初中七年级数学垂线

合集下载

七年级数学垂线知识点总结

七年级数学垂线知识点总结

七年级数学垂线知识点总结数学中,垂线是非常重要且常用的一个概念。

在利用垂线解决问题的时候,我们要掌握某些关键的知识点。

在这篇文章中,我们将对七年级数学中垂线的知识点进行总结。

一、垂线的概念
垂线是指一个线段或一个向量与另一条直线所交的线段,它与这条直线的交点就是垂足。

一个线段或向量与另一条直线所成的角度为90度。

二、垂线的性质
(1)垂线所在的直线与另一条直线的夹角是90度。

(2)同一条直线上的垂线长度相等。

(3)如果两条垂线在一条直线上,则这两条垂线互相垂直。

(4)平行的直线上的垂线互相平行。

三、垂线的分类
(1)高线:就是指一个顶点到对边的垂线。

(2)中线:就是指一个三角形的一个顶点到对边中点的垂线。

(3)中垂线:就是指一个三角形的一个角的平分线与对边的
垂线所交的线段。

四、垂线的应用
(1)垂线的交点可以确定两直线之间的距离。

(2)找重心:在一个三角形中,三条中线交于一个点,这个
交点就是重心。

(3)找垂心:在一个三角形中,三条高线交于一个点,这个交点就是垂心。

(4)找中心:在一个三角形中,三条中垂线交于一个点,这个交点就是三角形的内心。

以上就是七年级数学垂线知识点的总结。

希望这篇文章对大家掌握垂线的概念、性质和应用有所帮助。

七年级下册数学垂线的画法知识点

七年级下册数学垂线的画法知识点

七年级下册数学垂线的画法知识点在数学学习中,垂线是一个十分重要的概念。

垂线的作用不仅包括求解图形性质和计算各种长度,还可以帮助我们提高思维能力,培养专注和细致的态度。

在这篇文章中,我们将重点讨论七年级下册数学中垂线的画法知识点。

一、垂线和垂线段的定义垂线是指从一个点到直线上的一条线段,这条线段与直线垂直。

垂线段则是指从一个点垂直于一条线段的线段,它在线段上的垂足上。

二、垂线的画法1. 从一点画垂线假设有一点P和一条直线AB,现在我们需要从点P画一条垂线。

这个问题的解决方法有很多,最常见的就是使用圆规和直尺。

具体步骤如下:(1)用直尺把线段PA和PB连接起来,得到线段AB;(2)圆规的脚尖放在点P上,圆规的长度稍大于AB这条线段的长度;(3)在圆规上取一个点Q,使得圆规上的距离等于AB这条线段的长度;(4)以点Q为圆心,以AB的长度为半径作圆;(5)这个圆与直线AB的交点C和D即为P点作垂线所在的两个点。

2. 从一条线段上画垂线如果我们需要从一条线段上作垂线,我们同样可以使用圆规和直尺。

具体步骤如下:(1)先画出这条线段;(2)圆规的脚尖放在线段的一个端点上,圆规的长度稍大于线段的长度;(3)在圆规上取一个点Q,使得圆规上的距离等于这条线段的长度;(4)以另一个端点为圆心,以刚刚取出的Q点为半径作圆;(5)这个圆与线段的交点即为线段上作垂线所在的点。

三、垂线的性质1.相交垂线的交点是这两条直线的垂心垂线与直线相交时,如果从垂足所在的点沿着直线画出一条水平线,则直线被分为了两部分。

两条相交的垂线和水平线形成了一个直角三角形,其中的交点就是直线的垂心。

2. 垂线上的点到直线的距离相等在线段上作一个垂线,垂足即是垂线与直线的交点。

这个垂足与直线的距离被称为垂线长,它所代表的距离就是从垂足到直线的距离,同时,这个距离与直线上任意一点到直线的距离相等。

四、垂线的应用1. 求解三角形通过画出三角形的垂心和垂线,我们可以求解三角形的重心、外心、内心等相关性质。

垂线(知识讲解)-七年级数学下册基础知识专项讲练(人教版)

垂线(知识讲解)-七年级数学下册基础知识专项讲练(人教版)

