风荷载计算
风荷载计算

一、集热器风荷载1、集热器受力分析集热器最大受风面积为集热面外形面积:S=1.93×2.45×sin45°=3.207m2受力分析如下图:根据《建筑结构荷载规范》GB50009-2001,取酒泉地区重现期50年的风压0.55kN/㎡即550N/㎡计算,则最不利情况是集热器无水且吹北风时(因为有水时,重力增大有利于集热器抗风),此时受风力为F风=500N/㎡×3.207㎡=1603.54N当集热器处于平衡状态时,由以上受力分析列出F风x+G x=N xF风y+N y= G y其中G=118.18kg×9.8N/kg=1158.164NF风x=F风cos45°=1603.54N×0.707=1133.85NF风y=F风sin45°=1603.54N×0.707=1133.85NG x=Gsin45°=1158.164N×0.707=818.82 NG y=Gcos45°=1158.164N×0.707=818.82 N+G x=1133.85N +818.82 N=1952.67N则:N x=F风xN y=G y—F风y=1133.85N—818.82 N=315.03N由上述数据知:a、N y>0,说明在Y方向集热器还是受到钢结构的支撑力,即螺拴还没有受到拉力,故不需要校核螺拴的抗拉强度b 、沿X 方向,螺拴受剪切力为: F =1952.67N /18=108.48N 采用的是Ф8的螺拴,截面积: A =π(2d )2=50.24×10-6㎡ 螺拴受到的剪切力: τ=A F =26-1050.2448.108mN =2.16MPa 性能等级代号为3.6(最低)的螺拴能承受的最大剪应力 安全系数S =2.16MPa90MPa =41.67 可见,集热器受到的风荷载影响极小。
风荷载计算办法与步骤

12风荷载当空气的流动受到建筑物的阻碍时,会在建筑物表面形成压力或吸力,这些压力或吸力即为建筑物所受的风荷载。
2.1风向垂直作用于建筑物表面单位面积上的风荷载标准值(基本风压50年一遇³,单位为kN/m2。
也可以用公式计算基本风压的数值,也不得小于0.3kN/m2。
2.2.32.2.4风压高度变化系数风压高度变化系数在同一高度,不同地面粗糙程度也是不一样的。
规范以B类地面粗糙程度作为标准地貌,给出计算公式。
2.2.6风荷载体形系数1)单体风压体形系数(1)圆形平面;(2)正多边形及截角三角平面,n为多边形边数;(3)高宽比的矩形、方形、十字形平面;(4)V形、Y形、L形、弧形、槽形、双十字形、井字形、高宽比的十字形、高宽比,长宽比的矩形、鼓形平面;(5)未述事项详见相应规范。
2)群体风压体形系数檐口、雨棚、遮阳板、阳台等水平构件计算局部上浮风荷载时,不宜小于米且高宽比的房屋,以及自振周期虑脉动风压对结构发生顺向风振的影响。
且可忽略扭转的可按下式计算:○1g为峰值因子,去g=2.50;为10米高度名义湍流强度,取值如下:○2R为脉动风荷载的共振分量因子,计算方法如下:为结构阻尼比,对钢筋混凝土及砌体结构可取;为地面粗糙修正系数,取值如下:可以由结构动力学计算确定,对于较规则的高层建筑也可采用下列公式近似计算:○3脉动风荷载的背景分量因子,对于体型和质量沿高度均匀分布的高层建筑,计算方法如下:、为系数,按下表取值:为结构第一阶振型系数,可由结构动力学确定,对于迎风面宽度较大的高层建筑,当剪力墙和框架均其主要作用时,振型系数查下表,其中H为结构总高度,结构总高度小于等于梯度≤2H,H为结构总高度,结构总高度小于等于梯度风高度。
风荷载计算步骤

风荷载计算步骤一、引言风荷载计算是工程设计中非常重要的一项内容,它涉及到建筑物、桥梁、塔吊等工程设施的稳定性和安全性。
