2019-2020年七年级下册数学竞赛试题及答案.docx
(名师整理)数学七年级竞赛试题及答案解析

七年级下学期数学竞赛试卷(满分150,时间90分钟)一、单选题。
1.在方程中,二元一次方程有()A.1个B.2个C.3个D.4个2.某店在开学初用880元购进若干个学生专用科学计算器,按每个50元出售,很快就销售一空,据了解学生还急需3倍数量这种计算器,由于量大,每个进价比上次优惠1元,该店又用2580元购进所需计算器,该店第一次购进计算器的单价为( )A.20元B.42元C.44元D.46元3.不等式组的解集为( )A.2≤x<3 B.2<x<3 C.x<3 D.x≥24.关于x的不等式组只有3个整数解,则a的取值范围是()A .B .C .D .5.在2018﹣2019赛季英超足球联赛中,截止到3月12号止,蓝月亮曼城队在联赛前30场比赛中只输4场,其它场次全部保持不败.共取得了74个积分暂列积分榜第一位.已知胜一场得3分,平一场得1分,负一场得0分,设曼城队一共胜了x场,则可列方程为()1A.3x+(30﹣x)=74 B.x+3 (30﹣x)=74C.3x+(26﹣x)=74 D.x+3 (26﹣x)=746.不等式的解集为()A .B .C .D .7.若则下列不等式不正确的是A .B .C .D .8.如图,数轴上表示某不等式组的解集,则这个不等式组可能是()A .B .C .D .9.已知是二元一次方程组的解,那么的值是( )A.0 B.5 C.-1 D.110.下列方程组不是二元一次方程组的是( )A .B .C .D .11.某校开展丰富多彩的社团活动,每位同学可报名参加1~2个社团,现有25位同学报名参加了书法社或摄影社,已知参加摄影社的2人数比参加书法社的人数多5人,两个社团都参加的同学有12人.设参加书法社的同学有x人,则()A.x+(x﹣5)=25 B.x+(x+5)+12=25C.x+(x+5)﹣12=25 D.x+(x+5)﹣24=2512.一元二次方程x2+2x=0的根是()A.2 B.0 C.0或2 D.0或﹣2 13.不等式x﹣1<2的解集在数轴上表示正确的是()A .B .C .D .14.已知方程组和有相同的解,则a-2b 的值为()A.15 B.14 C.12 D.1015.下列不等式中一定成立的是()A.3a>2a B.a>-2a C.a+2<a+3 D .<二、填空题。
七年级数学竞赛试题及答案

七年级数学竞赛试题及答案一、选择题1. 下列哪个分数是最简分数?A. 2/4B. 3/6C. 5/10D. 3/52. 计算:(2x + 3)(x - 2) = ?A. 2x^2 - x - 6B. 2x^2 - 4x + 3x - 6C. 2x^2 - 6x + 3D. 2x^2 - 2x - 63. 一个长方形的长是12cm,宽是8cm,那么它的面积是多少平方厘米?A. 20B. 96C. 120D. 2004. 一个等差数列的前三项分别是2,5,8,那么第10项是多少?A. 20B. 22C. 24D. 265. 一个圆的半径是7cm,求这个圆的周长(π取3.14)。
A. 14cmB. 28cmC. 42cmD. 56cm二、填空题1. 一个等边三角形的每个内角是______度。
2. 如果a:b = 3:4,那么b:a = ______3. 一个分数的分子是12,分母是18,这个分数化简后的结果是______。
4. 一个长方体的体积是60立方厘米,长是5cm,宽是2cm,那么它的高是______厘米。
5. 一个圆的直径是10cm,求这个圆的面积(π取3.14)。
三、解答题1. 甲乙两人同时从A地出发,甲以每小时5公里的速度向东走,乙以每小时7公里的速度向南走。
如果他们各自沿着直线走到B地和C地,且B、C两地相距10公里,求甲乙两人出发后多少时间相遇。
2. 一个班级有40名学生,其中男生和女生的比例是3:2。
如果增加10名女生,那么男生和女生的比例将变为多少?3. 一个数除以4余1,除以5余2,除以6余3,这个数最小是多少?4. 一块长方形的草坪长是20米,宽是15米。
现在要在草坪的四周种上一圈花,每株花占地0.2平方米,问需要多少株花?5. 一个数的平方减去它的三倍再加上20得到的结果是5,求这个数是多少?四、证明题1. 证明:勾股定理。
在一个直角三角形中,直角边的平方和等于斜边的平方。
2. 证明:两个等边三角形如果它们的边长相等,那么这两个三角形全等。
2019-2020年初中数学竞赛试题及答案

2019-2020年初中数学竞赛试题及答案一、选择题:(每小题6分,共30分)1、已知a 、b 、c 都是实数,并且c b a >>,那么下列式子中正确的是( ) (A)bc ab >(B)c b b a +>+(C)c b b a ->-(D)cb c a > 2、如果方程()0012>=++p px x 的两根之差是1,那么p 的值为( ) (A)2(B)4(C)3(D)53、在△ABC 中,已知BD 和CE 分别是两边上的中线,并且BD ⊥CE ,BD=4,CE=6,那么△ABC 的面积等于( )(A)12(B)14(C)16(D)18 4、已知0≠abc ,并且p bac a c b c b a =+=+=+,那么直线p px y +=一定通过第( )象限(A)一、二(B)二、三(C)三、四(D)一、四 5、如果不等式组⎩⎨⎧<-≥-0809b x a x 的整数解仅为1,2,3,那么适合这个不等式组的整数a 、b 的有序数对(a 、b )共有( )(A)17个(B)64个(C)72个(D)81个 二、填空题:(每小题6分,共30分)6、在矩形ABCD 中,已知两邻边AD=12,AB=5,P 是AD 边上任意一点,PE ⊥BD ,PF ⊥AC ,E 、F 分别是垂足,那么PE+PF=___________。
7、已知直线32+-=x y 与抛物线2x y =相交于A 、B 两点,O 为坐标原点,那么△OAB 的面积等于___________。
8、已知圆环内直径为a cm ,外直径为b cm ,将50个这样的圆环一个接一个环套地连成一条锁链,那么这条锁链拉直后的长度为___________cm 。
