矿山压力课程设计

合集下载

矿山压力与矿山压力显现

矿山压力与矿山压力显现
Ground Pressure and Strata Control
矿山压力与岩层控制 电子教案
2.1 矿山压力及其在围岩中的分布 2.2 矿山压力显现 2.3 矿山压力与矿山压力显现间的关系
2016/8/25
资源与环境工程学院-资源工程1系
1
矿压与矿压显现
Ground Pressure and Strata Control
H =K γ σ
σ
max
MC A MB
1 2 ql 12
D
A' A B B'
( a ) 巷道结构示意图
C
D
N A'
l
N B'
N A'
( a ) 巷道结构示意图
N B'
l
( b ) 顶板简化模型
2016/8/25
( b ) 顶板简化模型
资源与环境工程学院-资源工程1系
14
矿压与矿压显现
①受拉破坏
矿山压力的存在是客观的、绝对的,它存在于采动空间的周围 岩体中。但矿山压力显现则是相对的、有条件的,它是矿山压力作 用的结果。
围岩中有矿山压力存在却不一定有明显的显现。围岩的明显运 动本身就是有条件的,只有当应力达到围岩强度后才会发生。支架 受力也是如此,不仅取决于围岩的明显运动,还取决于支架对围岩 运动的抵抗程度。
B T A D B
图2.1 采动空间与围岩
2016/8/25
资源与环境工程学院-资源工程1系
2
矿压与矿压显现
Ground Pressure and Strata Control
煤及岩层采动前,一般在覆盖层重力、构造运动作用力等地质力的作用 之下,处于三向受力的原始平衡状态。煤及岩层采动后,由于支承条件的改 变,其原始平衡状态遭到破坏,边界上的作用力、分布在各点的应力(包括 大小及方向)随之改变。 矿山压力:采动

矿山压力及岩层控制PPT学习教案

矿山压力及岩层控制PPT学习教案

第6页/共9页
四、矿山压力与矿山压力显现的关系
1、矿山压力的存在是绝对的,而显现是相对的。 2、压力显现强烈的部位不一定是压力高峰的位置, 但对某一点是相关的(例:煤壁前方值承压力与下沉 两关系)。
五、关于支护的作用问题
支架的作用在于帮助围岩稳定,把矿山压力显现 控制在要求的范围内。
锚固增加围岩内聚力,提高承载能力, 维护围岩稳定的支护类型可 锚缩喷性控支制架围允 侧岩许向变围力形岩,程有改度一变,定受保变力持形状围,态岩依 ,稳靠 提定支 高。架 承提 载供 能给 力围 。岩
第4页/共9页
(一)巷道围岩运动的相对性
由于围岩承受的压力大小、自身强度、受力状况等不同,运动 的发展程度也不相同。
1、开采深度越浅,与采深有关的支承压力越大。
150~200m以后,出现明显的塑性变形与破坏。 100~150m以上岩体处于弹性状态,变形比较小,运动相对不明显。
2、围岩的变形能力还与围岩强度有关。
通过假设支架,增加σ3,则需要的支护反力为:
3 1(1 sin ) 2 cos 1 sin
或:RT K H (1 sin) 2 cos 1 sin
三、矿压显现的相对性 由于围岩的运动受压力的大小、方向、边界以及
自身的强度极限等限制,加之支架对围岩运动的抵抗, 矿压显现不可能在任何压力存在的条件下显现出来, 即是相对的。
例: 两帮岩体力学参数为:ψ=25° , C=3MPa,k=2.5 ,γ=25kN/m3 ,
则:
H 2C cos
就是说:在采深小于150m时,不支护巷道两帮不会破坏。
(1 sin) K
H 23106 cos25 15(0 米) (1 sin 25) 2.5 25103

矿山压力观测及控制教学大纲

矿山压力观测及控制教学大纲

《矿山压力及其控制》课程教学大纲英文名称:Mining Pressure and Strata Controling学时数:72其中实验学时数:3 课外学时数:0学分数:6适用专业:煤矿开采技术一、本课程的性质、目的和任务本课程的任务是在学习《数学》、《制图》、《工程力学》、《煤矿地质》、《井巷工程》、《采掘机械》、《煤矿开采学》等课程的基础上,系统地讲授矿山压力的基本理论、矿山压力显现规律、矿山压力控制理论和方法,矿山压力的研究方法等内容。