本文将介绍风荷载计算的步骤,帮助读者了解风荷载计算的基本原理和方法。
二、确定设计风速风荷载计算的第一步是确定设计风速。
设计风速是指在设计寿命期间内,某一特定地点上的平均风速。
确定设计风速需要参考相关的气象数据和规范,考虑地理位置、地形特征、气象条件等因素,以确保计算结果的准确性。
三、选择风压系数在进行风荷载计算时,需根据建筑物或结构物的形状和尺寸选择相应的风压系数。
风压系数是指单位面积上的风压力与动压的比值。
常用的风压系数有平面、曲面、圆柱体等,根据具体情况选择合适的系数进行计算。
四、计算风荷载根据确定的设计风速和选择的风压系数,可以计算出风荷载。
风荷载是指风对建筑物或结构物表面的作用力。
根据风压系数和结构物的投影面积,可以得到单位面积上的风荷载。
根据结构物的形状和布置,将单位面积上的风荷载乘以相应的面积,即可得到整体的风荷载。
五、设计风荷载分析在计算得到整体的风荷载后,需要进行设计风荷载分析。
设计风荷载分析是指根据风荷载的大小和方向,对建筑物或结构物进行稳定性分析。
通过分析结构物的受力情况,确定结构物的抗风能力是否满足设计要求,若不满足,则需要采取相应的加固措施。
六、风荷载施加位置确定在设计风荷载分析中,还需要确定风荷载施加的位置。
不同的建筑物或结构物在受风荷载时,其受力情况会有所不同。
通过施加风荷载的位置,可以进一步分析结构物的受力分布和变形情况,为设计提供依据。
七、风荷载计算结果验证在完成风荷载计算后,还需要对计算结果进行验证。
验证的目的是确定计算结果的准确性和合理性。
可以通过对已建成的建筑物或结构物进行实测,与计算结果进行对比,以验证计算方法的正确性。
若验证结果与计算结果相符,则说明风荷载计算是可靠的。
八、风荷载计算结果应用根据风荷载计算的结果,可以进行工程设计和施工。
根据计算结果确定结构物的尺寸、材料和施工方法,以确保结构物的稳定性和安全性。
风荷载计算算例

.风荷载计算 根据《建筑结构荷载规范》(GB50009-2012)规范,风荷载的计算公式为:0k z s z w u u βω= ()s u ——体型系数z u ——风压高度变化系数z β——风振系数0ω——基本风压k w ——风荷载标准值体型系数s u 根据建筑平面形状由《建筑结构荷载规范》项次30,迎风面体型系数(压风指向建筑物内侧),背风面(吸风指向建筑外侧面),侧风面(吸风指向建筑外侧面)。
风压高度变化系数z u 根据建筑物计算点离地面高度和地面粗糙度类别,按照规范表确定。
本工程结构顶端高度为+=米,建筑位于北京市郊区房屋较稀疏,由规范条地面粗糙度为B 类。
由表高度90米和100米处的B 类地面粗糙度的风压高度变化系数分别为和。
则米高度处的风压高度变化系数通过线性插值为:对于高度大于30m 且高宽比大于的房屋,以及基本自振周期T1大于的各种高耸结构,应考虑风压脉动对结构产生顺风向风振的影响。
本工程30层钢结构建筑。
基本周期估算为()1T =0.10~0.15n=3.0~4.5s ,应考虑脉动风对结构顺风向风振的影响,并由下式计算:1012Z z gI B β=+ ()式中:g ——峰值因子,可取10I ——10m 高度名义湍流强度,对应ABC 和D 类地面粗糙,可分别取、、和;R ——脉动风荷载的共振分量因子z B ——脉动风荷载的背景分量因子脉动风荷载的共振分量因子可按下列公式计算:式中:1f ——结构第1阶自振频率(Hz )w k ——地面粗糙度修正系数,对应A 、B 、C 和D 类地面粗糙,可分别取、、和; 1ζ——结构阻尼比,对钢结构可取,对有填充墙的钢结构房屋可取,对钢筋混凝土及砌体结构可取,对其他结构可根据工程经验确定。
