单相有功功率计量芯片

合集下载

功率计量芯片HLW8012介绍及应用

功率计量芯片HLW8012介绍及应用

功率计量芯⽚HLW8012介绍及应⽤功率计量芯⽚HLW8012介绍与应⽤⼀、引⾔HLW8012是深圳市合⼒为科技推出的单相电能计量芯⽚,可以测量有功功率、电量、电压有效值、电流有效值;SOP8封装,体积⼩,⼴泛应⽤于智能家电、节能插座,智能路灯、智能LED 灯等应⽤场合。

本⽂主要内容:1、HLW8012介绍;2、HLW8012应⽤硬件电路;3、HLW8012脉冲软件测量;4、HLW8012应⽤场合及展望。

⼆、、HLW8012介绍1、HLW8012主要特性(1)⾼频脉冲CF ,指⽰有功功率,在1000:1范围内达到±0.3%的精度(2)⾼频脉冲CF1,指⽰电流或电压有效值,使⽤SEL 选择,在500:1范围内达到±0.5%的精度(3)内置晶振、2.43V 电压参考源及电源监控电路(4)5V 单电源供电,⼯作电流⼩于3mA 2、HLW8012引脚图VDDVIPVINCF1SELV2PCF选择CF1输出电流/电压值/电压值图1芯⽚引脚图引脚序号引脚名称输⼊/输出说明1 VDD 芯⽚电源芯⽚电源2,3 V1P ,V1N 输⼊电流差分信号输⼊端,最⼤差分输⼊信号为±43.75mV 4 V2P 输⼊电压信号正输⼊端。

最⼤输⼊信号±700mV 5 GND 芯⽚地芯⽚地6 CF 输出输出有功⾼频脉冲,占空⽐50% 7, CF1 输出 SEL=0,输出电流有效值,占空⽐50%; SEL=1,输出电压有效值,占空⽐50%; 8 SEL输⼊配置有效值输出引脚,带下拉●模拟信号输⼊(1)V1P ,V1N 输⼊电流采样信号:峰峰值V P-P :±43.75mV ,最⼤有效值:±30.9mV 。

(2)V2P 输⼊电压采样信号:峰峰值V P-P :±700mV ,最⼤有效值:±495mV 。

●数字信号输出(1)⾼频脉冲CF (PIN6):指⽰功率,计算电能;输出占空⽐为1:1的⽅波。

BL6533

BL6533
不输出计量脉冲。
3)正负输入功率 指 Pin9 的电压采样信号 V(V)与 Pin6-Pin7 间的电流通道输入信号 V(I)乘积 V(V)*V(I)*cosϕ的
符号, 大于零为正功,小于零为负功。
4)正、负向有功功率误差% 在相等的有功功率条件下,在 V(V)=±110mV、V(I)对应 Ib(5A)点,BL6533 测得的负向有
=V*I/2+Vos*0+Vos*Icos(wt)+0*Vcos(wt)+(V*I)/2*cos(2wt) =V*I/2+Vos*Icos(wt)+(V*I)/2*cos(2wt) 从上面的计算看到:如果输入的两路信号同时具有直流成分,会给即时实功率,即乘积的直 流部分带来 Vos*Ios 的误差,还有在ω频率处出现 Vos*I+Ios*V 的分量,前者必然引起测量误差, 而后者也会当取直低通滤波器的对ω抑制不够时影响即时实功率的输出,带来大的波动。 而当电压或电流中的一路经过数字高通滤波器后,如去掉电流采样信号的直流偏移项。这时

-4Total 10 Pages
9/9/2009
BL6533 普通单相液晶表计量芯片
电性能参数
极限参数 参数
模拟数字电源电 压
输入电压 工作温度 储存温度
功耗
符号
VDD VI TA TS
条件
数值
单位
-
VSS-0.3 to VSS+6.5 V
所有输入引脚 VSS-0.3 to VDD+0.3 V
-9Total 10 Pages
9/9/2009
应用示意图
BL6533 普通单相液晶表计量芯片
24C02
LCD

