20122017年高考文科数学真题汇编数列高考题老师版

合集下载

20122017年高考文科数学真题汇编坐标系和参数方程老师版

20122017年高考文科数学真题汇编坐标系和参数方程老师版

学科教师辅导教案 学员姓名 年 级高三 辅导科目 数 学授课老师课时数2h第 次课授课日期及时段 2017年 月 日 : — :1.(2015年广东文)在平面直角坐标系x y O 中,以原点O 为极点,x 轴的正半轴为极轴建立极坐标系.曲线1C 的极坐标方程为()cos sin 2ρθθ+=-,曲线2C 的参数方程为222x ty t⎧=⎪⎨=⎪⎩(t 为参数),则1C 与2C 交点的直角坐标为 ()2,4- .2.(2015年新课标2文)在直角坐标系xOy 中,曲线1cos ,:sin ,x t C y t αα=⎧⎨=⎩(t 为参数,且0t ≠ ),其中0απ≤<,在以O 为极点,x 轴正半轴为极轴的极坐标系中,曲线23:2sin ,:23cos .C C ρθρθ==(I )求2C 与3C 交点的直角坐标; (II )若1C 与 2C 相交于点A ,1C 与3C 相交于点B ,求AB 最大值.试题分析:(I )把2C 与3C 的方程化为直角坐标方程分别为2220x y y +-=,22230x y x +-=,联立解历年高考试题集锦——坐标系和参数方程3.(2015年陕西文)在直角坐标版权法xOy 吕,直线l 的参数方程为132(32x t t y t ⎧=+⎪⎪⎨⎪=⎪⎩为参数),以原点为极点,x 轴的正半轴为极轴建立极坐标系,C e 的极坐标方程为23sin ρθ=.(I)写出C e 的直角坐标方程;(II)P 为直线l 上一动点,当P 到圆心C 的距离最小时,求点P 的坐标.试题解析:(I)由23sin ρθ=,得223sin ρρθ=,从而有2223x y y +=所以()2233x y +-=(II)设133,22P t t ⎛⎫+ ⎪⎝⎭,又(0,3)C ,则22213331222PC t t t ⎛⎫⎛⎫=++-=+ ⎪ ⎪⎝⎭⎝⎭,故当0t =时,PC 取得最小值,此时P 点的坐标为(3,0).4、(2015新课标1)在直角坐标系xOy 中,直线1:2C x =-,圆()()222:121C x y -+-=,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系. (I )求12,C C 的极坐标方程. (II )若直线3C 的极坐标方程为()πR 4θρ=∈,设23,C C 的交点为,M N ,求2C MN ∆ 的面积. 解:(I )因为cos ,sin x y ρθρθ==,所以1C 的极坐标方程为cos 2ρθ=-,2C 的极坐标方程为22cos 4sin 40ρρθρθ--+=. ……5分(II )将4πθ=代入22cos 4sin 40ρρθρθ--+=,得23240ρρ-+=,解得1222,2ρρ==.故122ρρ-=,即2MN =由于2C 的半径为1,所以2C MN ∆的面积为12.5、(2016年全国I )在直角坐标系xOy 中,曲线C 1的参数方程为(t 为参数,a >0).在以坐标原点为极点,x 轴正半轴为极轴的极坐标系中,曲线C 2:ρ=4cos θ. (I )说明C 1是哪种曲线,并将C 1的方程化为极坐标方程;(II )直线C 3的极坐标方程为θ=α0,其中α0满足tan α0=2,若曲线C 1与C 2的公共点都在C 3上,求a . 解:⑴ cos 1sin x a t y a t=⎧⎨=+⎩ (t 均为参数)∴()2221x y a +-= ①∴1C 为以()01,为圆心,a 为半径的圆.方程为222210x y y a +-+-=∵222sin x y y ρρθ+==,∴222sin 10a ρρθ-+-=即为1C 的极坐标方程⑵ 24cos C ρθ=:两边同乘ρ得22224cos cos x y x ρρθρρθ==+=Q ,224x y x ∴+=即()2224x y -+= ②3C :化为普通方程为2y x =由题意:1C 和2C 的公共方程所在直线即为3C ①—②得:24210x y a -+-=,即为3C ∴210a -=∴1a =6、(2016年全国II )在直角坐标系xOy 中,圆C 的方程为22(6)25x y ++=. (Ⅰ)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求C 的极坐标方程;(Ⅱ)直线l 的参数方程是cos sin x t y t αα=⎧⎨=⎩(t 为参数), l 与C 交于,A B 两点,||10AB =,求l 的斜率.解:⑴整理圆的方程得2212110x y +++=,由222cos sin x y x y ρρθρθ⎧=+⎪=⎨⎪=⎩可知圆C 的极坐标方程为212cos 110ρρθ++=.⑵记直线的斜率为k ,则直线的方程为0kx y -=,由垂径定理及点到直线距离公式知:226102521kk ⎛⎫-=- ⎪ ⎪+⎝⎭, 即22369014k k =+,整理得253k =,则153k =±. 7、(2016年全国III )在直角坐标系xOy 中,曲线1C 的参数方程为3cos ()sin x y θθθ⎧=⎪⎨=⎪⎩为参数,以坐标原点为极点,以x 轴的正半轴为极轴,,建立极坐标系,曲线2C 的极坐标方程为sin()224ρθπ+= .(I )写出1C 的普通方程和2C 的直角坐标方程;(II )设点P 在1C 上,点Q 在2C 上,求|PQ |的最小值及此时P 的直角坐标.8、(2016江苏)在平面直角坐标系xOy 中,已知直线l 的参数方程为11232x t y t ⎧=+⎪⎪⎨⎪=⎪⎩ (t 为参数),椭圆C 的参数方程为cos ,2sin x y θθ=⎧⎨=⎩ (θ为参数).设直线l 与椭圆C 相交于A ,B 两点,求线段AB 的长.解:椭圆C 的普通方程为2214y x +=,将直线l 的参数方程11232x t y t⎧=+⎪⎪⎨⎪=⎪⎩,代入2214y x +=,得223()12(1)124t t ++=,即27160t t +=,解得10t =,2167t =-.所以1216||7AB t t =-=.9.(2013江苏理)在平面直角坐标系xoy 中,直线l 的参数方程为⎩⎨⎧=+=t y t x 21(t 为参数),曲线C 的参数方程为⎩⎨⎧==θθtan 2tan 22y x (θ为参数),试求直线l 与曲线C 的普通方程,并求出它们的公共点的坐标。

