风荷载计算

合集下载

风荷载计算

风荷载计算

一、集热器风荷载1、集热器受力分析集热器最大受风面积为集热面外形面积:S=1.93×2.45×sin45°=3.207m2受力分析如下图:根据《建筑结构荷载规范》GB50009-2001,取酒泉地区重现期50年的风压0.55kN/㎡即550N/㎡计算,则最不利情况是集热器无水且吹北风时(因为有水时,重力增大有利于集热器抗风),此时受风力为F风=500N/㎡×3.207㎡=1603.54N当集热器处于平衡状态时,由以上受力分析列出F风x+G x=N xF风y+N y= G y其中G=118.18kg×9.8N/kg=1158.164NF风x=F风cos45°=1603.54N×0.707=1133.85NF风y=F风sin45°=1603.54N×0.707=1133.85NG x=Gsin45°=1158.164N×0.707=818.82 NG y=Gcos45°=1158.164N×0.707=818.82 N+G x=1133.85N +818.82 N=1952.67N则:N x=F风xN y=G y—F风y=1133.85N—818.82 N=315.03N由上述数据知:a、N y>0,说明在Y方向集热器还是受到钢结构的支撑力,即螺拴还没有受到拉力,故不需要校核螺拴的抗拉强度b 、沿X 方向,螺拴受剪切力为: F =1952.67N /18=108.48N 采用的是Ф8的螺拴,截面积: A =π(2d )2=50.24×10-6㎡ 螺拴受到的剪切力: τ=A F =26-1050.2448.108mN =2.16MPa 性能等级代号为3.6(最低)的螺拴能承受的最大剪应力 安全系数S =2.16MPa90MPa =41.67 可见,集热器受到的风荷载影响极小。

如何计算风荷载

如何计算风荷载

如何计算风荷载风指的是从高压区向低压区流动的空气,它流动的方向大部分时候是水平的。

[1] 强风具有很大的破坏力,因为它们会对建筑物表面施加压力。

这种压力的强度就是风荷载。

风的影响取决于建筑物的大小和形状。

为了设计和建造更加安全、抗风能力更强的建筑物,以及在建筑物顶部安放天线等物体,计算风荷载很有必要。

方法1用通用公式计算风荷载1 了解通用公式。

风荷载的通用公式是 F = A x P x Cd,其中 F是力或风荷载, A是物体的受力面积, P是风压,而 Cd是阻力系数。

[2] 这个公式在估算特定物体的风荷载时非常有用,但无法满足规划新建筑的建筑规范要求。

2 得出受力面积 A。

它是承受风吹的二维面面积。

[3] 为了进行全面分析,你得对建筑物的每个面各做一次计算。

比如,如果建筑物西侧面的面积为20m2,那就把这个值代入公式中的 A,来计算西侧面的风荷载。

计算面积的公式取决于面的形状。

计算平坦壁面的面积时,可以使用公式面积 = 长 x 高。

公式面积 = 直径 x 高度可以算出圆柱面面积的近似值。

使用国际单位计算时,面积 A应该使用平方米(m2)作为单位。

使用英制单位计算时,面积 A应该使用平方英尺(ft2)作为单位。

3 计算风压。

使用英制单位(磅/平方英尺)时,风压P的简单公式为P =0.00256V^{2},其中 V是风速,单位为英里/小时(mph)。

[4] 而使用国际单位(牛/平方米)时,公式会变成P = 0.613V^{2},其中 V的单位是米/秒。

[5]这个公式是基于美国土木工程师协会的规范。

系数0.00256是根据空气密度和重力加速度的典型值计算得出的。

[6]工程师会考虑周围地形和建筑类型等因素,使用更精确的公式。

你可以在ASCE规范7-05中查找公式,或使用下文的UBC公式。

如果你不确定风速是多少,可以查询美国电子工业协会(EIA)标准或其他相关标准,找到你们当地的最高风速。

比如,美国大部分地区都是A级区,最大风速为86.6 mph,但沿海地区可能位于B级区或C级区,前者的最大风速为100 mph,后者为111.8 mph。

风荷载计算方法与步骤

风荷载计算方法与步骤

1风荷载当空气的流动受到建筑物的阻碍时,会在建筑物表面形成压力或吸力,这些压力或吸力即为建筑物所受的风荷载。

1.1单位面积上的风荷载标准值建筑结构所受风荷载的大小与建筑地点的地貌、离地面或海平面高度、风的性质、风速、风向以及高层建筑结构自振特性、体型、平面尺寸、表面状况等因素有关。