芯海科技CS7005D单相有功功率计量芯片用户手册说明书

芯海科技CS7005D单相有功功率计量芯片用户手册说明书

CS7005D用户手册V1.0深圳市芯海科技有限公司2004年08月26日目录图形 (3)表格 (3)1主要特点 (4)2功能概述 (4)3原理框图 (5)4管脚定义及功能描述 (5)4.1 管脚排列 (5)4.2 管脚定义及功能描述 (6)5性能指标与实测结果 (6)5.1 CS7005D性能指标 (6)5.2 CS7005D实际测试结果 (8)5.2.1 测量准确度 (8)5.2.2 参考电压温度特性 (11)6芯片工作原理 (11)6.1 信号流 (11)6.2 功率因子影响 (12)6.3 非正弦电压电流输入 (12)7模拟输入 (13)7.1 电流通道 (13)7.1.1 电压输入范围 (13)7.1.2 电流传感信号接入方法 (14)7.2 电压通道 (15)7.2.1 信号输入范围 (15)7.2.2 信号接入方法 (15)8电源电压的检测 (16)9高通滤波与失调电压影响 (16)10功率到频率转换 (17)11输出频率与输入信号的关系 (18)11.1 FO1、FO2输出频率与输入信号的关系 (18)11.2 CFO输出频率与FO1、FO2输出频率的关系 (19)12电表应用时的参数设置 (19)12.1 锰铜采样电阻的选择 (19)12.2 输出频率与量程的关系 (20)12.3 SF0,SF1,SCF的设置 (20)12.3.1 SF0,SF1的设置 (20)12.3.2 SCF的设置 (21)13FO1,FO2,CFO输出时序 (21)14启动阈值电流 (23)15极限工作条件 (23)16CS7005D封装 (23)17附录1:电表设计时的参数设置 (24)17.1 第1步:首先计算电流通道最大输入电压VP1p (24)17.2 第2步:计算最大输出频率 (25)17.3 第3步:计算电压通道的输入电压 (25)图形图1.C S7005D功能框图 (5)图2.C S7005D管脚图 (5)图3.C S7005D精度测试电路 (8)图4.C S7005D在增益为1时测量精度 (9)图5.C S7005D测量精度(PGA=16) (9)图6.C S7005D变频测试结果1(G=16,PF=1) (10)图7.C S7005D变频测试结果2(G=16,PF=0.8C) (10)图8.C S7005D变频测试结果3(G=16,PF=0.5L) (10)图9.C S7005D基准电压随温度变化图 (11)图10.CS7005D信号流图 (12)图11.电流通道接入方法一(电阻采样) (14)图12.电流通道接入方法二(电流互感CT) (15)图13.电压通道接入方法一(电阻分压) (15)图14.电压通道接入方法二 (16)图15.电源电压检测信号波形 (16)图16.通道失调对有功功率计算的影响图 (17)图17.CS7005D数字-频率转换框图 (18)图18.CS7005D封装轮廓图 (24)表格表1:CS7005D管脚描述 (6)表2:CS7005D性能指标(环境温度25o C,DVDD/A VDD=5.0V) (6)表3:电流通道的最大输入范围与PGA增益的关系 (14)表4:F b与SF0、SF1管脚电平的关系 (18)表5:CFO输出频率与FO1、FO2输出频率的关系 (19)表6:锰铜电阻(Rs)的参考取值(PGA增益设为16倍) (19)表7:FO1,FO2输出频率与输入电流关系表 (20)表8:FO1/FO2最大频率表 (20)表9:CS7005D时序参数表 (22)表10:CS7005D极限工作条件 (23)CS7005D用户手册1主要特点¾精度高,满足50 / 60Hz IEC687 / 1036标准的准确度要求,在1000:1的动态范围内,误差小于0.1%;¾数字脉冲输出,平均有功功率直接以数字脉冲输出,能直接驱动步进电机,实时有功功率以数字脉冲形式输出,方便仪表校验;¾多增益选择,电流通道具有1/2/8/16四种增益选择,以便灵活选用不同大小的采样电阻;¾低阈值启动,启动电流小于0.2% Ib;¾片内集成防潜动功能;¾负功率或错线指示;¾宽模拟信号输入范围,可以输入峰峰值±1V模拟信号;¾片内集成电源电压检测功能,当电源电压降低到4V时,芯片复位,停止工作;¾片内集成高精度、高稳定2.5V基准电压源,绝对偏差小于±5%,温度系数小于±25ppm/¾低功耗,5V单电源工作,工作时功耗小于30mW;¾宽工作温度范围,满足工业标准-40~85¾ - 封装2功能概述CS7005D是用于电能计量的高精度、高性能集成电路,它将平均有功功率以频率的形式直接输出,并且可以直接驱动步进电机。