9、已知方程()015132832222=+-+--a a x a a x a (其中a 是非负整数),至少有一个整数根,那么a =___________。
2019-2020年七年级数学试卷(word解析版).docx

2019-2020 年七年级数学试卷(word 解析版)1.本试卷共 6 页,共十道大题,满分120 分。
考试时间120 分钟。
考2.在试卷和答题卡上认真填写学校名称、班级、姓名、考场号和座位号。
生3.试题答案一律填涂或书写在答题卡上,在试卷上作答无效。
须4.在答题卡上,选择题、作图题用2B 铅笔作答,其他试题用黑色字迹签字笔作答。
知5.考试结束,请将本试卷、答题卡和草稿纸一并交回。
考点:解一元一次不等式..专题:计算题.分析:先移项,再合并同类项,把x 的系数化为 1 即可.解答:解:移项得,3x>4+2,合并同类项得,3x> 6,把 x 的系数化为 1 得, x>2.故选: A.点评:本题考查的是解一元一次不等式,熟知解一元一次不等式的基本步骤是解答此题的关键.2. 某种流感病毒的直径是0.00 000 008 米,用科学记数法表示 0.00 000 008为()A.8 106 B .8 105 C .8 108D.8 104考点:科学记数法—表示较小的数..分析:绝对值小于 1 的正数也可以利用科学记数法表示,一般形式为a×10 ﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的 0 的个数所决定.解答:解: 0.000 000 08=8 ×10 ﹣8.故选: C.点评:本题考查用科学记数法表示较小的数.一般形式为a×10﹣n,其中 1≤|a| < 10,n 为由原数左边起第一个不为零的数字前面的0 的个数所决定.3. 若a>b,则下列结论中正确的是()A. 4 a< 4 b B .a+c>b+c C.a- 5<b-5 D .- 7a>- 7b考点:不等式的性质..分析:运用不等式的基本性质求解即可.解答:解:已知a> b,A、 4a> 4b,故 A 选项错误;B、 a+c> b+c,故 B 选项正确;C、 a﹣5> b﹣ 5,故 C 选项错误;D、﹣ 7a<﹣ 7b,故 D 选项错误.故选: B.点评:本题主要考查了不等式的性质,解题的关键是注意不等号的开口方向.4. 下列计算中,正确的是()3 )4x12236C . (2 a)36a3336A. ( x B . a a a D . a a a考点:幂的乘方与积的乘方;合并同类项;同底数幂的乘法..分析:根据合并同类项的法则,同底数幂的乘法以及幂的乘方的知识求解即可求得答案.解答:解: A、(x3)4=x12,故 A 选项正确;235B、 a ?a =a ,故 B 选项错误;C、( 2a)3=8a3,故 C选项错误;D、 a3+a3=2a3,故 D 选项错误.故选: A.点评:本题主要考查了合并同类项的法则,同底数幂的乘法以及幂的乘方的知识,解题的关键是熟记法则.5. 下列计算中,正确的是()22A. ( m+ 2) =m+ 4B. (3 +y)( 32-y)=9-yC. 2x(x - 1)= 2x2-1D. ( m-3)(m+1)=m2-3考点:平方差公式;单项式乘多项式;多项式乘多项式;完全平方公式..分析:根据平方差公式是两个二项式相乘,并且这两个二项式中有一项完全相同,另一项互为相反数.相乘的结果应该是:右边是乘式中两项的平方差(相同项的平方减去相反项的平方)进行选择即可.22解答:解: A、(m+2) =m+4+4m,故 A 选项错误;B、( 3+y)( 3﹣ y) =9﹣ y2,故 B 选项正确;C、 2x( x﹣ 1) =2x2﹣ 2x,故 C 选项错误;2D、( m﹣ 3)( m+1) =m﹣ 2m﹣ 3,故 D选项错误;.点评:本题主要考查平方差公式:( 1)两个两项式相乘;( 2)有一项相同,另一项互为相反数,熟记公式结构是解题的关键.6.如图, AF是∠ BAC的平分线, EF∥ AC交 AB于点 E.若∠1=25°,则BAF 的度数为()A.15°B.50°C.25°D.12.5 °考点:平行线的性质;角平分线的定义..分析:根据两直线平行,同位角相等求出∠2,再根据角平分线的定义解答.解答:解:∵ EF∥AC,∠ 1=25°,∴∠ 2=∠1=25°,∵AF 是∠ BAC 的平分线,∴∠ BAF=∠2=25°.故选: C.点评:本题考查了平行线的性质,角平分线的定义,是基础题,熟记性质并准确识图是解题的关键.7. 下列从左到右的变形正确进行因式分解的是()A.( x+5)( x- 5)= x2- 25B.x2+x+1=x( x+1)+1C.-22-2xy =-2 (+) D.3x+6+9 =3 (2 +9)x x x y xy xz x y z考点:因式分解的意义..专题:因式分解.分析:因式分解就是把多项式变形成几个整式积的形式,根据定义即可判断.解答:解: A、结果不是整式的积的形式,故 A 选项错误;B、结果不是整式的积的形式,是整式的乘法,故 B 选项错误;D、左右不相等,故 D 选项错误.故选: C.点评:本题考查了因式分解的意义,因式分解与整式的乘法互为逆运算,并且因式分解是等式的恒等变形,变形前后一定相等.8. 下列调查中,适合用普查方法的是()A.了解某班学生对“北京精神”的知晓率B.了解某种奶制品中蛋白质的含量C.了解北京台《北京新闻》栏目的收视率 D .了解一批科学计算器的使用寿命考点:全面调查与抽样调查..分析:由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.解答:解: A、了解某班学生对“北京精神”的知晓率是精确度要求高的调查,适于全面调查,故 A 选项正确;B、了解某种奶制品中蛋白质的含量,适合抽样调查,故 B 选项错误;C、了解北京台《北京新闻》栏目的收视率采用普查方法所费人力、物力和时间较多,适合抽样调查,故C选项错误;D、了解一批科学计算器的使用寿命,如果普查,所有计算器都报废,这样就失去了实际意义,故 D 选项错误,故选: A.