塔架风荷载计算
塔架风载荷的近似计算

作 者 简 介 : 郭 庆 军 (1982~), 男 , 黑 龙 江 大 庆 人 , 硕 士 , 工 程 师 , 从 事 风 力 发 电 方 面 的 技 术 研 究 工 作 。
11s 处 阵 风 :36.402kN
(瞬时风速 24.4m/s)
13s 处 阵 风 :33.202kN
(瞬时风速 23.5)
15s 处 阵 风 :70.267 kN
(瞬时风速 32.4m/s)
部分 Matlab 程序如下:
load d:\ys.txt;thita =0 ×
3.1415926/180;apha =0.2;a =
4 结束语
本文所提出的塔架风载荷计算方法通过对海装风电设
备有限公司某型号塔架进行计算, 其结果同 Bladed 软件的 塔架风载荷仿真计算结果相比较虽然存在着一定的误差,但 在工程中是可以接受的,因此本文所提出的塔架计算方法用 作风力发电机组塔架风载荷的近似计算是切实可行的。
参考文献 1 中 华 人 民 共 和 国 国 家 标 准.风 力 发 电 机 组 安 全 要 求 (GB 18451.1—
2009.NO.4. 5
ISSN1672-9064 CN35-1272/TK
研究与探讨
风压/(kN/m2)。
在稳态风和极端工作阵风情况下, 风振系数 β2 取 1,体
形系数 μs 取 0.6。
乙 00 00 μ·z w0=
H1 02
ρ
v0
h h0
α
2dh
(3)
式中:v0—轮毂高度处的风速;ρ—空气密度, 没有给 出 具 体 的空气密度时取标准 值 1.225 kg/m3;h—塔 架 总 高 度 ;h0—轮 毂高度。
塔式建筑的风荷载分析与结构设计

塔式建筑的风荷载分析与结构设计引言:塔式建筑作为一种独特的建筑形式,不仅具有美观的外观,还具备良好的结构稳定性。
然而,由于其较高的高度和突出的外形,塔式建筑在面对风荷载时会面临一系列的挑战。
因此,本文将探讨塔式建筑的风荷载分析与结构设计的相关问题,并提出一些解决方案。
一、风荷载分析1.1 风荷载的产生风荷载是由于大气运动而产生的一种力量,对于塔式建筑而言,主要由风速和建筑物的形状共同决定。
在风速较高的情况下,风荷载会对塔式建筑产生较大的压力,因此需要进行详细的风荷载分析。
1.2 风荷载的计算方法风荷载的计算通常采用工程力学的方法,主要包括静力法和动力法。
静力法适用于较小的建筑物,而动力法则适用于较高的塔式建筑。
动力法需要考虑建筑物的共振频率和风速的频谱特性,以确定风荷载的大小。
二、塔式建筑的结构设计2.1 结构材料的选择塔式建筑的结构设计需要考虑到其高度和稳定性,因此结构材料的选择至关重要。
常见的结构材料包括钢材和混凝土。
钢材具有较高的抗拉强度和抗压强度,适用于高层塔式建筑的主要承重结构。
而混凝土则适用于塔式建筑的基础和柱子等部分。
2.2 结构形式的设计塔式建筑的结构形式多种多样,常见的包括框架结构、筒状结构和薄壳结构等。
框架结构适用于高层塔式建筑,具有较高的刚度和稳定性;筒状结构适用于中等高度的塔式建筑,具有较好的抗风性能;薄壳结构适用于低矮的塔式建筑,具有较好的造型效果。
2.3 结构的加强与稳定由于塔式建筑的高度较大,其结构在面对风荷载时需要进行加强和稳定。
常见的加强措施包括设置加强筋、增加结构连接件和采用剪力墙等。
同时,还可以通过调整建筑物的形状和减小其突出部分的面积来提高其抗风性能。
三、案例分析以中国的CCTV总部大楼为例,该建筑物采用了特殊的结构形式,即倒悬结构。
在风荷载分析与结构设计中,设计师采用了动力法进行风荷载计算,并通过增加结构连接件和加强筋等措施来提高建筑物的稳定性。
结论:塔式建筑的风荷载分析与结构设计是确保其安全性和稳定性的重要环节。
输电线路塔身风荷载计算方法

