风荷载的计算

合集下载

如何计算风荷载

如何计算风荷载

如何计算风荷载风指的是从高压区向低压区流动的空气,它流动的方向大部分时候是水平的。

[1] 强风具有很大的破坏力,因为它们会对建筑物表面施加压力。

这种压力的强度就是风荷载。

风的影响取决于建筑物的大小和形状。

为了设计和建造更加安全、抗风能力更强的建筑物,以及在建筑物顶部安放天线等物体,计算风荷载很有必要。

方法1用通用公式计算风荷载1 了解通用公式。

风荷载的通用公式是 F = A x P x Cd,其中 F是力或风荷载, A是物体的受力面积, P是风压,而 Cd是阻力系数。

[2] 这个公式在估算特定物体的风荷载时非常有用,但无法满足规划新建筑的建筑规范要求。

2 得出受力面积 A。

它是承受风吹的二维面面积。

[3] 为了进行全面分析,你得对建筑物的每个面各做一次计算。

比如,如果建筑物西侧面的面积为20m2,那就把这个值代入公式中的 A,来计算西侧面的风荷载。

计算面积的公式取决于面的形状。

计算平坦壁面的面积时,可以使用公式面积 = 长 x 高。

公式面积 = 直径 x 高度可以算出圆柱面面积的近似值。

使用国际单位计算时,面积 A应该使用平方米(m2)作为单位。

使用英制单位计算时,面积 A应该使用平方英尺(ft2)作为单位。

3 计算风压。

使用英制单位(磅/平方英尺)时,风压P的简单公式为P =0.00256V^{2},其中 V是风速,单位为英里/小时(mph)。

[4] 而使用国际单位(牛/平方米)时,公式会变成P = 0.613V^{2},其中 V的单位是米/秒。

[5]这个公式是基于美国土木工程师协会的规范。

系数0.00256是根据空气密度和重力加速度的典型值计算得出的。

[6]工程师会考虑周围地形和建筑类型等因素,使用更精确的公式。

你可以在ASCE规范7-05中查找公式,或使用下文的UBC公式。

如果你不确定风速是多少,可以查询美国电子工业协会(EIA)标准或其他相关标准,找到你们当地的最高风速。

比如,美国大部分地区都是A级区,最大风速为86.6 mph,但沿海地区可能位于B级区或C级区,前者的最大风速为100 mph,后者为111.8 mph。

风荷载计算方法与步骤

风荷载计算方法与步骤

1风荷载当空气的流动受到建筑物的阻碍时,会在建筑物表面形成压力或吸力,这些压力或吸力即为建筑物所受的风荷载。

1.1单位面积上的风荷载标准值建筑结构所受风荷载的大小与建筑地点的地貌、离地面或海平面高度、风的性质、风速、风向以及高层建筑结构自振特性、体型、平面尺寸、表面状况等因素有关。

垂直作用于建筑物表面单位面积上的风荷载标准值ω(KN/m2)按下式计算:ω风荷载标准值(kN/m2)=风振系数×风荷载体形系数×风压高度变化系数×基本风压1.1.1基本风压按当地空旷平坦地面上10米高度处10分钟平均的风速观测数据,经概率统计得出50年一遇的最大值确定的风速v0(m/s),再考虑相应的空气密度通过计算确定数值大小。

按公式确定数值大小,但不得小于0.3kN/m2,其中的单位为t/m3,单位为kN/m2。

也可以用公式计算基本风压的数值,也不得小于0.3kN/m2。

1.1.2风压高度变化系数风压高度变化系数在同一高度,不同地面粗糙程度也是不一样的。

规范以B类地面粗糙程度作为标准地貌,给出计算公式。

粗糙度类别 A B C D300 350 450 5000.12 0.15 0.22 0.3场地确定之后上式前两项为常数,于是计算时变成下式:1.1.3风荷载体形系数1)单体风压体形系数(1)圆形平面;(2)正多边形及截角三角平面,n为多边形边数;(3)高宽比的矩形、方形、十字形平面;(4)V形、Y形、L形、弧形、槽形、双十字形、井字形、高宽比的十字形、高宽比,长宽比的矩形、鼓形平面;(5)未述事项详见相应规范。