专题5.4垂线(知识讲解)1.理解垂直作为两条直线相交的特殊情形,掌握垂直的定义及性质;2.理解并运用“垂线段最短”解决实际问题;3.理解点到直线的距离的概念,并会度量点到直线的距离;4.能依据对顶角、邻补角及垂直的概念与性质,进行简单的计算.1.垂线的定义:两条直线相交所成的四个角中,有一个角是直角时,就说这两条直线互相垂直,其中一条直线叫做另一条直线的垂线,它们的交点叫垂足.特别说明:(1)记法:直线a 与b 垂直,记作:a b ⊥;直线AB 和CD 垂直于点O,记作:AB⊥CD 于点O.(2)垂直的定义具有二重性,既可以作垂直的判定,又可以作垂直的性质,即有:90AOC ∠=° 判定性质CD⊥AB.:过一点画已知直线的垂线,可通过直角三角板来画,具体方法是使直角三角板的一条直角边和已知直线重合,沿直线左右移动三角板,使另一条直角边经过已知点,沿此直角边画直线,则所画直线就为已知直线的垂线(如图所示).特别说明:(1)如果过一点画已知射线或线段的垂线时,指的是它所在直线的垂线,垂足可能在射线的反向延长线上,也可能在线段的延长线上.(2)过直线外一点作已知直线的垂线,这点与垂足间的线段为垂线段.3.垂线的性质:(1)在同一平面内,过一点有且只有一条直线与已知直线垂直.(2)连接直线外一点与直线上各点的所有线段中,垂线段最短.简单说成:垂线段最短.特别说明:(1)性质(1)成立的前提是在“同一平面内”,“有”表示存在,“只有”表示唯一,“有且只有”说明了垂线的存在性和唯一性.(2)性质(2)是“连接直线外一点和直线上各点的所有线段中,垂线段最短.”实际上,连接直线外一点和直线上各点的线段有无数条,但只有一条最短,即垂线段最短.在实际问题中经常应用其“最短性”解决问题.4.点到直线的距离:定义:直线外一点到这条直线的垂线段的长度,叫做点到直线的距离.特别说明:(1)点到直线的距离是垂线段的长度,是一个数量,不能说垂线段是距离;(2)求点到直线的距离时,要从已知条件中找出垂线段或画出垂线段,然后计算或度量垂线段的长度.【典型例题】类型一、垂线➽➼定义的理解➼➻垂直✬✬直角1.如图,直线AB ,CD 相交于点O ,下列条件:90AOD ∠=︒①;AOC BOC ∠=∠②;AOC BOD ∠=∠③,其中能说明AB CD ⊥的有()A .①B .①或②C .①或③D .①或②或③【答案】B 【分析】根据垂直定义“当两条直线相交所成的四个角中,有一个角是直角时,就说这两条直线互相垂直”进行判定即可.解:90AOD ∠=︒①,可以得出AB CD ⊥,故符合题意;180AOC BOC ∠+∠=︒ ②,AOC BOC ∠=∠,故符合题意,90AOC BOC ∴∠=∠=︒,可以得出AB CD ⊥;AOC BOD ∠=∠③,不能得到AB CD ⊥,故不符合题意;故能说明AB CD ⊥的有①②.故选:B .【点拨】此题主要考查了垂直定义,关键是通过条件计算出其中一个角为90︒.举一反三:【变式1】如图,同一平面内的三条直线交于点O ,130∠=︒,260∠=︒,AB 与CD 的关系是()A .平行B .垂直C .重合D .以上均有可能【变式2】如图,120∠=︒,则2∠的度数是()A.50︒B.60︒C.70︒D.80︒【答案】C【分析】根据图象可得:∠1+∠2=90°,代入求解即可得出结果.解:∵∠1+∠2+90°=180°,∴∠1+∠2=90°,∵∠1=20°,∴∠2=70°,故选:C.【点拨】题目主要考查角度计算,从图中得出∠1+∠2=90°是解题关键.类型二、垂线➽➼垂线的画法条射线重合,折痕a即为所求,下列判断正确的是()A.只有嘉嘉对B.只有淇淇对C.两人都对D.两人都不对【答案】C【分析】根据垂直的定义即可解答.解:嘉嘉利用量角器画90°角,可以画垂线,方法正确;淇淇过点A将纸片折叠,使得以A为端点的两条射线重合,折痕a垂直直线l,方法正确,故选:C.【点拨】本题主要考查了作图、垂线的定义,掌握垂直的定义是解答本题的关键.举一反三:【变式1】下列用三角板过点P画AB的垂线CD,正确的是()【变式2】过一条线段外一点,作这条线段的垂线,垂足在()A.这条线段上B.这条线段的端点处C.这条线段的延长线上D.以上都可以【答案】D【分析】画一条线段的垂线就是画线段所在直线的垂线,进而得出答案.解答:由垂线的定义知,画一条线段的垂线,垂足可以在线段上,可以是线段的端点,也可以在线段的延长线上.故选D.【点拨】本题主要考查线段垂线的画法,正确把握垂线的定义是关键.类型三、垂线➽➼点到直线的距离✬✬垂线段画法3.如图,90AOB ∠=︒,P 是OB 上的一点,用刻度尺分别度量点P 到直线OA 和到直线OC 的距离.【答案】点P 到直线OA 的距离约为2cm ,点P 到直线OC 的距离约为1.1cm【分析】过点P 作PD OC ⊥,用刻度尺分别度量PO 和PD 的长度,即可得到点P 到直线OA 和到直线OC 的距离.【详解】解:过点P 作PD OC ⊥,用刻度尺分别度量,可得点P 到直线OA 的距离约为2cm ,点P 到直线OC 的距离约为1.1cm .【点拨】本题考查了点到直线的距离,解题的关键是清楚点到直线的距离是垂线段的长度.举一反三:【变式1】如图,AB 、CD 、NE 相交于点O ,OM 平分BOD ∠,OM ON ⊥,55AOC ∠=︒.