人教版九年级数学上册期末考试复习专题训练:圆测试题附答案
九年级数学上册《圆》期末复习练习及答案

九年级数学上册《圆》期末复习练习及答案姓名:_______________班级:_______________得分:_______________一选择题:1.下列说法不正确的是()A.圆是轴对称图形,它有无数条对称轴B.圆的半径﹨弦长的一半﹨弦上的弦心距能组成一直角三角形,且圆的半径是此直角三角形的斜边C.弦长相等,则弦所对的弦心距也相等D.垂直于弦的直径平分这条弦,并且平分弦所对的弧2.如图,已知⊙O是△ABD的外接圆,AB是⊙O的直径,CD是⊙O的弦,∠ABD=58°,则∠BCD 等于()A.116°B.32°C.58°D.64°第2题图第3题图第4题图3.如图是我市环北路改造后一圆柱形输水管的横截面,阴影部分为有水部分,如果水面AB 宽为4m,水面最深地方的高度为1m,则该输水管的半径为()A.2mB.2.5mC.4mD.5m4.如图,⊙O的直径CD垂直于弦AB于点E,且CE=2,OB=4,则AB的长为()A. B.4 C.6 D.5.如图,在Rt△ABC中,∠C=90°,∠B=30°,BC=4cm,以点C为圆心,以2cm的长为半径作圆,则⊙C与AB的位置关系是( )A.相离B.相切C.相交D.相切或相交第5题图第6题图6.如图,AB是⊙O的直径,C﹨D是⊙O上一点,∠CDB=20°,过点C作⊙O的切线交AB的延长线于点E,则∠E等于()A.40°B.50°C.60°D.70°7.如图,Rt△AB′C′是Rt△ABC以点A为中心逆时针旋转90°而得到的,其中AB=1,BC=2,则旋转过程中弧CC′的长为( )A.πB.π C.5π D.π第7题图第8题图第9题图8.如图,PA,PB是⊙O的切线,A,B是切点,点C是劣弧AB上的一个点,若∠P=40°,则∠ACB 度数是( )A.80°B.110°C.120°D.140°9.如图,△ABC中,AB=5,BC=3,AC=4,以点C为圆心的圆与AB相切,则⊙C的半径为()A.2.3B.2.4C.2.5D.2.610.如图,在直角∠O的内部有一滑动杆AB,当端点A沿直线AO向下滑动时,端点B会随之自动地沿直线OB向左滑动,如果滑动杆从图中AB处滑动到A′B′处,那么滑动杆的中点C 所经过的路径是()A.直线的一部分B.圆的一部分C.双曲线的一部分D.抛物线的一部分第10题图第11题图第12题图11.如图是油路管道的一部分,延伸外围的支路恰好构成一个直角三角形,两直角边分别为6m和8m.按照输油中心O到三条支路的距离相等来连接管道,则O到三条支路的管道总长(计算时视管道为线,中心O为点)是()A.2mB.3mC.6mD.9m12.如图,以AC为斜边在异侧作Rt△ABC和Rt△ADC,∠ABC=∠ADC=90°,∠BCD=45°,AC=2,则BD的长度为()A.1B.C.D.13.如图,半径为1的圆O与正五边形ABCDE相切于点A﹨C,劣弧AC的长度为()A.πB.πC.πD.π第13题图第14题图第15题图14.如图,在半径为2,圆心角为90°的扇形内,以BC为直径作半圆,交弦AB于点D,连接CD,则阴影部分的面积为()A.π﹣1B.2π﹣1C.π﹣1D.π﹣215.如图,AB是⊙O的直径,弦BC=2cm,∠ABC=60°.若动点P以2cm/s的速度从B点出发沿着B→A的方向运动,点Q从A点出发沿着A→C的方向运动,当点P到达点A时,点Q也随之停止运动.设运动时间为t(s),当△APQ是直角三角形时,t的值为() A. B. C.或 D.或或17.把一张圆形纸片和一张含45°角的扇形纸片如图所示的方式分别剪得一个正方形,如果所剪得的两个正方形边长都是1,那么圆形纸片和扇形纸片的面积比是()A.4:5B.2:5C.:2D.:18.如图,点A﹨B分别在x轴﹨y轴上(),以AB为直径的圆经过原点O,C是的中点,连结AC,BC.下列结论:①; ②若4,OB =2,则△ABC的面积等于5; ③若,则点C的坐标是(2,),其中正确的结论有()A.3个B.2个C.1个D.0个19.如图,A点在半径为2的⊙O上,过线段OA上的一点P作直线l,与⊙O过A点的切线交于点B,且∠APB=60°,设OP=x,则△PAB的面积y关于x的函数图象大致是()20.如图,以为圆心,半径为2的圆与轴交于﹨两点,与轴交于﹨两点,点为⊙上一动点,,垂足为.当点从点出发沿顺时针运动到点时,点所经过的路径长为()(A)(B)(C)(D)二填空题:21.小明把如图所示的矩形纸板挂在墙上,玩飞镖游戏(2008•庆阳)图中△ABC外接圆的圆心坐标是_______.第21题图第22题图第23题图22.如图,AB是⊙O的直径,C﹨D是⊙O上的点,∠CDB=20°,过点C作⊙O的切线交AB的延长线于点E,则∠E=_______.23.如图,AB为⊙O的直径,∠E=20°,∠DBC=50°,则∠CBE= °.24.在Rt△ABC中,∠C=90°,AC=5,BC=12,若以C点为圆心﹨r为半径所作的圆与斜边AB 只有一个公共点,则r的范围是.第24题图第25题图第26题图25.如图,四边形OABC是菱形,点B,C在以点O为圆心的弧EF上,且∠1=∠2,若扇形OEF的面积为3π,则菱形OABC的边长为________.26.如图,三个小正方形的边长都为1,则图中阴影部分面积的和是__________。