垂直作用于建筑物表面单位面积上的风荷载标准值ω(KN/m2)按下式计算:ω风荷载标准值(kN/m2)=风振系数×风荷载体形系数×风压高度变化系数×基本风压1.1.1基本风压按当地空旷平坦地面上10米高度处10分钟平均的风速观测数据,经概率统计得出50年一遇的最大值确定的风速v0(m/s),再考虑相应的空气密度通过计算确定数值大小。

按公式确定数值大小,但不得小于0.3kN/m2,其中的单位为t/m3,单位为kN/m2。

也可以用公式计算基本风压的数值,也不得小于0.3kN/m2。

1.1.2风压高度变化系数风压高度变化系数在同一高度,不同地面粗糙程度也是不一样的。

规范以B类地面粗糙程度作为标准地貌,给出计算公式。

粗糙度类别 A B C D300 350 450 5000.12 0.15 0.22 0.3场地确定之后上式前两项为常数,于是计算时变成下式:1.1.3风荷载体形系数1)单体风压体形系数(1)圆形平面;(2)正多边形及截角三角平面,n为多边形边数;(3)高宽比的矩形、方形、十字形平面;(4)V形、Y形、L形、弧形、槽形、双十字形、井字形、高宽比的十字形、高宽比,长宽比的矩形、鼓形平面;(5)未述事项详见相应规范。

2)群体风压体形系数详见规范规程。

3)局部风压体形系数檐口、雨棚、遮阳板、阳台等水平构件计算局部上浮风荷载时,不宜小于 2.0。

未述事项详见相应规范规程。

1.1.4风振系数对于高度H大于30米且高宽比的房屋,以及自振周期的各种高耸结构都应该考虑脉动风压对结构发生顺向风振的影响。

(对于高度H大于30米、高宽比且可忽略扭转的高层建筑,均可只考虑第一振型的影响。

风荷载计算方法与步骤

风荷载计算方法与步骤

1 风荷载当空气的流动受到建筑物的阻碍时,会在建筑物表面形成压力或吸力,这些压力或吸力即为建筑物所受的风荷载。

1.1 单位面积上的风荷载标准值建筑结构所受风荷载的大小与建筑地点的地貌、离地面或海平面高度、风的性质、风速、风向以及高层建筑结构自振特性、体型、平面尺寸、表面状况等因素有关。

垂直作用于建筑物表面单位面积上的风荷载标准值ωk (KN/m ²)按下式计算:ωk =βz μs μz ω0风荷载标准值(kN/m 2)=风振系数×风荷载体形系数×风压高度变化系数×基本风压1.1.1 基本风压ω0按当地空旷平坦地面上10米高度处10分钟平均的风速观测数据,经概率统计得出50年一遇的最大值确定的风速v 0(m/s),再考虑相应的空气密度通过计算确定数值大小。

按公式 ω0=12ρv 02确定数值大小,但不得小于0.3kN/m 2,其中ρ的单位为t/m ³,ω0单位为kN/m 2。

也可以用公式ω0=11600v 02计算基本风压的数值,也不得小于0.3kN/m2。

1.1.2 风压高度变化系数μZ风压高度变化系数在同一高度,不同地面粗糙程度也是不一样的。

规范以B 类地面粗糙程度作为标准地貌,给出计算公式。

μZX=(H tB 10)2αB (10H tX )2αX (Z 10)2αXμZA =1.248(Z 10)0.24μZB =1.000(Z )0.30μZC =0.544(Z 10)0.44μZD =0.262(Z 10)0.601.1.3 风荷载体形系数μS1)单体风压体形系数(1)圆形平面μS =0.8;(2)正多边形及截角三角平面μS=0.8+√n,n为多边形边数;(3)高宽比HB≤4的矩形、方形、十字形平面μS=1.3;(4)V形、Y形、L形、弧形、槽形、双十字形、井字形、高宽比HB >4的十字形、高宽比HB>4,长宽比LB≤1.5的矩形、鼓形平面μS=1.4;(5)未述事项详见相应规范。

