cos (α+β)= .【答案】√217【解析】给图中各点标上字母,连接DE ,如图所示. 在△ABC 中,∠ABC =120°,BA =BC ,∴∠α=30°. 同理,可得出:∠CDE =∠CED =30°=∠α. 又∵∠AEC =60°,∴∠AED =∠AEC +∠CED =90°.设等边三角形的边长为a ,则AE =2a ,DE =2×sin60°•a =√3a , ∴AD =√AE 2+DE 2=√7a , ∴cos (α+β)=DEAD =√217. 故答案为:√217.16.如图,∠AOB =45°,点M ,N 在边OA 上,OM =x ,ON =x +4,点P 是边OB 上的点.若使点P ,M ,N 构成等腰三角形的点P 恰好有三个,则x 的值是 .【答案】x =0或x =或4x << 【解析】分三种情况:①如图1,当M 与O 重合时,即x =0时,点P 恰好有三个;②如图2,以M 为圆心,以4为半径画圆,当⊙M 与OB 相切时,设切点为C ,⊙M 与OA 交于D ,∴MC ⊥OB , ∵∠AOB =45°,∴△MCO 是等腰直角三角形, ∴MC =OC =4,∴OM =当M 与D 重合时,即4x OM DM =-=时,同理可知:点P 恰好有三个;③如图3,取OM =4,以M 为圆心,以OM 为半径画圆,则⊙M 与OB 除了O 外只有一个交点,此时x =4,即以∠PMN 为顶角,MN 为腰,符合条件的点P 有一个,以N 圆心,以MN 为半径画圆,与直线OB 相离,说明此时以∠PNM 为顶角,以MN 为腰,符合条件的点P 不存在,还有一个是以NM 为底边的符合条件的点P ; 点M 沿OA 运动,到M 1时,发现⊙M 1与直线OB 有一个交点;∴当4x <<时,圆M 在移动过程中,则会与OB 除了O 外有两个交点,满足点P 恰好有三个;综上所述,若使点P ,M ,N 构成等腰三角形的点P 恰好有三个,则x 的值是:x =0或x =或4x <<.故答案为:x =0或x =或4x <<.三、解答题(本小题7个小题,共66分,17题6分,18-19各8分,20-21各10分,22-23各12分,解答应写出文字说明、证明过程或演算步骤)17.(1)先化简,在求值:2(1)(3)(3)x x x +-+-其中x =2. (2)解分式方程:xx−2−1=4x 2−4x+4.【解析】(1)原式2221(9)210x x x x =++--=+ 当x =2时,原式=221014?= (2)解:x x−2−1=4x 2−4x+4,方程两边乘(x ﹣2)2得:x (x ﹣2)﹣(x ﹣2)2=4, 解得:x =4,检验:当x =4时,(x ﹣2)2≠0. 所以原方程的解为x =4.18.如图是由边长为1的小正方形构成的网格,每个小正方形的顶点叫做格点.四边形ABCD的顶点在格点上,点E是边DC与网格线的交点.请选择适当的格点,用无刻度的直尺在网格中完成下列画图,保留连线的痕迹,不要求说明理由.(1)如图1,过点A画线段AF,使AF∥DC,且AF=DC.(2)如图1,在边AB上画一点G,使∠AGD=∠BGC.(3)如图2,过点E画线段EM,使EM∥AB,且EM=AB.【解析】(1)如图所示,线段AF即为所求;(2)如图所示,点G即为所求;(3)如图所示,线段EM即为所求.19.某校有学生3000人,现欲开展学校社团活动,准备组建摄影社、国学社、篮球社、科技制作社四个社团.每名学生最多只能报一个社团,也可以不报.为了估计各社团人数,现在学校随机抽取了50名学生做问卷调查,得到了如图所示的两个不完全统计图.结合以上信息,回答下列问题:(1)本次抽样调查的样本容量是;(2)请你补全条形统计图,并在图上标明具体数据;(3)求参与科技制作社团所在扇形的圆心角度数;(4)请你估计全校有多少学生报名参加篮球社团活动.【解析】(1)本次抽样调查的样本容量是55010%=,故答案为:50;(2)参与篮球社的人数=50×20%=10人,参与国学社的人数为50﹣5﹣10﹣12﹣8=15人,补全条形统计图如图所示;(3)参与科技制作社团所在扇形的圆心角度数为12 36086.450按=?;(4)3000×20%=600名,答:全校有600学生报名参加篮球社团活动.20.如图,已知二次函数y=ax2﹣3x+4的图象经过点M(3,4).(1)求a的值和图象的顶点坐标;(2)点Q(m,n)在该二次函数图象上.①当m=﹣2时,求n的值;②若点Q到x轴的距离等于114,直接写出m的值.【解析】(1)把点M(3,4)代入y=ax2﹣3x+4中得9a﹣9+4=4,∴a=1,∴y=x2﹣3x+4,∵y=x2﹣3x+4=(x﹣32)2+74,∴顶点坐标为37(,)24;(2)①当m =﹣2时,n =4+6+4=14,②点Q 到x 轴的距离等于114,∴n =114, ∴m 2﹣3m +4=114,解得m =12或52,∴m 的值为12或52.21. 2月1日上午,沪苏湖铁路南浔交通枢纽工程在湖州南浔举行开工奠基仪式.意味着以后南浔到上海只要半小时左右,极大的方便了人们的出行,甲、乙两城市之间开通了高速列车,如图,OA 是普通列车离开甲城的路程s (km )与行驶时间t (h )的函数图象,BC 是高速列车离开甲城的路程s (km )与行驶时间t (h )的函数图象.请根据图中的信息,解答 下列问题:(1)根据图象信息,普通列车的速度是 km /h ,高速列车的速度是 km /h ;(2)若高速列车在到达乙城1小时后返回甲城,请在图中画出高速列车返回甲城的路程s (km )与时间t (h )的函数图象;并求出高速列车返回时与普通列车相遇的时间;(3)出于安全考虑,两列列车装有告警装置,当两列列车相距20km 时会发出警报,问在上述过程中装置发出警报的时间范围.【解析】(1)由图象得:普通列车的速度是 600÷6=100km /h ,高速列车的速度是 600÷(3﹣1)=300km /h .(2)设DE 解析式:y =kx +b ,由题意得:{600406k b k b =+=+,解得:{3001800k b =-=∴DE 解析式y =﹣300x +1800 由题意得:AO 解析式:y =100x ∴{3001800100y x y x =-+=,解得:{4.5450x y == 答:高速列车返回时与普通列车相遇的时间 (3)设BC 解析式y =mx +n 根据题意得:{60030m nm n=+=+解得:{300300m n ==-∴BC 解析式:y =300x ﹣300 根据题意得:{100(300300)2030030010020x x x x --?--?解得:1.4≤x ≤1.6 由题意得:{100(3001800)20300180010020x x x x --+?-+-? 解得:4.45≤x ≤4.55终上所述:装置发出警报的时间范围为1.4≤x ≤1.6和4.45≤x ≤4.5522.我们定义:有一组领边相等的四边形叫做“等腰四边形”(1)如图1,在四边形ABCD 中,AD ∥BC ,对角线CA 平分∠BCD ,求证:四边形ABCD 是等腰四边形;(2)如图2,在平面直角坐标系中,点A (0,2),点B (4,2)点C 是x 轴正半轴上的动点,当四边形AOCB 是等腰四边形,求出点C 的坐标.