2)群体风压体形系数详见规范规程。

3)局部风压体形系数檐口、雨棚、遮阳板、阳台等水平构件计算局部上浮风荷载时,不宜小于 2.0。

未述事项详见相应规范规程。

1.1.4风振系数对于高度H大于30米且高宽比的房屋,以及自振周期的各种高耸结构都应该考虑脉动风压对结构发生顺向风振的影响。

(对于高度H大于30米、高宽比且可忽略扭转的高层建筑,均可只考虑第一振型的影响。

风荷载计算——精选推荐

风荷载计算——精选推荐

风荷载计算风荷载计算4.2风荷载当空⽓的流动受到建筑物的阻碍时,会在建筑物表⾯形成压⼒或吸⼒,这些压⼒或吸⼒即为建所受的风荷载。

4.2.1单位⾯积上的风荷载标准值建筑结构所受风荷载的⼤⼩与建筑地点的地貌、离地⾯或海平⾯⾼度、风的性质、风速、风向⾼层建筑结构⾃振特性、体型、平⾯尺⼨、表⾯状况等因素有关。

垂直作⽤于建筑物表⾯单位⾯积上的风荷载标准值按下式计算:式中:1.基本风压值Wo按当地空旷平坦地⾯上10⽶⾼度处10分钟平均的风速观测数据,经概率统计得出50年⼀遇的值确定的风速V0(m/s)按公式确定。

但不得⼩于0.3kN/m2。

对于特别重要或对风荷载⽐较敏感的⾼层建筑,基本风压采⽤100年重现期的风压值;对风荷载是否敏主要与⾼层建筑的⾃振特性有关,⽬前还没有实⽤的标准。

⼀般当房屋⾼度⼤于60⽶时,采⽤100年⼀风压。

《建筑结构荷载规范》(GB50009-2001)给出全国各个地⽅的设计基本风压。

2.风压⾼度变化系数µz《荷载规范》把地⾯粗糙度分为A、B、C、D四类。

A类:指近海海⾯、海岸、湖岸、海岛及沙漠地区;B类:指⽥野、乡村、丛林、丘陵及房屋⽐较稀疏的城镇及城市郊区;C类:指有密集建筑群的城市市区;D类:指有密集建筑群且房屋较⾼的城市市区;风荷载⾼度变化系数µz⾼度(m)地⾯粗糙类别A B C D5 1.17 1.00 0.74 0.6210 1.38 1.00 0.74 0.6215 1.52 1.14 0.74 0.62 计算公式20 1.63 1.25 0.84 0.62 A类地区=1.379(z/10)0.2430 1.80 1.42 1.00 0.62 B类地区= (z/10)0.3240 1.92 1.56 1.13 0.73 C类地区=0.616(z/10)0.4450 2.03 1.67 1.25 0.84 D类地区=0.318(z/10)0.660 2.12 1.77 1.35 0.9370 2.20 1.86 1.45 1.0280 2.27 1.95 1.54 1.1190 2.34 2.02 1.62 1.19100 2.40 2.09 1.70 1.27150 2.64 2.38 2.03 1.61200 2.83 2.61 2.30 1.92250 2.99 2.80 2.54 2.19300 3.12 2.97 2.75 2.45350 3.12 3.12 2.94 2.68400 3.12 3.12 3.12 2.91≥450 3.12 3.12 3.12 3.12位于⼭峰和⼭坡地的⾼层建筑,其风压⾼度系数还要进⾏修正,可查阅《荷载规范》。

风荷载计算方法与步骤

风荷载计算方法与步骤

欢迎共阅1 风荷载当空气的流动受到建筑物的阻碍时,会在建筑物表面形成压力或吸力,这些压力或吸力即为建筑物所受的风荷载。

1.1 单位面积上的风荷载标准值建筑结构所受风荷载的大小与建筑地点的地貌、离地面或海平面高度、风的性质、风速、风向以及高层建筑结构自振特性、体型、平面尺寸、表面状况等因素有关。