(1)线段______的长度表示点M 到NE 的距离;(2)比较MN 与MO 的大小(用“<”号连接):____________,并说明理由:____________;(3)求AON ∠的度数.【答案】(1)MO ;(2)MO MN <,是因为垂线段最短;(3)62.5︒【分析】(1)根据点到直线的距离求解即可;(2)根据垂线段最短求解即可;(3)根据垂直的定义和角之间的关系求解即可.(1)解:线段MO 的长度表示点M 到NE 的距离,故答案为:MO ;(2)解:比较MN 与MO 的大小为:MO MN <,是因为垂线段最短,故答案为:MO MN <,是因为垂线段最短;(3)解:55BOD AOC ∠=∠=︒ ,OM 平分BOD ∠,27.5BOM ∴∠=︒,18018027.59062.5AON BOM MON ∴∠=︒-∠-∠=︒-︒-︒=︒.【点拨】本题考查了点到直线的距离、角平分线、垂线段最短,解题的关键是掌握点到直线的距离.【变式2】已知:点P 是直线MN 外一点,点A 、B 、C 是直线MN 上三点,分别连接PA 、PB 、PC .(1)通过测量的方法,比较PA 、PB 、PC 的大小,直接用“>”连接;(2)在直线MN 上能否找到一点D ,使PD 的长度最短?如果有,请在图中作出线段PD ,并说明它的理论依据;如果没有,请说明理由.【答案】(1)PA PB PC >>;(2)见解析,垂线段最短【分析】(1)直接测量,比较大小即可;(2)作MN 的垂线,垂足为D ,PD 即所求.解:(1)通过测量可知, 3.7PA =cm , 3.2PB =cm , 2.8PC =cm ,故PA PB PC >>;(2)过点P 作PD MN ⊥,则PD 最短.理由:垂线段最短【点拨】本题考查了垂线段最短的性质,解题关键是能熟练的测量线段的长度,知道垂线段最短.类型四、垂线➽➼点到直线的距离✬✬垂线段的长4.如图,在ABC 中,90ACB ∠=︒,8cm AC =,6cm BC =,10cm AB =,点P 从点A 出发,沿射线AB 以2/cm s 的速度运动,点Q 从点C 出发,沿线段CB 以1cm /s 的速度运动,P 、Q 两点同时出发,当点Q 运动到点B 时P 、Q 停止运动,设Q 点的运动时间为t 秒.(1)当t =______时,2BP CQ =;(2)当t =______时,BP BQ =;(3)画CD AB ⊥于点D ,并求出CD 的值;(4)当t =______时,有2ACP ABQ S S = .举一反三:【变式1】如图,点A、点B是直线l上两点,AB=10,点M在直线l外,MB=6,MA=8,∠AMB=90°,若点P为直线l上一动点,连接MP,则线段MP的最小值是____.【答案】4.8【分析】根据垂线段最短可知:当MP⊥AB时,MP有最小值,利用三角形的面积可列式计算求解MP的最小值.解:当MP⊥AB时,MP有最小值,∵AB=10,MB=6,MA=8,∠AMB=90°,∴AB•MP=AM•BM,即10MP=6×8,解得MP=4.8.故答案为:4.8.【点拨】本题主要考查垂线段最短,三角形的面积,找到MP最小时的P点位置是解题的关键.【变式2】如图,在三角形ABC中,AC=5,BC=6,BC边上的高AD=4,若点P在边AC 上(不与点A,C重合)移动,则线段BP最短时的长为_________________.中考真题专练4.(2022·江苏常州·中考真题)如图,斑马线的作用是为了引导行人安全地通过马路.小丽觉得行人沿垂直马路的方向走过斑马线更为合理,这一想法体现的数学依据是()A .垂线段最短B .两点确定一条直线C .过一点有且只有一条直线与已知直线垂直D .过直线外一点有且只有一条直线与已知直线平行【答案】A【分析】根据垂线段最短解答即可.解:行人沿垂直马路的方向走过斑马线,体现的数学依据是垂线段最短,故选:A .【点拨】本题考查垂线段最短,熟知垂线段最短是解答的关键.举一反三:【变式1】(2022·河南·中考真题)如图,直线AB ,CD 相交于点O ,EO ⊥CD ,垂足为O .若∠1=54°,则∠2的度数为()A .26°B .36°C .44°D .54°【答案】B 【分析】根据垂直的定义可得90COE ∠=︒,根据平角的定义即可求解.解: EO ⊥CD ,90COE ∴∠=︒,12180COE ∠+∠+∠=︒ ,2180905436∴∠=︒-︒-︒=︒.故选:B .【点拨】本题考查了垂线的定义,平角的定义,数形结合是解题的关键.【变式2】(2021·北京·中考真题)如图,点O 在直线AB 上,OC OD ⊥.若120AOC ∠=︒,则BOD ∠的大小为()A .30︒B .40︒C .50︒D .60︒【变式3】(2021·浙江杭州·中考真题)如图,设点P 是直线l 外一点,PQ l ⊥,垂足为点Q ,点T 是直线l 上的一个动点,连接PT ,则()A .PT PQ≥2B .PT PQ ≤2C .PT PQ ≥D .PT PQ≤【答案】C 【分析】根据垂线段距离最短可以判断得出答案.【详解】解:根据点P 是直线l 外一点,PQ l ⊥,垂足为点Q ,∴是垂线段,即连接直线外的点P与直线上各点的所有线段中距离最短,PQ=,当点T与点Q重合时有PQ PT≥,综上所述:PT PQ故选:C.【点拨】本题考查了垂线段最短的定义,解题的关键是:理解垂线段最短的定义.。