点评:本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.9.我市某一周的最高气温统计如下表:最高气温(℃)25262728天数1123则这组数据的中位数与众数分别是( )A. 27, 28 B .27.5 ,28 C .28, 27D. 26.5 ,27考点:众数;中位数..专题:图表型.分析:找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不止一个.解答:解:处于这组数据中间位置的那个数是27,由中位数的定义可知,这组数据的中位数是27.众数是一组数据中出现次数最多的数,在这一组数据中28 是出现次数最多的,故众数是 28.故选: A.点评本题属于基础题,考查了确定一组数据的中位数和众数的能力.一些学生往往对这个概念掌握不清楚,计算方法不明确而误选其它选项.注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求.如果是偶数个则找中间两位数的平均数.10.如图所示,点 E 在AC的延长线上,下列条件中能判断AB // CD()A.∠3=∠4B.D ACD180C.D DCED.12考点:平行线的判定..分析: A、利用内错角相等两直线平行即可得到AC与 BD平行,B、利用同旁内角互补两直线平行即可得到AC与BD平行,C、利用内错角相等两直线平行即可得到AC与BD平行,D、利用内错角相等两直线平行即可得到AB与CD平行,解答:解: A、∵∠ 3=∠4,∴ AC∥BD,故A 选项不合题意;B、∵∠ D+∠ACD=180°,∴ AC∥BD,故 B 选项不合题意;C、∵∠ D=∠DCE,∴ AC∥BD,故C选项不合题意;D、∵∠ 1=∠2,∴ AB∥CD,故D 选项符合题意.故选: D.点评 : 此题考查了平行线的判定,熟练掌握平行线的判定方法是解本题的关键.11. 不等式组x2x 3,无解,则 m的取值范围是()x m 2.A .m<1B.m≥1C.m≤1D.m>1考点:解一元一次不等式组..分析:先把 m当作已知条件求出各不等式的解集,再根据不等式组无解求出m的取值范围即可.解答:解:,由①得, x>﹣ 1,由②得, x< m﹣2,∵原不等式组无解,∴m﹣2≤﹣ 1,解得 m≤1.故选: C.点评:本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.12. 关于 x , y的二元一次方程组3x y a,的解满足 x y ,则 a 的取值范围是()x3y 5 4aA.a>3B.a1C.a D.a>55333考点:解二元一次方程组;解一元一次不等式..专题:计算题.分析:将 a 看做已知数求出方程组的解表示出x 与 y,代入已知不等式即可求出 a 的范围.解答:解:,①× 3﹣②得: 8x=7a﹣ 5,即 x=,①﹣②×3得: 8y=13a ﹣15,即 y=,根据题意得:<,去分母得: 7a﹣5< 13a﹣15,移项合并得:6a> 10,解得: a>.故选: D.点评:此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.二、填空题(本题共24 分,每小题 2 分)13. 把方程3x y 10 写成用含x 的代数式表示y 的形式,则y=.考点:解二元一次方程..专题:计算题.分析:将x 看做已知数求出y 即可.解答:解:方程3x+y ﹣ 1=0,解得: y=1﹣ 3x.故答案为:1﹣ 3x点评:此题考查了解二元一次方程,解题的关键是将x 看做已知数求出y.14. 如果一个角等于54°,那么它的余角等于度 .考点:余角和补角..分析:本题考查角互余的概念:和为90 度的两个角互为余角.解答:解:根据余角的定义得,54°的余角度数是90°﹣ 54°=36°.故答案为: 36.点评:本题考查了余角和补角,属于基础题,较简单,主要记住互为余角的两个角的和为90度.15. 在方程 2x-3y1中,当x 3.时, y=2考点:解二元一次方程..专题:计算题.分析:将 x 的值代入方程计算即可求出y 的值.解答:解: 2x﹣ 3y=﹣ 1,将 x=﹣代入得:﹣ 3﹣ 3y=﹣1,解得: y=﹣,故答案为:﹣点评:此题考查了解二元一次方程,熟练掌握运算法则是解本题的关键.16. 分解因式3ab212ab 12a =.考点:提公因式法与公式法的综合运用..专题:因式分解.分析:先提取公因式 a,再根据完全平方公式进行二次分解.完全平方公式: a2﹣ 2ab+b2= (a﹣ b)2.解答:解:原式 =3a( b2﹣4b+4)=3a( b﹣ 2)2.故答案为: 3a(b﹣ 2)2.点评:本题考查了提公因式法,公式法分解因式,提取公因式后利用完全平方公式进行二次分解,注意分解要彻底.17.我市六月份连续五天的日最高气温(单位:℃ )分别为35,33,37,34,39,则我市这五天的日最高气温的平均值为℃.考点:算术平均数..分析:平均数是指在一组数据中所有数据之和再除以数据的个数.本题可把所有的气温加起来再除以 5 即可.解答:解:依题意得:平均气温=( 35+33+37+34+39)÷ 5=35.6 ℃.故答案为: 35.6 .点评:本题考查的是平均数的求法.解答平均数应用题的关键在于确定“总数量”以及和总数量对应的总份数.18. 计算( 2)0 3 2的结果是.考点:负整数指数幂;零指数幂..专题:计算题.分析:根据负整数指数次幂等于正整数指数次幂的倒数,任何非零数的零次幂等于1进行计算即可得解.解答:解:(﹣ 2) 0+3﹣2=1+ =.故答案为: .点评:本题考查了零指数幂和负整数指数次幂等于正整数指数次幂的倒数,熟记性质是解题的关键.x 1, ax 3y 1, b 的值是.19. 已知是关于 x ,y 的方程组2x by的解,那么 ay24考点:二元一次方程组的解.专题:计算题.分析:将 x 与 y 的值代入方程组求出.a 与b 的值,即可确定出a+b 的值.解答:解:将 x=﹣ 1, y=2 代入方程组得:,解得: a=5, b=﹣ 3,则 a+b=5﹣ 3=2.