(完整版)七年级数学下册垂线练习题

合集下载

人教版七年级数学下册5-1-2 垂线 习题(含答案及解析)

人教版七年级数学下册5-1-2 垂线 习题(含答案及解析)

5.1.2 垂线学校:__________ 姓名:__________ 班级:__________ 考号:__________一、单选题1.到直线L 的距离等于2cm 的点有( )A .0个B .2个C .3个D .无数个2.如图,能表示点到直线的距离的线段共有( )A .2条B .3条C .4条D .5条3.点P 是直线l 外一点,A 、B 、C 为直线l 上的三点,4PA cm =,5PB cm =,2PC cm =,则点P 到直线l 的距离( )A .小于2cmB .等于2cmC .不大于2cmD .等于4cm4.如图,有三条公路,其中AC 与AB 垂直,小明和小亮分别沿AC 、BC 同时从A 、B 出发骑车到C 城,若他们同时到达,则下列判断中正确的是( )A .小明骑车的速度快B .小亮骑车的速度快C .两人一样快D .因为不知道公路的长度,所以无法判断他们速度的快慢5.如图所示,已知AC⊥BC,CD⊥AB,垂足分别是C ,D ,那么以下线段大小的比较必定成立的是( )A .CD AD >B .AC BC < C .BC BD > D .CD BD <6.与一条已知直线垂直的直线有( )A .1条B .2条C .3条D .无数条7.如图,直线AB ,CD 相交于点O ,OE⊥CD 于点O ,∠AOC=36°,则∠BOE=( )A .36°B .64°C .144°D .54°8.下面说法正确的是( )A .过一点有且只有一条直线与已知直线平行B .两直线成直角,则这两直线一定垂直C .没有交点的两条直线一定平行D .过直线外一点,有且只有一条直线与已知直线垂直9.如图,OA⊥OB,∠1=35°,则∠2的度数是( )A .35°B .45°C .55°D .70°二、填空题1.如图所示,A ,B ,C 是直线l 上的三点,P 为直线l 外一点,已知PC⊥l,PA =4厘米,PB =5厘米,PC =3厘米,则点P 到直线l 的距离为__________.2.如图,115∠=︒,CO OA ⊥,点B ,O ,D 在同一直线上,则∠2的度数为________.3.如图,直线AB ,CD ,EF 相交于点O ,且AB⊥CD,∠1=30°,则∠2=______.4.如图,直线AB ,CD 相交于点O ,如果∠EOD=40°,∠BOC=130°,那么∠BOE 的度数是________.5.如图,直线AB,CD交于点O,OE⊥AB,OD平分∠BOE,则∠AOC=________.三、解答题1.数学是从实际生活中来的,又应用于生活.请将下列事件与对应的数学原理连接起来.事件数学原理教室的门要用两扇合页才能自由开关直线外一点与直线上各点连线的所有线段中,垂线段最短飞机从萧山飞往北京,它的航行路线是直的经过两点有且只有一条直线测量运动员的跳远成绩时,皮尺与起跳线保持垂直两点之间线段最短2.如图,M,N为坐落于公路两旁的村庄,如果一辆施工的机动车由A向B行驶,产生的噪音会对两个村庄造成影响.(1)当施工车行驶到何处时,产生的噪音分别对两个村庄影响最大?在图中标出来.(2)当施工车从A向B行驶时,产生的噪音对M,N两个村庄的影响情况如何?3.如图,平原上有A,B,C,D四个村庄,为解决当地缺水问题,政府准备投资修建一个蓄水池.(1)不考虑其他因素,请你画图确定蓄水池H点的位置,使它到四个村庄距离之和最小;(2)计划把河水引入蓄水池H中,怎样开渠最短并说明根据.4.把图中的互相平行的线写出来,互相垂直的线写出来:5.如图,已知直线AB和CD相交于点O,射线OE⊥AB于点O,射线OF⊥CD于点O,且∠AOF =25°.求∠BOC与∠EOF的度数.参考答案一、单选题1.D解析:根据点到直线的距离和直线与直线之间的距离进行分析.详解:当两条平行线互相平行时,且其中一条直线上的一点到另一条直线的距离为2时,则这条直线上所有的点到另一条直线的距离都为2,所以有无数个.故选D.点睛:考查了点到直线的距离和直线与直线之间的距离,解题关键理解点到直线的距离和两条平行线间的距离之间的联系.2.D解析:根据点到直线的距离定义,可判断:AB表示点A到直线BC的距离;AD表示点A到直线BD的距离;BD表示点B到直线AC的距离;CB表示点C到直线AB的距离;CD表示点C到直线BD的距离.共5条.故选D.3.C解析:根据点到直线的距离是点到直线的垂线段的长度以及垂线段最短即可得答案.详解:解:点P为直线l外一点,当P点直线l上的三点A、B、C的距离分别为PA=4cm,PB=5cm,PC=2cm,则点P到直线l的距离为不大于2cm,故选:C.点睛:本题考查了点到直线的距离,点到直线的距离是点到直线的垂线段的长度,利用垂线段最短是解题关键.4.B分析:根据垂线的性质:从直线外一点到这条直线上各点所连的线段中,垂线段最短,可知BC>AC,然后根据速度公式即可判断.详解:∵AC与AB垂直,∴BC>AC,若他们同时到达,根据速度公式可得,小亮骑车的速度快,小明骑车的速度慢.故选B5.C解析:A选项,CD与AD互相垂直,没有明确的大小关系,错误;B选项,AC与BC互相垂直,没有明确的大小关系,错误;C选项,BD是从直线CD外一点B所作的垂线段,根据垂线段最短定理,BC>BD,正确;D选项,CD与BD互相垂直,没有明确的大小关系,错误,故选C.6.D解析:根据垂线的性质:过直线外一点作已知直线的垂线,能作且只能作1条;而直线外有无数个点,因此与一条已知直线垂直的直线有无数条.