(3)如图3,在平面直角坐标系中,点A (0,4),点9(,)2B t (t >0),点C 是x 轴正半轴上的动点,且满足∠OAB 与∠OCB 互补,函数ky x=的图像正好经过点B ,当四边形AOCB 是等腰四边形,求k 的值.B【解析】(1)∵CA 平分∠BCD ,∴∠BCA =∠ACD ∵AD ∥BC ,∴∠BCA =∠CAD ∴∠CAD =∠ACD ∴AD =CD∴四边形ABCD 是等腰四边形(2)①OA =OC 时,则OC =2,∴C (2,0)②BA =BC 时,以B 为圆心,AB 为半径画圆,交x 轴于12,C C ,则124BC BC ==∴12C H C H ==∴12(4(4C C -+③OC =BC 时作BH ⊥x 轴,连结OB ,设OC =BC =a 则CH =4-a∴222(4)2a a =-+,解得52a =∴5(,0)2C∴5(2,0),(,0),(42C -+(3)∵∠OAB 与∠OCB 互补,∴A 、O 、C 、B 四点共圆,∵∠AOC =90°,∴∠ABC =90°① AB =BC 时,则△ABC 为等腰直角三角形作BH ⊥y 轴,BG ⊥x 轴,则△BHA ≌△BGC ,∴92BG BH ==,∴99(,)22B ,∴814k =② OA =OC 时,则C (4,0),以AC 为直径画圆,交直线92y =于12,B B , 12AG = 作12BH B B ^则AGB BHC V :V ,92CH =, ∴AG BG BH CH =即12942t t =-,解得2t =?∴94k =?③ OA =AB 时,则AB =4,∴t =,∴4k =∴8194k =? 23.已知:在矩形ABCD 中,E ,F 分别是边AB ,AD 上的点,过点F 作EF 的垂线交DC 于点H ,以EF 为直径作半圆O .(1)填空:点A (填“在”或“不在”)⊙O 上;当»»AE AF =时,tan ∠AEF 的值是; (2)如图1,在△EFH 中,当FE =FH 时,求证:AD =AE +DH ;(3)如图2,当△EFH 的顶点F 是边AD 的中点时,求证:EH =AE +DH ;(4)如图3,点M 在线段FH 的延长线上,若FM =FE ,连接EM 交DC 于点N ,连接FN ,当AE =AD 时,FN =4,HN =3,求tan ∠AEF 的值.【解析】(1)连接AO ,∵∠EAF=90°,O为EF中点,∴AO=12EF,∴点A在⊙O上,当»»AE AF=时,∠AEF=45°,∴tan∠AEF=tan45°=1,故答案为:在,1;(2)∵EF⊥FH,∴∠EFH=90°,在矩形ABCD中,∠A=∠D=90°,∴∠AEF+∠AFE=90°,∠AFE+∠DFH=90°,∴∠AEF=∠DFH,又FE=FH,∴△AEF≌△DFH(AAS),∴AF=DH,AE=DF,∴AD=AF+DF=AE+DH;(3)延长EF交HD的延长线于点G,∵F分别是边AD上的中点,∴AF=DF,∵∠A=∠FDG=90°,∠AFE=∠DFG,∴△AEF≌△DGF(ASA),∴AE=DG,EF=FG,∵EF⊥FH,∴EH=GH,∴GH=DH+DG=DH+AE,∴EH=AE+DH;(4)过点M作MQ⊥AD于点Q.设AF=x,AE=a,∵FM=FEEF⊥FH,∴△EFM为等腰直角三角形,∴∠FEM=∠FMN=45°,∵FM=FE,∠A=∠MQF=90°,∠AEF=∠MFQ,∴△AEF≌△QFM(ASA),∴AE=FQ=a,AF=QM,∵AE=AD,∴AF=DQ=QM=x,∵DC∥QM,∴DQ HM x FQ FM a==,∵DC∥AB∥QM,∴MN QD x EN AD a==,∴MN HM x EN FM a==,∵FE=FM,∴MN HM xEN FE a==,∠FEM=∠FMN=45°,∴△FEN~△HMN,∴34 MN HN xEN FN a===,∴3 tan4AF xAEFAE a?==。
2020年山东省潍坊市高考数学二模试卷(一)(有答案解析)

2020年山东省潍坊市高考数学二模试卷(一)一、选择题(本大题共12小题,共60.0分)1.已知集合A={x|-2≤x≤3},函数f(x)=ln(1-x)的定义域为集合B,则A∩B=()A. [-2,1]B. [-2,1)C. [1,3]D. (1,3]2.若复数z1,z2,在复平面内的对应点关于虚轴对称,z1=1+i,则=()A. iB. -iC. 1D. -13.已知等差数列{a n}的前5项和为15,a6=6,则a2019=()A. 2017B. 2018C. 2019D. 20204.已知命题p:“∀x∈R,x2>0”,则¬p是()A. ∀x∈R,x2≤0B. ∃x∈R,x2>0C. ∃x∈R,x2<0D. ∃x∈R,x2≤05.七巧板是一种古老的中国传统智力玩具,是由七块板组成的,而这七块板可拼成许多图形,例如:三角形、不规则多边形、各种人物、动物、建筑物等,清陆以淮《冷庐杂识》写道:近又有七巧图,其式五,其数七,其变化之式多至千余.在18世纪,七巧板流传到了.国外,至今英国剑桥大学的图书馆里还珍藏着一部《七巧新谱》.若用七巧板拼成一只雄鸡,在雄鸡平面图形上随机取一点,则恰好取自雄鸡鸡尾(阴影部分)的概率为()A. B. C. D.6.已知某几何体的俯视图是如图所示的边长为l的正方形,正视图与侧视图都是边长为1的正三角形,则此几何体的体积是()A. B. C. D.7.如图所示的函数图象,对应的函数解析式可能是()A. y=2x-x2-1B. y=2x sinxC. D.8.函数y=sin(2x+)的图象可由函数y=sin2x-cos2x的图象()A. 向右平移个单位,再将所得图象上所有点的纵坐标伸长到原来的2倍,横坐标不变得到B. 向右平穆个单位,再将所得图象上所有点的纵坐标伸长到原来的2倍,横坐标不变得到C. 向左平移个单位,再将所得图象上所有点的纵坐标缩短到原来的横坐标不变得到D. 向左平移个单位,再将所得图象上所有点的纵坐标缩短到原来的横坐标不变得到9.在边长为1的等边三角形ABC中,点P是边AB上一点,且.BP=2PA,则=()A. B. C. D. 110.一个各面均为直角三角形的四面体有三条棱长为2,则该四面体外接球的表面积为()A. 6πB. 12πC. 32πD. 48π11.已知P为双曲线C:(a>0,b>0)上一点,F1,F2为双曲线C的左、右焦点,若|PF1|=|F1F2|,且直线PF2与以C的实轴为直径的圆相切,则C的渐近线方程为()A. B. C. D.12.已知函数f(x)=2x-1,g(x)=(a∈R),若对任意x1∈[1,+∞),总存在x2∈R,使f(x1)=g(x2),则实数a的取值范围是()A. (-∞,)B. (,+∞)C. (-∞,)∪[1,2]D. (1,]∪[,2]二、填空题(本大题共4小题,共20.0分)13.焦点在x轴上,短轴长等于16,离心率等于的椭圆的标准方程为______.14.若x,y满足约束条件,则z=x-2y的最大值为______.15.