2012-2017年高考文科数学真题汇编:直线和圆老师版(最新整理)

2012-2017年高考文科数学真题汇编:直线和圆老师版(最新整理)

95 4 3
x
3

31(2016 年新课标 1 理)设圆 x2 y2 2x 15 0 的圆心为 A,直线 l 过点 B(1,0)且与 x 轴不重合,l
交圆 A 于 C,D 两点,过 B 作 AC 的平行线交 AD 于点 E.(I)证明 EA EB 为定值,并写出点 E 的轨迹
方程。
【详细解答】(I)圆心为 A(1, 0) ,圆的半径为 AD 4 , AD AC ,
22.(2015 北京文)圆心为 1,1 且过原点的圆的方程是( D )
A. x 12 y 12 1
B. x 12 y 12 1
C. x 12 y 12 2
D. x 12 y 12 2
23.(2015 年广东理)平行于直线 2x y 1 0 且与圆 x2 y2 5 相切的直线的方程是( D )
学员姓名 授课老师
授课日期及时段
学科教师辅导教案
年级
高三
辅导科目
课时数
2h

2017 年 月 日 : — :
数学 次课
历年高考试题集锦——直线和圆
1.(2012 辽宁文)将圆 x2+y2 -2x-4y+1=0 平分的直线是( C )
(A)x)x-y+1=0 (D)x-y+3=0
4 的距离为
5 ,则圆 C 的方程为____ (x 2)2 y2 9. ______
5
19、(2016 年全国 I 卷)设直线 y=x+2a 与圆 C:x2+y2-2ay-2=0 相交于 A,B 两点,若
,则圆 C
的面积为 4π . 20、(2016 年全国 III 卷)已知直线 l : x 3y 6 0 与圆 x2 y2 12 交于 A, B 两点,过 A, B 分别作 l

2012-2017年高考文科数学真题汇编:数列高考题学生版

2012-2017年高考文科数学真题汇编:数列高考题学生版

C. n(n 1) 2
D. n(n 1) 2
7.(2012 安 徽 文 ) 公 比 为 2 的 等 比 数 列 { an } 的 各 项 都 是 正 数, 且
()
(A) 1
(B) 2
(C )
(D)
a 3 a11=16, 则 a 5
8.(2014 大纲文)设等比数列{an}的前 n 项和为 Sn,若 S2=3,S4=15,则 S6=( )
A. 31
B. 32
C. 63
D. 64
9.(2013 江西理)等比数列 x,3x+3,6x+6,…的第四项等于( )
A.-24 B.0
C.12
D.24
第 1 页(共 8 页)
10. (2013 新标 1 文)
设首项为1,公比为
2 3
的等比数列{an } 的前
n
项和为
Sn
,则(