输电线路塔身风荷载计算方法嘿,咱今儿个就来说说输电线路塔身风荷载计算方法这事儿!你可别小瞧了这风荷载,它就像个调皮的小精灵,要是不把它弄明白,那输电线路可就有麻烦啦!想象一下,那输电线路的塔身就像是个勇敢的卫士,屹立在天地之间。
而风呢,就像是一群捣蛋鬼,时不时地就来捣乱。
这时候,我们就得想办法算出风荷载到底有多大的威力,才能让塔身这个卫士做好准备呀!风荷载的计算啊,其实就像是解一道谜题。
我们得考虑好多因素呢,比如风速啦,风向啦,还有塔身的形状和尺寸等等。
这就好比是给一个人搭配衣服,得考虑身材、风格、颜色啥的,一个都不能马虎。
咱先来说说风速。
这风速可太重要啦,就像一个人的跑步速度一样。
风跑得越快,对塔身的冲击力就越大。
那怎么知道风速有多大呢?这就得靠专门的仪器去测量啦。
然后是风向。
这风向就像是一个调皮的孩子,一会儿往东跑,一会儿往西跑。
我们得搞清楚它到底往哪个方向吹,才能更好地算出风荷载对塔身的影响呀。
再来说说塔身的形状和尺寸。
这就好比是不同形状的碗,装的水肯定不一样多呀。
塔身要是又高又细,那受到的风荷载可能就会大一些;要是矮矮胖胖的,可能就会小一些。
那具体怎么计算呢?这可就得用到一些公式和方法啦。
这就像是做菜的菜谱一样,按照步骤一步一步来。
不过可别觉得这很简单哦,这里面的学问可大着呢!比如说,我们得考虑空气的阻力,就像人在水里游泳会受到水的阻力一样。
还得考虑塔身的结构,是不是坚固呀,能不能承受住风的冲击呀。
算出来风荷载之后呢,我们就可以根据这个结果来设计和建造输电线路塔身啦。
就像是给房子打地基一样,得打得稳稳的,才能让房子不倒塌呀。
你说这风荷载计算方法重要不重要?那当然重要啦!要是算错了,那输电线路出了问题可咋办?那可就会影响好多人的生活呀!所以呀,咱可得认真对待,不能马虎。
总之呢,输电线路塔身风荷载计算方法就像是一把钥匙,能打开安全输电的大门。
咱可得好好研究,让这把钥匙发挥出最大的作用,为我们的生活提供稳定可靠的电力呀!你说是不是这个理儿?。
塔架的稳定性及强度计算

塔架的稳定性及强度计算一、塔架受风载荷:露天设备考虑风载荷,工作状态下机架所受到最大风载荷和和物品受风载作用对机架所产生的水平载荷PN总是与水平载荷PH按最不利的方向叠加的。
Pw=C Kh q A 表(21-2-1)式中:Pw——作用在设备上的风载荷C——风力系数表(21-2-5)C=1.6Kh——风压高度变化系数表(21-2-4)Kh=1.25q——计算风压表(21.2.3)q=250N/m2A——垂直于风向迎风面积,经计算=90.2 m2结构充实率φ=0.3~0.6,按0.5计A=A计×0.5=90.2×0.5=45.1 m2将以上数值代入(21-2-1)Pw=1.6×1.25×250×45.1=22550(N)=2.255吨二、根据我国钢结构的设计规范,梁的整体稳定条件为:σ=Mmax / ψs ωx ≤σp式中:Mmax——最大弯矩 Mmax=P*a2 /L=25000×120×120÷620=580645 kg/cm2ψs——稳定系数表(1-1-132)φs=1.48ωx——抗弯载面系数,表(3-1-55)ωx × 2=919×2=1838(两条H型钢)σp——抗弯应力,钢结构σp=215Mpa代入上式:σ=580645÷1.48÷1838=213 Mpa <215 Mpa经计算满足稳定要求三、塔架的强度计算(一)塔架承受力有:1.受风作用的弯矩:M风=2.255×1000=225500kg·cm式中:2255kg——作用在塔架上的风载荷1000cm——风力中心距2.自重弯矩:M重=80000×310=24800000 kg·cm式中:80000kg——塔架总重量310cm——塔中心距3.载重弯矩:M载=50000×310=1550000 kg·cm式中:50000kg——载重310cm——塔中心距综上所述,塔架的总弯矩为M总= M风+ M重+ M载=40525000 kg·cm(二)塔架的界面模数:根据公式w=(BH3-bh3)/6H=(600×26.23-576×22.23)÷(6×26.2)=28515 cm3(三)塔架的弯曲应力:σ= M总/w=40525000/28515=1421 kg/cm2 < [σ]=2350 kg/cm2 经计算,塔架的弯曲应力小于材料的许用应力,塔架的强度足够。
风荷载计算公式及符号含义