设数列{a n}满足a1•2a2•3a3•…•na n=2n,则a n=______.16.如图,边长为1的正方形ABCD,其中边DA在x轴上,点D与坐标原点重合,若正方形沿x轴正向滚动,即先以A为中心顺时针旋转,当B落在x轴上时,再以B 为中心顺时针旋转,如此继续,当正方形ABCD的某个顶点落在x轴上时,则以该顶点为中心顺时针旋转,设顶点C(x,y)滚动时形成的曲线为y=f(x),则f(2019)=______.三、解答题(本大题共7小题,共82.0分)17.如图,在平面四边形ABCD中,.(1)求cos∠BAC;(2)若∠D=45o,∠BAD=90°,求CD.18.如图,四棱锥M—ABCD中,MB⊥平面ABCD,四边形ABCD是矩形,AB=MB,E、F分别为MA、MC的中点.(1)求证:平面BEF⊥平面MAD;(2)若求三棱锥E-ABF的体积.19.某公司甲、乙两个班组分别试生产同一种规格的产品,已知此种产品的质量指标检测分数不小于70时,该产品为合格品,否则为次品,现随机抽取两个班组生产的此种产品各100件进行检测,其结果如表:质量指标检测分数[50,60)[60,70)[70,80)[80,90)[90,IOO]甲班组生产的产品件71840296数乙班组生产的产品件81240328数(1)根据表中数据,估计甲、乙两个班组生产该种产品各自的不合格率;(2)根据以上数据,完成下面的2×2列联表,并判断是否有95%的把握认为该种产品的质量与生产产品的班组有关?甲班组乙班组合计合格品次品合计(3)若按合格与不合格的比例,从甲班组生产的产品中抽取4件产品,从乙班组生产的产品中抽取5件产品,记事件A:从上面4件甲班组生产的产品中随机抽取2件,且都是合格品;事件B:从上面5件乙班组生产的产品中随机抽取2件,一件是合格品,一件是次品,试估计这两个事件哪一种情况发生的可能性大.附:P(K2≥k)0.0500.0100.001k 3.841 6.63510.82820.已知抛物线C:x2=4y的焦点为F,直线:y=kx+b(k≠0)交抛物线C于A、B两点,|AF|+|BF|=4,M(0,3).(1)若AB的中点为T,直线MT的斜率为k',证明k⋅k'为定值;(2)求△ABM面积的最大值.21.已知函数f(x)=xe x-a ln x(无理数e=2.718…).(1)若f(x)在(0,1)单调递减,求实数a的取值范围:(2)当a=-1时,设g(x)=x(f(x)-xe x)-x3+x2-b,若函数g(x)存在零点,求实数b的最大值.22.在平面直角坐标系xOy中,曲线C的参数方程为(α为参数),在以坐标原点O为极点,x轴的正半轴为极轴的极坐标系中,点M的极坐标为,直线l的极坐标方程为.(1)求直线l的直角坐标方程与曲线C的普通方程;(2)若N是曲线C上的动点,P为线段MN的中点,求点P到直线l的距离的最大值.23.已知函数f(x)=|ax-2|,不等式f(x)≤4的解集为{x|-2≤x≤6}.(1)求实数a的值;(2)设g(x)=f(x)+f(x+3),若存在x∈R,使g(x)-tx≤2成立,求实数t的取值范围.-------- 答案与解析 --------1.答案:B解析:解:∵B={x|x<1};∴A∩B=[-2,1).故选:B.可求出集合B,然后进行交集的运算即可.考查描述法、区间的定义,函数定义域的概念及求法,对数函数的定义域,交集的运算.2.答案:B解析:【分析】本题考查复数代数形式的乘除运算,是基础的计算题.由已知求得z2,把z1,z2代入,再由复数代数形式的乘除运算化简得答案.【解答】解:∵z1,z2在复平面内的对应点关于虚轴对称,且z1=1+i,∴z2=-1+i,∴==.故选:B.3.答案:C解析:解:等差数列{a n}的前5项和为15,即15===5a3,所以a3=3,又因为a6=6,所以a6-a3=3d=3,所以d=1,所以a2019=a3+(2019-3)×d=3+2016=2019.故选:C.由前5项和为15,可以得到a3=3,又知道a6=6,故可求a1和d,进而得到a2019.本题考查了等差数列的前n项和公式,等差数列的通项公式,属于基础题.4.答案:D解析:解:命题:∀x∈R,x2>0的否定是:∃x∈R,x2≤0.故选:D.欲写出命题的否定,必须同时改变两个地方:①:“∀”;②:“>”即可,据此分析选项可得答案.这类问题的常见错误是没有把全称量词改为存在量词,或者对于“>”的否定用“<”了.这里就有注意量词的否定形式.如“都是”的否定是“不都是”,而不是“都不是”.特称命题的否定是全称命题,“存在”对应“任意”.5.答案:C解析:解:阴影部分对应的图形为6平行四边形,设正方形的边长为4,则平行四边形的底面长为2,平行四边形的高为1,则阴影部分的面积S=2×1=2,则大正方形的面积S=4×4=16,则阴影部分的概率P==,故选:C.根据七巧板对应图形的面积,结合几何概型的概率公式进行计算即可.本题主要考查几何概型的概率的计算,设出对应边长求出对应面积是解决本题的关键.6.答案:D解析:解:根据几何体的三视图,得;该几何体是底面边长为1正方形,斜高为1四棱锥,且四棱锥的高为=的正四棱锥.∴它的体积为V=×12×=.故选:D.根据几何体的三视图,得出该几何体是底面为正方形的正四棱锥,结合图中数据求出它的体积.本题考查了利用空间几何体的三视图求体积的问题,也考查了空间想象能力的应用问题,是基础题目.7.答案:D解析:解:根据函数定义域为R,可知C不符合,根据函数图象可知,该函数为非奇非偶函数,故B不符合,当x→∞时,函数值趋向于-∞,故A不符合,对于D:y=(x2-2x)e x,当y=0时,解得x=0或x=2,当x→+∞时,y→+∞,当x→-∞时,y→0,故D符合.故选:D.根据函数的定义域,函数的奇偶性,函数值的变化趋势即可选择.本题考查了函数图象的识别,属于基础题.8.答案:D解析:解:把函数y=sin2x-cos2x=2sin(2x-)的图象向左平移个单位,可得y=2sin (2x+)的图象;再将所得图象上所有点的纵坐标缩短到原来的,横坐标不变得到函数y=sin(2x+)的图象,故选:D.利用两角和差的正弦公式化简函数的解析式,再利用函数y=A sin(ωx+φ)的图象变换规律,得出结论.本题主要考查两角和差的正弦公式,函数y=A sin(ωx+φ)的图象变换规律,属于基础题.9.答案:C解析:解:在边长为1的等边三角形ABC中,点P是边AB上一点,且BP=2PA,可得=,所以=()=×1×1×cos60°=.故选:C.利用向量关系,求出,然后求解向量的数量积即可.本题考查向量的数量积的应用,平面向量的基本定理以及平行四边形法则的应用,是基本知识的考查.10.答案:B解析:解:如图,四面体ABCD中,∠ABD=∠ABC=∠BCD=∠ACD=90°,AB=BC=CD=2,可得BD=2,AD=2,AD中点O即为外接球球心,故球O半径为,其表面积为12π,故选:B.作出图形,易知最大斜边即为外接球直径,容易求解.此题考查了四面体外接球,难度不大.11.