(A) Sn 2an 1
A.1
B.2
C.3
D.4
3.(2014福建理)等差数列{a n}的前 n 项和 S n,若 a 1 2,S 3 12,则 a 6 (
)
A.8
B.10
C.12
D.14
4.(2017·全国Ⅰ理)记 Sn 为等差数列{an}的前 n 项和.若 a4+a5=24,S6=48,则{an}的公差为( )
A.1 B.2 C.4 D.8
a1+a22= -
3,S =10,则
5
a的
9
值是
.
30、(2017·全国Ⅲ理)设等比数列{an}满足 a1+a2=-1,a1-a3=-3,则 a4=________.
a2 31、(2017·北京理)若等差数列{an}和等比数列{bn}满足 a1=b1=-1,a4=b4=8,则b2=________.

2012-2017年高考文科数学真题汇编:数列高考题老师版

2012-2017年高考文科数学真题汇编:数列高考题老师版

学科教师辅导教案 学员姓名 年 级高三 辅导科目数 学授课老师课时数2h第 次课授课日期及时段2018年 月 日 : — :1.(2013安徽文)设nS 为等差数列{}na的前n 项和,8374,2Sa a ==-,则9a =( )(A )6- (B )4- (C)2- (D )2【答案】A 2.(2012福建理)等差数列{a n }中,a 1+a 5=10,a 4=7,则数列{a n }的公差为( )A .1B .2C .3D .4 【答案】B3.(2014福建理)等差数列{}na 的前n 项和nS ,若132,12a S ==,则6a =( ).8A .10B .12C .14D【答案】C 4.(2017·全国Ⅰ理)记S n 为等差数列{a n }的前n 项和.若a 4+a 5=24,S 6=48,则{a n }的公差为( ) A .1 B .2 C .4 D .8【解析】设{a n }的公差为d ,由错误!得错误!解得d =4。

故选C 。

5.(2012辽宁文)在等差数列{a n }中,已知a 4+a 8=16,则a 2+a 10=(A) 12 (B) 16 (C) 20 (D )24 【答案】B6.(2014新标2文) 等差数列{}n a 的公差是2,若248,,a a a 成等比数列,则{}n a 的前n 项和nS =( )A. (1)n n + B 。

(1)n n - C. (1)2n n + D 。

(1)2n n - 【答案】A7.(2012安徽文)公比为2的等比数列{na } 的各项都是正数,且 3a 11a =16,则5a =( )()A 1 ()B 2 ()C 4 ()D 8 【答案】A8.(2014大纲文)设等比数列{a n }的前n 项和为S n ,若S 2=3,S 4=15,则S 6=( ) A. 31 B. 32 C 。

63 D. 64历年高考试题集锦——数列【答案】C9.(2013江西理)等比数列x ,3x +3,6x +6,…的第四项等于( ) A .-24 B .0C .12D .24【答案】A10。

2012-2017年高考文科数学真题汇编:坐标系和参数方程老师版

2012-2017年高考文科数学真题汇编:坐标系和参数方程老师版

学 科 教 师 辅 导 教 案授课日期及时段2017年月日:一1.( 2015年广东文)线G 的极坐标方程为 ?COST sinv - -2,曲线C 2的参数方程为X" ( t 为参数),则c ,与C 2交[y =2(2txOy 中,曲线 G : x-tcos- ,(t 为参数,且t = o ), y =tsinot,,在以o 为极点,x 轴正半轴为极轴的极坐标系中,曲线C 2 : ' = 2sin 二,C 3:『=2 3cos .(I )求C 2与C 3交点的直角坐标;(II )若C ,与C 2相交于点A C i 与C 3相交于 点B ,求AB 最大值.试题分析:(I )把C 2与C 3的方程化为直角坐标方程分别为X 2 y 2-2y =0,x 2 y 2 - 2 - 3^0, 联 立 解学员姓名 年级咼二辅导科目 数学授课老师课时数2h第次课建立极坐标系.曲点的直角坐标为 2, -4 .其中 0 _ :方程溟可帚玄毛住届 5)元踴定田连q 跆捋方程为&二列尸怎比口砂〕起一步求比点4田股生标 先(24n 蔭.cr ]点3的赣坐标为:2^3阳cc rxj 由lit 可届 |-切| ==4 sin ; a~—;I I »tv.门】曲纯G 的劃i 坐标才程为討+H -即"堆錢C 的臣角坐标2隍为Y 3 +j :- 烬=0慝注T孑百3、:厨以G 写Q 喪点的直审业悟[0』片丄二訂di: it 或G 粧生标古里対■立耳中。