垂直作用于建筑物表面单位面积上的风荷载标准值(KN/m2)按下式计算:1.1.1基本风压按当地空旷平坦地面上50年一遇按公式 其中的单位为,kN/m 2。

也可以用公式1.1.2 风压高度变化系数风压高度变化系数在同一高度,不同地面粗糙程度也是不一样的。

规范以粗糙度类别场地确定之后上式前两项为常数,于是计算时变成下式:1.1.3风荷载体形系数1)单体风压体形系数(1)圆形平面;(2)正多边形及截角三角平面,n为多边形边数;(3)高宽比的矩形、方形、十字形平面;(4)V形、Y形、L形、弧形、槽形、双十字形、井字形、高宽比的十字形、高宽比,长宽比的矩形、鼓形平面(5)未述事项详见相应规范。

23檐口、雨棚、遮阳板、阳台等水平构件计算局部上浮风荷载时,不宜小于1.1.4米且高宽比的房屋,以及自振周期虑脉动风压对结构发生顺向风振的影响。

且可忽略扭转的结构在高度处的风振系数○1g为○2R为脉动风荷载的共振分量因子,计算方法如下:为结构阻尼比,对钢筋混凝土及砌体结构可取;为地面粗糙修正系数,取值如下:为结构第一阶自振频率(Hz);高层建筑的基本自振周期可以由结构动力学计算确定,对于较规则的高层建筑也可采用),B为房屋宽度(m)。

○3对于体型和质量沿高度均匀分布的高层建筑,、为系数,按下表取值:为结构第一阶振型系数,可由结构动力学确定,对于迎风面宽度较大的高层建筑,当剪力墙和框架均其主要作用时,振型系数查下表,其中H为结构总高度,结构总高度小于等于梯度风高度。

为脉动风荷载水平、竖直方向相关系数,分别按下式计算:B。

风荷载计算方法与步骤

风荷载计算方法与步骤

1 风荷载当空气的流动受到建筑物的阻碍时,会在建筑物表面形成压力或吸力,这些压力或吸力即为建筑物所受的风荷载。

1.1 单位面积上的风荷载标准值建筑结构所受风荷载的大小与建筑地点的地貌、离地面或海平面高度、风的性质、风速、风向以及高层建筑结构自振特性、体型、平面尺寸、表面状况等因素有关。

垂直作用于建筑物表面单位面积上的风荷载标准值ωk (KN/m ²)按下式计算:ωk =βz μs μz ω0风荷载标准值(kN/m 2)=风振系数×风荷载体形系数×风压高度变化系数×基本风压1.1.1 基本风压ω0按当地空旷平坦地面上10米高度处10分钟平均的风速观测数据,经概率统计得出50年一遇的最大值确定的风速v 0(m/s),再考虑相应的空气密度通过计算确定数值大小。

按公式 ω0=12ρv 02确定数值大小,但不得小于0.3kN/m 2,其中ρ的单位为t/m ³,ω0单位为kN/m 2。

也可以用公式ω0=11600v 02计算基本风压的数值,也不得小于0.3kN/m2。

1.1.2 风压高度变化系数μZ风压高度变化系数在同一高度,不同地面粗糙程度也是不一样的。

规范以B 类地面粗糙程度作为标准地貌,给出计算公式。

μZX=(H tB 10)2αB (10H tX )2αX (Z 10)2αXμZA =1.248(Z 10)0.24μZB =1.000(Z )0.30μZC =0.544(Z 10)0.44μZD =0.262(Z 10)0.601.1.3 风荷载体形系数μS1)单体风压体形系数(1)圆形平面μS =0.8;(2)正多边形及截角三角平面μS=0.8+√n,n为多边形边数;(3)高宽比HB≤4的矩形、方形、十字形平面μS=1.3;(4)V形、Y形、L形、弧形、槽形、双十字形、井字形、高宽比HB >4的十字形、高宽比HB>4,长宽比LB≤1.5的矩形、鼓形平面μS=1.4;(5)未述事项详见相应规范。