答案:A解析:解:设直线PF2与圆x2+y2=a2相切于点M,则|OM|=a,OM⊥PF2,取PF2的中点N,连接NF2,由于|PF1|=|F1F2|=2c,则NF1⊥PF2,|NP|=|NF2|,由|NF1|=2|OM|=2a,则|NP|==2b,即有|PF2|=4b,由双曲线的定义可得|PF2|-|PF1|=2a,即4b-2c=2a,即2b=c+a,4b2-4ab+a2=b2+a2,4(c-a)=c+a,即3b=4a,则=.则C的渐近线方程为:.故选:A.设直线PF2与圆x2+y2=a2相切于点M,取PF2的中点N,连接NF2,由切线的性质和等腰三角形的三线合一,运用中位线定理和勾股定理,可得|PF2|=4b,再由双曲线的定义和a,b,c的关系,计算即可得到渐近线方程.本题考查双曲线的方程和性质,考查渐近线方程的求法.中位线定理和双曲线的定义是解题的关键.12.答案:C解析:解:对任意x∈[1,+∞),则f(x)=2x-1≥20=1,即函数f(x1)的值域为[1,+∞),若对任意x1∈[1,+∞),总存在x2∈R,使f(x1)=g(x2),设函数g(x)的值域为A,则满足[1,+∞)⊆A,即可,当x<0时,函数g(x)=x2+2a为减函数,则此时g(x)>2a,当x≥0时,g(x)=a cos x+2∈[2-|a|,2+|a|],①当2a<1时,(红色曲线),即a<时,满足条件[1,+∞)⊆A,②当a≥时,此时2a≥1,要使[1,+∞)⊆A成立,则此时当x≥0时,g(x)=a cos x+2∈[2-a,2+a],此时满足(蓝色曲线),即,得1≤a≤2,综上a<或1≤a≤2,故选:C.求出两个函数的值域,结合对任意x1∈[1,+∞),总存在x2∈R,使f(x1)=g(x2),等价为f(x)的值域是g(x)值域的子集,利用数形结合进行转化求解即可.本题主要考查函数与方程的应用,求出函数的值域,转化为f(x)的值域是g(x)值域的子集,利用数形结合是解决本题的关键.13.答案:解析:【分析】本题考查椭圆的简单性质以及椭圆方程的求法,属于基础题.利用已知条件求出a,b,然后求解椭圆方程.【解答】解:由题可设椭圆方程,c为椭圆的半焦距,焦点在x轴上,短轴长等于16,离心率等于,可得b=8,,即1-,解得a=10,故所求的椭圆方程为:.故答案为.14.答案:10解析:解:由x,y满足约束条件,作出可行域如图:由可得A(2,-4).化目标函数z=x-2y为直线方程的斜截式y=x-.由图可知,当直线y=x-过点A时,直线在y轴上的截距最小,z最大,为z=2-2×(-4)=10.故答案为:10.由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合可得最优解,求出最优解的坐标,代入目标函数得答案.本题考查了简单的线性规划,考查了数形结合的解题思想方法,是中档题.15.答案:解析:解:∵a1•2a2•3a3•…•na n=2n,①,∴n≥2时,a1•2a2•3a3•…•(n-1)a n-1=2n-1②∴①÷②可得na n=2,∴a n=(n≥2)又a1=1也满足上式,∴数列{a n}的通项为a n=;故答案为:.根据题意,可得a1•2a2•3a3•…•(n-1)a n-1=2n-1,两者相除,可得数列{a n}的通项公式.本题考查数列递推式,求解数列的通项公式,是基本知识的考查.16.答案:0解析:解:∵正方形的边长为1,∴正方形的对角线AC=,则由正方形的滚动轨迹得到x=0时,C位于(0,1)点,即f(0)=1,当x=1时,C位于(1,)点,即f(1)=,当x=2时,C位于(2,1)点,即f(2)=1,当x=3时,C位于(3,0)点,即f(3)=0,当x=4时,C位于(4,1)点,即f(4)=1,则f(x+4)=f(x),即f(x)具备周期性,周期为4,则f(2019)=f(504×4+3)=f(3)=0,故答案为:0根据正方形的运动关系,分布求出当x=0,1,2,3,4时对应的函数值f(x),得到f (x)具备周期性,周期为4,利用周期性进行求解即可.本题主要考查函数值的计算,结合正方形的运动轨迹,计算出对应函数值,得到周期性是解决本题的关键.17.答案:(本题满分为12分)解:(1)在△ABC中,由余弦定理可得:cos∠BAC===…5分(2)因为∠DAC=90°-∠BAC,所以sin∠DAC=cos∠BAC=,…7分所以在△ACD中,由正弦定理可得:,…9分可得:,解得:CD=5…12分解析:(1)在△ABC中,由余弦定理即可计算得解cos∠BAC的值.(2)由已知可求sin∠DAC=cos∠BAC=,在△ACD中,由正弦定理即可解得CD的值.本题主要考查了正弦定理,余弦定理在解三角形中的应用,考查了计算能力和转化思想,属于基础题.18.答案:(1)证明:∵MB⊥平面ABCD,AD⊂平面ABCD,∴MB⊥AD,∵四边形ABCD是矩形,∴AD⊥AB,又AB⊂平面MAB,MB⊂平面MAB,AB∩MB=B,∴AD⊥平面MAB,又BE⊂平面MAB,∴AD⊥BE.∵AB=MB,E是MA的中点,∴BE⊥MA,又AD⊂平面MAD,MA⊂平面MAD,AD∩MA=A,∴BE⊥平面MAD,又BE⊂平面BEF,∴平面BEF⊥平面MAD.(2)由(1)知AD⊥平面MAB,又AD∥BC,∴BC⊥平面MAB,∵F是MC的中点,∴F到平面MAB的距离d=BC=,∵E是MA的中点,∴S△ABE===,∴V E-ABF=V F-ABE===.解析:(1)证明AD⊥平面MAB得出AD⊥BE,由AB=BM得出BE⊥MA,故BE⊥平面MAD,于是平面BEF⊥平面MAD;(2)根据V E-ABF=V F-ABE计算棱锥的体积.本题考查了面面垂直的判定,棱锥的体积计算,属于中档题.19.答案:解:(1)根据表中数据,计算甲班组生产该产品的不合格率为=25%,乙班组生产该种产品的不合格率为=20%;(2)根据题意填写2×2列联表如下,甲班组乙班组合计合格品7580155次品252045合计100100200计算K2=≈0.717<3.841,所以没有95%的把握认为该种产品的质量与生产产品的班组有关;(3)若按合格与不合格的比例,从甲班组生产的产品中抽取4件产品,从乙班组生产的产品中抽取5件产品,其中甲、乙班组抽取的产品中均含有1件次品,设甲的这4件产品分别为a、b、c、D,其中a、b、c为合格品,D为次品,从中任取2件,则所有可能的情况为ab、ac、aD、bc、bD、cd共6种,事件A包含3种,所以P(A)==;设5件乙班组产品分别为e、f、g、h、M,其中e、f、g、h为合格品,M为次品,从中随机抽取2件,基本事件为ef、eg、eh、eM、fg、fh、fM、gh、gM、hM共10种不同取法,事件B包含4种,所以P(B)==.由P(A)>P(B)知,事件A发生的可能性大些.解析:(1)根据表中数据,分别计算甲、乙班组生产该种产品的不合格率;(2)根据题意填写2×2列联表,计算观测值,对照临界值得出结论;(3)根据分层抽样原理,利用列举法分别求出事件A、事件B的概率,比较即可.本题考查了列联表与独立性检验的应用问题,也考查了利用列举法求古典概型的概率应用问题,是中档题.20.