计量芯片HLW8110典型应用设计

计量芯片HLW8110典型应用设计

计量芯片HLW8110的典型应用1芯片介绍1.1芯片描述HLW8110是一款高精度的电能计量IC,它采用CMOS制造工艺,主要用于单相计量应用。

它能够测量线电压和电流,并能计算有功功率,视在功率和功率因素。

该器件内部集成了二个∑-Δ型ADC和一个高精度的电能计量内核。

输入通道支持灵活的PGA设置,因此HLW8110适合与不同类型的传感器使用,如电流互感器(CT)和低阻值分流器。

HLW8110电能计量IC采用3.3V或5.0V电源供电,内置3.579M振荡器,可以通过UART口进行数据通讯,波特率为9600bps,采用 8PIN的SOP封装。

1.2特性描述✓免校准功能✓宽工作电压,支持3.3V和5.0V电源供电✓测量有功功率、视在功率、电压和电流有效值✓在5000:1的动态范围内,有功电能的测量误差<0.1%✓在3000:1的动态范围内,有功功率的测量误差<0.1%✓在1000:1的动态范围内,有效电压的测量误差<0.1%✓在1000:1的动态范围内,有效电流的测量误差<0.1%✓提供有功功率过载信号指示✓提供电压信号的过零检测、过压指示和欠压指示✓提供电流信号的过零检测,过流指示✓UART通讯方式✓SOP8封装1.3应用领域✓智能家电设备✓漏电检测设备✓计量电表✓计量插座✓WIFI插座✓充电桩✓PDU设备✓LED照明✓交通路灯1.4 芯片管脚IAP IAN VP VREFRX VDD GNDTX2硬件设计2.1原理图设计下图是HLW8110的典型电路,外围电路简单,外围器件非常少,单路通道可用于检测负载设备的功率、电压、电流和用电量,通过UART或接口传输数据至MCU,HLW8110内部可以设置功率过载、电压过载和电流过载阀值,通过内部寄存器可以查询,并可以检测电压过零点。

2.2电流采样电阻的选型2.3电压采样电阻从图中可以看出电压信号通过5个0805封装的200K阻值的贴片电阻和1个1K的分压电阻串联后输入到HLW8110的VP引脚,以220V交流电压为例,输入信号有效电压值是:220V*(1K/(5*200K + 1K))= 219.8mV建议一般使用时电压通道的PGA设置为1。

单相计量芯片RN8209C用户手册_v1_8

单相计量芯片RN8209C用户手册_v1_8

Renergy单相多功能防窃电专用计量芯片RN8209C/RN8209D深圳市锐能微科技有限公司 page 1 of 47 Rev 1.8RN8209C/RN8209D 用户手册Data:2018-9-14Rev:1.8版本更新说明版本号修改时间修改内容V1.0 2014-3-20 创建V1.1 2014-3-29 修改文字错误V1.2 2014-8-26 增加内部未开放功能:电能寄存器2A/2C功能定义更改;扩展频率测量范围,增加35H寄存器;RN8209D的RX引脚也支持复位功能;对RX引脚复位功能做补充说明;修改错误:2.7章节关于Hfconst寄存器地址的描述错误;修改一些文字错误;V1.3 2014-12-22 3.2.2 hfconst 计算公式修改HFConst= INT [14.8528*Vu*Vi*10^11/(EC*Un*Ib)]改为:HFConst=INT[16.1079*Vu*Vi*10^11/(EC*Un*Ib)]V1.4 2015-1-7 第18页寄存器列表中2A和2C寄存器说明更改;冻结电能寄存器冻结时间从572.1793ms更改为572.1397ms。