风荷载计算算例

风荷载计算算例

3.6.风荷载计算根据《建筑结构荷载规范》(GB50009-2012)规范,风荷载的计算公式为:wuu(8.1.1-1)kzsz0u——体型系数su——风压高度变化系数zz——风振系数0——基本风压w——风荷载标准值k体型系数u s根据建筑平面形状由《建筑结构荷载规范》表7.3.1确定。

本项目建筑平面为规则的矩形,查表8.3.1项次30,迎风面体型系数0.8(压风指向建筑物内侧),背风面-0.5(吸风指向建筑外侧面),侧风面-0.7(吸风指向建筑外侧面)。

风压高度变化系数u z根据建筑物计算点离地面高度和地面粗糙度类别,按照规范表8.2.1确定。

本工程结构顶端高度为3.0x30+0.6=90.6米,建筑位于北京市郊区房屋较稀疏,由规范8.2.1条地面粗糙度为B类。

由表8.2.1高度90米和100米处的B类地面粗糙度的风压高度变化系数分别为1.93和 2.00。

则90.6米高度处的风压高度变化系数通过线性插值为:u z 90.69010090(2.001.93)1.931.9342对于高度大于30m且高宽比大于1.5的房屋,以及基本自振周期T1大于3.7.s的各种高耸结构,应考虑风压脉动对结构产生顺风向风振的影响。

本工程30层钢结构建筑。

基本周期估算为T1=0.10~0.15n=3.0~4.5s,应考虑脉动风对结构顺风向风振的影响,并由下式计算:2Z12gIB z1R(8.4.3)10式中:g——峰值因子,可取2.5I——10m高度名义湍流强度,对应ABC和D类地面粗糙,可分别取0.12、0.14、1090.7和0.39;R——脉动风荷载的共振分量因子B——脉动风荷载的背景分量因子z脉动风荷载的共振分量因子可按下列公式计算:R2x124/36(1x)11(8.4.4-1)30f1x,x511kw0(8.4.4-2)式中:f——结构第1阶自振频率(Hz)1k——地面粗糙度修正系数,对应A、B、C和D类地面粗糙,可分别取1.28、w1.0、0.54和0.26;1——结构阻尼比,对钢结构可取0.01,对有填充墙的钢结构房屋可取0.02,对钢筋混凝土及砌体结构可取0.05,对其他结构可根据工程经验确定。

导线风荷载计算公式

导线风荷载计算公式

导线风荷载计算公式
1.输电线路选线工程设计技术规定(DL/T5414-2024)中的导线风荷载计算公式:
F=0.5*ρ*V^2*C*A
其中,F为单位长度的导线风荷载,ρ为空气密度,V为风速,C为系数,A为导线横截面积。

空气密度ρ可根据海拔高度和气温进行插值计算。

风速V可以根据气象数据或者工程经验进行选取。

系数C根据导线的形状和布置方式确定,通常取值范围在0.6~0.8之间。

导线横截面积A可以通过导线的规格和参数计算得到。

2.国际电工委员会(IEC)标准中的导线风荷载计算公式:
F=0.5*ρ*V^2*Cd*Af
其中,F为单位长度的导线风荷载,ρ为空气密度,V为风速,Cd为阻力系数,Af为参考面积。