答案:(1)证明:由抛物线C:x2=4y与直线:y=kx+b的方程组成方程组,消去y得,x2-4kx-4b=0,则△=16k2+16b>0,即k2+b>0,设A(x1,y1),B(x2,y2),由根与系数的关系知,x1+x2=4k,x1x2=-4b,由|AF|+|BF|=4,根据抛物线的定义知,(y1+1)+(y2+1)=4,即y1+y2=2,所以AB的中点坐标为T(2k,1),又M(0,3),所以直线MT的斜率为k'==-,所以k⋅k'=-1为定值;(2)解:由(1)知=-4x1x2=16(k2+b),|AB|=|x1-x2|=4,设点M到直线l的距离为d,则d=,由(1)知y1+y2=kx1+b+kx2+b=k(x1+x2)+2b=4k2+2b=2,即2k2+b=1,即b=1-2k2,由△=16k2+16b>0,得0<k2<1;所以S△ABM=×|AB|×d=×4×=4,令t=k2,0<t<1,f(t)=(1+t)2(1-t)=1+t-t2-t3,0<t<1,f′(t)=1-2t-3t2=(t+1)(-3t+1),0<t<时,f′(t)>0,f(t)为增函数;<t<1时,f′(t)<0,f(t)为减函数;所以当t=时,f(t)取得最大值为f(x)max=f()=,所以△ABM面积的最大值为4=.解析:(1)由抛物线与直线方程组成方程组,消去y得关于x的方程,利用根与系数的关系和抛物线的定义,求出AB的中点坐标T以及直线MT的斜率,计算k⋅k'的值;(2)利用弦长公式计算|AB|的值,求出点M到直线l的距离d,计算△ABM的面积,求出最大值即可.本题考查了直线与抛物线方程的综合应用问题,也考查了弦长公式与三角形面积的计算问题,是难题.21.答案:解:(1)f′(x)=(x+1)e x-=.由题意可得:f′(x)≤0,x∈(0,1)恒成立.即(x2+x)e x-a≤0,也就是a≥(x2+x)e x在x∈(0,1)恒成立.设h(x)=(x2+x)e x,则h′(x)=(x2+3x+1)e x.当x∈(0,1)时,x2+3x+1>0.h′(x)>0在x∈(0,1)单调递增.∴h(x)<h(1)=2e.故a≥2e.(2)当a=-1时,f(x)=xe x+ln x.g(x)=x lnx-x3+x2-b,由题意:问题等价于方程b=x lnx-x3+x2,在(0,+∞)上有解.先证明:ln x≤x-1,设u(x)=ln x-x+1,x∈(0,+∞).u′(x)=-1=.可得x=1时,函数u(x)取得极大值,∴u(x)≤u(1)=0.因此ln x≤x-1,∴b=x lnx-x3+x2≤x(x-1)-x3+x2=-x(x2-2x+1)≤0.当x=1时取等号.∴实数b的最大值为0.解析:(1)f′(x)=.由题意可得:f′(x)≤0,x∈(0,1)恒成立.即(x2+x)e x-a≤0,也就是a≥(x2+x)e x在x∈(0,1)恒成立.设h(x)=(x2+x)e x,利用倒导数研究其单调性即可得出.(2)当a=-1时,f(x)=xe x+ln x.g(x)=x lnx-x3+x2-b,由题意:问题等价于方程b=x lnx-x3+x2,在(0,+∞)上有解.先证明:ln x≤x-1,设u(x)=ln x-x+1,x∈(0,+∞).利用研究其单调性即可证明结论.可得b=x lnx-x3+x2≤x(x-1)-x3+x2=-x(x2-2x+1)≤0.本题考查了利用导数研究函数的单调性极值与最值、方程与不等式的解法、放缩法、等价转化方法,考查了推理能力与计算能力,属于难题.22.答案:解:(1)∵直线l的极坐标方程为,即ρsinθ-ρcosθ+4=0,由x=ρcosθ,y=ρsinθ,可得直线l的直角坐标方程为x-y-4=0.将曲线C的参数方程为(α为参数)消去参数α,得曲线C的普通方程为;(2)设N(,sinα),α∈[0,2π),点M的极坐标(,)化为直角坐标(-2,2),则P(,),∴点P到直线l的距离d==.∴当时,点M到直线l的距离的最大值为.解析:(1)由直线l的极坐标方程为,得ρsinθ-ρcosθ+4=0,把x=ρcosθ,y=ρsinθ代入可得直线l的直角坐标方程.直接将曲线C的参数方程消去参数α,可得曲线C的普通方程;(2)设N(,sinα),α∈[0,2π),化点M的极坐标(,)化为直角坐标(-2,2),利用中点坐标公式求得P(,),再由点到直线的距离公式求解.本题考查简单曲线的极坐标方程,考查点到直线距离公式的应用,训练了利用三角函数求最值,是中档题.23.答案:解:(1)由|ax-2|≤4得-4≤ax-2≤4,即-2≤ax≤6,当a>0时,-≤x≤,所以,解得a=1;当a<0时,≤x≤-,所以,无解,所以实数a的值为1(2)由已知g(x)=f(x)+f(x+3)=|x+1|+|x-2|=,不等式g(x)-tx≤2,即g(x)≤tx+2,由题意知y=g(x)的图象有一部分在直线y=tx+2的下方,作出对应图象:由图可知,当t<0时,t≤k EM;当t>0时,t≥k FM,又因为k EM=-1,k FM=,所以t≤-1,或t,即t∈(-∞,-1]∪[,+∞).解析:(1)解f(x)≤4得解集与已知解集相等可列方程解得;(2)问题转化为y=g(x)的图象有一部分在直线y=tx+2的下方,作出图象,根据斜率可得.本题考查了绝对值不等式的解法,属中档题.。
江苏省徐州市2020届中考数学二模试卷(含解析)

江苏省徐州市2020届中考二模试卷数学一、选择题(本大题共有8小题,每小题3分,共24分。
在每小题所给出的四个选项中,只有一项是符合题目要求的)1.(3分)﹣的相反数是()A.﹣B.4 C.﹣4 D.【解答】解:﹣的相反数是.故选:D.2.(3分)下列图形中,既是中心对称图形又是轴对称图形的是()A.B.C.D.【解答】解:A、不是轴对称图形,也不是中心对称图形,故此选项错误;B、不是轴对称图形,是中心对称图形,故此选项错误;C、不是轴对称图形,也不是中心对称图形,故此选项错误;D、是轴对称图形,也是中心对称图形,故此选项正确.故选:D.3.(3分)下列运算中,正确的是()A.(﹣3a3)2=9a6;B.a•a4=a4;C.a6÷a3=a2D.3a+2a2=5a3【解答】解:A、(﹣3a3)2=9a6,故此选项正确;B、a•a4=a5,故此选项错误;C、a6÷a3=a3,故此选项错误;D、3a+2a2,无法计算,故此选项错误.故选:A.4.(3分)下列说法正确的是()A.检测某批次灯泡的使用寿命,适宜用全面调查B.“367人中有2人同月同日生”为必然事件C.可能性是1%的事件在一次试验中一定不会犮生D.数据3,5,4,1,﹣2的中位数是4【解答】解:A、检测某批次灯泡的使用寿命,适宜用抽样调查,故此选项错误;B、“367人中有2人同月同日生”为必然事件,正确;C、可能性是1%的事件在一次试验中一定不会犮生,发生的概率小,也有可能发生,故此选项错误;D、数据3,5,4,1,﹣2的中位数是3,故此选项错误.故选:B.5.(3分)若正多边形的一个内角是150°,则该正多边形的边数是()A.6 B.12 C.16 D.18【解答】解:设多边形为n边形,由题意,得(n﹣2)•180°=150n,解得n=12,故选:B.6.