本课程的性质:本课程是研究地下煤矿开采过程中,回采工作面和采区巷道矿山压力的成因、显现规律、控制理论和方法的技术科学,是煤矿开采技术专业的主要专业课。

本课程的目的是:通过本课程的学习,使学生较全面的了解矿山压力理论的形成和发展,掌握回采工作面和采区巷道矿山压力的规律及控制手段和方法,从而具备选择采场、巷道支护设备和方式的能力,具备选择合理的矿井布置、开采方法、开采顺序、巷道位置的能力,并为今后从事矿山压力的研究奠定一定的基础。

课程教学目标:(一)知识目标了解岩石及围岩的基本性质,理解矿山压力的基本概念;了解岩层运动规律,了解矿山压力及其显现与上覆岩层运动的关系;了解解采煤工作面和巷道矿压的控制理论和方法;掌握巷道矿压及其显现规律;掌握采煤工作面上覆岩层移动及其矿山压力显现规律;了解影响采煤工作面矿山压力显现的主要因素;了解常用矿山压力观测仪器的原理及结构;掌握采煤工作面“三量”观测的内容及方法;了解煤矿冲击地圧发生的条件及原因。

(二)能力目标能使用常用矿压观测的仪器进行矿压观测;能进行采煤工作面顶板运动的预测预报;能进行采区巷道矿压观测;能进行矿压观测数据的分析和处理,会编写矿压观测报告;能对巷道冒顶进行预防和处理;能对采煤工作面顶板控制进行设计;能对各种条件下的采煤工作面顶板事故进行防治。

(三)思想教育目标具备辩证思维的能力;具有热爱科学、实事求是的学风和吃苦耐劳、敢于奉献、敬业爱岗的精神,具有创新意识、创新精神;加强职业道德意识和修养。

矿山的课程设计

矿山的课程设计

矿山的课程设计一、教学目标本课程旨在让学生了解矿山的形成、种类、开采和保护等方面的知识,掌握一定的矿山地质学基本概念和技能,培养学生的实践能力和创新精神,提高学生对矿山资源的合理利用和环境保护的意识。