人教版七年级数学下《垂线》知识全解

人教版七年级数学下《垂线》知识全解

《垂线》知识全解课标要求1.理解垂线、垂线段等概念,能用三角尺或量角器过一点画已知直线的垂线;2.理解点到直线的距离的意义,能度量点到直线的距离;3.识别同位角、内错角、同旁内角.知识结构内容解析1.垂线的定义:两条直线相交所成的四个角中有一个角是90°时,这两条直线互相垂直,其中一条直线叫做另一条直线的垂线.2.垂线的性质一:过一点有且只有一条直线与已知直线垂直.3.点到直线的距离:直线外一点到这条直线的垂线段的长度,叫做点到直线的距离.注意:垂线是一条直线,而垂线段是一条线段.4.垂线的性质二:连接直线外一点与直线上各点的所有线段中,垂线段最短.(垂线段最短)5.同位角、内错角、同旁内角(1)同位角:①位于两条被截直线AB、CD的同方;②在第三条直线EF的同侧.(2)内错角:①位于两条被截直线AB、CD的内部;②在第三条直线EF的两侧.(3)同旁内角:①位于两条被截直线AB、CD的内部;②在第三条直线EF的同侧.注意:(1)同位角、内错角、同旁内角都是成对出现的.(2)两条直线被第三条直线所截中共有4对同位角、2对内错角、2对同旁内角.重点难点本节的重点是:两条直线互相垂直的概念、性质和画法;点到直线的距离的概念及其简单应用.理解同位角,内错角,同旁内角的概念是本节的重点本节的难点是:对点到直线的距离的概念的理解.在“三线八角”中,学生不易分清角的类别,所以正确识别同位角,内错角,同旁内角是本节的难点教法导引在本节的教学中过程中要借助模型、实物、图形及计算机等学习手段使学生得到直观的感性认识,进而在感知的基础上进行抽象知识的学习,这样才能有助于培养逻辑思维的能力,同时应鼓励学生多观察、多动手、勤思考增强学生学习几何知识的兴趣.在本节的概念和相关结论的教学中,应结合图形去讲解并通过画图、度量等实践活动,让学生理解知识.教学中应继续渗透数形结合、转化、分类等数学思想方法.教学中要注意与以前学生学习过的相关知识进行衔接,比如在垂线段最短的教学中可以把上学期所学的“两点之间线段最短”的知识进行对比.教学中让学生把所学知识用准确、精炼的几何语言表述出来,同时还要注意培养学生的识图能力.学法建议学习中应结合具体实例深刻掌握垂线、点到直线的距离、同位角、内错角、同旁内角的概念,深刻理解垂线的两个性质,并且能够运用垂线的性质来解释生活中的具体实例,例如如何开挖沟渠能使输水管道最短的问题.本节的易错点是混淆垂线和垂线段,大家只要记住垂线是一条直线,垂线段是一条线段就能把他们区别了.本节的一个难点是“三线八角”中判断两个角的关系.解答此类问题把握以下两个方面即可:(1)要弄清楚每对角与哪三条直线有关,第三条直线就是这两个角的公共边所在的直线,另两条直线是角的另两边;(2)当图形比较复杂时,把这两个角有关的三条线画出来,注意图形的结构特点.。