详解:解:与一条已知直线垂直的直线有无数条,故选D.点睛:本题主要考查了垂线的性质,准确理解性质是解题的关键.7.D解析:由垂直的定义可知∠DOE=90°;直线AB,CD相交于点O,对顶角相等,然后根据角的差计算即可详解:∵OE⊥CD∴∠DOE=90°∵直线AB,CD相交于点O,∠AOC=36°∴∠DOB=36°∴∠BOE=∠DOE−∠BOD=90°−36°=54°故本题答案应为:D点睛:垂直的定义、对顶角相等的性质是本题的考点,找出角之间的关系是解题的关键.8.B解析:根据平行公理,垂线的定义,平行线的定义和以及垂线的性质对各选项分析判断即可求解.解:A.应为过直线外一点有且只有一条直线与已知直线平行,故本选项错误;B.两直线成直角,则这两直线一定垂直正确,故本选项正确;C.应为在同一平面内,没有交点的两条直线一定平行,故本选项错误;D.应为在同一平面内,过直线外一点,有且只有一条直线与已知直线垂直,故本选项错误. 故选B.9.C解析:试题分析:∵OA⊥OB,∴∠AOB=90°,所以∠2+∠1=90°,∵∠1=35°,∴∠2=55°,故选C .考点:1.余角和补角;2.垂线.二、填空题1.3厘米解析:分析:点P 到直线l 的距离为点P 到直线l 的垂线段,结合已知,因此点P 到直线l 的距离为PC 的长.详解:∵根据点到直线的距离为点到直线的垂线段(垂线段最短)的长度,PC⊥l,PA =4厘米,PB =5厘米,PC =3厘米,∴点P 到直线l 的距离为3厘米,故答案为:3厘米.点睛:本题考查了垂线段最短,关键是要明确点P 到直线l 的距离为点P 到直线l 的垂线段的长度.2.105°分析:根据垂直的定义及平角的定义计算即可.详解:解:∵CO OA ⊥,115∠=︒,∴∠COB=90°-15°=75°,∵点B ,O ,D 在同一直线上,∴∠2=180°-∠COB =180°-75°=105°.故答案为:105°.点睛:本题考查垂直定义与平角定义.熟练掌握垂直的定义是解题的关键.3.60°分析:根据题意由对顶角相等先求出∠ FOD,然后根据AB⊥CD,∠2与∠ FOD互为余角,求出即可详解:∵CD、EF相交于点O∴∠FOD=∠1=30°∵AB⊥CD∴∠2=90°−∠FOD=90°−30°=60°故本题答案应为:60°点睛:对顶角相等和垂线的定义及性质是本题的考点,熟练掌握基础知识是解题的关键.4.90°解析:观察图形,可猜想OE⊥AB,根据已知条件,证明∠AOE是直角即可.详解:∵∠BOC=130°,∴∠AOD=∠BOC=130°,∴∠AOE=∠AOD-∠EOD=130°-40°=90°.∴OE⊥AB.故答案为互相垂直.点睛:考查了对顶角、邻补角,利用垂直的定义除了由垂直得直角外,还能由直角判定垂直,判断两直线的夹角是否为90°是判断两直线是否垂直的基本方法.5.45分析:根据垂直定义得BOE=∠90〬,由角平分线定义得∠BOD=12∠BOE=45〬,由对顶角相等得∠AOC=∠BOD=45〬详解:因为,直线AB,CD交于点O,OE⊥AB,所以,BOE=∠90〬,因为,OD平分∠BOE,所以,∠BOD=12∠BOE=45〬,所以,∠AOC=∠BOD=45〬故答案为45点睛:本题考核知识点:垂直定义、角平分线、对顶角. 解题关键点:理解垂直定义、角平分线、对顶角性质.三、解答题1.见解析分析:两个合页所在的位置可看成的两个点,目的是为了让门与门框在一条直线上,应用的是两点确定一条直线;两个城市可看做两个点,两个城市之间,航行路线是直的,应用的是两点之间,线段最短.跳远成绩可将踏板看作直线,脚后跟看作一点,应用的是垂线段最短.详解:点睛:本题考查了生活中的数学知识、直线公理、线段公理、垂线段最短.注意一些物体或地方可看做一个点.2.见解析解析:试题分析:(1)过点M,N分别作AB的垂线,垂足分别为P,Q,根据垂线段最短可得汽车行驶到何处时,分别对两所学校影响最大;(2)此题说明时要分3段A到P;由P向Q,由Q 向B分别说明对两学校的影响情况.试题解:(1)如图所示,过点M,N分别作AB的垂线,垂足分别为P,Q,则当施工车行驶到点P,Q处时产生的噪音分别对M,N两个村庄影响最大.(2)由A至P时,产生的噪音对两个村庄的影响越来越大,到P处时,对M村庄的影响最大;由P至Q时,对M村庄的影响越来越小,对N村庄的影响越来越大,到Q处时,对N村庄的影响最大;由Q至B时,对M,N两个村庄的影响越来越小.点睛:此题主要考查了应用与设计作图,以及垂线段的性质,关键是正确画出图形.3.(1)见解析;(2)见解析.解析:本题考查了线段和垂线的性质在实际生活中的运用(1)由两点之间线段最短可知,连接AD、BC交于H,则H为蓄水池位置;(2)根据垂线段最短可知,要做一个垂直EF的线段.⑴连结AD,BC,交于点H,则H为所求的蓄水池点.⑵过H作HK EF于K,沿HK开挖,可使开挖的渠最短,依据是:“点与直线的连线中,垂线段最短”.(如图)4.AB∥CD,MN∥OP,EF∥GH;AB⊥GH,AB⊥EF,CD⊥EF,CD⊥GH.解析:试题分析:根据平行的含义,在同一平面内不相交的两条线叫做平行线,在图中所给的6条线段中找出互相平行的线,写出即可;根据垂直的含义,在同一平面内两条直线相交成直角时这两条直线互相垂直,在图中所给的6条线段中找出互相垂直的线,写出即可。