三空v-兀 因i 汽亠田槻坐咄利2血尤②車g以坐标原点为极点,X 轴正半轴为极轴建立极坐标系(I )求C i ,C 2的极坐标方程.(II )若直线C 3的极坐标方程为日=』(PE R ),设C 2,C 3的交点为M,N ,求A C 2MN1;■ I=sidff-—xOy 吕,直线I 的参数方程为]x = 3十」t占2 (t 为参数),以原点为极点,X 轴的正半轴为极轴建立极坐标系, L C 的极坐标方程为二=2 3sinx⑴ 写出L C 的直角坐标方程;(II) 为求点P 的坐标.试题解析: ⑴ 由—2、:3sinr ,得「2=2、.3飞inn ,从而有x 2 亠〔y - ;3 = 3卡寸二2 3y 所以 (II)设+号呼「『3昇卜A 2丿<2 丿t 2 12 , 故当t =0时,PC 取得最小值,此时P 点的坐标为(3,0).4、(2015新课标1)在直角坐标系xOy 中,直线C i:x = -2 ,圆 C2:(x-1$+(y -2)2=1 ,兰口=苓时⑷限待醍人直醍尢值拘1. 6Hi以「iff | - |2si]i!Z-2^ UJ > L £(I)以坐标原点为极点,x轴正半轴为极轴建立极坐标系,求C的极坐标方程;(H )直线l 的参数方程是[xicosc ^t 为参数),|与C 交于A ,B 两点,|AB|=V10 , y = tsi na求l 的斜率. f = x 2• y 2解:⑴整理圆的方程得x 2y 212 1^0,由Tcosv-x 可知圆C 的极坐标"sin J - y方程为J 2 12 2osr 1仁0 .⑵记直线的斜率为k ,则直线的方程为kx — y=0, 由垂径定理及点到直线距离公式知:単=丄5 一回f , 即、时' I 2丿36k : =90,整理得 k 2=5,则—15 . 1 k 24 337、( 2016年全国III )在直角坐标系xOy 中,曲线C 1的参数方程为日(日为参数), [y =s in 日以坐标原点为极点,以x 轴的正半轴为极轴,,建立极坐标系,曲线C 2的 极坐标方程为宀心尸2(I )写出C 1的普通方程和C 2的直角坐标方程;(II )设点P 在C 1上,点Q 在C 2上,求|PQ 的最小值及此时P 的直角坐8、(2016江苏)在平面直角坐标系xOy 中,已知直线I 的参数方程为x =cos 入厂2sin '(二为参数).设直线|与椭圆C 相 交于A, B两点,求线段AB 的长.x =1 - t23 F (t为参数),椭圆C 的参数方程为通方程,并求出它们的公共点的坐标。

20122017年高考文科数学真题汇编基本初等函数老师版

20122017年高考文科数学真题汇编基本初等函数老师版

11、(2016年山东)已知函数f(x )的定义域为R.当x <0时,f(x )=x 3-1;当-1≤x ≤1时,f(-x )= —f(x );当x >12时,f(x +12)=f(x —12).则f(6)=( D ) (A )-2 (B )-1 (C )0 (D )212、(2016年天津)已知)(x f 是定义在R 上的偶函数,且在区间)0,(-∞上单调递增,若实数a 满足)2()2(|1|->-f f a ,则a 的取值范围是( C )(A ))21,(-∞(B )),23()21,(+∞-∞Y (C ))23,21( (D )),23(+∞13、(2016年全国I 卷)若a>b>0,0<c<1,则( B )(A )log a c <log b c (B )log c a <log c b (C )a c <b c (D )c a >c b 14、(2016年全国I 卷高考)函数y =2x 2–e |x |在[–2,2]的图像大致为( D )(A )(B )(C )(D )15、(2016年全国II 卷)下列函数中,其定义域和值域分别与函数y=10lg x 的定义域和值域相同的是( D )(A )y =x (B )y =lg x (C )y =2x (D )1y x=16、(2016年全国III 卷)已知4213332,3,25a b c ===,则( A )(A) b a c << (B)a b c <<(C) b c a << (D) c a b <<17、(2016年江苏)函数y =232x x --的定义域是 []3,1- .18、(2016年江苏)设f (x )是定义在R 上且周期为2的函数,在区间[ −1,1)上,,10,()2,01,5x a x f x x x +-≤<⎧⎪=⎨-≤<⎪⎩其中.a ∈R 若59()()22f f -= ,则(5)f a 的值是 25- . 19、(2016年四川高考)若函数f (x )是定义R 上的周期为2的奇函数,当0<x<1时,f (x )=x 4,则f (25-)+f (2)= -2 。