七年级数学垂线知识点

七年级数学垂线知识点

七年级数学垂线知识点数学中的垂线是指与另一条直线或平面相交且所交的角度为90度的线段。

在七年级数学中,垂线是一个重要的知识点,应该掌握其定义、性质、应用以及解题方法等方面的知识。

一、垂线的定义和性质定义:垂线是指从点到一条直线或平面所引下的线段,且该线段与直线或平面相交的角度为90度。

性质:(1)垂线是最短的线段;(2)两条互相垂直的线段的乘积相等;(3)垂线可以将一个角分成两个互相垂直的角。

二、垂线的应用在日常生活中,垂线可以被广泛地应用到各个领域。

例如,建筑学中的垂线是指对于一条直线,相对于该直线且垂直于地面的线段;医学中的垂线可以用于测量身体各部分之间的距离;在制图学中,垂线可以用于测量任意两条线之间的距离。

在数学中,垂线常被用于解决各种几何问题。

例如,在求解三角形的中位线、高线、中心线时,常常需要利用垂线的性质进行计算。

三、垂线的解题方法1. 在求解垂线的长度时,可以使用勾股定理计算。

例如,在三角形中,点P在边AB上,PA垂直于BC,求PA的长度。

解:根据勾股定理得到$PA^2 = AB^2 - BP^2$又因为BP = PC,所以$PA^2 = AB^2 - \frac{BC^2}{4}$2. 在求解垂线所在的直线的方程时,可以使用点斜式或一般式。

例如,已知直线L经过点P(2,3)且与$x$轴垂直,求直线L的方程。

解:由于L与$x$轴垂直,所以L的斜率$k$为0。

又因为直线经过点$P(2,3)$,所以L可以由点斜式表示为$y - 3 = 0(x - 2)$化简得到$y = 3$所以直线L的方程为$y = 3$。

以上是七年级数学垂线知识点的介绍,希望同学们掌握垂线的定义、性质、应用和解题方法,能够在解决各种几何问题时灵活运用垂线知识点,取得更好的学习成绩。

七年级数学垂线

七年级数学垂线

A
.P
B
已知直线AB及一点P,试过点 P作直线AB的垂线。
.P
A
B
点在直线外
垂线的性质1
经过直线外或直线上一点,有且 只有一条直线与已知直线垂直。 “有且只有”的含义:
“有”代表“存在”; “只有”代表“唯一”
试一试
1.如图, ∠ABD=90°,则
(1) 直线( AC )⊥直线( BD ), 垂足为点( B ); (2)过点D有且只有( 一 )条直 线与直线AC垂直。
二、一辆汽车在直线型公路AB 上由A向B 行驶,M、N分别是位于公路两侧的村庄, 设汽车行驶到P位置时离村庄M最近;行 驶到Q位置时离村庄N最近,请在图中公 路AB上分别画出P、Q两点的位置
M · A N · B
三、如图,直线AB与CD相交于点O,OE⊥CD, OF⊥AB,∠DOF=65o,求∠BOE和∠AOC的 度数。 F
七年级数学
课题
垂线
设计者
谢汝荡
学习目标:
1、理解垂线的概念,会用三角板、量 角器过一点画一条直线的垂线。 2、理解点到直线的距离的概念,并会 度量点到直线的距离。
两直线相交
A
2 1
C O B
几何语言:
D “直线AB、CD相交于点O”
∠1、 ∠2分别是什么角?
∠1是锐角, ∠2是钝角。
两直线垂直
2.如图,∠ABD=90°,则 (1)度量线段PA、PB、 PC长,比较它们的大小。 PA > PC > PB (2)最短的线段是什么?(线段AB) 垂线的性质2:直线外一点与直线上各点连 结的所有线段中,垂线段最短。 简称:“垂线段最短”
点到直线的距离: 直线外一点到直线的 垂线段的长度,叫做 点到直线的距离。