人教版数学七年级下册第五章《垂线》真题同步测试3含解析)

人教版数学七年级下册第五章《垂线》真题同步测试3含解析)

人教版数学七年级下册第五章《垂线》真题同步测试3(含解析)一、单选题(共10题;共40分)1.(4分)(2019七下·梁园期末)平面直角坐标系中,点A (﹣3,2),B (1,4),经过点A 的直线L x ∥轴,点C 直线L 上的一个动点,则线段BC 的长度最小时点C 的坐标为( ) A .(﹣1,4)B .(1,0)C .(1,2)D .(4,2)2.(4分)如图,AB BC ⊥,BC CD ⊥,∠EBC =∠BCF ,那么,∠ABE 与∠DCF 的位置与大小关系是 ( )A .是同位角且相等B .不是同位角但相等C .是同位角但不等D .不是同位角也不等3.(4分)给出条件:①两条直线相交成直角;②两条直线互相垂直;②一条直线是另一直线的垂线,并且能否以上述任何一个为条件得出另外两个为内容的结论,正确的是( )A .能B .不能C .有的能有的不能D .无法确定4.(4分)(2021七上·普陀期末)如图, OA ⊥OC ,OB ⊥OD ,4位同学观察图形后各自观点如下.甲: ∠AOB =∠COD ;乙: ∠BOC +∠AOD =180° ;丙: ∠AOB +∠COD =90° ;丁:图中小于平角的角有6个;其中正确的结论是( )A .甲、乙、丙B .甲、乙、丁C .乙、丙、丁D .甲、丙、丁5.(4分)(2019八上·海淀月考)如图,△ABC 中,∠C =90°,∠A =30°,AB =4,点P 是AC 边上的动点,则BP 的最小值为( )A .1B .2C .3D .46.(4分)(2021七下·五常期中)下列命题中:①无限小数都是无理数;②内错角相等,两直线平行;③从直线外一点到这条直线的垂线段,叫做这点到这条直线的距离④平方根与立方根相等的数只有0;⑤在一平面内,一条直线与两条平行线中的一条垂直,则与另一条也垂直.其中正确的个数是( )A .2个B .3个C .4个D .5个7.(4分)如图,在四边形ABCD 中,∠BAD=ADC=90°∠,AB=AD=2√2,CD=√2,点P 在四边形ABCD 的边上.若点P 到BD 的距离为32,则点P 的个数为( )A .2B .3C .4D .58.(4分)下列说法错误的个数是( )①同位角相等;②过一点有且只有一条直线与已知直线垂直;③过一点有且只有一条直线与已知直线平行;④若a b ∥,b c ∥,则a c ∥.A .、1个B .2个C .3个D .4个9.(4分)(2018·宜昌)尺规作图:经过已知直线外一点作这条直线的垂线,下列作图中正确的是( )A .B .C .D .10.(4分)(2016七下·蒙阴期中)如图,AB CD ∥,CD EF ⊥,若∠1=125°,则∠2=( )A .25°B .35°C .55°D .65°二、填空题(共8题;共32分)11.(4分)(2020七下·天台月考)如图,在河的两岸搭建一座桥,搭建方式最短的是PM ,理由是12.(4分)(2023七下·龙江月考)如图所示,直线AB 、CD 相关于点O ,OE ⊥AB 于O ,∠EOD =40°,则∠AOC =¿ .13.(4分)(2023九上·古蔺期末)如图⊙A 的圆心A 的坐标是(−2,0),在直角坐标系中,⊙A 半径为2,P 为直线y =−x +4上的动点过P 作⊙A 的切线,切点为Q ,则切线长PQ 的最小值是 .14.(4分)(2018八上·许昌期末)如图,在△ABC中,AB = AC = 8,S ABC△= 16,点P为角平分线⊥,连接PB,则PB+PE的最小值为 .AD上任意一点,PE AB15.(4分)(2022八上·青田期中)在△ABC中,AB=AC=5,BC=6.若点P在边AC上移动,则BP的最小值是 .16.(4分)(2019七下·上杭期末)已知直线AB,CB,l在同一平面内,若AB⊥l,垂足为B,CB⊥l,垂足也为B,则正确的图形可以是如图中的图 (填甲或乙),你选择的依据是 (写出你学过的一条公理).17.(4分)(2020·上城模拟)如图,在锐角△ABC中,AB=5 √2,∠BAC=45°,∠BAC的平分线交BC于点D,M,N分别是AD,AB上的动点,则BM+MN的最小值是 .18.(4分)(2021八下·拱墅期中)在Rt ABC △中,∠C =90°,AC =3,BC =4,点N 是BC 边上一点,点M 为AB 边上的动点,点D 、E 分别为CN ,MN 的中点,则DE 的最小值是 .三、解答题(共4题;共36分)19.(9分)(2020七下·北海期末)如图,直线AB ,CD 相交于点O.射线OF CD ⊥于点O ,∠BOF=30°,求∠BOD ,∠AOD 的度数.20.(9分)(2023七下·宣汉月考)如图,AO CO ⊥,BO DO ⊥,∠BOC=43°,求∠AOD 和∠AOB 的度数.21.(9分)如图,AB 和CD 交于O 点,OD 平分∠BOF ,OE CD ⊥于点O ,∠AOC=40°,求∠EOF 的度数.22.(9分)(2019七下·河池期中)如图所示,直线 AB , EF 交于点 O , OD 平分 ∠BOF , CO ⊥EF 于点 O , ∠AOE =70° ,求 ∠COD 的度数四、综合题(共3题;共42分)23.(14分)(2019七下·江门期末)画图题,如图,已知三角形 ABC,AB=5(1)(7分)过点 C 作 CD⊥AB ,点 D 为垂足(2)(7分)在(1)的条件下,若 DB=2 ,求点A到CD的距离24.(14分)(2023七下·乌鲁木齐期中)如图,直线AB,CD相交于点O,EO⊥CD于点O.(1)(7分)若∠AOC=36°,求∠BOE的度数;(2)(7分)若∠BOD:∠BOC=1:5,求∠AOE的度数.⊥.25.(14分)(2020七上·苏州期末)如图所示,直线AB、CD相交于点O,OM AB(1)(7分)若∠1=∠2,判断ON与CD的位置关系,并说明理由;1(2)(7分)若∠1=5 ∠BOC,求∠MOD的度数.答案解析部分1.【答案】C【解析】【解答】解:如图,根据垂线段最短可知,BC AC ⊥时BC 最短.∵A (﹣3,2),B (1,4),AC x ∥轴,∴BC =2,∴C (1,2),故答案为:C.【分析】如图,根据垂线段最短可知,BC AC ⊥时BC 最短;2.【答案】B【解析】【分析】由AB BC ⊥,BC CD ⊥,∠EBC =∠BCF ,即可判断∠ABE 与∠DCF 的大小关系,根据同位角的特征即可判断∠ABE 与∠DCF 的位置关系,从而得到结论。