2012-2017年高考文科数学真题汇编:统计案例和概率老师版

2012-2017年高考文科数学真题汇编:统计案例和概率老师版

车间的产品中抽取了 3 件,则 n=_______
A.9 B.10 C.12 D.13
【答案】D
4、(2017·天津文)有 5 支彩笔(除颜色外无差别),颜色分别为红、黄、蓝、绿、紫.从这 5 支彩笔中任取 2
支不同颜色的彩笔,则取出的 2 支彩笔中含有红色彩笔的概率为( )
A.45
B.35
C.25
3
18、(2016 年全国 II 卷)某路口人行横道的信号灯为红灯和绿灯交替出现,红灯持续时间为 40 秒.若一名
行人来到该路口遇到红灯,则至少需要等待 15 秒才出现绿灯的概率为( B )
(A) 7 10
(B) 5 8
(C) 3 8
(D) 3 10
19、(2016 年全国 III 卷)某旅游城市为向游客介绍本地的气温情况,绘制了一年中月平均最高气温和平
年级学生中抽取一个容量为 45 的样本,则应抽取的男生人数为_______.
【答案】 25
27.(2017·全国Ⅰ文)为评估一种农作物的种植效果,选了 n 块地作试验田.这 n 块地的亩产量(单位:kg)
分别为 x1,x2,…,xn,下面给出的指标中可以用来评估这种农作物亩产量稳定程度的是( B )
【答案】B
13、(2016 年北京)从甲、乙等 5 名学生中随机选出 2 人,则甲被选中的概率为
(A) 1 5
【答案】B
(B) 2 5
(C) 8 25
(D) 9 25
第 2 页(共 15 页)
14、(2017 年新课标Ⅱ)从分别写有 1,2,3,4,5 的 5 张卡片中随机抽取 1 张,放回后再随机抽取 1 张,则抽得
D.15
【答案】C【解析】从 5 支彩笔中任取 2 支不同颜色彩笔的取法有红黄、红蓝、红绿、红紫、黄蓝、黄绿、