空气密度ρ的计算方式与上述公式相同。

风速V的选取方法与上述公式相同。

阻力系数Cd根据导线的形状和布置方式确定,通常取值范围在
0.6~1.2之间。

参考面积Af可以通过导线横截面积和系数来计算得到。

需要注意的是,以上的导线风荷载计算公式仅适用于水平或接近水平
的导线,若导线存在较大的坡度或垂直度,还需要根据实际情况进行修正。

此外,在实际工程中,导线的风荷载计算通常还需要考虑导线的振动
性能、支柱和绝缘子的强度等因素,以保证输电线路的安全可靠运行。

因此,在进行导线风荷载计算时,需要综合考虑多个因素,并参考相关标准
和规范。

风荷载计算方法与步骤

风荷载计算方法与步骤

风荷载计算⽅法与步骤1风荷载当空⽓的流动受到建筑物的阻碍时,会在建筑物表⾯形成压⼒或吸⼒,这些压⼒或吸⼒即为建筑物所受的风荷载。

1.1单位⾯积上的风荷载标准值建筑结构所受风荷载的⼤⼩与建筑地点的地貌、离地⾯或海平⾯⾼度、风的性质、风速、风向以及⾼层建筑结构⾃振特性、体型、平⾯尺⼨、表⾯状况等因素有关。

垂直作⽤于建筑物表⾯单位⾯积上的风荷载标准值(KN/m2)按下式计算:风荷载标准值(kN/m2)=风振系数×风荷载体形系数×风压⾼度变化系数×基本风压1.1.1基本风压按当地空旷平坦地⾯上10⽶⾼度处10分钟平均的风速观测数据,经概率统计得出50年⼀遇的最⼤值确定的风速v0(m/s),再考虑相应的空⽓密度通过计算确定数值⼤⼩。

按公式确定数值⼤⼩,但不得⼩于0.3kN/m2,其中的单位为t/m3,单位为kN/m2。

也可以⽤公式计算基本风压的数值,也不得⼩于0.3kN/m2。

1.1.2风压⾼度变化系数风压⾼度变化系数在同⼀⾼度,不同地⾯粗糙程度也是不⼀样的。

规范以B类地⾯粗糙程度作为标准地貌,给出计算公式。

粗糙度类别 A B C D30.12 0.15 0.22 0.31.1.3风荷载体形系数1)单体风压体形系数(1)圆形平⾯;(2)正多边形及截⾓三⾓平⾯,n为多边形边数;(3)⾼宽⽐的矩形、⽅形、⼗字形平⾯;(4)V形、Y形、L形、弧形、槽形、双⼗字形、井字形、⾼宽⽐的⼗字形、⾼宽⽐,长宽⽐的矩形、⿎形平⾯;(5)未述事项详见相应规范。

2)群体风压体形系数详见规范规程。

3)局部风压体形系数檐⼝、⾬棚、遮阳板、阳台等⽔平构件计算局部上浮风荷载时,不宜⼩于 2.0。

未述事项详见相应规范规程。

1.1.4风振系数对于⾼度H⼤于30⽶且⾼宽⽐的房屋,以及⾃振周期的各种⾼耸结构都应该考虑脉动风压对结构发⽣顺向风振的影响。

(对于⾼度H⼤于30⽶、⾼宽⽐且可忽略扭转的⾼层建筑,均可只考虑第⼀振型的影响。

风荷载计算

风荷载计算

风荷载计算4.2风荷载当空气的流动受到建筑物的阻碍时,会在建筑物表面形成压力或吸力,这些压力或吸力即为建所受的风荷载。

4.2.1单位面积上的风荷载标准值建筑结构所受风荷载的大小与建筑地点的地貌、离地面或海平面高度、风的性质、风速、风向高层建筑结构自振特性、体型、平面尺寸、表面状况等因素有关。

垂直作用于建筑物表面单位面积上的风荷载标准值按下式计算:式中:1.基本风压值Wo按当地空旷平坦地面上10米高度处10分钟平均的风速观测数据,经概率统计得出50年一遇的值确定的风速V0(m/s)按公式确定。