具体目标如下:1.知识目标:学生能够理解矿山的基本概念、形成原因、开采方法及其对环境的影响;掌握矿山地质学的基本原理和知识。

2.技能目标:学生能够运用地质学知识对矿山进行简单的评价和分析;具备一定的实地考察和数据处理能力。

3.情感态度价值观目标:学生能够认识到矿山资源的重要性,理解合理利用和保护矿山资源的意义,培养热爱科学、关注社会、珍惜资源的情感态度和价值观。

二、教学内容本课程的教学内容主要包括矿山地质学基本概念、矿山的形成与演化、矿山开采技术、矿山环境保护等方面。

具体安排如下:1.矿山地质学基本概念:矿山的定义、分类及其特征;矿山地质学的基本原理和研究方法。

2.矿山的形成与演化:矿床的形成过程、成因类型及其演化规律;主要矿物的特征和识别方法。

3.矿山开采技术:矿山开采的基本方法及其适用条件;矿山开采对地质环境的影响。

4.矿山环境保护:矿山环境问题的产生原因及危害;矿山环境保护的措施和技术。

三、教学方法为提高教学效果,本课程将采用多种教学方法相结合的方式,包括讲授法、案例分析法、实地考察法等。

具体方法如下:1.讲授法:通过讲解矿山地质学的基本概念、理论和方法,使学生掌握相关知识。

2.案例分析法:分析典型的矿山案例,使学生了解矿山开采和环境保护的实际情况。

3.实地考察法:学生参观矿山,亲身体验矿山开采和环境保护的工作。

四、教学资源本课程将充分利用校内外资源,包括教材、参考书、多媒体资料、实验设备等。

具体资源如下:1.教材:选用权威、实用的矿山地质学教材,为学生提供系统的理论知识。

2.参考书:提供相关的参考书籍,丰富学生的知识体系。

3.多媒体资料:制作精美的课件、视频等资料,提高学生的学习兴趣。

4.实验设备:购置必要的实验设备,为学生提供实践操作的机会。

矿山压力课程设计

矿山压力课程设计

中国矿业大学矿业工程学院矿山压力与岩层控制课程设计姓名:班级学号:指导老师:吴锋锋目录矿山压力与岩层控制课程设计 ................................................1 课程设计的目的.......................................................2 课程设计的内容.......................................................3 课程设计资料.........................................................工作面地质条件 ......................................................工作面生产技术条件 ..................................................其它参数 ............................................................一.依据岩层控制的关键层理论,确定主、亚关键层位置; ....................二.计算直接顶初次跨落步距,老顶初次断裂步距,老顶周期来压步距 ..........直接顶初次跨落步距: ..................................................老顶初次断裂步距如下: ................................................老顶初次断裂步距如下: ................................................三:结合三铰拱平衡理论,计算上覆岩层“三带”中垮落带高度; ............................................................1:什么是三铰拱平衡理论?四:依据液压支架选型原则及步骤,考虑大采高综采、综采放顶煤(采煤机割煤高度)开采2种条件,分别计算顶板压力大小,进行液压支架工作的合理选型,画出支架简图;1 液压支架的基本形式 ..................................................顶底板性质 ...........................................................煤层条件.............................................................经济成本.............................................................五:假定回采巷道选用锚网支护,理论计算确定锚杆的型号、间排距及支护方案简图。

矿山压力课程设计

矿山压力课程设计

课程设计题目
某矿综采工作面顶板控制(支护)初步设计
一、工作面条件:
所采煤层为近水平煤层,某综采工作面面长200米,煤层情况和围岩条件详见表1,工作面内无断层,水文条件简单。

二、设计内容:试确定直接顶、老顶分级,在此基础上设计支架高度、支架工作阻力、初撑力,并确定支掩式支架架型。

某矿单体液压支柱工作面顶板控制(支护)初步设计
一、工作面条件:
所采煤层为近水平煤层,某普采工作面面长150米,煤层情况和围岩条件详见表1,工作面内无断层,水文条件简单。

二、设计内容:试确定直接顶、老顶分级,在此基础上设计支柱高度、支柱工作阻力、初撑力,支护密度、并确定外注式单体液压支柱类型(采用HDJA-800型铰接顶梁)。

参考资料:
1、窦林名、陆菜平、牟宗龙等,采场顶板控制及监测技术,中国矿业大学出版社,2009年第3版。

2、张荣立、何国纬、李铎主编.《采矿工程设计手册》(上册、中册、下册). 北京:煤炭工业出版社,2003
3、刘文韬。

煤矿矿井支护新技术与支护设计计算及支护产品选型、设计、维护实用手册。

矿山压力与岩层控制教学大纲

矿山压力与岩层控制教学大纲

《矿山压力与岩层控制》课程教学大纲(理论课程)一课程说明1.课程基本情况课程名称:矿山压力与岩层控制英文名称:mining pressure and strata control课程编号:3211215开课专业:采矿工程开课学期:6学分/周学时:3/4课程类型:专业主干课2.课程性质本课程有关采矿工程学科核心理论与关键技术,是采矿工程专业的专业主干课之一;任务在于使学生掌握矿山压力的基本概念、基本理论和研究方法,为学生今后在矿山工作奠定基础。

3.本课程的教学目的和任务本课程是以研究采场及采准巷道在煤矿开采过程中所形成的矿山压力及其显现规律为中心,掌握矿山压力控制技术为目的的课程。

其任务是在学习了数学和力学课程的基础上,配合开采方法,重点讲授采场覆岩活动及其分析,采场矿压显现基本规律和采场矿压控制原理及方法,主要介绍采准巷道矿压研究方法。

通过课程学习、实验、生产实习等教学环节,使学生掌握采场和采区巷道矿压及其控制的基本知识和基本理论深入了解采煤工艺选择、巷道布置和维护方法等基本原理,为在校期间的毕业设计和毕业后从事科研、设计及煤矿技术管理工作打基础。

4.本课程与相关课程的关系、教材体系特点及具体要求开设本课程前,应先学习《材料力学》、《弹性力学》、《煤矿地质学》、《岩石力学》等课程并具有一定的煤矿知识,已开《煤矿开采学》和《井巷工程》课程和进行现场实习。

5.教学时数及课时分配二教材及主要参考书教材:钱鸣高,石平五,许家林编著,《矿山压力与岩层控制》,中国矿业大学出版社,2010。

主要参考书:钱鸣高,缪协兴等编著,《岩层控制的关键层理论》,中国矿业大学出版社,2000年。

马念杰,侯朝炯编著,《采准巷道矿压理论及应用》,煤炭工业出版社,1995年。

陈炎光,钱鸣高编著,《中国煤矿采场围岩控制》,中国矿业大学出版社,1994。

三教学方法和教学手段说明采用多媒体与板书、理论与实践相结合的教学方法。

四成绩考核办法期末考试以闭卷形式进行,占80%,平时作业和课堂考勤占10%,期中考试占20%。

《矿山压力及岩层控制》教案

《矿山压力及岩层控制》教案

绪论1 矿山压力与岩层控制学科的概念矿山压力:由于矿山开采活动的影响,在巷硐周围岩体中形成的和作用在巷硐支护物上的力定义为矿山压力,在相关学科中也称为二次应力、或工程扰动力。