(3分)如图,BC是⊙O的弦,OA⊥BC,∠AOB=70°,则∠ADC的度数是()A.70°B.35°C.45°D.60°【解答】解:∵A、B、C、D是⊙O上的四点,OA⊥BC,∴弧AC=弧AB(垂径定理),∴∠ADC=∠AOB(等弧所对的圆周角是圆心角的一半);又∠AOB=70°,∴∠ADC=35°.故选:B.7.(3分)已知点A(﹣1,1),B(1,1),C(2,4)在同一个函数图象上,这个函数图象可能是()A.B.C.D.【解答】解:∵A(﹣1,1),B(1,1),∴A与B关于y轴对称,故C,D错误;∵B(1,1),C(2,4),当x>0时,y随x的增大而增大,而B(1,1)在直线y=x上,C(2,4)不在直线y=x上,所以图象不会是直线,故A错误;故B正确.故选:B.8.(3分)已知一次函数y=kx+b的图象如图所示,则关于x的不等式k(x﹣4)﹣2b≥0的解集为()A.x≥﹣2 B.x≤3C.x≤﹣2 D.x≥3【解答】解:把(3,0)代入y=kx+b得3k+b=0,则b=﹣3k,所以k(x﹣4)﹣2b≥0化为k(x﹣4)+6k≥0,因为k<0,所以x﹣4+6≤0,所以x≤﹣2.故选:C.二、填空题(本大题共有10小题,每小题3分,共30分.不需写出解答过程)9.(3分)若分式有意义,则x的取值范围为x≠1.【解答】解:依题意得x﹣1≠0,即x≠1时,分式有意义.故答案是:x≠1.10.(3分)因式分解:ax2﹣ay2= a(x+y)(x﹣y).【解答】解:ax2﹣ay2=a(x2﹣y2)=a(x+y)(x﹣y).故答案为:a(x+y)(x﹣y).11.(3分)如图所示的圆形纸板被等分成10个扇形挂在墙上,玩飞镖游戏(每次飞镖均落在纸板上),则飞镖落在阴影区域的概率是.【解答】解:由题意可得:阴影部分有4个小扇形,总的有10个小扇形,故飞镖落在阴影区域的概率是: =.故答案为:.12.(3分)某颗粒物的直径是0.0000025,把0.0000025用科学记数法表示为 2.5×10﹣6.【解答】解:0.0000025用科学记数法表示为2.5×10﹣6,故答案为:2.5×10﹣6.13.(3分)若反比例函数y=﹣的图象经过点A(m,3),则m的值是﹣2 .【解答】解:∵反比例函数y=﹣的图象经过点A(m,3),∴3=﹣,解得m=﹣2.故答案为:﹣2.14.(3分)已知2a﹣3b=7,则8+6b﹣4a= ﹣6 .【解答】解:∵2a﹣3b=7,∴8+6b﹣4a=8﹣2(2a﹣3b)=8﹣2×7=﹣6,故答案为:﹣6.15.(3分)如图,⊙O的直径垂直于弦CD,垂足为E,∠A=15°,半径为2,则CD的长为2 .【解答】解:∵⊙O的直径AB垂直于弦CD,∴CE=DE,∠CEO=90°,∵∠A=15°,∴∠COE=30°,在Rt△OCE中,OC=2,∠COE=30°,∴CE=OC=1,(直角三角形中,30度角所对的直角边是斜边的一半)∴CD=2CE=2,故答案为:216.(3分)若某一圆锥的母线长为5cm,高为4cm,则此圆锥的侧面积是15πcm2.【解答】解:∵母线长为5cm,高为4cm,∴底面圆的半径为3cm,圆锥的侧面积=2π×3×5÷2=15π.故答案为:15π.17.(3分)如图,在正方形ABCD中,等边三角形AEF的顶点E、F分别在边BC和CD上,则∠AEB= 75 度.【解答】解:∵四边形ABCD是正方形,∴AB=AD,∠B=∠D=∠BAD=90°,在Rt△ABE和Rt△ADF中,,∴△ABE≌△ADF,∴∠BAE=∠DAF=(90°﹣60°)÷2=15°,∴∠AEB=75°,故答案为75.18.(3分)观察下列的“蜂窝图”则第n个图案中的“”的个数是3n+1 .(用含有n的代数式表示)【解答】解:由题意可知:每1个都比前一个多出了3个“”,∴第n个图案中共有“”为:4+3(n﹣1)=3n+1故答案为:3n+1三、解答题(本大题共有10小题,共86分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020年初中中招适应性测试数学试题卷(满分120分,考试时间100分钟)一、选择题(每小题3分,共30分) 1. 计算-7+4的结果是( )A .3B .-3C .11D .-112. 下列运算中,正确的是( )A .347x x x ⋅=B .65x x -=C .222()x y x y +=+D .347x y xy +=3. 一个几何体的三视图如图所示,该几何体是( )A .立方体B .四棱柱C .圆锥D .直三棱柱4. 在攻击人类的病毒中,某类新型冠状病毒体积较大,直径约为0.000 000 125米,含约3万个碱基,拥有RNA 病毒中最大的基因组,比艾滋病毒和丙型肝炎的基因组大三倍以上,比流感的基因组大两倍.0.000 000 125用科学记数法表示为( ) A .61.2510-⨯B .71.2510-⨯C .61.2510⨯D .71.2510⨯5. 将一副直角三角板ABC 和EDF 如图放置(其中∠A =60°,∠F =45°),使点E落在AC 边上,且ED ∥BC ,则∠AEF 的度数为( ) A .145° B .155°C .165°D .170°6. 某校八年级三班进行中国诗词知识竞赛,共有10组题目,该班得分情况如下表:全班40名同学的成绩的众数和中位数分别是( )A .76,78B .76,76C .80,78D .76,80人数 2 5 13 10 7 3 成绩(分) 506576 80 92 100俯视图左视图主视图ABC DEF7. 若关于x 的一元二次方程2320mx x -+=有两个不相等的实数根,则实数m 的取值范围是( )A .98m >B .98m < C .809m m <≠且 D .908m m <≠且8. 如图,在平面直角坐标系中,□OABC 的顶点A 在x 轴上,OC =4,∠AOC =60°,且以点O 为圆心,任意长为半径画弧,分别交OA ,OC 于点D ,E ;再分别以点D ,E 为圆心,大于12DE 的长度为半径画弧,两弧相交于点F ,过点O作射线OF ,交BC 于点P ,则点P 的坐标为( ) A .(4,23)B .(6,23)C .(23,4)D .(23,6)A BC D EFO Pxy9. 如图,在Rt △ABC 中,∠BAC =90°,AB =AC .点D 为BC 中点,E 为边AB上一动点(不与A ,B 点重合),以点D 为直角顶点,以射线DE 为一边作 ∠MDN =90°,另一条边DN 与边AC 交于点F .下列结论中正确结论是( ) ①BE =AF ;②△DEF 是等腰直角三角形;③无论点E ,F 的位置如何,总有EF =DF +CF 成立;④四边形AEDF 的面积随着点E ,F 的位置不同发生变化. A .①③B .②③C .①②D .①②③④10. 如图,在正方形ABCD 中,边长CD 为3 cm .动点P 从点A 出发,以2cm/s的速度沿AC 方向运动到点C 停止.动点Q 同时从点A 出发,以1 cm/s 的速度沿折线AB →BC 方向运动到点C 停止.