故答案为: 2.点评:此题考查了二元一次方程组的解, 方程组的解即为能使方程组中两方程成立的未知数的值.20. 已知∠1 与∠2 互补,∠3 与∠2互补,∠ 1=72°,则∠ 3=度 .考点:余角和补角. .分析:根据和为 180 度的两个角互为补角.依此即可求解.解答:解:∵∠1 与∠2互补,则∠ 2=180°﹣ 72°=108°,∵∠2与∠3互补,则∠ 3=180°﹣ 108°=72°.故答案为: 72.点评:此题属于基础题,较简单,主要记住互为余角的两个角的和为 90°;两个角互为补角和为 180°.21.如图,直线 AB,CD相交于点 O, OE⊥AB, O为垂足,∠ EOD=26°,则∠ AOC=.考点:对顶角、邻补角;垂线..分析:根据OE⊥AB,∠ EOD=26°,可得∠ BOD=68°,再根据对顶角相等即可得出答案.解答:解:∵ OE⊥AB,∴∠ BOE=90°,∵∠ EOD=26°,∴∠ BOD=64°,∵∠ AOC=∠BOD,∴∠ AOC=64°.故答案为: 64°.点评:本题考查了对顶角的性质以及垂线的定义,是基础题比较简单.22. 若a b3, ab 2 ,则 a3b ab3的值是.考点:提公因式法与公式法的综合运用..分析:首先利用完全平方公式求出a2+b2=13,进而将原式分解因式求出即可.解答:解:∵ a﹣ b=﹣ 3,ab=2,∴( a﹣ b)2=9,22∴a+b ﹣ 2ab=9,22∴a+b =13,3322∴a b+ab =ab( a +b )=2×13=26.故答案为: 26.点评:此题主要考查了提取公因式法以及公式法分解因式,熟练掌握完全平方公式是解题关键.23. 若多式x2( k 1)x 16 是完全平方公式,k=.考点:完全平方式..分析:里首末两是x2和 16 两个数的平方,那么中一加上或减去x2和 16的 2倍.解答:2解:∵多式x ( k 1)x+16 是完全平方公式,∴k 1=±8,解得 k=9 或 7,故答案: 9 或 7.点:本是完全平方公式的用;两数的平方和,再加上或减去它的 2 倍,就构成了一个完全平方式.漏解.注意的 2 倍的符号,避免24.右手的示意,在各个手指字母你按中箭所指方向(即A B CA,B ,C ,D .D C B A B C⋯的方式)从A 开始数的正整数1,2 ,3,4 ,⋯,当字母 C 第 2n 1 次出(n 正整数),恰好数到的数是_____________ (用含n 的代数式表示).考点:律型:数字的化..:律型.分析:由于字母从A→B→C→D→C→B→A→B→C→⋯的方式行,察得到每 6 个字母ABCDCB一循,并且每一次循里字母 C 出 2 次,循n 次,字母C第2n+1 次出(n 正整数),得到循n 次完要数到6n,而当字母 C 第2n+1 次出,再数 3 个数6n+3.解答:解:按照循,每一循里字母A→B→C→D→C→B→A→B→C→⋯的方式行,每 6 个字母 ABCDCB一 C出 2 次,当循 n 次,字母 C第 2n 次出( n 正整数),此数到最后一个数6n,当字母 C 第 2n+1 次出( n 正整数),再数 3 个数 6n+3.故答案为: 6n+3.点评:本题考查了规律型:数字的变化类:通过从一些特殊的数字变化中发现不变的因素或按规律变化的因素,然后推广到一般情况.三、计算(本题共 6 分,每小题 3 分)1. ( ab2)2( 4ab) ( 2ab2)2. (x2)(3 x 2) (x 4)( x 1)考点:整式的混合运算..专题:计算题.分析:( 1)先算乘方,再算乘除,即可得出结果;(2)根据多项式的乘法法则进行计算即可.解答:解:( 1)原式 =a2b4 ?(﹣ 4ab)÷(﹣ 2ab2)=﹣ 4a3b5÷(﹣ 2ab2)2 3=2a b ;(2)原式 =3x2﹣ 2x+6x ﹣ 4+x2﹣ x﹣4x+4 =4x2﹣ x.点评:本题考查了整式的混合运算,以及运算顺序,是基础知识要熟练掌握.四、因式分解(本题共9 分,每小题 3 分)1. 4x3y228 x2 y2xy2.a34ab23.( x2 1)24x( x2 1) 4x2.考点:提公因式法与公式法的综合运用..专题:因式分解.分析:(1)直接提取公因式﹣ 2xy,进而得出答案;(2)首先提取公因式 a,进而利用平方差公式分解因式即可;(3)首先将( x2+1)看做整体,进而利用完全平方公式分解因式即可.解答:解:( 1)﹣ 4x 3y2+28x2y﹣ 2xy= ﹣ 2xy ( 2x2y﹣ 14x+1 );(2) a3﹣4ab2=a( a2﹣4b2)=a( a+2b)( a﹣2b);(3)(x2+1)2﹣ 4x(x2+1) +4x2=( x2+1﹣2x )2=( x﹣1)4.点评:此题主要考查了公式法以及提取公因式法分解因式,熟练应用公式法分解因式是解题关键.五、先化简,再求值(本题 5 分)(2x y)2 5 y( y 4x) ( x 2y)(2y x) 6x 其中x 2 ,y 3 .4考点:整式的混合运算—化简求值..专题计算题.分析:原式中括号中第一项利用完全平方公式展开,第二项利用单项式乘以多项式法则计算,第三项利用平方差公式化简,去括号合并后利用多项式除以单项式法则计算得到最简结果,将x 与 y 的值代入计算即可求出值.解答:解:原式 =( 4x2+4xy+y 2﹣ 5y2 +20xy ﹣ x2+4y2)÷ 6x=( 3x2+24xy )÷ 6x= x+4y ,当 x=2, y=﹣时,原式 =1﹣ 3=﹣ 2.点评:此题考查了整式的混合运算﹣化简求值,熟练掌握运算法则是解本题的关键.六、解答题(本题共16 分,每小题 4 分)1.解不等式x+4 -x≤x 4,并把它的解集在数轴上表示出来. 63考点:解一元一次不等式;在数轴上表示不等式的解集..分析:先去分母,再去括号,移项、合并同类项,把x 的系数化为1.并在数轴上表示出来即可.解答:解:去分母得,x+4﹣2x≤6( x﹣4),去括号得, x+4﹣2x≤6x﹣ 24,移项得, x﹣ 2x﹣6x≤﹣ 24﹣ 4,合并同类项得,﹣ 7x≤﹣ 28,把 x 的系数化为 1 得, x≥4.