矿山压力显现:在矿山压力作用下,会引起各种力学现象,如岩体的变形、破坏、塌落,支护物的变形、破坏、折损,以及在岩体中产生的动力现象。

这些由于矿山压力作用,使巷硐周围岩体和支护物产生的种种力学现象,统称为矿山压力显现。

矿山压力控制:所有减轻、调节、改变和利用矿山压力作用的各种方法,均叫做矿山压力控制。

2 采矿工业要求发展矿山压力及岩层控制学科2.1 生态环境保护岩层控制理论为实现保水采煤,完善条带开采和充填技术,进行井下矸石处理和有效抽放瓦斯奠定理论基础。

2.2 保证安全和正常生产岩层控制理论和技术为大幅度降低顶板事故做出了突出贡献。

边坡稳定性研究使边坡设计既能达到经济上可采纳的陡度,又足以维持安全的缓度。

巷道围岩控制理论和技术为合理支护各种巷道成为可能。

2.3 减少资源损失矿柱是造成地下资源损失的主要根源。

通过对开采引起的围岩应力重新分布规律的研究,推广无煤拄护巷和跨越巷道开采等技术措施,不仅显著减少资源损失,还有利于消除因矿柱存在引起的灾害和对采矿工作的不利影响。

2.4 改善开采技术自移式液压支架的应用实现了采煤综合机械化。

巷道可缩性金属支架和锚喷支护的应用改变了刚性、被动支护巷道的局面。

同时,采场、巷道围岩稳定性分类为合理选择支护型式、支护参数提供科学依据。

2.5 提高经济效益围岩结构稳定性分类、稳定性识别、矿压显现预测、支护设计、支护质量与顶板动态监测、信息反馈直至确定最佳设计的一整套理论、方法与技术有助于创造采矿工业的良好的社会效益和经济效益。

3 矿山压力与岩层控制学科属性与特色3.1 采矿工程岩体结构的本质与地面工程结构不同,地下工程围岩既是一种载荷,也是一种结构,施载体系和承载体系之间没有明显界限。

采场上覆岩层形成结构,结构的形态及稳定性不仅直接影响到采场,也将影响到开采后上覆岩层运动的形态及地表塌陷形状。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

矿山压力课程设计文件编码(008-TTIG-UTITD-GKBTT-PUUTI-WYTUI-8256)中国矿业大学矿业工程学院矿山压力与岩层控制课程设计姓名:班级学号:指导老师:吴锋锋目录矿山压力与岩层控制课程设计1 课程设计的目的《矿山压力与岩层控制课程设计》是《矿山压力与岩层控制》采矿专业主干课程的一个重要实践环节。

通过课程设计使学生了解和掌握矿山压力与岩层控制的研究方法,加深对课程知识的理解,为以后的毕业设计及矿压理论研究奠定基础,使学生具备运用该方法解决采矿工程实际问题的能力。

2 课程设计的内容结合某一给定回采工作面的地质及生产技术条件,设计完成以下内容,并配有必要的图表。

2)依据覆岩岩性特征,采用力学分析计算直接顶初次垮落步距,老顶初次断裂步距,老顶周期来压步距;3)结合三铰拱平衡理论,计算上覆岩层“三带”中垮落带高度;4)依据液压支架选型原则及步骤,考虑大采高综采、综采放顶煤(采煤机割煤高度)开采2种条件,分别计算顶板压力大小,进行液压支架工作的合理选型,画出支架简图;5)假定回采巷道选用锚网支护,理论计算确定锚杆的型号、间排距及支护方案简图。

3 课程设计资料工作面地质条件某综采工作面井下位置西为东四辅撤运输巷,北为正在掘进的另一工作面,南为另一工作面采空区,东为矿界,工作面之间留有60m的煤柱。

所采煤层为3#煤层,煤体黑色,条带状结构,中部夹厚泥岩,赋存稳定,变异系数为%,可采指数为。

煤的容重m3,煤质普氏硬度1~2,盖山厚度292~480m。

煤层底板标高488~624m,地面标高 780~1104m。

工作面所采煤层厚度~,平均,煤层倾角为1~14o,平均5°。

工业储量,可采储量6246165t。

依据该工作面钻孔数据,煤层上方伪顶为黑色炭质泥岩,层厚为;直接顶为灰黑色层理发育的砂质泥岩,层厚;老顶为浅灰色的坚硬中粒砂岩,成份以石英,长石为主,层厚;直接底为灰黑色砂质泥岩,中厚层状,有斜节理,含云母碎片,中夹薄层细砂岩,层厚;老底为黑灰色泥岩,有节理,质不坚硬,局部夹薄层状砂泥岩、粉砂岩,层厚。