设△APQ 的面积y (cm 2),运动时间为x (s ),则下列图象能反映y 与x 之间关系的是( )ABC DPQABCDEFMNA .4.563x /s y /cm 2OB .O y /cm 2x /s 364.5C .O y /cm 2x /s 364.5D .O y /cm 2x /s 364.5二、填空题(每小题5分,共15分) 11. 计算:(π-3.14)0-9=__________.12. 不等式组2123x a x b -<⎧⎨->⎩的解集为-1<x <1,则(a +2)(b -2)的值等于________.13. 如图,电路图上有编号为①②③④⑤共5个开关和一个小灯泡,闭合开关①或同时闭合开关②③或同时闭合开关④⑤都可使小灯泡发光,任意闭合电路上其中的两个开关,小灯泡发光的概率为__________.①②③④⑤N MEDCBAOGFED CBA第13题图 第14题图 第15题图14. 如图,正方形ABCD 边长为2,E 是AB 的中点,以E 为圆心,线段ED 的长为半径作半圆,交直线AB 于点M ,N .分别以线段MD ,ND 为直径作半圆,则图中阴影部分的面积为__________.15. 如图,矩形ABCD 中,AB =3,BC =4,对角线AC ,BD 相交于点O ,点E 是AD 边上一动点,将△AEO 沿直线EO 折叠,点A 落在点F 处,线段EF ,OD 相交于点G .若△DEG 是直角三角形,则线段DE 的长为__________.三、解答题(共8小题,共75分)16. (8分)先化简,再求值:12211122++-÷⎪⎭⎫⎝⎛+-+-x x x x x x ,其中22cos60x =+︒.17. (9分)期末考试后,某市第一中学为了解本校九年级学生期末考试数学学科成绩情况,决定对该年级学生数学学科期末考试成绩进行抽样分析,已知九年级共有12个班,每班48名学生,请按要求回答下列问题: 【收集数据】(1)若要从全年级学生中抽取一个48人的样本,你认为以下抽样方法中比较合理的有_________;(只要填写序号即可)①随机抽取一个班级的48名学生;②在全年级学生中随机抽取48名学生;③在全年级12个班中分别各抽取4名学生;④从全年级学生中随机抽取48名男生; 【整理数据】(2)将抽取的48名学生的成绩进行分组,绘制频数分布表和成绩分布扇形统计图(不完整)如下: 成绩(单位:分) 频数 频率 A 类(80~100) 0.5 B 类(60~79) 0.25 C 类(40~59) 8 D 类(0~39) 4请根据图表中数据填空:①C 类和D 类部分的圆心角度数分别为_________,_________; ②估计全年级A ,B 类学生大约一共有_________名;(3)学校为了解其他学校教学情况,将同层次的第一、第二两所中学的抽样数据进行对比,得下表:学校 平均数(分) 极差(分)方差 A ,B 类的频率和第一中学 71 52 432 0.75 第二中学 71804970.82你认为哪所学校的教学效果较好?结合数据,请给出一个解释来支持你的观点.A 类50%C 类D 类B 类25%18. (9分)如图,在Rt △ABC 中,∠ACB =90°,以斜边AB 上的中线CD 为直径作⊙O ,分别与AC ,BC 交于点E ,F .过点F 作⊙O 的切线交AB 于点M . (1)求证:MF ⊥AB ;(2)若⊙O 的直径是6,填空:①连接OF ,OM ,当FM =_________时,四边形OMBF 是平行四边形; ②连接DE ,DF ,当AC =__________时,四边形CEDF 是正方形.ABC D E FM O19. (9分)图1是一台实物投影仪,图2是它的示意图,折线B -A -O 表示固定支架,AO 垂直水平桌面OE 于点O ,点B 为旋转点,BC 可转动,当BC 绕点B 顺时针旋转时,投影探头CD 始终垂直于水平桌面OE ,经测量: AO =6.4 cm ,CD =8 cm ,AB =40 cm ,BC =45 cm . (1)如图2,∠ABC =70°,BC ∥OE . ①填空:∠BAO =_________°;②投影探头的端点D 到桌面OE 的距离是________cm ;(2)如图3,将(1)中的BC 向下旋转,∠ABC =30°时,求投影探头的端点D 到桌面OE 的距离.(参考数据:sin70°≈0.94,cos70°≈0.34,sin40°≈0.64,cos40°≈0.77)图1OA B C DE图270°EDC BAO图320. (9分)在学习函数时,我们经历了“确定函数的表达式—利用函数图象研究其性质—运用函数解决问题”的学习过程.在画函数图象时,我们通过列表、描点、连线的方法画出了所学的函数图象.同时,我们也学习过绝对值的意义00a a a a a ⎧=⎨-<⎩≥()().结合上面经历的学习过程,现在来解决下面的问题: 在函数1y kx b =-+中,当x =0时,y =-2;当x =1时,y =-3. (1)求这个函数的表达式;(2)在给出的平面直角坐标系中,请直接画出此函数的图象并写出这个函数的两条性质;(3)函数3y x =-的图象如图所示,结合你所画的函数图象,直接写出不等式31kx b x-+-≤的解集.x y O12345678654321-1-2-3-4-5-6-7-8-6-5-4-3-2-121. (10分)某宝网店销售甲、乙两种电器,已知甲种电器每个的售价比乙种电器多60元,马老师从该网店购买了3个甲种电器和2个乙种电器,共花费780元.(1)该店甲、乙两种电器每个的售价各是多少元?(2)根据销售情况,店主决定用不少于10 800元的资金购进甲、乙两种电器,这两种电器共100个,已知甲种电器每个的进价为150元,乙种电器每个的进价为80元.若所购进电器均可全部售出,请求出网店所获利润W (元)与甲种电器进货量m (个)之间的函数关系式,并说明当m 为何值时所获利润最大?最大利润是多少?22. (10分)已知:△ABC 和△ADE 是两个不全等的等腰直角三角形,其中AB =AC ,AD =AE ,∠BAC =90°,∠DAE =90°. (1)观察猜想如图1,连接BE ,CD 交于点H ,再连接CE ,那么BE 和CD 的数量关系和位置关系分别是___________,____________; (2)探究证明将图1中的△ABC 绕点A 逆时针旋转到图2的位置时,分别取BC ,CE ,DE 的中点P ,M ,Q ,连接MP ,PQ ,MQ ,请判断MP 和MQ 的数量关系和位置关系,并说明理由; (3)拓展延伸已知AB =2,AD =4,在(2)的条件下,将△ABC 绕点A 旋转的过程中,若∠CAE =45°,请直接写出此时线段PQ 的长.ABC DEH图1图2H EDCBAQPMABCDE备用图23. (11分)如图,抛物线y =ax 2+bx 过A (4,0),B (1,-3)两点,点C ,B 关于抛物线的对称轴对称,过点B 作直线BH ⊥x 轴,交x 轴于点H . (1)求抛物线的表达式;(2)点P 是抛物线上一动点,当△ABP 的面积为3时,求出点P 的坐标; (3)若点M 在直线BH 上运动,点N 在x 轴上运动,点R 是坐标平面内一点,当以点C ,M ,N ,R 为顶点的四边形为正方形时,请直接写出此时点R 的坐标.AB CH Oxy备用图AB CHOxy备用图2020年初中中招适应性测试数学试题卷【参考答案及评分标准】一、选择题(每小题3分,共30分) 题号 1 2 3 4 5 6 7 8 9 10 答案 BADBCADBCD二、填空题(每小题3分,共15分)11. -2 12. -1213. 