在数轴上表示为:.点评:本题考查的是解一元一次不等式,熟知解一元一次不等式的基本步骤是解答此题的关键.2.解方程组2x 3 y 3,3x 2 y7.考点:解二元一次方程组..专题:计算题.分析:方程组利用加减消元法求出解即可.解答:解:,①× 2﹣②×3得:﹣ 5x=﹣ 15,即 x=3,将 x=3 代入①得: y=1,则方程组的解为.点评:此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.4(x1)7x8,3. 解不等式组x2并求它的所有整数解.x 5,3考点:解一元一次不等式组;一元一次不等式组的整数解..专题:计算题.分析:先求出两个不等式的解集,再求其公共解,然后找出整数即可.解答:解:,由①得, x≥4,由②得, x<,所以,不等式组的解集是4≤x<,所以,它的整数解为:4, 5, 6.点评:本题主要考查了一元一次不等式组解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).4.如图,AB∥CD,直线EF分别交AB、CD于点E、F,EG平分∠BEF交CD于点G,∠1=50 ,求∠2的度数 .考点:平行线的性质..分析:根据平行线的性质求出∠BEF,根据角平分线定义求出∠BEG,根据平行线的性质得出∠ BEG=∠2,即可求出答案.解答:解:∵ AB∥CD,∠ 1=50°,∴∠ BEF=180°﹣∠ 1=130°,∵EG平分∠ BEF,∴∠ BEG= ∠BEF=65°,∵AB∥CD,∴∠ 2=∠BEG=65°.点评:本题考查了平行线的性质,角平分线定义的应用,注意平行线的性质是:①两直线平行,同位角相等,②两直线平行,内错角相等,③两直线平行,同旁内角互补.七、在括号中填入适当的理由(本题共7 分,每空 1 分)已知:如图,∠ 1=∠ 2,∠ 3=∠ 4.求证: DF∥ BC.证明:∵∠ 3=∠ 4(已知),C ∴∥.()∴∠ 2=∠.(G2H )4F又∵∠ 1=∠2(已知),∴∠ 1=∠.13A D E B∴ DF∥BC.()考点:平行线的判定与性质..专题:推理填空题.分析:根据平行线的判定推出GH∥AB,根据平行线的性质得出∠2=∠B,求出∠ 1=∠B,根据平行线的判定推出即可.解答:证明:∵∠ 3=∠4,∴GH∥AB(内错角相等,两直线平行),∴∠ 2=∠B(两直线平行,同位角相等),∵∠ 1=∠2,∴∠ 1=∠B(等量代换),∴DF∥BC(同位角相等,两直线平行),故答案为: GH, AB,(内错角相等,两直线平行),B,(两直线平行,同位角相等),B,(同位角相等,两直线平行).点评:本题考查了平行线的性质和判定的应用,主要考查学生的推理能力,题目比较好,难度适中.八、解答题(本题 5 分)为了解某区 2014 年八年级学生的体育测试情况,随机抽取了该区若干名八年级学生的测试成绩进行了统计分析,并根据抽取的成绩等级绘制了如下的统计图表(不完整):人数10080A ______6060C 15%40D 5%B 50%2010A B C D成绩等级图1图2请根据以上统计图表提供的信息,解答下列问题:(1)本次抽查的学生有 ___________名,成绩为 B 类的学生人数为 _________名, A 类成绩所在扇形的圆心角度数为 ________;(2)请补全条形统计图;( 3)根据抽样调查结果,请估计该区约5000 名八年级学生体育测试成绩为 D 类的学生人数.考点:条形统计图;用样本估计总体;扇形统计图..分析:( 1)根据 D 类的人数除以占的百分比求出调查的学生总数,继而确定出 B 类的人数与C类占的角度即可;(2)求出 B 与 C 类的人数,补全条形统计图即可;(3)由 D 占的百分比,乘以 5000 即可得到结果.解答:解:(1)根据题意得: 10÷5%=200(名);成绩为 B 类的学生人数为 200×50%=100(名);成绩 C 类占的角度为15%×360°=54°;则本次抽查的学生有200 名;成绩为 B 类的学生人数为100 名, C 类成绩所在扇形的圆心角度数为54°;故答案为: 200; 100;54°;(2)根据题意得: B 类人数为 100 人, C 类人数为 30 人,补全条形统计图,如图所示:( 3)根据题意得: 5000×5%=250(人),则该区约 5000 名八年级学生实验成绩为D类的学生约为250 人.点评:此题考查了条形统计图,扇形统计图,以及用样本估计总体,弄清题中的数据是解本题的关键.九、列方程组解应用问题解答题(本题 5 分)如图,用火柴棍连续搭建三角形和正方形,公共边只用一根火柴棍.如果搭建三角形和正方形共用了77 根火柴棍,并且三角形形的个数比正方形的个数少 5 个,那么一共能连续搭建三角形、正方形各多少个?⋯⋯⋯⋯考点:二元一次方程组的应用..分析:设连续搭建三角形x 个,连续搭建正方形y 个,根据搭建三角形和正方形共用了77 根火柴棍,并且三角形的个数比正方形的个数少 5 个,列方程组求解.解答:解:设连续搭建三角形x 个,连续搭建正方形y 个.由题意得,,解得:.答:一共连续搭建三角形和正方形分别为12 个、 17 个.点评:本题考查了二元一次方程组的应用,解答本题的关键是读懂题意,仔细观察图形,找出合适的等量关系,列方程组求解.十、解答题(本题7 分)如图,已知射线∥,∠=∠=120°,、F 在CB上,且满足∠=∠,CBOA C OAB E FOB FBO OE 平分∠ COF.(1)求∠ EOB的度数;(2)若向右平行移动 AB,其它条件不变,那么∠ OBC:∠ OFC的值是否发生变化?若变化,找出其中规律,若不变,求出这个比值;(3)在向右平行移动 AB的过程中,是否存在某种情况,使∠ OEC=∠ OBA?若存在,请直接写出∠ OBA度数,若不存在,说明理由.考点:平行线的性质;三角形内角和定理;角平分线的性质;平移的性质..专题:几何图形问题.