七年级数学(下)第五章《相交线与平行线——垂线》练习题含答案

七年级数学(下)第五章《相交线与平行线——垂线》练习题含答案

七年级数学(下)第五章《相交线与平行线——垂线》练习题一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1.过一条线段外一点,作这条线段的垂线,垂足在A.这条线段上B.这条线段的端点处C.这条线段的延长线上D.以上都有可能【答案】D2.过点P向线段AB所在直线引垂线,正确的是.A.B.C.D.【答案】C【解析】过点P向线段AB所在直线引垂线,根据画一条线段或射线的垂线,就是画它们所在直线的垂线,符合要求的只有选项C,故选C.3.如图所示,已知ON⊥l,OM⊥l,所以OM与ON重合,其理由是A.过两点有且只有一条直线B.过一点只能作一条直线C.在同一平面内,经过一点有且只有一条直线与已知直线垂直D.垂线段最短【答案】C【解析】已知ON⊥l,OM⊥l,所以OM与ON重合,理由是在同一平面内,经过一点有且只有一条直线与已知直线垂直,故选C.二、填空题:请将答案填在题中横线上.4.如图所示,直线AB与直线CD的位置关系是__________,记作__________,此时,∠AOD=∠__________ =∠__________=∠__________=90°.【答案】垂直,AB⊥CD,DOB,BOC,COA5.如图,BO⊥AO,∠BOC与∠BOA的度数之比为1∶5,那么∠COA=__________,∠BOC的补角为__________度.【答案】72°,162【解析】∵BO⊥AO,∴∠AOB=90°,∵∠BOC与∠BOA的度数之比为1∶5,∴∠BOC=18°,∴∠COA=∠BOA–∠BOC=90°–18°=72°.∠BOC的补角为180°–18°=162°.三、解答题:解答应写出文字说明、证明过程或演算步骤.6.如图,已知钝角∠AOB,点D在射线OB上.(1)作直线DE⊥OB;(2)作直线DF⊥OA,垂足为F. 【解析】根据垂直的定义作图即可.如图所示:7.如图所示,O是直线AB上一点,∠AOC=13∠BOC,OC是∠AOD的平分线.(1)求∠COD的度数.(2)判断OD与AB的位置关系,并说出理由.。

七年级下册相交线与垂直线练习题及答案

七年级下册相交线与垂直线练习题及答案

七年级下册相交线与垂直线练习题及答案第一部分相交线与垂直线的基础知识
1. 请为以下图形标出所有的垂线和水平线。

2. 以下哪条直线是垂直线?
A. 直线AB
B. 直线CD
C. 直线EF
D. 直线GH
3. 若线段AB ⊥线段BC,且角ABC = 78°,则角ABD 等于多少度?
第二部分题目练
1. 见以下图形,若线段AB ⊥线段CD,EF 与 GH 垂直,且角AED = 58°,则角FHB 等于多少度?
2. 见以下图形,线段AB ⊥线段CD,EF 垂直 BC 于点G,且角AED = 46°,则角ABF 等于多少度?
3. 见以下图形,若线段AB ⊥线段CD,角ABC = 50°,角EFG = 68°,则角EDF 等于多少度?
第三部分答案
第一部分
1. 垂线:AD, BC, FE 水平线:BE, DG
2. 直线CD 是垂直线
3. 角ABD = 12°
第二部分
1. 角FHB = 32°
2. 角ABF = 34°
3. 角EDF = 62°
希望以上内容能帮助您顺利完成七年级下册相交线与垂直线部分的练习题。

人教版七年级下册数学习题:5.1.2垂线 练习题

人教版七年级下册数学习题:5.1.2垂线 练习题

垂线练习题1、到直线L 的距离等于2cm的点有()A、0个B、1个C、无数个D、无法确定2、如图,能表示点到直线(线段)的距离的线段有()A、2条B、3条C、4条D、5条3、与一条已知直线垂直的直线有()A.1条 B.2条 C.3条 D.无数条4、点到直线的距离是指( )A 从直线外一点到这条直线的垂线。

B. 从直线外一点到这条直线的垂线段。

C. 从直线外一点到这条直线的垂线的长。

D. 从直线外一点到这条直线的垂线段的长。

5、在下列语句中,正确的是().A.在同一平面内,一条直线只有一条垂线B.在同一平面内,过直线上一点的直线只有一条C.在同一平面内,过直线上一点且垂直于这条直线的直线有且只有一条D.在同一平面内,垂线段就是点到直线的距离6、学校的国旗的旗杆与地面的位置关系属于()A直线与直线平行B直线与直线垂直C直线与平面平行D直线与平面垂直7、如图所示AB,CD相交于点O,EO⊥AB于O,FO⊥CD于O,∠EOD与∠FOB的大小关系是()A .∠EOD 比∠FOB 大 B .∠EOD 比∠FOB 小C .∠EOD 与∠FOB 相等 D .∠EOD 与∠FOB 大小关系不确定8、直线外____与直线上各点连结的所有线段中,______最短。

9、过一个钝角的顶点向一边作垂线把这个钝角分成的两个角的比为1∶6,则这个钝角为__10、如图,OA ⊥OC, ∠AOB: ∠AOC=2:3,∠BOC= 。

11、如图,已知三条直线AB 、CD 、EF 相交于O ,且EF ⊥AB ,(1)若 ∠DOE=50°,则∠BOD= , ∠AOD= .(2)若∠COB=β,则∠BOD= , ∠DOE= 。

12. 如图,已知三条直线AB 、CD 、EF 相交于O ,且EF ⊥AB ,(1)若∠DOE=50°,则∠BOD= , ∠AOD= .(2)若∠COB=β,则∠BOD=, ∠DOE= 。

13、已知直线AB 、CD 交于O, OE CD ,OF AB ,且,求和的度数⊥⊥065=∠FOD BOE ∠AOC ∠_ E_ B 10题C OBA CA ED BFO 11题图CA ED BFO 12题图14、已知:如图,直线AB,射线OC 交于点O,OD 平分∠BOC,OE 平分∠AOC.试判断OD 与OE 的位置关系.15、已知:如图,直线AB,射线OC 交于点O,OD 平分∠BOC,OE 平分∠AOC. 请说明OD 与OE 的位置关系.16、如图,分别画出点A 、B 、C 到BC 、AC 、AB 的垂线段,再量出A 到BC 、点B 到AC 、 点C 到AB 的距离.E ODCBAE DCBACBA17、如图,直线AB与CD相交于点O,若∠AOD=80°,∠BOE-∠BOC=40°,求∠DOE的度数.。