风荷载计算算例

风荷载计算算例

3.6.风荷载计算根据《建筑结构荷载规范》(GB50009-2012)规范,风荷载的计算公式为:wuu(8.1.1-1)kzsz0u——体型系数su——风压高度变化系数zz——风振系数0——基本风压w——风荷载标准值k体型系数u s根据建筑平面形状由《建筑结构荷载规范》表7.3.1确定。

本项目建筑平面为规则的矩形,查表8.3.1项次30,迎风面体型系数0.8(压风指向建筑物内侧),背风面-0.5(吸风指向建筑外侧面),侧风面-0.7(吸风指向建筑外侧面)。

风压高度变化系数u z根据建筑物计算点离地面高度和地面粗糙度类别,按照规范表8.2.1确定。

本工程结构顶端高度为3.0x30+0.6=90.6米,建筑位于北京市郊区房屋较稀疏,由规范8.2.1条地面粗糙度为B类。

由表8.2.1高度90米和100米处的B类地面粗糙度的风压高度变化系数分别为1.93和 2.00。

则90.6米高度处的风压高度变化系数通过线性插值为:u z 90.69010090(2.001.93)1.931.9342对于高度大于30m且高宽比大于1.5的房屋,以及基本自振周期T1大于3.7.s的各种高耸结构,应考虑风压脉动对结构产生顺风向风振的影响。

本工程30层钢结构建筑。

基本周期估算为T1=0.10~0.15n=3.0~4.5s,应考虑脉动风对结构顺风向风振的影响,并由下式计算:2Z12gIB z1R(8.4.3)10式中:g——峰值因子,可取2.5I——10m高度名义湍流强度,对应ABC和D类地面粗糙,可分别取0.12、0.14、1090.7和0.39;R——脉动风荷载的共振分量因子B——脉动风荷载的背景分量因子z脉动风荷载的共振分量因子可按下列公式计算:R2x124/36(1x)11(8.4.4-1)30f1x,x511kw0(8.4.4-2)式中:f——结构第1阶自振频率(Hz)1k——地面粗糙度修正系数,对应A、B、C和D类地面粗糙,可分别取1.28、w1.0、0.54和0.26;1——结构阻尼比,对钢结构可取0.01,对有填充墙的钢结构房屋可取0.02,对钢筋混凝土及砌体结构可取0.05,对其他结构可根据工程经验确定。

风荷载计算方法与步骤

风荷载计算方法与步骤

风荷载计算⽅法与步骤1风荷载当空⽓的流动受到建筑物的阻碍时,会在建筑物表⾯形成压⼒或吸⼒,这些压⼒或吸⼒即为建筑物所受的风荷载。

1.1单位⾯积上的风荷载标准值建筑结构所受风荷载的⼤⼩与建筑地点的地貌、离地⾯或海平⾯⾼度、风的性质、风速、风向以及⾼层建筑结构⾃振特性、体型、平⾯尺⼨、表⾯状况等因素有关。

垂直作⽤于建筑物表⾯单位⾯积上的风荷载标准值(KN/m2)按下式计算:风荷载标准值(kN/m2)=风振系数×风荷载体形系数×风压⾼度变化系数×基本风压1.1.1基本风压按当地空旷平坦地⾯上10⽶⾼度处10分钟平均的风速观测数据,经概率统计得出50年⼀遇的最⼤值确定的风速v0(m/s),再考虑相应的空⽓密度通过计算确定数值⼤⼩。