但不得小于0.3kN/m2。

对于特别重要或对风荷载比较敏感的高层建筑,基本风压采用100年重现期的风压值;对风荷载是否敏主要与高层建筑的自振特性有关,目前还没有实用的标准。

一般当房屋高度大于60米时,采用100年一风压。

《建筑结构荷载规范》(GB50009-2001)给出全国各个地方的设计基本风压。

2.风压高度变化系数μz《荷载规范》把地面粗糙度分为A、B、C、D四类。

A类:指近海海面、海岸、湖岸、海岛及沙漠地区;B类:指田野、乡村、丛林、丘陵及房屋比较稀疏的城镇及城市郊区;C类:指有密集建筑群的城市市区;D类:指有密集建筑群且房屋较高的城市市区;风荷载高度变化系数μz高度(m)地面粗糙类别A B C D5 1.17 1.00 0.74 0.6210 1.38 1.00 0.74 0.6215 1.52 1.14 0.74 0.62 计算公式20 1.63 1.25 0.84 0.62 A类地区=1.379(z/10)0.2430 1.80 1.42 1.00 0.62 B类地区= (z/10)0.3240 1.92 1.56 1.13 0.73 C类地区=0.616(z/10)0.4450 2.03 1.67 1.25 0.84 D类地区=0.318(z/10)0.660 2.12 1.77 1.35 0.9370 2.20 1.86 1.45 1.0280 2.27 1.95 1.54 1.1190 2.34 2.02 1.62 1.19100 2.40 2.09 1.70 1.27150 2.64 2.38 2.03 1.61200 2.83 2.61 2.30 1.92250 2.99 2.80 2.54 2.19300 3.12 2.97 2.75 2.45350 3.12 3.12 2.94 2.68400 3.12 3.12 3.12 2.91≥450 3.12 3.12 3.12 3.12位于山峰和山坡地的高层建筑,其风压高度系数还要进行修正,可查阅《荷载规范》。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

风荷载计算(总7页) -CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除4.2风荷载当空气的流动受到建筑物的阻碍时,会在建筑物表面形成压力或吸力,这些压力或吸力即为建筑物所受的风荷载。

4.2.1单位面积上的风荷载标准值?建筑结构所受风荷载的大小与建筑地点的地貌、离地面或海平面高度、风的性质、风速、风向以及高层建结构自振特性、体型、平面尺寸、表面状况等因素有关。

?垂直作用于建筑物表面单位面积上的风荷载标准值按下式计算:式中:1.基本风压值Wo?按当地空旷平坦地面上10米高度处10分钟平均的风速观测数据,经概率统计得出50年一遇的最大值确定的风速V0(m/s)按公式确定。

但不得小于0.3kN/m2。

对于特别重要或对风荷载比较敏感的高层建筑,基本风压采用100年重现期的风压值;对风荷载是否敏感,主要与高层建筑的自振特性有关,目前还没有实用的标准。

一般当房屋高度大于60米时,采用100年一遇风压。

《建筑结构荷载规范》(GB50009-2001)给出全国各个地方的设计基本风压。

2.风压高度变化系数μz《荷载规范》把地面粗糙度分为A、B、C、D四类。

A类:指近海海面、海岸、湖岸、海岛及沙漠地区;B类:指田野、乡村、丛林、丘陵及房屋比较稀疏的城镇及城市郊区;C类:指有密集建筑群的城市市区;D类:指有密集建筑群且房屋较高的城市市区;风荷载高度变化系数μz计算公式A类地区=1.379(z/10)0.24B类地区= (z/10)0.32C类地区=0.616(z/10)0.44D类地区=0.318(z/10)0.6位于山峰和山坡地的高层建筑,其风压高度系数还要进行修正,可查阅《荷载规范》。

3.风载体型系数μs风荷载体型系数是指建筑物表面实际风压与基本风压的比值,它表示不同体型建筑物表面风力的大小。

一般取决于建筑建筑物的平面形状等。

计算主体结构的风荷载效应时风荷载体型系数可按书中P57表4.2-2确定各个表面的风载体型系数或由风试验确定。

几种常用结构形式的风载体型系数如下图注:“+”代表压力;“-”代表拉力。

4.风振系数βz风振系数βz反映了风荷载的动力作用,它取决于建筑物的高宽比、基本自振周期及地面粗糙度、基本风压。

《荷载规范》规定对于基本自振周期大于0.25s的工程结构,如房屋、屋盖及各种高耸结构,以及对于高度大于30m且高宽比大于1.5的高柔房屋,均应考虑风压脉动对结构发生顺风向风振的影响。