经过etabs 软件分析,结构自振周期1 4.67f s =脉动风荷载的背景分量因子可按下列规定确定:式中:1()z φ——结构第1阶振型系数H ——结构总高度(m ),对应A 、B 、C 和D 类地面粗糙度,H 的取值分别不能大于300m 、350m 、450m 和550m ;x ρ——脉动风荷载水平方向相关系数;z ρ——脉动风荷载竖向方向相关系数;k 、1α——脉动风荷载的空间相关系数可按下列规定确定:(1)竖直方向的相关系数可按下式计算:式中:H ——结构总高度(m );对应A 、B 、C 和D 类地面粗糙度,H 的取值分别不应大于300m 、350m 、450m 和550m ;(2) 水平方向相关系数可按下式计算:式中:B ——结构迎风面宽度(m ),2B H ≤。
如何计算风荷载

如何计算风荷载风指的是从高压区向低压区流动的空气,它流动的方向大部分时候是水平的。
[1] 强风具有很大的破坏力,因为它们会对建筑物表面施加压力。
这种压力的强度就是风荷载。
风的影响取决于建筑物的大小和形状。
为了设计和建造更加安全、抗风能力更强的建筑物,以及在建筑物顶部安放天线等物体,计算风荷载很有必要。
方法1用通用公式计算风荷载1 了解通用公式。
风荷载的通用公式是 F = A x P x Cd,其中 F是力或风荷载, A是物体的受力面积, P是风压,而 Cd是阻力系数。
[2] 这个公式在估算特定物体的风荷载时非常有用,但无法满足规划新建筑的建筑规范要求。
2 得出受力面积 A。
它是承受风吹的二维面面积。
[3] 为了进行全面分析,你得对建筑物的每个面各做一次计算。
比如,如果建筑物西侧面的面积为20m2,那就把这个值代入公式中的 A,来计算西侧面的风荷载。
计算面积的公式取决于面的形状。
计算平坦壁面的面积时,可以使用公式面积 = 长 x 高。
公式面积 = 直径 x 高度可以算出圆柱面面积的近似值。
使用国际单位计算时,面积 A应该使用平方米(m2)作为单位。
使用英制单位计算时,面积 A应该使用平方英尺(ft2)作为单位。
3 计算风压。
使用英制单位(磅/平方英尺)时,风压P的简单公式为P =0.00256V^{2},其中 V是风速,单位为英里/小时(mph)。
[4] 而使用国际单位(牛/平方米)时,公式会变成P = 0.613V^{2},其中 V的单位是米/秒。
[5]这个公式是基于美国土木工程师协会的规范。
系数0.00256是根据空气密度和重力加速度的典型值计算得出的。
[6]工程师会考虑周围地形和建筑类型等因素,使用更精确的公式。
你可以在ASCE规范7-05中查找公式,或使用下文的UBC公式。
如果你不确定风速是多少,可以查询美国电子工业协会(EIA)标准或其他相关标准,找到你们当地的最高风速。
比如,美国大部分地区都是A级区,最大风速为86.6 mph,但沿海地区可能位于B级区或C级区,前者的最大风速为100 mph,后者为111.8 mph。
风荷载计算算例

3.6.风荷载计算 根据《建筑结构荷载规范》(GB50009-2012)规范,风荷载的计算公式为:0k z s z w u u βω= (8.1.1-1)s u ——体型系数z u ——风压高度变化系数 z β——风振系数0ω——基本风压k w ——风荷载标准值体型系数s u 根据建筑平面形状由《建筑结构荷载规范》表7.3.1确定。
本项目建筑平面为规则的矩形,查表8.3.1项次30,迎风面体型系数0.8(压风指向建筑物内侧),背风面-0.5(吸风指向建筑外侧面),侧风面-0.7(吸风指向建筑外侧面)。
风压高度变化系数z u 根据建筑物计算点离地面高度和地面粗糙度类别,按照规范表8.2.1确定。