风荷载计算公式及符号含义
风荷载计算的公式可以根据不同的情况而有所不同,以下是常见的两个公式及符号含义:
1. 低层建筑风荷载计算公式:
F = 0.613 × C_f × A × V_max^2
其中,
F为风荷载(单位为N/m^2或Pa);
C_f为风压系数;
A为被风作用面积(单位为m^2);
V_max为设计风速(单位为m/s)。
2. 高层建筑风荷载计算公式(按国家标准GB 50009-2012):
F = qz × Ce × Cg × A × V^2
其中,
F为风荷载(单位为N/m^2或Pa);
qz为高度变化系数;
Ce为暴风区基准风压系数;
Cg为结构高度系数;
A为结构投影面积(单位为m^2);
V为设计基本风速(单位为m/s)。
在这些公式中,符号的含义如下:
- C_f或Ce为风压系数,是根据建筑结构和环境条件来确定的参数,用于衡量建筑所受风力的大小;
- A为被风作用面积或结构投影面积,表示建筑物横截面在垂直方向上所受的风力面积;
- V_max或V为设计风速或设计基本风速,是参考当地的气象数据和规范要求确定的;
- qz为高度变化系数,它是表示建筑高度变化对风荷载的影响;- Cg为结构高度系数,是考虑建筑物高度和形状对风力的影响;- F表示风荷载的大小,单位为N/m^2或Pa,表示单位面积上
所受的力量。
塔架风荷载计算表格

1.805
1
0.14
1.805
1
0.14
1.805
1
0.14
1.805
1
0.14
1.805
1
0.766 0.766 0.766 0.766 0.766 0.766 0.766 0.766
61.873 61.873 61.873 61.873 61.873 61.873 61.873 61.873
0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010
4、 风振 系数 βz 计算 (B 类)
求g
求I10
求x1
求R
塔段 编号
峰值因子g
湍流强度I10
结构第一 自振频率
粗糙度修正 系数kw
基本风压w0
x1
阻尼比(钢 结构)
1
2.5
2
2.5
3
2.5
4
2.5
5
2.5
6
2.5
7
2.5
8
2.5
0.14
1.805
1
0.14
1.805
1
0.14
1.805
1
0.14
1
70
0.765
1
70
0.765
1
70
0.765
1
70
0.765
1
70
0.765
1
70
0.765
1
70
0.765
1
计算点高 度z
68.500 63.875 58.325 50.750 42.150 34.650 20.900 5.600
塔架计算书