其中风振系数βz可按下式计算:(4.2-2)式中:ψz——基本振型z高度处的振型系数,当高度和质量沿高度分布均匀时,可以近似用z/H代替振系数;ζ——脉动增大系数,查表时需要参数ω0T2,其中ω0为基本风压值,T为结构基本周期,可用近似法计算;υ——脉动影响系数,μz——风压高度变化系数,脉动增大系数ξω0T1(kNs/m) 0.01 0.02 0.04 0.06 0.08 0.10 0.20 0.40 0.60钢结构 1.47 1.57 1.69 1.77 1.83 1.88 2.04 2.24 2.36有填充墙的房屋钢结构1.26 1.32 1.39 1.44 1.47 1.50 1.61 1.73 1.81混凝土及砌体结构 1.11 1.14 1.17 1.19 1.21 1.23 1.28 1.34 1.38ω0T1(kNs/m) 0.80 1.00 2.00 4.00 6.00 8.00 10.00 20.00 30.00钢结构 2.46 2.53 2.80 3.09 3.28 3.42 3.54 3.91 4.14有填充墙的房屋钢结构 1.88 1.93 2.10 2.30 2.43 2.52 2.60 2.85 3.01混凝土及砌体结构 1.42 1.44 1.54 1.65 1.72 1.7 1.82 1.96 2.06注:计算ω0T1时,对地面粗糙度B类地区可直接代入基本风压,而对A类、C类和D类地区应按当地的基风压分别乘以1.38、O.62和0.32后代入。

根据我国的实测数据进行计算,再结合我国的工程设计经验加以修正而确定的c值列于表H/B 粗糙度类别总高度H(m)<=30 50 100 150 200 250 300 350<=0.5 A 0.44 0.42 0.33 0.27 0.24 0.21 0.19 0.17B 0.42 0.41 0.33 0.28 0.25 0.22 0.20 0.18C 0.40 0.40 0.34 0.29 0.27 0.23 0.22 0.20D 0.36 0.37 0.34 0.30 0.27 0.25 0.24 0.221.0 A 0.48 0.47 0.41 0.35 0.31 0.27 0.26 0.24B 0.46 0.46 0.42 0.36 0.36 0.29 0.27 0.26C 0.43 0.44 0.42 0.37 0.34 0.31 0.29 0.28D 0.39 0.42 0.42 0.38 0.36 0.33 0.32 0.312.0 A 0.50 0.51 0.46 0.42 0.38 0.35 0.33 0.31B 0.48 0.50 0.47 0.42 0.40 0.36 0.35 0.33C 0.45 0.49 0.48 0.44 0.42 0.38 0.38 0.36D 0.41 0.46 0.48 0.46 0.46 0.44 0.42 0.393.0 A 0.53 0.51 0.49 0.42 0.41 0.38 0.38 0.36B 0.51 0.50 0.49 0.46 0.43 0.40 0.40 0.38C 0.48 0.49 0.49 0.48 0.46 0.43 0.43 0.41D 0.43 0.46 0.49 0.49 0.48 0.47 0.46 0.455.0 A 0.52 0.53 0.51 0.49 0.46 0.44 0.42 0.39B 0.50 0.53 0.52 0.50 0.48 0.45 0.44 0.42C 0.47 0.50 0.52 0.52 0.50 0.48 0.47 0.45D 0.43 0.48 0.52 0.53 0.53 0.52 0.51 0.508.0 A 0.53 0.54 0.53 0.51 0.48 0.46 0.43 0.42B 0.51 0.53 0.54 0.52 0.50 0.49 0.46 0.44C 0.48 0.51 0.54 0.53 0.52 0.52 0.50 0.48D 0.43 0.48 0.54 0.53 0.55 0.55 0.54 0.534.2.2总体风荷载1.总体风荷载?设计时,使用总风荷载计算风荷载作用下结构的内力及位移。