分析:( 1)根据两直线平行,同旁内角互补求出∠AOC,再根据角平分线的定义求出∠EOB= ∠AOC,代入数据即可得解;( 2)根据两直线平行,内错角相等可得∠OBC=∠BOA,从而得到∠OBC=∠FOB,再根据三角形的一个外角等于与它不相邻的两个内角的和求出∠OFC=2∠OBC,从而得解;(3)设∠ AOB=x,根据两直线平行,内错角相等表示出∠ CBO=∠AOB=x,再根据三角形的一个外角等于与它不相邻的两个内角的和表示出∠ OEC,然后利用三角形的内角和等于180°列式表示出∠ OBA,然后列出方程求解即可.解答:解:( 1)∵ CB∥O A,∴∠ AOC=180°﹣∠ C=180°﹣ 120°=60°,∵∠ FOB=∠AOB, OE平分∠ COF,∴∠ EOB= ∠AOC= ×60°=30°;( 2)∠ OBC:∠ OFC 的值不会发生变化,为1: 2,∵CB∥OA,∴∠ OBC=∠BOA,∵∠ FOB=∠AOB,∴∠ OBC=∠FOB,∴∠ OFC=∠OBC+∠FOB=2∠OBC,∴∠ OBC:∠ OFC=1: 2;(3)当平行移动 AB 至∠ OBA=45°时,∠OEC=∠OBA.设∠ AOB=x,∵CB∥AO,∴∠ CBO=∠AOB=x,∵∠ OEC=∠CBO+∠EOB=x+30°,∠OBA=180°﹣∠ A﹣∠ AOB=180°﹣ 120°﹣ x=60°﹣x,∴x+30°=60°﹣ x,∴x=15°,∴∠ OEC=∠OBA=60°﹣ 15°=45°.点评:本题考查了平行线的性质,平移的性质,角平分线的定义,三角形的内角和定理,图形较为复杂,熟记性质并准确识图是解题的关键.。
(word完整版)初中七年级数学竞赛试题及答案,文档.docx

2019 年初中七年级数学竞赛试题及答案一、选择题 ( 每小题 6 分,共 48 分;以下每题的4 个结论中,仅有一个是正确的,请将正确答案的英文字母填在题后的圆括号内. )1 .如果 a 是有理数,代数式2a 1 1 的最小值是 --------------------------()(A) 1 (B) 2 (C) 3 (D) 42 .正五边形的对称轴有--------------------------------------------------( )( A ) 10 条( B )5 条( C ) 1 条( D ) 0 条3.已知等腰三角形的两边长分别为是3 和 6,,则这个三角形的周长是 --------( )( A ) 9( B ) 12( C ) 15( D ) 12 或 154.从一幅扑克牌中抽出5 张红桃, 4 张梅花, 3 张黑桃放在一起洗匀后,从中一次随机抽出 10张,恰好红桃、梅花、黑桃 3 种牌都抽到,这件事情 --------------- ( )( A )可能发生 ( B )不可能发生 ( C )很有可能发生( D )必然发生5 . 如 果( A )a b c abc 的 值 为 - - - - - - - - - - - - - - - - - - - - - - - - - - - ()ab1 , 则abcc1( B ) 1 ( C )1( D )不确定6.棱长是 1cm 的小立方体组成如图所示的几何体,那么这个几何体的表面积是()( A ) 36cm 2( B ) 33cm 2( C ) 30cm 2 ( D ) 27cm 2(第 6 题图)(第 7 题图)7.如图是一块矩形 ABCD 的场地,长 AB=102m ,宽 AD=51m ,从 A 、B 两处入口的中路宽都为1m ,两小路汇合处路宽为 2m ,其余部分种植草坪,则草坪面积为 ----------- ( ) 22 2 (D) 2( A ) 2018m ( B ) 2018m (C) 2018m 2018m 8.如果一个方程有一个解是整数,我们称这个方程有整数解 . 请你观察下面的四个方程:( 1) 6x 4 y13 ( 2) 3x7 y 10 (3) ( x3)( y 2) 4( 4)1 11xy 2005其中有整数解的方程的个数是 ------------------------------------- ( )(A) 1(B) 2(C) 3 (D) 4二、填空题 ( 每小题 6 分,共 42 分 )9.观察下列算式:4 × 1 × 2+1=3 24 × 2 × 3+l=54 × 3 × 4+l=7 4 × 4 × 5+1=9222用代数式表示上述的律是.10.七 0 一班班主任一起共 48人到公园去划船 .每只小船坐 3 人,租金20 元,每只大船坐 5 人,租金 30元 . 他租船要付的最少租金是元 .11. 2018 减去它的1,再减去剩余数的1,再减去剩余数的1,⋯,依此推,一直234到减去剩余数的1,那么最后剩余的数是.200512.一个正 n 形恰好有 n 条角,那么个正n 形的一个内角是度.13.如, DE是△ ABC的 AB 的垂直平分,分交AB、 BC于 D、 E, AE 平分∠ BAC,若∠ B=30°,∠ C=度.14.ABC的三分a, b,c,其中a, b 足a b4(a b2)20 ,第三的 c 的取范是.15.根据下列 5 个形及相点的个数的化律,在第100 个形中有个点 .三、解答 ( 共 60 分 )16.( 15 分)如,ABC中, AB=6,BD=3, AD BC于 D,B=2 C,求 CD的 .AB CD17.( 15 分)两个代表从甲地乘往乙地,每可乘 35 人。
初一数学竞赛试题及答案

初一数学竞赛试题及答案一、选择题(每题3分,共30分)1. 下列哪个数是最小的正整数?A. 0B. 1C. -1D. 2答案:B2. 一个数的相反数是它自己,这个数是:A. 0B. 1C. -1D. 2答案:A3. 如果一个角的补角是它的两倍,那么这个角的度数是:A. 30°B. 45°C. 60°D. 90°答案:C4. 以下哪个选项表示的是一次函数的图象?A. 一条直线B. 一个圆C. 一个椭圆D. 一个抛物线答案:A5. 一个数的平方是9,这个数是:A. 3B. -3C. 3或-3D. 以上都不对答案:C6. 一个数的立方是-27,这个数是:A. 3B. -3C. 3或-3D. 以上都不对答案:B7. 以下哪个选项是方程2x + 3 = 9的解?A. x = 3B. x = 6C. x = -3D. x = 0答案:A8. 一个数的绝对值是5,这个数可以是:A. 5B. -5C. 5或-5D. 以上都不对答案:C9. 下列哪个选项是不等式2x - 5 > 3的解集?A. x > 4B. x > 2C. x < 4D. x < 2答案:A10. 如果一个三角形的两边长分别是3和4,那么第三边的长度可以是:A. 1B. 2C. 3D. 4答案:C二、填空题(每题3分,共30分)1. 一个数加上它的相反数等于______。