七年级数学下册《垂线》练习题及答案

七年级数学下册《垂线》练习题及答案

七年级数学下册《垂线》练习题及答案一、选择题1.下面说法中错误的是()A.两条直线相交,有一个角是直角,则这两条直线互相垂直B.若两对顶角之和为1800,则两条直线互相垂直C.两条直线相交,所构成的四个角中,若有两个角相等,则两条直线互相垂直D.两条直线相交,所构成的四个角中,若有三个角相等,则两条直线互相垂直2.如图所示,AB⊥CD,垂足为D,AC⊥BC,垂足为C,那么图中的直角一共有()A.2个B.3个C.4个D.1个3.如图所示,直线EO⊥CD,垂足为点O,AB平分⊥EOD,则⊥BOD的度数为()A.120°B.130°C.135°D.1404.点P为直线外一点,点A、B、C为直线上三点,PA=4cm,PB=5cm,PC=2cm,则点P 到直线的距离为()A.4cm B.5cm C.小于2cm D.不大于2cm5.如图所示,OA⊥OC,OB⊥OD,下面结论中,其中说法正确的是()①⊥AOB=⊥COD;②⊥AOB+⊥COD=90°;③⊥BOC+⊥AOD=180°;④⊥AOC-⊥COD=⊥BOC.A.①②③B.①②④C.①③④D.②③④6.如图所示,直线AB⊥CD于点O,直线EF经过点O,若⊥1=26°,则⊥2的度数是(⊥).A.26°B.64°C.54°D.以上答案都不对7.在下列语句中,正确的是().A.在平面上,一条直线只有一条垂线;B.过直线上一点的直线只有一条;C.过直线上一点且垂直于这条直线的直线有且只有一条;D.垂线段的长度就是点到直线的距离8.如图所示,⊥BAC=90°,AD⊥BC于D,则下列结论中,正确的个数为().①AB⊥AC; ②AD与AC互相垂直; ③点C到AB的垂线段是线段AB; ④点D到BC的距离是线段AD的长度; ⑤线段AB的长度是点B到AC的距离; ⑥线段AB是点B到AC的距离;⑦AD>BD.A.2个B.4个C.7个D.0个9.如图,直线AB,CD相交于点O,射线OM平分⊥AOC,ON⊥OM,若⊥AOM=35°,则⊥CON的度数为()A.35°B.45°C.55°D.65°10.已知在正方形网格中,每个小方格都是边长为1的正方形,A和B两点在小方格的顶点上,位置如图所示,点C也在小方格的顶点上,且以A,B,C⊥为顶点的三角形的面积为1个平方单位,则C 点的个数为().A.3个B.4个C.5个D.6个11.已知直线AB,CB,l在同一平面内,若AB⊥l,垂足为B,CB⊥l,垂足也为B,则符合题意的图形可以是()A.B.C.D.12.下列语句正确的是()A.两条直线相交成四个角,如果有两个角相等,那么这两条直线互相垂直B.两条直线相交成四个角,如果有两对角相等,那么这两条直线互相垂直C.两条直线相交成四个角,如果有三个角相等,那么这两条直线互相垂直D.两条直线相交成四个角,如果有两个角互补,那么这两条直线互相垂直13.过线段外一点画这条线段的垂线,垂足一定在()A.线段上B.线段的端点上C.线段的延长线上D.以上情况都有可能14.如图,直线AD⊥BD,垂足为D,则点B到线段AC的距离是()A.线段AC的长B.线段AD的长C.线段BC的长D.线段BD的长15.如图,OM⊥NP,ON⊥NP,所以OM和ON重合,理由是()A.两点确定一条直线B.经过一点有且只有一条直线和已知直线垂直C.过一点只能作一条垂线D.垂线段最短16.当两条直线相交所成的四个角中,叫做这两条直线互相垂直,其中的一条直线叫,它们的交点叫.17.过直线上或直线外一点,与已知直线垂直.18.如图所示,若AB⊥CD于O,则⊥AOD=;若⊥BOD=90°,则AB CD.19.如图所示,已知AO⊥BC于O,那么⊥1与⊥2.20.如果CD⊥AB于D,自CD上任一点向AB作垂线,那么所画垂线均与CD重合,这是因为.21.如图,已知A,O,E三点在一条直线上,OB平分⊥AOC,⊥AOB+⊥DOE=90°,试问:⊥COD 与⊥DOE之间有怎样的关系?说明理由.-com22.如图,⊥1=30°,AB⊥CD,垂足为O,EF经过点O.求⊥2、⊥3的度数.23.如图,直线AB与CD相交于点O,OP是⊥BOC的平分线,OE⊥AB,OF⊥CD(1)图中除直角外,还有相等的角吗?请写出两对:①;②.(2)如果⊥AOD=40°,则①⊥BOC=;②OP是⊥BOC的平分线,所以⊥COP=度;③求⊥BOF的度数.24.如图,已知⊥AOB,OE平分⊥AOC,OF平分⊥BOC.(1)若⊥AOB是直角,⊥BOC=60°,求⊥EOF的度数;(2)猜想⊥EOF与⊥AOB的数量关系;(3)若⊥AOB+⊥EOF=156°,则⊥EOF是多少度?25.直线AB、CD相交于点O.OE、OF分别是⊥AOC、⊥BOD的平分线.(1)画出这个图形.(2)射线OE、OF在同一条直线上吗?(3)画⊥AOD的平分线OG.OE与OG有什么位置关系?并说明理由.参考答案1.【答案】C2.【答案】B3.【答案】C4.【答案】D5.【答案】C6.【答案】B7.【答案】D8.【答案】B9.【答案】C10.【答案】D11.【答案】C12.【答案】C13.【答案】D14.【答案】D15.【答案】B16.【答案】有一个直角;另一条直线的垂线;垂足17.【答案】有且只有一条直线18.【答案】90°;⊥19.【答案】互余20.【答案】在同一平面内,过一点有且只有一条直线与已知直线垂直21.【答案】相等,理由:⊥AOB+⊥DOE=90°,且A、O、E三点共线,所以⊥BOC+⊥COD=90°.因为OB平分⊥AOC,所以⊥AOB=⊥BOC,通过等量代换,可以得知⊥COD与⊥DOE相等.22.【答案】∵⊥1与⊥3是对顶角∴⊥1=⊥3,因为⊥1=30°∴⊥3=30°.∵AB⊥CD∴⊥BOD=90°∵⊥2+⊥3=⊥BOD∴⊥2=90°-⊥3=60°.23.【答案】(1)⊥AOD=⊥BOC;⊥BOP=⊥COP(2)40°;20°;50°24.【答案】(1)∵⊥AOC=⊥AOB+⊥BOC,∴⊥AOC=90°+60°=150°.∵OE平分⊥AOC,∴⊥EOC =150°÷2=75°.∵OF平分⊥BOC,∴⊥COF=60°÷2=30°.∵⊥EOC=⊥EOF+⊥COF,∴⊥EOF=75°-30°=45°.(2)∵OE平分⊥AOC,OF平分⊥BOC.∴⊥COE=⊥AOC,⊥COF=⊥BOC∵⊥AOB=⊥AOC-⊥BOC∴⊥EOF=⊥COE-⊥COF=⊥AOC-⊥BOC=(⊥AOC-⊥BOC)=⊥AOB(3)∵OE平分⊥AOC,OF平分⊥BOC,∴⊥COE=⊥AOC,⊥COF=⊥BOC∴⊥EOF=⊥AOC-⊥BOC=(⊥AOC-⊥BOC)=⊥AOB.又∵⊥AOB+⊥EOF=156°∴⊥EOF=52°.25.【答案】(1)如图:(2)射线OE、射线OF在同一条直线上.理由如下:∵直线AB、CD相交于点O,∴⊥AOC=⊥BOD,⊥AOC+⊥AOD=180°,∵OE、OF分别是⊥AOC、⊥BOD的平分线,∴⊥AOE=12⊥AOC,⊥DOF=12⊥BOD ∴⊥AOE=⊥DOF,∴⊥AOE+⊥DOF=⊥AOC,∴⊥AOE+⊥DOF+⊥AOD=180°,∴射线OE、射线OF在同一条直线上;(3)如图OE⊥OG.理由如下:∵OG平分⊥AOD,∴⊥AOG=⊥DOG,∵⊥AOE=⊥DOF,⊥AOE+⊥DOF+⊥AOD=180°,∴⊥AOE+⊥AOG=90°,∴OG⊥OE.。