总风荷载为建筑物各个表面承受风力的合力是沿建筑物高度变化的线荷载。

通常,按x、y两个互相垂直的方向分别计算总风荷载。

按下式计算z高度的总风荷载标准值:(4.2-3)式中:n——建筑外围表面数;Bi——第i个表面的宽度;——第i个表面的风载体型系数;——第i个表面法线与总风荷载作用方向的夹角如图4.2-5图4.2-5各表面风力的合力作用点,即为总体风荷载的作用点。

设计时,将沿高度分布的总体风荷载的线荷载换算成集中作用在各楼层位置的集中荷载,再计算结构的内力及位移。

2.局部风荷载风力作用在建筑物表面,压力分布很不均匀(如图4.2-2和图4.2-3),在角隅、檐口、边棱处和在附属结的部位(如阳台、雨蓬等外挑构件),局部风压大大超过平均风压.根据风洞试验和一些实测结果可知,迎风面的中部和一些窝风部位,由于气流不易向四周扩散,出现较大风压,因此应计算局部风荷载。

当计算维护结构时,单位面积上的风荷载标准值,按下式计算:Wk=βgz·μs·μz·W0(4.2-4)式中:βgz---高度Z处的阵风系数;见P58表4.5?验算围护构件及其连接的强度时,可按下列规定采用局部风压体型系数:1)外表面(1)正压区按正常情况采用。

(2)负压区。

对墙面,取μs=-1.0;对墙角边μs=-l.8;对屋面局部部位(周边和屋面坡度大于100的屋脊部位),取μs=-2.2;对檐口、雨篷、遮阳板等突出构件的浮风,取μs=-2.0,对墙角边和屋面局部部位的作用宽度为屋宽度的0.1或房屋平均高度的0.4,取其小者,但不小于1.5m2)内表面?对封闭式建筑物,按外表面风压的正负情况取μs=-0.2或0.2; 计算围护结构风荷载时的阵风系数应按P 表4.6采用。

例题---风荷载【例4.2-1】某8层现浇钢筋混凝土-剪力墙结构,为一般的高层办公建筑,其平面及剖面如图4.2-6和4.3-7所示,各层楼面荷载及质量、侧移刚度沿刚度变化比较均匀。

当地基本风压为0.7kN/m2,地面粗糙度C类。

求在图4.2-6所示横向风作用下,建筑物横向各楼层的风力标准值,在计算时不考虑周围建筑物的影响,结构基本自振周期可采用经验公式计算。

4.2-7剖面图【解】该房屋高度大于30m且高宽比大于1.5(高32.1/13.5=2.38),因此应考虑风压脉动对结构发生顺风向风振的影响。

?1.求房屋横向基本自振周期,n=8根据经验高层建筑框架剪力墙结构基本周期为:取,因此应计算房屋的风振系数。

2.各楼层位置处的风振系数,按公式(4.2-2)求脉动增大系数ζ时。

应先求出由于地面粗糙度为C类,应乘以0.62,得0.1085后查表4.2-3,得ζ=1.235。

?求脉动影响系数υ时,考虑到迎风面的宽度较大,H/B=32.1/47.752=0.678,查表4.2-4得υ=0.411求振型系数时,根据本例的条件可近似用z/H代替振型系数。

求各楼层位置处的风压高度变化系数,可根据表4.2-1中地面粗糙度为C类查得其值。

据此各楼层位置处值计算结果见表4.2-6。

各楼层位置出的值计算结果?表4.2-6楼层号楼面距地面高度Z(m)相对高度Z/Hζ υ1 6 0.187 1.235 0.411 0.187 0.74 1.1282 10.5 0.327 1.235 0.411 0.327 0.74 1.2243 14.1 0.439 1.235 0.411 0.439 0.74 1.3234 17.7 0.551 1.235 0.411 0.551 0.794 1.3525 21.3 0.664 1.235 0.411 0.664 0.861 1.3916 24.9 0.776 1.235 0.411 0.776 0.918 1.4297 28.5 0.888 1.235 0.411 0.888 0.976 1.4628 32.1 1.000 1.235 0.411 1.000 1.027 1.4943.各楼层位置处风力标准值本例题的风荷载体型系数是封闭式房屋情况。

相关文档
最新文档