塔架计算书一、主要要求:1、型钢格构式塔架,自立式铁塔。
2、上层标高16.0m,自重120Kg,水平后座力4.12kN。
下层标高13.5m,自重120Kg,水平后座力2.2kN。
3、南京大厂镇江边。
二、设计概况:1、抗震设防烈度7度,设计基本地震加速度0.1g,设计地震分组为第一组.2、基本风压0.4kN/㎡,地面粗糙度为A类(空旷地带),工程的安全等级为一级(参照《高耸结构设计规范》设计)。
3、按照《高耸规范》第3.4.2条,本塔架结构不必进行构件截面的抗震验算,仅需满足抗震构造要求。
4、荷载的组合,按《高耸规范》第2.0.5条,取用下式:1.2G+1.4W+1.4×0.7L式中,G为自重等永久荷载W为风荷载L为活荷载5、考虑到平时检修使用时人员的上下,采用大型角钢格构式塔架,尺寸如下:三、塔架构件选择说明:1、满足大型格构式柱的构造要求:斜缀条与水平缀条的夹角宜在40°~70°内,水平缀条不小于L63×5,斜缀条不小于L75×6。
2、节点板的厚度由构造决定,选用10mm厚钢板,焊脚尺寸取8mm。
3、除塔架柱脚处的水平缀条连在柱分肢的外侧,其他所有缀条。
包括斜缀条和水平缀条均连在柱分肢的内侧,塔身外表平整,便于运输;根据业主要求,塔架用螺栓连接。
4、塔架可以在工厂分段制作,现场进行拼接。
5、格构式柱(塔架)采用分离式柱脚,柱脚底板由计算确定,且应不小于20mm厚;锚栓直径亦由计算确定,且应不小于20mm,孔径为螺栓直径的1.5倍,垫板孔径比螺栓大2mm。
四、风荷载的计算:按《高耸规范》执行。
W=βZμSμZμrω0式中:ω0=1.1× 0.4=0.44kN/㎡(1.1为工程重要性一级要求,0.4为南京的基本风压)βZ为风振系数:根据荷载规范GB50009-2001附录E,高耸结构的基本自振周期T1=(0.007~0.013)H,本工程为钢结构,取T1=0.013× 16.0=0.208sec;另根据《高耸规范》第3.2.7条,T1<0.25sec时不考虑风振影响,即βZ=1.0μS为风荷载体型系数,取2.6(偏于安全取规范的高值)μZ为风压高度变化系数,按高度16m的取值为1.52μr为风荷载重现期调整系数,为1.2W =1.0×2.6×1.52×1.2×0.44=2.09kN/㎡fA=3757平方毫米W xmin=68744(mm)3I x=6888100(mm)4I x0=10935600(mm)4I y0=2840600(mm)3W x0=110466(mm)3W y0=50467(mm)3I x=42.8mmI x0=54mmI y0=27.5mm Z 0=39.8mm G=29.492Kg/m角钢L100×10:肢宽L=100mm ,肢厚t f =14mmA=1926.1(mm)2W xmin =25060(mm)3I x =1795100(mm)4I x0=2846800(mm)4I y0=743500(mm)3W x0=4260(mm)3W y0=18540(mm)3I x =305mm I x0=384mm I y0=196mm Z 0=28.4mm G=15.12Kg/m六、计算格构式柱的柱身1500mm 高的材料重量及总重:分肢角钢:L140×14, 29.492×1.6×4=188.8 Kg L100×10水平角钢:15.12×1.6×4=96.8 Kg L100×10斜向角钢:15.12×1.8×4=108.9 Kg 节点板:0.3×0.6×0.01×7800×4=56.2 Kg 合计:188.8+96.8+108.9+56.2=450.7 Kg考虑计入爬梯及附属设备等,1600mm 高柱重取1.1×450.7=495.77 Kg 柱全高重:495.77×10(节)=4957.7Kg=49.58 kN七、求塔架内力:控制截面在塔底风荷载沿高度的线载=1.60×2.09=3.344 kN/m塔底轴力设计值: N=49.58×1.2=59.50kN弯矩设计值:M=1/2×3.344(风)×16.02×1.4+(4.12×16.0+2.2×13.5)(后座力)×1.4×0.7=599.2+93.7=692.9 kN ·m 剪力设计值:V=3.344×16.0×1.4+(4.12+2.2)×1.4×0.7 =74.91+6.2=81.1 kN查规范〈〈钢结构设计规范〉〉知,格构式柱的轴心受压构件的截面分类为b类。
例:铁塔身风荷载计算

塔身 b ? 2.465 ? 0.125 h 19.7
b为塔身平均宽度,b=(1.1+3.829)/2=2.465m
查表2-6得η=0.81
μs=1.3(1+η)=1.3 ×(1+0.81)=2.353
-
4、投影面积Af (塔身面积)
Af
?
? h(b1
? b2 2
)=0.22 × 19.7×(1.1+3.892)/2 =10.683m2
5、塔身风压q
q=μZμSβzW0Af/h =(1.24×2.353×1.0×0.5625 ×10.683)/19.7 =0.89kN/m
-
-
(二)塔身风荷载
1、风压随高度变化系数μZ 110kV,高度19.7m粗糙程度为B类,查表2-5 得μZ=1.24
2、风荷载调整系数βZ
查表2-8得βZ=1.0 3、构件体形系数μs 由型钢杆件组成的塔架μs=1.3(1+η)
-
b/h=3.829/19.7≈1/5为宽基塔 填充系数? =A f/A,塔头取? =0.2 ×1.1=0.22
-
4、投影面积Af( 2
.33? 6.2(0.6 ? 1.1)1? .74m2 2
5、塔头风压q
W0=302/1600=0.5625kN/m2
q=μZμSβzW0Af/h=(1.35×2.093×1.15 ×0.5625 ×1.74)/6.2
=0.51kN/m
例7 已知110kV,1A-ZM1型猫头宽基铁塔,塔顶 宽D1=0.6m,塔身顶宽D2=1.1m,根开D3=3.829m, 塔头高h1=6.2m,塔身高h2=19.7m,计算塔身风荷载 ,线路经过乡村,运行情况Ⅰ时风速30m/s