本工程结构顶端高度为3.0x30+0.6=90.6米,建筑位于北京市郊区房屋较稀疏,由规范8.2.1条地面粗糙度为B 类。
由表8.2.1高度90米和100米处的B 类地面粗糙度的风压高度变化系数分别为1.93和2.00。
则90.6米高度处的风压高度变化系数通过线性插值为:90.690(2.00 1.93) 1.93 1.934210090z u -=-+=- 对于高度大于30m 且高宽比大于1.5的房屋,以及基本自振周期T1大于0.25s 的各种高耸结构,应考虑风压脉动对结构产生顺风向风振的影响。
本工程30层钢结构建筑。
基本周期估算为()1T =0.10~0.15n=3.0~4.5s ,应考虑脉动风对结构顺风向风振的影响,并由下式计算:1012Z gI B β=+ (8.4.3)、1w k ——地面粗糙度修正系数,对应A 、B 、C 和D 类地面粗糙,可分别取1.28、1.0、0.54和0.26;1ζ——结构阻尼比,对钢结构可取0.01,对有填充墙的钢结构房屋可取0.02,对钢筋混凝土及砌体结构可取0.05,对其他结构可根据工程经验确定。
经过etabs 软件分析,结构自振周期1 4.67f s =110208.851.00.45w x k ω===⨯ 22124/324/311208.850.8626(1)60.02(1208.85)x R x ππζ===+⨯+脉动风荷载的背景分量因子可按下列规定确定:11()z x zzz B kH αφρρμ= (8.4.5) 式中: 1()z φ——结构第1阶振型系数H ——结构总高度(m ),对应A 、B 、C 和D 类地面粗糙度,H 的取值分别不能大于300m 、350m 、450m 和550m ;x ρ——脉动风荷载水平方向相关系数;z ρ——脉动风荷载竖向方向相关系数;k 、1α——系数,按表8.4.5-1取值。
风荷载计算方法与步骤

欢迎共阅1 风荷载当空气的流动受到建筑物的阻碍时,会在建筑物表面形成压力或吸力,这些压力或吸力即为建筑物所受的风荷载。
1.1 单位面积上的风荷载标准值建筑结构所受风荷载的大小与建筑地点的地貌、离地面或海平面高度、风的性质、风速、风向以及高层建筑结构自振特性、体型、平面尺寸、表面状况等因素有关。
垂直作用于建筑物表面单位面积上的风荷载标准值(KN/m2)按下式计算:1.1.1基本风压按当地空旷平坦地面上50年一遇按公式 其中的单位为,kN/m 2。
也可以用公式1.1.2 风压高度变化系数风压高度变化系数在同一高度,不同地面粗糙程度也是不一样的。
规范以粗糙度类别场地确定之后上式前两项为常数,于是计算时变成下式:1.1.3风荷载体形系数1)单体风压体形系数(1)圆形平面;(2)正多边形及截角三角平面,n为多边形边数;(3)高宽比的矩形、方形、十字形平面;(4)V形、Y形、L形、弧形、槽形、双十字形、井字形、高宽比的十字形、高宽比,长宽比的矩形、鼓形平面(5)未述事项详见相应规范。
23檐口、雨棚、遮阳板、阳台等水平构件计算局部上浮风荷载时,不宜小于1.1.4米且高宽比的房屋,以及自振周期虑脉动风压对结构发生顺向风振的影响。
且可忽略扭转的结构在高度处的风振系数○1g为○2R为脉动风荷载的共振分量因子,计算方法如下:为结构阻尼比,对钢筋混凝土及砌体结构可取;为地面粗糙修正系数,取值如下:为结构第一阶自振频率(Hz);高层建筑的基本自振周期可以由结构动力学计算确定,对于较规则的高层建筑也可采用),B为房屋宽度(m)。