七年级数学下册垂线练习题

七年级数学下册垂线练习题

七年级数学下册垂线练习题七年级数学下册《垂线》练习1一、选择题:(每小题3分,共18分)1.如图1所示,下列说法不正确的是( )A.点B到AC的垂线段是线段AB;B.点C到AB的垂线段是线段ACC.线段AD是点D到BC的垂线段;D.线段BD是点B到AD的垂线段D CB ADCBAO DCBAGOFEDCBA(1) (2) (3) (4)2.如图1所示,能表示点到直线(线段)的距离的线段有( )A.2条B.3条C.4条D.5条3.下列说法正确的有( ) ①在平面内,过直线上一点有且只有一条直线垂直于已知直线;②在平面内,过直线外一点有且只有一条直线垂直于已知直线;③在平面内,过一点可以任意画一条直线垂直于已知直线;④在平面内,有且只有一条直线垂直于已知直线. A.1个 B.2个 C.3个 D.4个4.如图2所示,AD⊥BD,BC⊥CD,AB=acm,BC=bcm,则BD的范围是( )A.大于acmB.小于bcmC.大于acm或小于bcmD.大于bcm且小于acm5.到直线L的距离等于2cm的点有( ) A.0个 B.1个; C.无数个 D.无法确定6.点P为直线m外一点,点A,B,C为直线m上三点,PA=4cm,PB=5cm,PC=2cm,则点P到直线m的距离为( ) A.4cm B.2cm; C.小于2cm D.不大于2cm二、填空题:(每小题3分,共12分)1.如图3所示,直线AB与直线CD的位置关系是_______,记作_______,此时,• ∠AOD=∠_______=∠_______=∠_______=90°.2.过一点有且只有________直线与已知直线垂直.3.画一条线段或射线的垂线,就是画它们________的垂线.4.直线外一点到这条直线的_________,叫做点到直线的距离.三、训练平台:(共15分) 如上图4所示,直线AB,CD,EF交于点O,OG平分∠BOF,且CD⊥EF,∠AOE=70°,•求∠DOG的度数.四、提高训练:(共15分)如图5所示,村庄A 要从河流L 引水入庄,需修筑一水渠,请你画出修筑水渠的路线图.OD CBANM B A(5) (6) (7) 五、探索发现:(共20分)如图6所示,O 为直线AB 上一点,∠AOC=13∠BOC,OC 是∠AOD 的平分线.(1)求∠COD 的度数;(2)判断OD 与AB 的位置关系,并说明理由.六、中考题与竞赛题:(共20分)1、如图7所示,一辆汽车在直线形的公路AB 上由A 向B 行驶,M,N•分别是 位于公路AB 两侧的村庄,设汽车行驶到P 点位置时,离村庄M 最近,行驶到Q 点位置时,•离村庄N 最近,请你在AB 上分别画出P,Q 两点的位置.2、如图,完成下列画图,并填空:(1)过A 作直线a 的垂线交b 与B ; (2)过A 作直线b 的垂线,垂足为C ; (3)过A 作AD ⊥直线c 于D ; (4)作出线段AB 的垂直平分线MN ;(5)量出点A 到直线b 的距离是 cm ,点B 到直线MN 的距离是 cm(精确到0.1cm)。

人教版初一数学7年级下册 第5章(相交线与平行线)垂线 课后练习(含解析)

人教版初一数学7年级下册 第5章(相交线与平行线)垂线 课后练习(含解析)