2012-2017年高考文科数学真题总汇编:圆锥曲线老师版

2012-2017年高考文科数学真题总汇编:圆锥曲线老师版

∴a b3231=5525451511052222222=⇒=⇒=-⇒=⇒e a c a c a a b(Ⅱ)由题意可知N 点的坐标为(2,2b a -)∴a b a ba a bb K MN 56652322131==-+= abK AB-=∴1522-=-=⋅a b K K AB MN ∴MN ⊥AB 18.(2015年福建文)已知椭圆2222:1(0)x y E a b a b+=>>的右焦点为F .短轴的一个端点为M ,直线:340l x y -=交椭圆E 于,A B 两点.若4AF BF +=,点M 到直线l 的距离不小于45,则椭圆E 的离心率的取值范围是( A ) A . 3(0,]2 B .3(0,]4 C .3[,1)2 D .3[,1)4119.(2015年新课标2文)已知双曲线过点()4,3,且渐近线方程为12y x =±,则该双曲线的标准方程为 .2214x y -= 20.(2015年陕西文)已知抛物线22(0)y px p =>的准线经过点(1,1)-,则抛物线焦点坐标为( B )A .(1,0)-B .(1,0)C .(0,1)-D .(0,1)【解析】试题分析:由抛物线22(0)y px p =>得准线2px =-,因为准线经过点(1,1)-,所以2p =, 所以抛物线焦点坐标为(1,0),故答案选B 考点:抛物线方程.21.(2015年陕西文科)如图,椭圆2222:1(0)x y E a b a b+=>>经过点(0,1)A -,且离心率为22.(I)求椭圆E 的方程;2212x y += 22.(2015年天津文)已知双曲线22221(0,0)x y a b a b-=>>的一个焦点为(2,0)F ,且双曲线的渐近线与圆()222y 3x -+=相切,则双曲线的方程为( D )(A)221913x y -= (B) 221139x y -= (C) 2213x y -= (D) 2213y x -= 23.(2013广东文)已知中心在原点的椭圆C 的右焦点为(1,0)F ,离心率等于21,则C 的方程是( D ) A .14322=+y x B .13422=+y x C .12422=+y x D .13422=+y x24.(2012沪春招) 已知椭圆222212:1,:1,124168x y x y C C +=+=则 ( D ) (A)1C 与2C 顶点相同. (B )1C 与2C 长轴长相同. (C)1C 与2C 短轴长相同. (D )1C 与2C 焦距相等.25.(2012新标) 设12F F 是椭圆2222:1(0)x y E a b a b +=>>的左、右焦点,P 为直线32ax =上一点,∆21F PF 是底角为30o 的等腰三角形,则E 的离心率为( C )()A 12 ()B 23 ()C 34()D 4526.(2013新标2文) 设椭圆C :x 2a2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1、F 2,P 是C 上的点,PF 2⊥F 1F 2,∠PF 1F 2=30°,则C 的离心率为( D ) A.36B.13C.12D.3327.(2013四川文) 从椭圆x 2a 2+y 2b 2=1(a >b >0)上一点P 向x 轴作垂线,垂足恰为左焦点F 1,A 是椭圆与x轴正半轴的交点,B 是椭圆与y 轴正半轴的交点,且AB ∥OP (O 是坐标原点),则该椭圆的离心率是( ) A.24 B.12 C.22 D.32【简解】由题意可设P (-c ,y 0)(c 为半焦距),k OP =-y 0c,k AB =-b a,由于OP ∥AB ,∴-y 0c=-b a,y 0=bc a,把P ⎝⎛⎭⎪⎫-c ,bc a 代入椭圆方程得-c 2a 2+⎝ ⎛⎭⎪⎫bc a 2b 2=1,而⎝ ⎛⎭⎪⎫c a 2=12,∴e =c a =22.选C.28.(2014大纲)已知椭圆C :22221x y a b+=(0)a b >>的左、右焦点为1F 、2F ,离心率为33,过2F 的直线l 交C 于A 、B 两点,若1AF B ∆的周长为43,则C 的方程为( )A .22132x y += B .2213x y += C .221128x y += D .221124x y +=【答案】D 【解析】由2224c a b =+=得2c =,所以(2,0)F ,将2x =代入2213y x -=,得3y =±,所以3PF =,又A 的坐标是(1,3),故APF 的面积为133(21)22⨯⨯-=,选D.40.(2017新课标1文)设A 、B 是椭圆C :2213x y m+=长轴的两个端点,若C 上存在点M 满足∠AMB =120°,则m 的取值范围是 ( A ) A .(0,1][9,)+∞U B .(0,3][9,)+∞U C .(0,1][4,)+∞UD .(0,3][4,)+∞U【答案】A 【解析】当03m <<,焦点在x 轴上,要使C 上存在点M 满足120AMB ∠=o,则tan 603ab≥=o ,即33m≥,得01m <≤;当3m >,焦点在y 轴上,要使C 上存在点M 满足120AMB ∠=o ,则tan 603a b ≥=o ,即33m ≥,得9m ≥,故m 的取值范围为(0,1][9,)⋃+∞,选A. 41、(2017·全国Ⅱ文,5)若a >1,则双曲线x 2a2-y 2=1的离心率的取值范围是( )A .(2,+∞)B .(2,2)C .(1,2)D .(1,2) 3.【答案】C 【解析】由题意得双曲线的离心率e =a 2+1a.∴e 2=a 2+1a 2=1+1a2.∵a >1,∴0<1a 2<1,∴1<1+1a2<2,∴1<e <2.故选C.42.(2017·全国Ⅱ文,12)过抛物线C :y 2=4x 的焦点F ,且斜率为3的直线交C 于点M (M 在x 轴上方),l 为C 的准线,点N 在l 上且MN ⊥l ,则M 到直线NF 的距离为( )A. 5 B .2 2 C .2 3 D .3 34.【答案】C 【解析】抛物线y 2=4x 的焦点为F (1,0),准线方程为x =-1.由直线方程的点斜式可得直线MF 的方程为y =3(x -1).联立得方程组⎩⎪⎨⎪⎧y =3x -1,y 2=4x ,解得⎩⎪⎨⎪⎧x =13,y =-233或⎩⎪⎨⎪⎧x =3,y =2 3.∵点M 在x 轴的上方,∴M (3,23).∵MN ⊥l ,∴N (-1,23).∴|NF |=1+12+0-232=4,|MF |=|MN |=3-(-1)=4.∴△MNF 是边长为4的等边三角形.∴点M 到直线NF 的距离为2 3.故选C.43.(2017·全国Ⅲ文,11)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右顶点分别为A 1,A 2,且以线段A 1A 2为直径的圆与直线bx -ay +2ab =0相切,则椭圆C 的离心率为( ) A .63 B .33 C .23 D .135.【答案】A 【解析】由题意知以A 1A 2为直径的圆的圆心坐标为(0,0),半径为a . 又直线bx -ay +2ab =0与圆相切,∴圆心到直线的距离d =2aba 2+b 2=a ,解得a =3b ,∴b a=13,∴e =c a =a 2-b 2a=1-⎝ ⎛⎭⎪⎫b a 2=1-⎝ ⎛⎭⎪⎪⎫132=63. 44.(2017·天津文,5)已知双曲线x 2a2-y 2b 2=1(a >0,b >0)的右焦点为F ,点A 在双曲线的渐近线上,△OAF是边长为2的等边三角形(O 为原点),则双曲线的方程为( ) A .x 24-y 212=1B .x 212-y 24=1C .x 23-y 2=1D .x 2-y 23=16.【答案】D 【解析】根据题意画出草图如图所示⎝⎛⎭⎪⎫不妨设点A 在渐近线y =b a x 上.由△AOF 是边长为2的等边三角形得到∠AOF =60°,c =|OF |=2.又点A 在双曲线的渐近线y =b a x 上,∴ba=tan 60°=3.又a 2+b 2=4,∴a =1,b =3,∴双曲线的方程为x 2-y 23=1.故选D.45.(2017·全国Ⅲ文,14)双曲线x 2a 2-y 29=1(a >0)的一条渐近线方程为y =35x ,则a =________.1.【答案】5【解析】∵双曲线的标准方程为x 2a 2-y 29=1(a >0),∴双曲线的渐近线方程为y =±3a x .又双曲线的一条渐近线方程为y =35x ,∴a =5.46、(2017·北京文,10)若双曲线x 2-y 2m=1的离心率为3,则实数m =________.【答案】2【解析】由双曲线的标准方程知a =1,b 2=m ,c =1+m ,故双曲线的离心率e =ca=1+m=3,∴1+m =3,∴m =2.47、(2017·全国Ⅱ理,16)已知F 是抛物线C :y 2=8x 的焦点,M 是C 上一点,FM 的延长线交y 轴于点N .若M 为FN 的中点,则|FN |=________.【解析】如图,不妨设点M 位于第一象限内,抛物线C 的准线交x 轴于点A ,过点M 作准线的垂线,垂足为点B ,交y 轴于点P ,∴PM ∥OF .由题意知,F (2,0),|FO |=|AO |=2.∵点M 为FN 的中点,PM ∥OF ,∴|MP |=12|FO |=1.又|BP |=|AO |=2,∴|MB |=|MP |+|BP |=3.由抛物线的定义知|MF |=|MB |=3,故|FN |=2|MF |=6.48、(2017新课标1文)设A ,B 为曲线C :y =24x 上两点,A 与B 的横坐标之和为4. (1)求直线AB 的斜率;(2)设M 为曲线C 上一点,C 在M 处的切线与直线AB 平行,且AM ⊥BM ,求直线AB 的方程. 【解析】(1)设()()1122,,,A x y B x y ,则2221212121214414AB x x y y x x K x x x x --+====-- (2)设200,4x M x ⎛⎫ ⎪⎝⎭ ,则C 在M 处的切线斜率'00112ABy K K x x x ====- ∴02x = 则()12,1A ,又AM ⊥BM ,22121212121111442222AM BMx x y y K K x x x x ----==----g g g ()()()121212222411616x x x x x x +++++===-即()12122200x x x x +++= 又设AB :y=x +m 代入24x y = 得2440x x m --= ∴124x x +=,124x x m =- -4m +8+20=0∴m=7故AB :x +y=749.(2017年新课标Ⅱ文)设O 为坐标原点,动点M 在椭圆C :x 22+y 2=1上,过M 作x 轴的垂线,垂足为N ,点P 满足→NP =2→NM .(1)求点P 的轨迹方程;(2)设点Q 在直线x =-3上,且→OP ·→PQ =1.证明:过点P 且垂直于OQ 的直线l 过C 的左焦点F . 【解析】(1)设P (x ,y ),M (x 0,y 0),则N (x 0,0),→NP =(x -x 0,y ),→NM =(0,y 0).由→NP =2→NM 得x 0=x ,y 0=22y .。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