工作面上覆岩层及其物理力学参数如表1所示。

表1 覆岩岩层其物理力学参数岩层序号岩性厚度/m弹性模量/Mpa抗压强度/Mpa抗拉强度/Mpa体积力(N/m3)C30砂质泥岩27280 C29细粒砂岩27640 C28砂质泥岩27280 C27砂岩层27630 C26砂质泥岩27280 C25细粒砂岩127640 C24泥岩1827420 C23砂质泥岩27280 C22细粒砂岩27640 C21泥岩1827420 C20砂质泥岩27280 C19细粒砂岩27640 C18泥质砂岩327280 C17细粒砂岩27640C16泥岩1827420 C15砂质泥岩27280 C14细粒砂岩27640 C13泥质砂岩27280 C12泥岩11827420 C11砂质泥岩27280 C10细粒砂岩27640 C9砂质泥岩27280 C8中粒砂岩27620 C7砂质泥岩27280 C6砂质泥岩527280 C5细粒砂岩27640 C4泥岩1827420 C3中粒砂岩27620 C2砂质泥岩27280 C13号煤15530工作面生产技术条件工作面顺槽沿煤层底板布置,设计为矩形断面,采用锚网支护方式,断面大小均为×。

切眼为×的矩形断面。

工作面采用全部机械化的走向长壁大采高后退式自然垮落综合机械化采煤方法。

工作面设计采高为。

其它参数老顶及其上附加岩层的碎胀系数,可取为~;直接顶碎胀系数,可取为~。

也可参照《矿山压力与岩层控制》教材中的相关参数取值。

一.依据岩层控制的关键层理论,确定主、亚关键层位置;将对岩体局部或直至地表的全部岩体的运动起控制作用的坚硬岩层称为关键层, 前者称为亚关键层, 后者称为主关键层;关键层判别方法分为以下3个步骤进行:.第1步, 由下往上确定覆岩中的坚硬岩层位置. 此处的坚硬岩层非一般意义上的坚硬岩层, 它是指那些在变形中挠度小于其下部岩层, 而不与其下部岩层协调变形的岩层. 假设第 1 层岩层为坚硬岩层, 其上直至第 m 层岩层与之协调变形, 而第 m+ 1 层岩层不与之协调变形, 则第 m + 1 层岩层是第 2 层坚硬岩层. 由于第 1 层至第 m 层岩层协调变形, 则各岩层曲率相同, 各岩层形成组合梁, 由组合梁原理可导出作用在第 1 层硬岩层上的载荷为Q1(x )|m =E 1h 31∑h i m i =1γi/∑E i h 3i mi =1 (1) 式中: q1 ( x ) m 为考虑到第m 层岩层对第1层坚硬岩层形成的载荷; hi , i , Ei 分别为第i 岩层的厚度、容重、弹性模量( i = 1, 2, …, m) .考虑到第m + 1层对第1层坚硬岩层形成的载荷为Q1(x )|m +1=E 1h 31∑h i m +1i =1γi/∑E i h 3i m +1i =1 (2) 由于第 m + 1 层为坚硬岩层, 其挠度小于下部岩层的挠度, 第 m + 1 层以上岩层已不再需要其下部岩层去承担它所承受的载荷, 则必然有Q1(x )|m <Q1(x )|m +1 (3)将式( 1) , ( 2) 代入式( 3) 并化简可得311211i i m imi i m m h E h hE∑∑+=++>γγ(4)式(4)即为判别坚硬岩层位置的公式.具体判别时,从煤层上方第1层岩层开始往上逐层计算imi i m m h hEγ∑=++1211及hE i m ∑+1γ当满足式(4)则不再往上计算,此时从第1层岩层往上,第m+1层岩层为第1层硬岩层.从第1层硬岩层开始,按上述方法确定第2层硬岩层的位置,以此类推,直至确定出最上一层硬岩层(设为第n 层硬岩层).通过对坚硬岩层位置的判别,得到了覆岩中硬岩层位置及其所控软岩层组.。