○3对于体型和质量沿高度均匀分布的高层建筑,、为系数,按下表取值:为结构第一阶振型系数,可由结构动力学确定,对于迎风面宽度较大的高层建筑,当剪力墙和框架均其主要作用时,振型系数查下表,其中H为结构总高度,结构总高度小于等于梯度风高度。
为脉动风荷载水平、竖直方向相关系数,分别按下式计算:B。
风荷载计算方法与步骤

1 风荷载当空气的流动受到建筑物的阻碍时,会在建筑物表面形成压力或吸力,这些压力或吸力即为建筑物所受的风荷载。
1.1 单位面积上的风荷载标准值建筑结构所受风荷载的大小与建筑地点的地貌、离地面或海平面高度、风的性质、风速、风向以及高层建筑结构自振特性、体型、平面尺寸、表面状况等因素有关。
垂直作用于建筑物表面单位面积上的风荷载标准值ωk (KN/m ²)按下式计算:ωk =βz μs μz ω0风荷载标准值(kN/m 2)=风振系数×风荷载体形系数×风压高度变化系数×基本风压1.1.1 基本风压ω0按当地空旷平坦地面上10米高度处10分钟平均的风速观测数据,经概率统计得出50年一遇的最大值确定的风速v 0(m/s),再考虑相应的空气密度通过计算确定数值大小。
按公式 ω0=12ρv 02确定数值大小,但不得小于0.3kN/m 2,其中ρ的单位为t/m ³,ω0单位为kN/m 2。
也可以用公式ω0=11600v 02计算基本风压的数值,也不得小于0.3kN/m2。
1.1.2 风压高度变化系数μZ风压高度变化系数在同一高度,不同地面粗糙程度也是不一样的。
规范以B 类地面粗糙程度作为标准地貌,给出计算公式。
μZX=(H tB 10)2αB (10H tX )2αX (Z 10)2αXμZA =1.248(Z 10)0.24μZB =1.000(Z )0.30μZC =0.544(Z 10)0.44μZD =0.262(Z 10)0.601.1.3 风荷载体形系数μS1)单体风压体形系数(1)圆形平面μS =0.8;(2)正多边形及截角三角平面μS=0.8+√n,n为多边形边数;(3)高宽比HB≤4的矩形、方形、十字形平面μS=1.3;(4)V形、Y形、L形、弧形、槽形、双十字形、井字形、高宽比HB >4的十字形、高宽比HB>4,长宽比LB≤1.5的矩形、鼓形平面μS=1.4;(5)未述事项详见相应规范。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4.2风荷载
当空气的流动受到建筑物的阻碍时,会在建筑物表面形成压力或吸力,这些压力或吸力即为建筑所受的风荷载。
4.2.1单位面积上的风荷载标准值
建筑结构所受风荷载的大小与建筑地点的地貌、离地面或海平面高度、风的性质、风速、风向以高层建筑结构自振特性、体型、平面尺寸、表面状况等因素有关。
垂直作用于建筑物表面单位面积上的风荷载标准值按下式计算:式中:
1.基本风压值Wo
按当地空旷平坦地面上10米高度处10分钟平均的风速观测数据,经概率统计得出50年一遇的值确定的风速V0(m/s)按公式确定。
但不得小于0.3kN/m2。
对于特别重要或对风荷载比较敏感的高层建筑,基本风压采用100年重现期的风压值;对风荷载是否敏感主要与高层建筑的自振特性有关,目前还没有实用的标准。
一般当房屋高度大于60米时,采用100年一风压。
《建筑结构荷载规范》(GB50009-2001)给出全国各个地方的设计基本风压。
2.风压高度变化系数μz
《荷载规范》把地面粗糙度分为A、B、C、D四类。
A类:指近海海面、海岸、湖岸、海岛及沙漠地区;
B类:指田野、乡村、丛林、丘陵及房屋比较稀疏的城镇及城市郊区;
C类:指有密集建筑群的城市市区;
D类:指有密集建筑群且房屋较高的城市市区;
风荷载高度变化系数μz
计算公式
A类地区=1.379(z/10)0.24
B类地区= (z/10)0.32