V1.5 2015-1-29 修改电能冻结时间为:2048*1024个晶振周期,V1.4版中为2048个晶振周期。

修改功率寄存器Read 行APA23、22、21、20 角标,使其与BIT31、30、29、28角标对应。

修改手册页脚版本为Rev 1.5。

V1.6 2016-2-15 1)P13,修正2.7 能量计算HFConst地址笔误0X03为0X022)P17,系统控制寄存器SYSCON的bit5:4的“PGAIB”的PGAIB1的第4行第1列,(,1),改为(1,1)3)P23页2.12.3 计量参数寄存器有功电能寄存器溢出标志位POIF修正为PEOIF及无功电能寄存器溢出标志位QOIF修正QEOIF4)P34, 3.3 举例HFConst计算式修正为HFConst=[16.1079*Vu*Vi*10^11/(EC*Un*Ib)]=2818,以及无功校正Qphs计算式的修正V1.7 2017-9-15 1)为2.12.1寄存器列表中采样寄存器,增加更新速率及采样位数说明V1.8 2018-09-14 1) 2.7能量计算中自定义电能,可选择的第二路有功电能符号从DATAPA修改为DATAPB2)SPI通讯字节间隔时间修改为2.5us3)SPI通讯速率放大到1.7M目录1 芯片介绍 (5)1.1 芯片特性 (5)1.2 功能简介 (5)1.3 功能框图 (6)1.4 管脚定义 (6)1.5 典型应用 (9)2 系统功能 (10)2.1 电源监测 (10)2.2 系统复位 (10)2.3 模数转换 (11)2.4 有功功率 (11)2.5 无功功率 (12)2.6 有效值 (13)2.7 能量计算 (13)2.8 通道切换 (14)2.9 频率测量 (14)2.10过零检测 (15)2.11中断 (15)2.12寄存器 (16)3 校表方法 (32)3.1 概述 (32)3.2 校表流程和参数计算 (32)3.3 举例 (35)4 通信接口 (37)4.1 SPI接口 (37)4.2 UART接口 (39)5 电气特性 (44)6 芯片封装 (46)1 芯片介绍1.1 芯片特性✓计量⏹提供三路∑-△ADC⏹有功电能误差在8000:1动态范围内<0.1%,支持IEC62053-22:2003标准要求⏹无功电能误差在8000:1动态范围内<0.1%,支持IEC62053-23:2003 标准要求⏹提供两路电流和一路电压有效值测量,在1000:1动态范围内,有效值误差<0.1%⏹提供一路脉冲频率发生器,可用于对用户自定义功率进行电能量累加积分⏹提供三路ADC的瞬时采样值⏹潜动阈值可调⏹提供反相功率指示⏹提供电压通道频率测量⏹提供电压通道过零检测⏹提供参考基准监测功能✓软件校表⏹电表常数(HFConst)可调⏹提供增益和相位校正⏹提供有功、无功、有效值offset校正⏹提供小信号校表加速功能⏹提供配置参数自动校验功能✓提供SPI/UART接口✓具有电源监控功能✓具备电能寄存器定时冻结功能✓UART的RX输入引脚同时具备管脚复位功能✓RN8209 +5V/3.3V电源供电,功耗典型值为15mW@5V、8mW@3.3V✓内置1.25V±1% 参考电压,温度系数典型值5ppm/℃,最大15ppm/℃✓采用SSOP24(RN8209D)/SOP16L(RN8209C)绿色封装1.2 功能简介RN8209能够测量有功功率、无功功率、有功能量、无功能量,并能同时提供两路独立的有功功率和有效值、电压有效值、线频率、过零中断等,可以实现灵活的防窃电方案。