垂线课后练习一、选择题1.如图所示,下列说法不正确的是( )A. 线段BD是点B到AD的垂线段B. 线段AD是点D到BC的垂线段C. 点C到AB的垂线段是线段ACD. 点B到AC的垂线段是线段AB2.如图,把河AB中的水引到C,拟修水渠中最短的是( )A. CMB. CNC. CPD. CQ3.如图,E是直线CA上一点,∠FEA=40°,射线EB平分∠CEF,GE⊥EF.则∠GEB=( )A. 10°B. 20°C. 30°D. 40°4.如图,直线AB、CD相交于点O,EO⊥CD.下列说法错误的是( )A. ∠AOD=∠BOCB. ∠AOE+∠BOD=90°C. ∠AOC=∠AOED. ∠AOD+∠BOD=180°5.点P为直线l外一点,点A,B在直线l上,若PA=5 cm,PB=7 cm,则点P到直线l的距离( )A. 等于5 cmB. 小于5 cmC. 不大于5 cmD. 等于6 cm6.如下图,在平面内过点P作已知直线m的垂线,可作垂线的条数有( )A. 0条B. 1条C. 2条D. 无数条7.如图,∠1=15°,AO⊥OC,点B,O,D在同一直线上,则∠2的度数为()A. 75°B. 15°C. 105°D. 165°8.点P为直线m外一点,点A,B,C为直线m上三点,PA=4 cm,PB=5 cm,PC=6 cm,则点P到直线m的距离()A. 等于5 cmB. 等于4 cmC. 小于4 cmD. 不大于4 cm9.如图,OA⊥OB,若∠1=55°,则∠2的度数是()A. 35°B. 40°C. 45°D. 60°10.下列各图中,过直线l外一点P画l的垂线CD,三角板操作正确的是()A. B.C. D.11.如图,射线OC⊥直线AB于点O,∠1=∠2,则图中互为余角的共有( )A. 2对B. 3对C. 4对D. 5对12.如图,过点C作CD⊥AB,垂足为D,则点C到直线AB的距离是( )A. 线段CA的长B. 线段CD的长C. 线段AD的长D. 线段AB的长二、填空题13.如图,直线AB、CD相交于点O,OE⊥AB,垂足为点O,∠COE:∠BOD=2:3,则∠AOD=______.14.如下图,∠AOE=30°,OB⊥OA,OE⊥直线CD于O点,∠BOD的度数为________,∠BOC的度数为________.15.如图,直线AB,CD相交于点O,OE⊥CD,垂足为O.若∠BOE=40°,则∠AOC的度数为.16.如图,A,B,C三点在一条直线上.若CD⊥CE,∠1=23°,则∠2的度数是.三、解答题17.如下图,直线AB与CD交于点O,OE在∠AOD内,∠AOE:∠COB=2:7,OD平分∠EOB.(1)求∠AOC的度数;(2)过点O作OF⊥OE,求∠BOF的度数.18.如图,两直线AB,CD相交于点O,OE平分∠BOD,∠AOC:∠AOD=7:11.(1)求∠COE的度数;(2)若OF⊥OE,求∠COF的度数.19.如下图,直线AB,CD相交于点O,∠DOE=∠BOD,OF平分∠AOE.(1)判断OF与OD的位置关系,并说明理由;(2)若∠AOC:∠AOD=1:5,求∠EOF的度数.答案和解析1.【答案】B【解答】解:A 、线段BD 是点B 到AD 的垂线段,故A 正确;B 、线段AD 是点A 到BC 的垂线段,故B 错误;C 、点C 到AB 的垂线段是线段AC ,故C 正确;D 、点B 到AC 的垂线段是线段AB ,故D 正确;2.【答案】C【解析】解:如图,CP ⊥AB ,垂足为P ,在P 处开水渠,则水渠最短.因为直线外一点与直线上各点连线的所有线段中,垂线段最短.3.【答案】B【解析】解:∵∠FEA =40°,GE ⊥EF ,∴∠CEF =180°−∠FEA =180°−40°=140°,∠CEG =180°−∠AEF−∠GEF =180°−40°−90°=50°,∵射线EB 平分∠CEF ,∴∠CEB =12∠CEF =12×140°=70°,∴∠GEB =∠CEB−∠CEG =70°−50°=20°,4.【答案】C【解答】解:A 、∠AOD 与∠BOC 是对顶角,所以∠AOD =∠BOC ,此选项正确;B 、由EO ⊥CD 知∠DOE =90°,所以∠AOE +∠BOD =90°,此选项正确;C 、由已知条件,不能得到∠AOC 与∠AOE 相等,此选项错误;D 、∠AOD 与∠BOD 是邻补角,所以∠AOD +∠BOD =180°,此选项正确.5.【答案】C【解答】解:∵直线外一点与直线上各点连接的所有线段中,垂线段最短,∵PA <PB ,∴点P 到直线l 的距离≤PA ,即点P 到直线l 的距离不大于5cm .6.【答案】B【解答】解:在平面内,过一点画已知直线的垂线,可画垂线的条数是1.故选B.7.【答案】C8.【答案】D9.【答案】A【解答】解:∵OA⊥OB,∴∠AOB=90°,即∠2+∠1=90°,又∠1=55°,∴∠2=35°,10.【答案】D11.【答案】C12.【答案】B13.【答案】126°【解析】解:∵OE⊥AB,∴∠BOE=90°,∴∠COE+∠BOD=90°,∵∠COE:∠BOD=2:3,∴∠BOD=54°,∴∠AOD=126°.14.【答案】30°;150°【解析】解:由OB⊥OA,OE⊥CD得:∠AOE+∠BDE=90°,∠BOD+∠BOE=90°,∴∠BOD=∠AOE=30°;∵CD是直线,即∠COD=180°,∴∠BOC=180°−∠BOD,即∠BOC=180°−30°=150°15.【答案】50°16.【答案】67°【解答】解:∵CD⊥CE,∴∠ECD=90°,∵∠ACB=180°,∴∠2+∠1=90°,∵∠1=23°,∴∠2=90°−23°=67°,故答案为67°.17.【答案】解:(1)设∠AOE=2x,则∠AOD=∠BOC=7x,∴∠DOE=5x.∵OD平分∠EOB,∴∠DOB=∠DOE=5x,∠AOB=2x+5x+5x=180°,∴x=15°,∴∠AOC=∠DOB=5x=75°;(2)当OF在直线OE的下方时,如图所示:∵OF⊥OE,∴∠EOF=90°,∵∠AOE=2x=30°,∴∠AOF=∠EOF−∠AOE=90°−30°=60°,∠BOF=180°−∠AOF=120°;当OF在直线OE的上方时,如图所示:∵OF ⊥OE ,∴∠EOF =90°,∵∠EOB =10x =150°,∴∠BOF =∠EOB−∠EOF =150°−90°=60°.故∠BOF =120°或60°.18.【答案】解:(1)∵∠AOC :∠AOD =7:11,∠AOC +∠AOD =180°,∴∠AOC =718×180°=70°,∴∠DOB =∠AOC =70°,又∵OE 平分∠BOD ,∴∠DOE =12∠DOB =12×70°=35°,∴∠COE =180°−∠DOE =180°−35°=145°,(2)∵OF ⊥OE ,∴∠EOF =90°,∴∠FOD =90°−∠DOE =90°−35°=55°,∴∠COF =180°−∠FOD =180°−55°=125°.19.【答案】解:(1)OF 与OD 的位置关系:互相垂直;理由:∵OF 平分∠AOE ,∴∠AOF =∠FOE ,∵∠DOE =∠BOD ,∴∠AOF +∠BOD =∠FOE +∠DOE =12×180°=90°,∴OF 与OD 的位置关系:互相垂直;(2)∵∠AOC :∠AOD =1:5,∴∠AOC =16×180°=30°,∴∠EOD =∠BOD =∠AOC =30°,∴∠AOE =120°,∴∠EOF =12∠AOE =60°.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