答案:02. 一个数的绝对值是它本身,这个数是______。
答案:非负数3. 一个角的补角是它的三倍,那么这个角的度数是______。
答案:45°4. 一次函数y = 2x + 1的图象经过点(0,1),则这个点是该函数的______。
答案:截距5. 一个数的平方是16,这个数是______。
答案:±46. 一个数的立方是8,这个数是______。
答案:27. 方程3x - 7 = 2的解是______。
初中数学竞赛试题及答案doc

初中数学竞赛试题及答案doc一、选择题(每题3分,共15分)1. 下列哪个数是最小的正整数?A. 0B. 1C. -1D. 2答案:B2. 如果一个数的平方等于16,那么这个数是多少?A. 4B. -4C. 4 或 -4D. 2答案:C3. 一个直角三角形的两条直角边分别为3和4,斜边的长度是多少?A. 5B. 6C. 7D. 8答案:A4. 一个数的立方等于-27,这个数是多少?A. -3B. 3C. -27D. 27答案:A5. 一个数的倒数等于它自身,这个数是?A. 1B. -1C. 0D. 都不是答案:B二、填空题(每题2分,共10分)6. 一个数的绝对值是5,这个数可能是_________。
答案:±57. 如果一个数的平方根是2,那么这个数是_________。
答案:48. 一个数的立方根是3,那么这个数是_________。
答案:279. 一个分数的分子是7,分母是14,化简后是_________。
答案:1/210. 一个数的相反数是-5,那么这个数是_________。
答案:5三、解答题(每题5分,共20分)11. 证明:如果一个三角形的两边之和大于第三边,那么这个三角形是存在的。
证明:根据三角形不等式定理,对于任意三角形ABC,有AB + BC > AC,AC + BC > AB,AB + AC > BC。
如果已知AB + BC > AC,则满足三角形的构造条件,因此这样的三角形是存在的。
12. 计算:(2x - 3)(x + 4)。
解:根据多项式乘法法则,我们有(2x - 3)(x + 4) = 2x^2 + 8x - 3x - 12 = 2x^2 + 5x - 12。
13. 解方程:2x + 5 = 11。
解:首先将5移到等式右边,得到2x = 11 - 5,即2x = 6。
然后将2除到等式右边,得到x = 6 / 2,即x = 3。
14. 一个长方形的长是宽的两倍,如果长增加2米,宽增加1米,面积增加了15平方米,求原长方形的长和宽。
2019-2020年七年级数学下学期知识竞赛试题

2019-2020年七年级数学下学期知识竞赛试题一、填空题(每小题4分,共40分)1、a 、b 互为相反数,c 、d 互为倒数,则_______________;2、若,则= ;3、若22223,3y xy x B y xy x +-=++=,则A —[B+2B —(A+B)]化简后的结果为_________(用含、的代数式表示)4、设多项式,已知当=0时,;当时,,则当时,= ;5、一队卡车运一批货物,若每辆车装7吨货物,则尚余10吨货物装不完;若每辆车装8吨货物,则最后一辆车只装3吨货物就装完了这批货物,那么这批货物共有______________吨;6、方程组⎩⎨⎧2002x + 2003y = 20042003x + 2002y = 2001的解为 ;7、已知关于x 的不等式组的整数解共有5个,则a 的取值范围是 ________8、如图:在△ABC 中,AB=5,AC=9,则BC 边上的中线AD 的长的取值范围是______ ;9、如图,在△ABC 中,AB=AC ,∠BAD =30°, 且AE=AD ,则∠EDC 的度数是 10、学校组织同学们看电影,排队在街上匀速行走, 有位同学注意到从背后每隔4分钟过一辆公共汽车,而迎面每隔12分钟有一辆公共汽车驶过,已知车站 发车的时间间隔是相同的,那么车站每隔 分钟发一辆车; 二、选择题(每小题3分,共30分) 11、数: 是( ).(A ) 最大的负整数 (B )绝对值最小的整数 (C )最小的正整数 (D )最大的负数 12、若 为有理数,且,则( )(A )-8 (B )-16 (C )8 (D )1613、由1,2,3,4这四个数字组成四位数(数字可重复使用),要求满足.这样的四位数共有 ( ) (A ) 36个 (B )40个 (C ) 44个 ( D) 48个. 14、若方程组的解为x,y ,且2<k <4,则x-y 的取值范围是( )(A ) 0<x-y <0.5 (B ) 0<x-y <1 (C ) -3<x-y <-1 (D )-1<x-y <115、如图,已知AB ∥ED ,∠C =,∠ABC =∠DEF ,∠D =, ∠F =,则∠E 的度数为( ) (A) 160° (B ) 150° (C )145° (D )140°16、黑板上写有共100个数字.每次操作先从黑板上的数中选取2板上写上数,则经过99次操作后,黑板上剩下的数是( ). (A )xx (B )101 (C )100 (D )9917、在古代生活中,有很多时候也要用到不少的数学知识,比如有这样一道题: “隔墙听得客分银,不知人数不知银.七两分之多四两,九两分之少半斤”(注:古秤十六两为一斤) 请同学们想想有几人,几两银? ( ).第9题图A BCD 第8题图B CE D A(A)六人,四十四两银(B)五人,三十九两银(C)六人,四十六两银(D)以上都不对18、王老伯在集市上先买回5只羊,平均每只元,稍后又买回3只羊,平均每只元,后来他以每只的价格把羊全部卖掉了,结果发现赔了钱,赔钱的原因是()(A)(B)(C)(D)与、的大小无关19、如图,正方形ABCD的面积为90.