七年级数学下册课件:5.1.2垂线

七年级数学下册课件:5.1.2垂线
A
其中正确的有( C ) A. 1个 B. 2个 C. 3个 D. 4个
B
D
C
2.如图,直线 AB,CD相交于点O,OE⊥CD,
OF⊥AB,∠DOF=65°,求∠BOE和∠AOC
的度数.
F
D
A
Bห้องสมุดไป่ตู้
O
C
E
∠BOE =65 °,∠AOC =25°
3.如图,一辆汽车在直线形的公路AB上由A 向B行驶,M、 N分别是位于公路两侧的村庄, 设汽车行驶到点P位置时,距离村庄M最近, 行驶到点Q位置时,距离村庄N最近,请在图 中公路AB上分别画出P、Q两点的位置.
做点 P到直线l 的距离. A B O
C
1.如图,BAC 90, AD BC,垂足为D,则下列结论:
(1)AB与AC互相垂直; (2)AD与AC互相垂直; (3)点C到AB的垂线段是线段AB; (4)点A到BC的距离是线段AD的长度 ; (5)线段AB的长度是点B到AC的距离; (6)线段AB是点B到AC的距离.
M
A
P
Q B
N
4.学校运动会上,一名运动员第五跳打破了年 级跳远记录.如图A、B为这一跳的脚印落点, 起跳线为CD.请画图说明如何测量他的成绩.
C

F
A E• B
D 解析:过脚印B的后跟E作EF⊥CD,垂足为点F. 那么垂线段EF的长度就是这名运动员跳远的成绩.
一般情况
对顶角:相等


邻补角:互补
点击页面即可演示
(一)垂直的定义及写法
定义:当两条直线相交所成的四个角中,有一个角 是直角时,就说这两条直线互相垂直,其中的一条直线 叫做另一条直线的垂线,它们的交点叫做垂足.