A. 31
B. 32
C. 63
D. 64 【答案】C
9.(2013江西理)等比数列x,3x +3,6x +6,…的第四项等于( ) A .-24 B .0
C .12
D .24
【答案】A
10. (2013新标1文) 设首项为1,公比为的等比数列{}n a 的前n 项和为n S ,则( ) (A )21n n S a =- (B )32n n S a =- (C )43n n S a =- (D )32n n S a =- 【答案】D
11.(2015年新课标2文)设n S 是等差数列{}n a 的前n 项和,若1353a a a ++=,则5S =( ) A .5 B .7 C .9 D .11 【答案】A
12.(2015年新课标2文)已知等比数列{}n a 满足11
4
a =
,()35441a a a =-,则2a =( )
A.2
B.1 1
C.2 1
D.8
【答案】C
13、(2016年全国I 理)已知等差数列{}n a 前9项的和为27,10=8a ,则100=a
(A )100 (B )99 (C )98 (D )97
【答案】C
14.(2014辽宁)设等差数列{}n a 的公差为d ,若数列1{2}n
a a 为递减数列,则( )
A .0d <
B .0d >
C .10a d <
D .10a d > 【答案】D
15.(2015年新课标2理)等比数列{a n }满足a 1=3,135a a a ++ =21,则357a a a ++= ( )
(A )21 (B )42 (C )63 (D )84 【答案】B
16.(2012大纲理)已知等差数列{}n a 的前n 项和为55,5,15n S a S ==,则数列11n n a a +⎧⎫
⎨⎬⎩⎭
的前100项和为
A .
100101 B .99101 C .99100 D .101
100
(
-
100 2
所以61
6
42128
b-
=⨯=.由12822
n
=+,得63
n=.所以
6
b与数列{}n a的第63项相等.
37、(2016年全国I卷)已知{}n a是公差为3的等差数列,数列{}n b满足1211
1
==
3n n n n
b b a b b nb
++
+=
1,,. (I)求{}n a的通项公式;(II)求{}n b的前n项和.
解:(I)由已知,
122112
1
,1,,
3
a b b b b b
+===得
122112
1
,1,,
3
a b b b b b
+===得
1
2
a=,所以数列{}n a是首
项为2,公差为3的等差数列,通项公式为31
n
a n
=-.
(II)由(I)和
11
n n n n
a b b nb
++
+=,得
13
n
n
b
b
+
=,因此{}n b是首项为1,公比为1
3
的等比数列.记{}n b
的前n项和为
n
S,则
1
1
1()31
3.
1223
1
3
n
n n
S
-
-
==-