点P在AB上,;X,Y,Z三点在BD上,且,则△PZX的面积为( )(A) 15 (B) 18 (C) 20 (D) 22.520、正三角形ABC所在平面内有一点P,使得△PAB、△PBC、△PCA都是等腰三角形,则这样的P点有()(A) 1个(B) 4个(C) 7个(D) 10个三、解答题(第21题6分,第22至23题每题7分,第24题10分,共30分)22、由于电力紧张,某地决定对工厂实行“峰谷”用电.规定:在每天的8:00至22:00为“峰电”期,电价为a元/度;每天22:00至8:00为为“谷电”期,电价为b元/度.下表为某厂4、5月份的用电量和电费的情况统计表:(1)若4量的,求a、b的值.(2)若6月份该厂预计用电20万度,为将电费控制在10万元至10.6万元之间(不含10万元和10.6万元),那么该厂6月份在“谷电”的用电量占当月用电量的比例应在什么范围?23、光华农机租赁公司共有50台联合收割机,其中甲型20台,乙型30台.现将这50台联合收割机派往A、B两地区收割小麦,其中30台派往A地区,20台派往B地区.两地区与该农机租赁公司商定的每天的租赁价格见下表:(1)设派往A地区台乙型联合收割机,租赁公司这50台联合收割机一天获得的租金为y(元),用含 x的代数式表示y(即写出y与x之间的数量关系式),并写出x的取值范围;(2)若使农机租赁公司这50台联合收割机一天获得的租金总额不低于79600元,说明有多少种分派方案,并将各种方案设计出来;(3)如果要使这50台联合收割机每天获得的租金最高,请你为光华农机租赁公司选择分派方案。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019-2020 年七年级下册数学竞赛试题及答案
一. 选择题 (每小题 4 分,共 32 分)
1.若 a<0 , ab<0 , 那么 b a 1 a b 5 等于 (
)
A . 4
B .-4
C . -2a+2b+6 D. 1996
2.数轴上坐标是整数的点称为整点 ,某数轴的单位长度是 1 厘米 ,若在这个数轴上随意画出一条长为 2009 厘米的线段 AB, 则线段 AB 盖住的整点的个数是 ( ) A.2008 或 2009 B . 2008 或 2010 C . 2009 或 2010 D . 2010 或 2011
3.已知
x a
x 2 y 5 y b 是方程组 2 x y 7 的解 , 则 a-b 的值为 ( ) A . 2 B . 1 C. 0 D. -1 4.两个 10 次多项式的和是 ( )
A. 20 次多项式
B. 10 次多项式
C. 100 次多项式
D. 不高于 10 次的多项式 5.若 a<3 , 则不等式 (a-3)x<a-3 的解集是 ( ) A. x>1 B .x<1 C . x>-1 D . x<-1 6.方程 2x+y=7 的正整数解有 ( ) A. 一组 B .二组 C .三组 D. 四组
不等式组 5 x 3 3 x 5 的解集为 x<4, 则 a 满足的条件是 ( )
7.
A. a<4 B .a=4 C .a ≤4 D .a ≥4
8.如图 ,,AB ∥ CD,AC ⊥ BC ,图中与∠ CAB 互余的角有 ( )
A.1个
B.2个
C.3 个
D.4 个
二 .填空题 (每小题 4 分,共 32 分)
1.不等式组
x 2 a 4 的解集是 0<x<2, 则 a+b 的值等于 _______
2 x b 5
2.已知
x
y z
, 且 4x 5 y 2 z 10 ,
3
4
5
B
则 2x 5 y z 的值等于 ________
C
3.如图 ,已知 AE ∥DF,则∠ A+∠ B+∠ C+∠ D=_________
4.计算 1
1 3 1 2008 1
= _________
1 2 2 3 4
2009
5.若 x 2 mx 15 ( x 3)( x n) , 则 m 的值为 ________
6.已知: a 2 b 2 25, a b 7 ,且 a>b, 则 a-b 的值等于 ________ 一个角的补角的 1 等于它的余角 , 则这个角等于 _____度.
7. 3
计算 : 4 2009 ( 2008 -1 =______
)
8. - 0.25
A B
C D
A
E
F
D
三.解答题 :(每小题 12 分,共 36 分)
1.已知 : 4x 3y6z0 , x 2 y 7z0 xyz 0 ,
求代数式
5x22y 2z2
22 2 的值
2x3y10z
A
2.如图 ,已知 CD⊥AB ,DE∥BC,∠1= 求证 :FG⊥AB
∠2
D E
1
G
2
B F C
3.某学校准备组织290 名学生进行野外考察活动,行李共有100 件,学校计划租用甲乙两种型号的汽车共 8 辆 ,经了解 ,甲种汽车每辆最多能载 40 人和 10 件行李 , 乙种汽车每辆最多能载 30 人和 20 件行李 ,
⑴设租用甲种汽车 x 辆,请你帮助学校设计所有可能的租车方案 ; ⑵如果甲乙两种汽车每辆的租车费用分别为 2000 元、1800 元,请你选择最省钱的一种租车方案 .
参考答案 :
一 . BCAD ACDC 二. .1 ;
-45 ;540 ° ;
2008
-2 ;
1 ;
45; 3
2009
4 x 3 y 6z
x 3z 三 . 1. 解 x 2 y 7 z
得
y 2z
代入原式得 , 原式 = -13
2. 证∵DE ∥BC , ∴ ∠1=∠BCD , 又∠ 1=∠2 ∴ ∠2=∠BCD ∴FG ∥CD 又 CD ⊥AB ∴FG ⊥AB
40x 30(8 x) 290
3.解⑴
:由题意得
10x
20(8 x) 100
解得 : 5≤ x ≤ 6
即共有两种租车方案 :
第一种是租用甲种汽车 5 辆, 乙种汽车 3 辆第二种是租用甲种汽车 6 辆, 乙种汽车 2 辆⑵第一种租车方案的费用为 :5×2000+3× 1800=15400 第二种租车方案的费用为 :6×2000+2×1800=15600 所以第一种租车方案更省钱 .。