C类地区=0.616(z/10)0.44
D类地区=0.318(z/10)0.6
位于山峰和山坡地的高层建筑,其风压高度系数还要进行修正,可查阅《荷载规范》。
3.风载体型系数μs
风荷载体型系数是指建筑物表面实际风压与基本风压的比值,它表示不同体型建筑物表面风力的小。
一般取决于建筑建筑物的平面形状等。
计算主体结构的风荷载效应时风荷载体型系数可按书中P57表4.2-2确定各个表面的风载体型
或由风洞试验确定。
几种常用结构形式的风载体型系数如下图
注:“+”代表压力;“-”代表拉力。
4.风振系数βz
风振系数βz反映了风荷载的动力作用,它取决于建筑物的高宽比、基本自振周期及地面粗糙度基本风压。
《荷载规范》规定对于基本自振周期大于0.25s的工程结构,如房屋、屋盖及各种高耸结构,及对于高度大于30m且高宽比大于1.5的高柔房屋,均应考虑风压脉动对结构发生顺风向风振的影响。
其风振系数βz可按下式计算:
(-2)
式中:ψz——基本振型z高度处的振型系数,当高度和质量沿高度分布均匀时,可以近似用z/H代替系数;
ζ——脉动增大系数,查表时需要参数ω0T2,其中ω0为基本风压值,T为结构基期,可用近似方法计算;
υ——脉动影响系数,
μz——风压高度变化系数,
脉动增大系数ξ
ω0T1(kNs/m) 0.01 0.02 0.04 0.06 0.08 0.10 0.20 0.40 0.60
钢结构 1.47 1.57 1.69 1.77 1.83 1.88 2.04 2.24 2.36
有填充墙的房屋钢结构1.26 1.32 1.39 1.44 1.47 1.50 1.61 1.73 1.81
混凝土及砌体结构 1.11 1.14 1.17 1.19 1.21 1.23 1.28 1.34 1.38
ω0T1(kNs/m) 0.80 1.00 2.00 4.00 6.00 8.00 10.00 20.00 30.00
钢结构 2.46 2.53 2.80 3.09 3.28 3.42 3.54 3.91 4.14
有填充墙的房屋钢结构 1.88 1.93 2.10 2.30 2.43 2.52 2.60 2.85 3.01
混凝土及砌体结构 1.42 1.44 1.54 1.65 1.72 1.7 1.82 1.96 2.06
注:计算ω0T1时,对地面粗糙度B类地区可直接代入基本风压,而对A类、C类和D类地区应按当地的基本风压分别1.38、O.62和0.32后代入。
根据我国的实测数据进行计算,再结合我国的工程设计经验加以修正而确定的c值列于表
4.2.2总体风荷载
1.总体风荷载
设计时,使用总风荷载计算风荷载作用下结构的内力及位移。
总风荷载为建筑物各个表面承受风的合力,是沿建筑物高度变化的线荷载。
通常,按x、y两个互相垂直的方向分别计算总风荷载。
按下式z高度处的总风荷载标准
值:(4.2式中:n——建筑外围表面数;
Bi——第i个表面的宽度;
——第i个表面的风载体型系数;
——第i个表面法线与总风荷载作用方向的夹角如图4.2-5
图4.2-5
各表面风力的合力作用点,即为总体风荷载的作用点。
设计时,将沿高度分布的总体风荷载的线载换算成集中作用在各楼层位置的集中荷载,再计算结构的内力及位移。
2.局部风荷载
风力作用在建筑物表面,压力分布很不均匀(如图4.2-2和图4.2-3),在角隅、檐口、边棱处附属结构的部位(如阳台、雨蓬等外挑构件),局部风压大大超过平均风压.根据风洞试验和一些实测结可知,迎风面的中部和一些窝风部位,由于气流不易向四周扩散,出现较大风压,因此应计算局部风荷载
当计算维护结构时,单位面积上的风荷载标准值,按下式计算:
Wk=βgz·μs·μz·W0(4.2-4)
式中:
βgz---高度Z处的阵风系数;见P58表4.5
验算围护构件及其连接的强度时,可按下列规定采用局部风压体型系数:
1)外表面
(1)正压区按正常情况采用。
(2)负压区。
对墙面,取μs=-1.0;对墙角边μs=-l.8;对屋面局部部位(周边和屋面坡度大于100的屋脊部取μs=-2.2;对檐口、雨篷、遮阳板等突出构件的浮风,取μs=-2.0,对墙角边和屋面局部部位的作用宽房屋宽度的0.1或房屋平均高度的0.4,取其小者,但不小于1.5m
2)内表面
对封闭式建筑物,按外表面风压的正负情况取μs=-0.2或0.2; 计算围护结构风荷载时的阵风应按P59表4.6采用。
例题---风荷载
【例4.2-1】某8层现浇钢筋混凝土-剪力墙结构,为一般的高层办公建筑,其平面及剖面如4.2-6和图4.3-7所示,各层楼面荷载及质量、侧移刚度沿刚度变化比较均匀。
当地基本风压为0.7kN/m 面粗糙度为C类。
求在图4.2-6所示横向风作用下,建筑物横向各楼层的风力标准值,在计算时不考虑周围建筑物影响,结构基本自振周期可采用经验公式计算。
4.2-7剖面图
【解】该房屋高度大于30m且高宽比大于1.5(高32.1/13.5=2.38),因此应考虑风压脉动对构发生顺风向风振的影响。
1.求房屋横向基本自振周期,n=8
根据经验高层建筑框架剪力墙结构基本周期为:
取,因此应计算房屋的风振系数。
2.各楼层位置处的风振系数,按公式(4.2-2)
求脉动增大系数ζ时。
应先求出
由于地面粗糙度为C类,应乘以0.62,得0.1085后查表4.2-3,得ζ=1.235。
求脉动影响系数υ时,考虑到迎风面的宽度较大,H/B=32.1/47.752=0.678,查表4.2-4得
υ=0.411
求振型系数时,根据本例的条件可近似用z/H代替振型系数。
求各楼层位置处的风压高度变化系数,
可根据表4.2-1中地面粗糙度为C类查得其值。
据此各楼层位置处值计算结果见表4.2-6。
各楼层位置出的值计算结果表4.2-6
3.各楼层位置处风力标准值
本例题的风荷载体型系数是封闭式房屋情况。
由于平面为矩形,因此迎风面的风荷载体型系数为背风面的风荷载体型系数为-0.5。
各楼层迎风面背风面的受风面积相邻楼层平均层高×房屋长度各楼层位置处所受风力(迎与背风面风力之和):
其计算结果见表表4.2-7。
各楼层位置处的风力标准值表4.2-7
脉动增大系数ξ
ω0T1(kNs/m) 0.01 0.02 0.04 0.06 0.08 0.10 0.20 0.40 0.60
钢结构 1.47 1.57 1.69 1.77 1.83 1.88 2.04 2.24 2.36
有填充墙的房屋钢结构1.26 1.32 1.39 1.44 1.47 1.50 1.61 1.73 1.81
混凝土及砌体结构 1.11 1.14 1.17 1.19 1.21 1.23 1.28 1.34 1.38
ω0T1(kNs/m) 0.80 1.00 2.00 4.00 6.00 8.00 10.00 20.00 30.00
钢结构 2.46 2.53 2.80 3.09 3.28 3.42 3.54 3.91 4.14
有填充墙的房屋钢结构 1.88 1.93 2.10 2.30 2.43 2.52 2.60 2.85 3.01
混凝土及砌体结构 1.42 1.44 1.54 1.65 1.72 1.7 1.82 1.96 2.06
注:计算ω0T1时,对地面粗糙度B类地区可直接代入基本风压,而对A类、C类和D类地区应按当地的基本风压分别乘以1.38、O.62和0.32后代入。