-
38、(2016年全国III卷)已知各项都为正数的数列{}n a满足11
a=,2
11
(21)20
n n n n
a a a a
++
---=.
(I)求
23
,
a a;(II)求{}n a的通项公式.
39、(2016年全国II卷)等差数列{
n
a}中,
3457
4,6
a a a a
+=+=.
(Ⅰ)求{
n
a}的通项公式;解析:(Ⅰ)设数列{}n a的公差为d,由题意有11
254,53
a d a d
-=-=,解得1
2
1,
5
a d
==,所以{}n a的通项公式为23
5
n
n
a
+
=.
40.(2015年福建文科)等差数列{}n a中,24
a=,
47
15
a a
+=.
(Ⅰ)求数列{}n a的通项公式;
(Ⅱ)设2
2n a
n
b n
-
=+,求
12310
b b b b
+++⋅⋅⋅+的值.
【答案】(Ⅰ)2
n
a n
=+;(Ⅱ)2101.
【解析】试题分析:(Ⅰ)利用基本量法可求得
1
,a d,进而求{}n a的通项公式;(Ⅱ)求数列前n项和,首
先考虑其通项公式,根据通项公式的不同特点,选择相应的求和方法,本题2n
n
b n
=+,故可采取分组求和法求其前10项和.
试题解析:(I)设等差数列{}n a的公差为d.由已知得()()
1
11
4
3615
a d
a d a d
+=
⎧⎪

+++=
⎪⎩
,解得1
3
1
a
d
=


=


所以()
1
12
n
a a n d n
=+-=+.
考点:1、等差数列通项公式;2、分组求和法.
41、(2016年北京高考)已知{a n}是等差数列,{b n}是等比数列,且b2=3,b3=9,a1=b1,a14=b4.
(Ⅰ)求{a n}的通项公式;(Ⅱ)设c n= a n+ b n,求数列{c n}的前n项和.
解:(I)等比数列{}n b的公比3
2
9
3
3
b
q
b
===,所以2
1
1
b
b
q
==,
43
27
b b q
==.
设等差数列{}n a的公差为d.因为111
a b
==,
144
27
a b
==,所以11327
d
+=,即2
d=.
所以21
n
a n
=-(1
n=,2,3,⋅⋅⋅).
(II)由(I)知,21
n
a n
=-,1
3n
n
b-
=.因此1
213n
n n n
c a b n-
=+=-+.
从而数列{}n c的前n项和()1
1321133n
n
S n-
=++⋅⋅⋅+-+++⋅⋅⋅+
()
12113
213
n
n n
+--
=+
-
学科网
2
31
2
n
n
-
=+.。

相关文档
最新文档