第2步,计算各硬岩层的破断距.坚硬岩层破断是弹性基础上板的破断问题,但为了简化计算,硬岩层破断距采用两端固支梁模型计算,则第k 层硬岩层破断距Lk 可由下式计算kk kq R h l 2k = (k= 1,2,…,n), (5)式中:hk 为第k 层硬岩层的厚度,m;Rk 为第k 层硬岩层的抗拉强度,MPa;q 为第k 层硬岩层承受的载荷,MPa.由式(1)可知,qk 可按下式确定由于表土层的弹性模量可视为0,设表土层厚度为H,容重为C,则最上一层硬岩层即第n 层硬岩层上的载荷可按下式计算jk m j jk jk m i jk k k k h EhhE q kk,0,,0,30,0,∑∑===γ (k= 1,2,…,n -1) . (6)式(6),(7)中,下标k 代表第k 层硬岩层;下标j 代表第k 层硬岩层所控软岩层组的分层号;m 为第k 层硬岩层所控软岩层的层数;Ek,j,hk,j,Ck,j 分别为第k 层硬岩层所控软岩层组中第j 层岩层弹性模量、分层厚度及容重,单位分别为GPa,m,MN/m3.当j= 0时,即为硬岩层的力学参数.例如E1,0,h1,0,C1,0分别为第1层硬岩层的弹性模量、厚度及容重,E1,1,h1,1,C1,1分别为第1层硬岩层所控软层组中第1层软岩的弹性模量、厚度及容重.第3步,按以下原则对各硬岩层的破断距进行比较,确定关键层位置. 1)第k 层硬岩层若为关键层,其破断距应小于其上部所有硬岩层的破断距,即满足lk<lk+1 (k= 1,2,…,n-1) . (8)2)若第k 层硬岩层破断距lk 大于其上方第k+1层硬岩层破断距,则将第k+1层硬岩层承受的载荷加到第k 层硬岩层上,重新计算第k 层硬岩层的破断距.若重新计算的第k 层硬岩层的破断距小于第k+1层硬岩层的破断距,则取lk=lk+1.说明此时第k 层硬岩层破断受控于第k+1层硬岩层,即第k+1层硬岩层破断前,第k 层硬岩层不破断,一旦第k+1层硬岩层破断,其载荷作用于第k 层硬岩上,导致第k 层硬岩随之破断.这一现象在文献[2]的数值模拟研究中得到了证实,限于篇幅,在此不作详细介绍.3)从最下一层硬岩层开始逐层往上判别lk<lk+1(k=1,2,…,n-1)是否成立,及当lk>lk+1时重新计算第k 层硬岩层破断距.例如,假设由第1,2步确定出覆岩中有3层硬岩层,各自破断距分别为L1,L2,L3,具体计算过程如下==222h q γ27280*=(kPa)=++=333322332232223)()(h E h E h h h E q γγ33340.8*2.63(0.02728*2.630.02762*7.1)72.4*7.140.8*2.63++=按两端固支梁分别计算C2,C3岩层的破断距:==22222q R h l==36333)(2q R h l (36)(q 由下面计算可知)所以C3为关键层。

333*0.02762*7.1q h γ====++=333344334433334)()(h E h E h h h E q γγ =++++=35534433355443333335)()(h E h E h E h h h h E q γγγ =++++++=3663553443336655443333336)()(h E h E h E h E h h h h h E q γγγγ=++++++++=377366355344333776655443333337)()(h E h E h E h E h E h h h h h h E q γγγγγ按两端固支梁分别计算C3,C7岩层的破断距:==36333)(2q R h l==726777)(2q R h l (726)(q 由下面计算可知,且由下面可知C7关键层负载只到C(26)所以C7为关键层。

777h q γ===++=388377887737778)()(h E h E h h h E q γγ =++++=39938837799887737779)()(h E h E h E h h h h E q γγγ =++++++=310103993883771010998877377710)()(h E h E h E h E h h h h h E q γγγγ =++++++++=311113101039938837711111010998877377711)()(h E h E h E h E h E h h h h h h E q γγγγγ同理可求=712)(q ,=713)(q ,=714)(q ,=715)(q ,=716)(q ,=717)(q ,=718)(q ,=719)(q ,=720)(q ,=721)(q ,=722)(q ,=723)(q ,=724)(q ,=725)(q ,=726)(q ,=727)(q 。

相关文档
最新文档