七年级下册数学知识点垂线

七年级下册数学知识点垂线

七年级下册数学知识点垂线垂线作为一种基本的图形要素,在数学中应用广泛。

在七年级下册数学学习中,垂线是必须要掌握的重要知识点。

本文将就垂线的概念、性质和应用等方面进行介绍,以便给七年级下学生提供有用的帮助。

一、垂线的概念垂线是从一点到一条给定直线的线段,且这个线段与给定直线垂直。

可简单理解为一条竖直的线段。

在学习垂线的时候,我们需要了解一下两个相关概念:垂线段和垂足。

垂线段指垂线与原直线的交点所连接的线段,而垂足指垂线与原直线的交点。

这两个概念在后续的学习中会经常出现。

二、垂线的性质1.垂线的长度是不变的不论你在给定的直线上选择哪个点来作垂线,它的长度都是相同的,因为所有的垂线都是垂直于给定直线的。

这需要我们在实际计算中注意。

2.相交直线的垂线是垂直的对于两条相交的直线,它们的垂线必定相互垂直。

因为垂直的定义就是两线段夹角为90度,而垂线恰好和直线垂直,它们的夹角自然为90度。

3.垂足在线段的中点在同一直线上作一条垂线,那么垂足一定在该线段的中点。

这是因为垂线恰好垂直于该线段,而在该线段的中点悬空之处其实并不存在具体的角度,所以是垂足的理想位置。

三、垂线的应用垂线在数学中是一个十分重要的概念,常常用在解决几何问题中。

1.垂线的应用于求解三角形的面积我们可以通过连接三角形的一个顶点和对边的垂线,将原三角形分为两个小三角形和一个矩形,从而求解三角形的面积。

2.垂线的应用于求解两个直线之间的距离我们可以通过向两个直线各作一条垂线,并连接这两条垂线的垂线段,从而求解出这两条直线之间的距离。

3.垂线的应用于解决线段间的垂直问题对于不在同一直线上的两条线段,我们可以通过连接它们的垂线来判断它们是否互相垂直。

如果垂线互相垂直,则两条线段也互相垂直。

四、总结垂线是七年级下册数学学习中重要的知识点,它可以被应用于各种不同的几何问题。

在学习垂线的过程中,需要掌握垂线的概念和性质,并能够灵活运用垂线来解决实际问题。

希望通过本文的介绍,能够对七年级下学生深入理解垂线有所帮助。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

5.1.2 垂线
(检测时间50分钟满分100分)
班级___________________ 姓名_______________ 得分____
一、选择题:(每小题3分,共18分)
1.如图1所示,下列说法不正确的是( )
A.点B到AC的垂线段是线段AB;
B.点C到AB的垂线段是线段AC
C.线段AD是点D到BC的垂线段;
D.线段BD是点B到AD的垂线段
D C
B A
D
C
B
A
O D
C
A
(1) (2) (3)
2.如图1所示,能表示点到直线(线段)的距离的线段有( )
A.2条
B.3条
C.4条
D.5条
3.下列说法正确的有( )
①在平面内,过直线上一点有且只有一条直线垂直于已知直线;
②在平面内,过直线外一点有且只有一条直线垂直于已知直线;
③在平面内,过一点可以任意画一条直线垂直于已知直线;
④在平面内,有且只有一条直线垂直于已知直线.
A.1个
B.2个
C.3个
D.4个
4.如图2所示,AD⊥BD,BC⊥CD,AB=acm,BC=bcm,则BD的范围是( )
A.大于acm
B.小于bcm
C.大于acm或小于bcm
D.大于bcm且小于acm
5.到直线L的距离等于2cm的点有( )
A.0个
B.1个;
C.无数个
D.无法确定
6.点P为直线m外一点,点A,B,C为直线m上三点,PA=4cm,PB=5cm,PC=2cm,则点P到直
线m的距离为( )
A.4cm
B.2cm;
C.小于2cm
D.不大于2cm
二、填空题:(每小题3分,共12分)
1.如图3所示,直线AB与直线CD的位置关系是_______,记作_______,此时,•∠AO D=∠
_______=∠_______=∠_______=90°.
2.过一点有且只有________直线与已知直线垂直.
3.画一条线段或射线的垂线,就是画它们________的垂线.
4.直线外一点到这条直线的_________,叫做点到直线的距离.
三、训练平台:(共15分)
如图所示,直线AB,CD,EF 交于点O,OG 平分∠BOF,且CD ⊥EF,∠AOE=70°,•求∠DOG 的度数.
G
O
F
E
D
C
B
A
四、提高训练:(共15分)
如图所示,村庄A 要从河流L 引水入庄, 需修筑一水渠,请你画出修筑水渠的路线图.
五、探索发现:(共20分)
如图6所示,O 为直线AB 上一点,∠AOC=
1
3
∠BOC,OC 是∠AOD 的平分线. (1)求∠COD 的度数;(2)判断OD 与AB 的位置关系,并说明理由.
O
D
C B
A
六、中考题与竞赛题:(共20分)
(2001.杭州)如图7所示,一辆汽车在直线形的公路AB 上由A 向B 行驶,M,N•分别是 位于公路AB 两侧的村庄,设汽车行驶到P 点位置时,离村庄M 最近,行驶到Q 点位置时,•离村庄N 最近,请你在AB 上分别画出P,Q 两点的位置.
N
B
A
l
A
答案:
一、1.C 2.D 3.C 4.D 5.C 6.D
二、1.垂直 AB⊥CD DOB BOC COA 2.一条 3.所在直线 4.•垂线段的长度
三、∠DOG=55°
四、解:如图3所示.
l
五、解:(1)∵∠AOC+∠BOC=∠AOB=180°,
∴1
3
∠BOC+∠BOC=180°,
∴4
3
∠BOC=•180°,
∴∠BOC=135°,∠AOC=45°,
又∵OC是∠AOD的平分线,
∴∠COD=∠AOC=45°.•
(2)∵∠AOD=∠AOC+∠COD=90°,
∴OD⊥AB.
六、解:如图4所示.
N
A。

相关文档
最新文档