功率计量芯片HLW8032规格书

功率计量芯片HLW8032规格书
HLW8032
HLW8032 用户手册 REV 1.3

REV 1.3
HLW8032
应用领域
智能家电产品 计量插座 智能 WIFI 插座 电动车充电桩 PDU 设备 LED 照明 路灯控制
单相计量 IC
HLW8032

REV 1.3
HLW8032
特性
可以测量有功功率、视在功率、电流和电压有效值 有功电能脉冲 PF 管脚输出 在 1000:1 的动态范围内,有功功率的测量误差达到 0.2% 在 1000:1 的动态范围内,有效电流的测量误差达到 0.5% 在 1000:1 的动态范围内,有效电压的测量误差达到 0.5% 内置频率振荡器 内置电压参考源 内置电源监控电路 UART 通讯方式 SOP8 封装型式
HLW8032 具有精度高、功耗小、可靠性高、适用环境能力强等优点,适用于单相两线制电 力用户的电能计量。
功能框图
VDD
Internal Clock
Power On Reset
IP
PGA
IN
VP
PGA
1k
GND
ADC ADC
Sigma_I Sigma_V
Active Power I_rms V_rms
calculation
ቤተ መጻሕፍቲ ባይዱ
Reference Voltage
2.43V
图 1 芯片功能框图

REV 1.3
REG UART
RX
PF
TX
HLW8032
目录
应用领域................................................................................................................................................. 2 特性 ........................................................................................................................................................ 3 概述 ........................................................................................................................................................ 3 功能框图................................................................................................................................................. 3 修订历史................................................................................................................................................. 5 引脚配置和功能描述............................................................................................................................. 6 技术规格................................................................................................................................................. 6

RN8209-SSOP24-天高微 单相计量芯片

RN8209-SSOP24-天高微  单相计量芯片

版本:Ver 1.0
第 7 页 共 24 页
RN8209
MCU 在选通 CS 后,先通过 SPI 写入令字节(8bit,包含寄存器地址),再写入数 据字节。
1. 以字节为单位传输,高比特在前,低比特在后; 2. 多字节寄存器,先传输高字节内容,再传输低字节内容; 3. MCU 在 SCLK 上升沿写数据,RN8209在 SCLK 下降沿读数据; 4. 数据字节之间的时间 间隔 t1 要大于等于半个 SCLK 周期; 5. 最后一个字节的 LSB 传送完毕,CS 由低变高,结束数据传输。SCLK 下降沿和
2、功能框图与引脚说明
2. 1、功能框图
版本:Ver 1.0
第 1 页 共 24 页
2. 2、引脚排列图
RN8209
AVDD 1 REST 2
NC 3 V1P 4 V1N 5 V2P 6 V2N 7 V3P 8 V3N 9 REF 10 AGND 11 NC 12
24 QF 23 PF 22 IRQ 21 NC 20 OSCO 19 OSCI 18 DVDD 17 DGND 16 CS 15 SCLK 14 SDI 13 SDO
3. 在最后一个比特移出 SDO 后,CS 由低至高时将 RIF 寄存器的内容和 IF 同步。
除了读 RIF 寄存器操作,其他情况下 IF 和 RIF 都保持一致。为了在 SPI 读中断标志 过程中不丢失中断,在中断处理程序中推荐用户使用 RIF 寄存器。
版本:Ver 1.0
第 5 页 共 24 页
RN8209
单相防窃电多功能计量电路
1、概述
RN8209是一个包含三个通道 sigma-delta 模-数转换器(ADC)的电能计量电路,它 可以精确测量和计算电压、电流、有功功率、无功功率、视在功率、有功能量、无功能 量等电能参数,主要应用于各种智能电表及其它电能计量领域中。其特点如下:

单相有功及有效值计量芯片

单相有功及有效值计量芯片

CF_I 和 CF_V 用电或者错误用电状况
型值 30ppm/℃) ,也可以使用外部电压源注: 相关专利申请中。
管脚与框图
DIP/SOP 16
BL6525 系统框图
上海贝岭股份有限公司
中国上海宜山路 810 号
1/9 200233 电话:021-64850700
BL6525