七年级数学下册《垂线》练习1
一、选择题:(每小题3分,共18分)
1.如图1所示,下列说法不正确的是( )
A.点B到AC的垂线段是线段AB;
B.点C到AB的垂线段是线段AC
C.线段AD是点D到BC的垂线段;
D.线段BD是点B到AD的垂线段
D C
B A
D
C
B
A
O D
C
B
A
G
O
F
E
D
C
B
A
(1) (2) (3) (4)
2.如图1所示,能表示点到直线(线段)的距离的线段有( )
A.2条
B.3条
C.4条
D.5条
3.下列说法正确的有( ) ①在平面内,过直线上一点有且只有一条直线垂直于已知直线;
②在平面内,过直线外一点有且只有一条直线垂直于已知直线;
③在平面内,过一点可以任意画一条直线垂直于已知直线;
④在平面内,有且只有一条直线垂直于已知直线. A.1个 B.2个 C.3个 D.4个
4.如图2所示,AD⊥BD,BC⊥CD,AB=acm,BC=bcm,则BD的范围是( )
A.大于acm
B.小于bcm
C.大于acm或小于bcm
D.大于bcm且小于acm
5.到直线L的距离等于2cm的点有( ) A.0个 B.1个; C.无数个 D.无法确定
6.点P为直线m外一点,点A,B,C为直线m上三点,PA=4cm,PB=5cm,PC=2cm,则点P到直线m的
距离为( ) A.4cm B.2cm; C.小于2cm D.不大于2cm
二、填空题:(每小题3分,共12分)1.如图3所示,直线AB与直线CD的位置关系是_______,
记作_______,此时,• ∠AOD=∠_______=∠_______=∠_______=90°.
2.过一点有且只有________直线与已知直线垂直.
3.画一条线段或射线的垂线,就是画它们________的垂线.
4.直线外一点到这条直线的_________,叫做点到直线的距离.
三、训练平台:(共15分) 如上图4所示,直线AB,CD,EF交于点O,OG平分∠BOF,且CD⊥EF,
∠AOE=70°,•求∠DOG的度数.
四、提高训练:(共15分)
如图5所示,村庄A 要从河流L 引水入庄,需修筑一水渠,请你画出修筑水渠的路线图.
O
D
C
B
A
N
M
B A
(5) (6) (7) 五、探索发现:(共20分)
如图6所示,O 为直线AB 上一点,∠AOC=1
3∠BOC,OC 是∠AOD 的平分线.
(1)求∠COD 的度数;(2)判断OD 与AB 的位置关系,并说明理由.
六、中考题与竞赛题:(共20分)
1、如图7所示,一辆汽车在直线形的公路AB 上由A 向B 行驶,M,N•分别是 位于公路AB 两侧的村庄,设汽车行驶到P 点位置时,离村庄M 最近,行驶到Q 点位置时,•离村庄N 最近,请你在AB 上分别画出P,Q 两点的位置.
2、如图,完成下列画图,并填空:
(1)过A 作直线a 的垂线交b 与B ; (2)过A 作直线b 的垂线,垂足为C ; (3)过A 作AD ⊥直线c 于D ; (4)作出线段AB 的垂直平分线MN ;
(5)量出点A 到直线b 的距离是 cm ,点B 到直线MN 的距离是 cm(精确到0.1cm)。

3、在上面右边,画△ABC 三边 AB 、BC 、CA 这三条线段的垂直平分线。

l
A
七年级数学下册《垂线》练习2
◆随堂检测
1、判断:(1)若直线AB⊥CD,那么∠ABC=900。

()
(2)两条直线相交,如果对顶角的和是180°,那么这两条直线互相垂直。

()
(3)过直线上或直线外一点都能且只能画这条直线的一条垂线。

()
2、如下图1所示,OA⊥OC,∠1=∠2,则OB与OD的位置关系是_______。

3、定点P在直线AB外,动点O在直线AB上移动,当线段PO最短时,∠POA等于____°,
这时线段PO所在的直线是AB的______,线段PO叫做直线AB的______;
点P到直线AB•的距离就是线段_______。

4、如下图2所示,AD⊥BD,BC⊥CD,AB=acm,BC=bcm,则线段BD•的长度的取值范围是______。

5、如图所示,在△ABC中,∠A为钝角。

(1)画出点A到直线BC的垂线段;
(2)画出点C到直线AB的垂线段;
(3)画出点B到直线AC的垂线段。

◆典例分析
例:已知∠ABC和∠CBD互为邻补角,∠CBD等于直角的1
2
,过点B画AB的垂线BE。

如上图3,
(1)画出示意图;(2)求直线BE和∠ABC的平分线所成的角的大小。

●拓展提高:1、P,Q分别是∠AOB的边OA,OB上的点,分别画出点P到OB的垂线段PM,点Q 到OA•的垂线段QN,正确的图形是图中的()
A
E
D
B
C
2、如下图1,能表示点到直线(线段)的距离的线段有( ) A、3条 B、4条 C、5条 D、6条
3、如下图2所示,P 为直线L 外一点,A ,B ,C 三点均在直线L 上,并且PB ⊥L ,有下列说法: ①PA ,PB ,PC 三条线段中,PB 最短;②线段PB 的长度叫做点P 到直线L 的距离;•③线段AB 的长度是点A 到PB 的距离;④线段AC 的长度是点A 到PC 的距离。

其中正确的有( ) A 、1个 B 、2个 C 、3个 D 、4个
4、如果OC ⊥AB 于点O ,自OC 上任一点向AB 作垂线,那么所画垂线必与OC 重合,这是因为_________。

5、O 是直线外一点,A 是直线上一点,OA=6cm ,则点O 到直线的距离一定________(填大于、不大于或小于)6cm 。

6、如上图3,点P 是直线l 外一点,过点P 画直线PA 、PB 、PC……交l 于点A 、B 、C……,请你用量角器量出∠1、∠2、∠3的度数,并量出PA 、PB 、PC 的长度,你发现的规律是 。

7、已知:直线AB 与CD 相交于O 点,射线AB OE ⊥于O ,射线CD OF ⊥于O ,且BOF ∠=25 , 求AOC ∠与EOD ∠的度数。

(自己画一种图形,结合图形进行计算,并画出其他几种不同的情况)
8、直线AB 、CD 相交于O ,射线OE 把∠BOD 分成两个角,若已知AOC
BOE ∠=∠31
,∠EOD=36

求∠AOC 的度数。

●体验中考
1、在直线AB 上任取一点O ,过点O 作射线OC 、OD ,使OC ⊥OD ,当∠AOC =30o 时,∠BOD 的度数 是( )A 、60o B 、120o C 、60o 或 90o D 、60o 或120o
2、如图,AB CD ⊥于点B BE ,是ABD ∠的平分线, 则CBE ∠的度数为 。

相关文档
最新文档