按公式确定数值⼤⼩,但不得⼩于0.3kN/m2,其中的单位为t/m3,单位为kN/m2。

也可以⽤公式计算基本风压的数值,也不得⼩于0.3kN/m2。

1.1.2风压⾼度变化系数风压⾼度变化系数在同⼀⾼度,不同地⾯粗糙程度也是不⼀样的。

规范以B类地⾯粗糙程度作为标准地貌,给出计算公式。

粗糙度类别 A B C D30.12 0.15 0.22 0.31.1.3风荷载体形系数1)单体风压体形系数(1)圆形平⾯;(2)正多边形及截⾓三⾓平⾯,n为多边形边数;(3)⾼宽⽐的矩形、⽅形、⼗字形平⾯;(4)V形、Y形、L形、弧形、槽形、双⼗字形、井字形、⾼宽⽐的⼗字形、⾼宽⽐,长宽⽐的矩形、⿎形平⾯;(5)未述事项详见相应规范。

2)群体风压体形系数详见规范规程。

3)局部风压体形系数檐⼝、⾬棚、遮阳板、阳台等⽔平构件计算局部上浮风荷载时,不宜⼩于 2.0。

未述事项详见相应规范规程。

1.1.4风振系数对于⾼度H⼤于30⽶且⾼宽⽐的房屋,以及⾃振周期的各种⾼耸结构都应该考虑脉动风压对结构发⽣顺向风振的影响。

(对于⾼度H⼤于30⽶、⾼宽⽐且可忽略扭转的⾼层建筑,均可只考虑第⼀振型的影响。

风荷载计算

风荷载计算

风荷载计算4.2风荷载当空气的流动受到建筑物的阻碍时,会在建筑物表面形成压力或吸力,这些压力或吸力即为建所受的风荷载。

4.2.1单位面积上的风荷载标准值建筑结构所受风荷载的大小与建筑地点的地貌、离地面或海平面高度、风的性质、风速、风向高层建筑结构自振特性、体型、平面尺寸、表面状况等因素有关。

垂直作用于建筑物表面单位面积上的风荷载标准值按下式计算:式中:1.基本风压值Wo按当地空旷平坦地面上10米高度处10分钟平均的风速观测数据,经概率统计得出50年一遇的值确定的风速V0(m/s)按公式确定。

但不得小于0.3kN/m2。

对于特别重要或对风荷载比较敏感的高层建筑,基本风压采用100年重现期的风压值;对风荷载是否敏主要与高层建筑的自振特性有关,目前还没有实用的标准。

一般当房屋高度大于60米时,采用100年一风压。

《建筑结构荷载规范》(GB50009-2001)给出全国各个地方的设计基本风压。

2.风压高度变化系数μz《荷载规范》把地面粗糙度分为A、B、C、D四类。

A类:指近海海面、海岸、湖岸、海岛及沙漠地区;B类:指田野、乡村、丛林、丘陵及房屋比较稀疏的城镇及城市郊区;C类:指有密集建筑群的城市市区;D类:指有密集建筑群且房屋较高的城市市区;风荷载高度变化系数μz高度(m)地面粗糙类别A B C D5 1.17 1.00 0.74 0.6210 1.38 1.00 0.74 0.6215 1.52 1.14 0.74 0.62 计算公式20 1.63 1.25 0.84 0.62 A类地区=1.379(z/10)0.2430 1.80 1.42 1.00 0.62 B类地区= (z/10)0.3240 1.92 1.56 1.13 0.73 C类地区=0.616(z/10)0.4450 2.03 1.67 1.25 0.84 D类地区=0.318(z/10)0.660 2.12 1.77 1.35 0.9370 2.20 1.86 1.45 1.0280 2.27 1.95 1.54 1.1190 2.34 2.02 1.62 1.19100 2.40 2.09 1.70 1.27150 2.64 2.38 2.03 1.61200 2.83 2.61 2.30 1.92250 2.99 2.80 2.54 2.19300 3.12 2.97 2.75 2.45350 3.12 3.12 2.94 2.68400 3.12 3.12 3.12 2.91≥450 3.12 3.12 3.12 3.12位于山峰和山坡地的高层建筑,其风压高度系数还要进行修正,可查阅《荷载规范》。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档