单相有功及有效值计量芯片
特点
高精度,在输入动态工作范围(1000:1)内, 在输入动态工作范围(500:1)内,电流有效值 在输入动态工作范围(500:1)内,电压有效值 低速模式下脉冲输出高稳定性,输出频率波动

概述
BL6525 集成电路是电子式电度表的核心计量
有功功率非线性测量误差小于 0.1% 绝对测量误差小于 0.1% 绝对测量误差小于 0.3% 小于 0.2%。 另具有高速脉冲输出模式, 可以用于高 速校验 精确测量正、负两个方向的有功功率,且以同 精确测量视在功率, 并以快速脉冲输出 CF_VA 精确测量电流电压有效值,并以快速脉冲输出 防窃电功能,逻辑输出脚 REVP 用于显示反向 芯片上有电压检测电路,检测掉电状况 具有防潜动功能 芯片上带参考电压源 2.5V±8%(温度系数典 芯片上带晶振时钟(芯片内置晶振) 单工作电源 5V,低功耗 20mW(典型值) 一方向计算电能,以快速脉冲输出 CF
单相双向电能计量芯片
0.5 10 V mA
4.4 0.5 5 2.3 2.5 30 2.7
V V mA V ppm/C
1 330 10
V Kohm pF
0.1 0.1 0.0015 0.003
度(°) 度(°) %
Pin14
0.1
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

15 极限工作条件.........................................................................................................................19
16 CSE7758 封装........................................................................................................................19
深圳市芯海科技有限公司
版权所有,侵权必究
2/21
单相有功功率计量芯片 CSE7758
图形
图 1.CSE7758 功能框图................................................................................................................. 5 图 2.CSE7758 管脚图(顶视图) ................................................................................................. 5 图 3.CSE7758 精度测试电路......................................................................................................... 7 图 4.CSE7758 测量精度(PGA=16)......................................................................................... 7 图 5.CSE7758 变频测试结果 1(G=16,PF=1) .................................................................... 8 图 6.CSE7758 变频测试结果 2(G=16,PF=0.8C) .............................................................. 8 图 7.CSE7758 变频测试结果 3(G=16,PF=0.5L) .............................................................. 8 图 8.CSE7758 基准电压随温度变化图 ......................................................................................... 9 图 9.CSE7758 信号流图................................................................................................................. 9 图 10. 电流通道接入方法一(电阻采样) ........................................................................... 11 图 11. 电流通道接入方法二(电流互感 CT)..................................................................... 12 图 12. 电压通道接入方法一(电阻分压) ........................................................................... 13 图 13. 电源电压检测信号波形 ............................................................................................... 13 图 14. 通道失调对有功功率计算的影响图 ........................................................................... 14 图 15. CSE7758 数字-频率转换框图................................................................................... 15 图 16. F1,F2,CF 输出时序图 ............................................................................................ 18 图 17. CSE7758 封装轮廓图................................................................................................... 20
17.2 第 2 步:计算最大输出频率......................................................................... 21
17.3 第 3 步:计算电压通道的输入电压............................................................. 21
12.2 输出频率与量程的关系................................................................................. 16
12.3 F1,F2 最大输出频率 ................................................................................... 17
表 格 ................................................................................................................................................3
1 主要特点 ..................................................................................................................................4
5.1
CSE7758 性能指标 .......................................................................................... 6
5.2
CSE7758 实际测试结果 .................................................................................. 7
4 管脚定义及功能描述......................................................................................................................................................................................................... 5
13 F1,F2,CF 输出时序 .........................................................................................................17
14 启动阈值电流.........................................................................................................................19
6.2
功率因子影响................................................................................................. 10
6.3
非正弦电压电流输入..................................................................................... 10
12 电表应用时的参数设置.........................................................................................................16
12.1 锰铜采样电阻的选择..................................................................................... 16
2 功能概述 ..................................................................................................................................4
3 原理框图 ..................................................................................................................................5
相关文档
最新文档