3514. 2515.1524或 三、解答题(共8个小题,共75分)16. (8分)解:原式=22211(1)12x x x x x --++⋅+-=(2)112x x x x -+⋅- =(1)x x -+=2x x --…………………….5分当122cos6022212x =+︒=+⨯=+时,………….1分原式=(1)x x -+=(21)(211)-+++=324-- ……………………………8分 17. (9分)解:(1)②、③;……………2分(填对一个,两个都给满分) (2)①60°,30°;…………4分(带不带°,都给分) ②432(名);……………7分(3)本题答案不唯一,以下两个答案仅供参考: (“好”—1分,理由—1分)答案一:第一中学成绩较好,两校平均分相同,极差、方差小于第二中学,说明第一中学学生两级分化较小,学生之间的差距较第二中学小.………………9分答案二:第二中学成绩较好,两校平均分相同,A ,B 类的频率和大于第一中学说明第二中学学生及格率比第一中学学生好. …………………9分18.(9分)解:证明:如图,连接OF,DF,图略∵CD是Rt△ABC斜边AB上的中线,∴CD=AD=BD∵CD是⊙O的直径,∴∠CFD=90°,∵∠ACB=90°,∴FD∥CA∴FB BDCF AD,即CF=FB又CO=OD,∴OF是△CDB的中位线∴OF∥AB∵FM是⊙O的切线∴∠CFM=90°∴∠FMB=∠CFM=90°,即MF⊥AB.…………………………………5分(2)①3;…………………………………………………………………7分②62.……………………………………………………………… 9分19.(9分)解:(1)①160.........................2分②36..................5分(2)如图3,延长CD交OE于点H,过点B作BM⊥CD,交DC的延长线于点M,过点A作AF⊥BM于点F则∠MBA=70°,∵∠ABC=30°∴∠CBM=40°在Rt△AFB中,AB=40,∠MBA=70°,∴AF=AB·sin70°=37.6,∴FO=AF+AO=37.6+6.4=44,在Rt△BMC中,BC=45,∠CBM=40°∴MC=BC·sin40°=28.8,∴DH=FO-MC-CD=44-28.8-8=7.2答:投影探头的端点D到桌面OE的距离为7.2 cm..................................9分G OA B C DE图170°F OA BC DE图270°HM FED CBA O图3(说明:此题方法不唯一,其它方法对应给分) 20. (9分)解:(1)把x =0,y =-2分别代入表达式,得1+b =-2. 把x =1,y =-3分别代入表达式,得13k b -+=-. 解得,k =1,b =-3.∴函数表达式为:13y x =--………………….3分(2)如图所示:…………………….5分(图不画全,扣1分)x yO12345678654321-1-2-3-4-5-6-7-8-6-5-4-3-2-1函数性质举例:①函数图象关于直线x =1对称(或函数图象是个轴对称图形); ②函数的最小值是-3;③当x ≤1时,y 随x 的增大而减小,当x >1时,y 随x 的增大而增大; (局部增减性或交点坐标也正确) (写对两个即可)…….………7分(3)-3≤x <0或1≤x ≤3(对一个给1分,没写等号或多写不给分)……….9分21. (10分)解:(1)设甲种台灯每个的售价为x 元,乙种台灯每个的售价为y 元.根据题意可得6032780x y x y -=⎧⎨+=⎩,解得180120x y =⎧⎨=⎩.答:该店甲种台灯每个的售价为180元,乙种台灯每个的售价为120元.…4分 (2)①若购进甲种台灯m 个,则乙种台灯为(100-m )个. 根据题意可得,150m +80(100-m )≥10800. 解得m ≥40...……..……6分根据题意,可得W =(180-150)m +(120-80)(100-m )=-10m +4000. .……8分 ∵-10<0,∴W 随m 的增大而减小,且m ≥40,所以40≤m <100. ∴当m =40时,W 最大,W max 为3600,答:当m =40时,所获利润最大,最大利润为3600元.…………10分 (说明:此题方法不唯一,其它方法对应给分)22. (10分)解:(1)BE =CD ,BE ⊥CD ;……….…2分(相等或垂直;文字或符号均可) (2)PM =MQ ,PM ⊥MQ ,理由如下:记EB 与AD 交于点O ,∵△ABC 和△ADE 是两个不全等的等腰直角三角形∴AC =AB ,AE =AD ,∠CAB =∠EAD =90°, ∴∠CAD =∠EAB .∴△CAD ≌△EAB ………….…5分 ∴CD =BE ,∠AEB =∠ADC , ∵∠AOE =∠DOH , ∴∠EAO =∠DHO ,又∵△ADE 是等腰直角三角形,∴∠DHO =∠EAO =90°,即BE ⊥CD .………….…6分∵BC ,CE ,DE 的中点分别为P ,M ,Q ,∴PM 为△CBE 的中位线,MQ 为△ECD 的中位线,∴PM =12BE ,MQ =12CD ,PM ∥BE ,MQ ∥CD . ∵BE =CD ,BE ⊥CD ∴PM =MQ ,PM ⊥MQ .……….…8分 (3)5或13.…………10分 23. (11分)解:(1)把A (4,0),B (1,-3)的坐标分别代入抛物线y =ax 2+bx 中,得01643a ba b=+⎧⎨-=+⎩,解得,14a b =⎧⎨=-⎩ ∴抛物线解析式为24y x x =-.………………….3分(2)如图所示,过点P 作x 轴的垂线,交直线AB 于点G ,交x 轴于点K ,由A ,B 两点坐标可得l AB :y =x -4 设点P (m ,24m m -),则点G (m ,m -4) ∵点P 可能在直线AB 上方或下方, ∴PG =()244m m m ---=254m m -+. ∵211()35422ABP A B S x x PG m m =⋅-⋅=⨯⋅-+△, 且3ABPS =△,∴2542m m -+=, 解得15172m +=,25172m -=,32m =,43m =, ∴点P 的坐标为P 1(5172+,1172+),P 2(5172-,1172-),P 3(2,-4),P 4(3,-3).………………….9分(3)R 1(4,-1);R 2(-2,-5);R 3(0,-2);R 4(6,2).……………11分 (说明:此题方法不唯一,其它方法对应给分)K G P ABCH Oxy。