【期末专项复习】人教版数学九年级(上)第24章:圆 压轴题专项训练(附详细解答)

【期末专项复习】第24章:圆压轴题专项训练1.如图,Rt△ABC中,∠ABC=90°,以AB为直径作⊙O,点D为⊙O上一点,且CD=CB,连接DO并延长交CB的延长线于点E.(1)判断直线CD与⊙O的位置关系,并说明理由;(2)若BE=4,DE=8,求AC的长.2.如图,AB是⊙O的直径,AC平分∠DAB交⊙O于点C,过点C的直线垂直于AD 交AB的延长线于点P,弦CE交AB于点F,连接BE.(1)求证:PD是⊙O的切线;(2)若PC=PF,试证明CE平分∠ACB.3.如图,已知点E在△ABC的边AB上,∠C=90°,∠BAC的平分线交BC于点D,且D在以A为直径的⊙O上.(1)求证:BC是⊙O的切线;(2)若DC=4,AC=6,求圆心O到AD的距离.4.在直角三角形ABC中,∠C=90°,∠BAC的角平分线AD交BC于D,作AD的中垂线交AB于O,以O为圆心,OA为半径画圆,则BC与⊙O的位置关系为证明你的猜想.5.如图,AB为⊙O的直径,直线BM⊥AB于点B,点C在⊙O上,分别连接BC,AC,且AC的延长线交BM于点D,CF为⊙O的切线交BM于点F.(1)求证:CF=DF;(2)连接OF,若AB=10,BC=6,求线段OF的长.6.如图,△ABC内接于⊙O,且AB为⊙O的直径,OD⊥AB,与AC交于点E,∠D =2∠A.(1)求证:CD是⊙O的切线;(2)求证:DE=DC;(3)若OD=5,CD=3,求AC的长.7.如图,直角坐标系中,⊙M经过原点O(0,0),点A(,0)与点B(0,﹣1),点D在劣弧OA上,连接BD交x轴于点C,且∠COD=∠CBO.(1)请直接写出⊙M的直径,并求证BD平分∠ABO;(2)在线段BD的延长线上寻找一点E,使得直线AE恰好与⊙M相切,求此时点E 的坐标.8.如图,在△ABC中,BA=BC,以AB为直径作⊙O,交AC于点D,连接DB,过点D作DE⊥BC,垂足为E.(1)求证:AD=CD.(2)求证:DE为⊙O的切线.(3)若∠C=60°,DE=,求⊙O半径的长.9.如图,在△ABC中,AB=AC,以AB为直径的⊙O分别与BC、AC交于点D、E,过点D作DF⊥AC于点F.(1)若⊙O的半径为3,∠CDF=15°,求阴影部分的面积;(2)求证:DF是⊙O的切线;(3)求证:∠EDF=∠DAC.10.已知:△ABC内接于⊙O,AB是⊙O的直径,作EG⊥AB于H,交BC于F,延长GE交直线MC于D,且∠MCA=∠B,求证:(1)MC是⊙O的切线;(2)△DCF是等腰三角形.11.如图,AB是⊙O的直径,弦CD⊥AB,垂足为H,连接AC,过上一点E作EG∥AC交CD的延长线于点G,连接AE交CD于点F,且EG=FG,连接CE.(1)求证:EG是⊙O的切线;(2)延长AB交GE的延长线于点M,若AH=3,CH=4,求EM的值.12.如图,D是△ABC外接圆上的动点,且B,D位于AC的两侧,DE⊥AB,垂足为E,DE的延长线交此圆于点F.BG⊥AD,垂足为G,BG交DE于点H,DC,FB 的延长线交于点P,且PC=PB.(1)求证:BG∥CD;(2)设△ABC外接圆的圆心为O,若AB=DH,∠OHD=80°,求∠BDE的大小.13.已知:AB为⊙O的直径,AB=AC,BC交⊙O于点D,DE⊥AC于E.(1)求证:DE为⊙O的切线;(2)连接BE交圆于F,连AF并延长ED于G,若GE=2,AF=3,求∠EAF的度数.14.如图,AB是⊙O的直径,DO⊥AB于点O,连接DA交⊙O于点C,过点C作⊙O 的切线交DO于点E,连接BC交DO于点F.(1)求证:CE=EF;(2)连接AF并延长,交⊙O于点G.填空:①当∠D的度数为时,四边形ECFG为菱形;②当∠D的度数为时,四边形ECOG为正方形.15.如图,以△ABC的边AB为直径画⊙O,交AC于点D,半径OE∥BD,连接BE,DE,BD,设BE交AC于点F,若∠DEB=∠DBC.(1)求证:BC是⊙O的切线;(2)若BF=BC=2,求图中阴影部分的面积.16.已知BC是⊙O的直径,点D是BC延长线上一点,AB=AD,AE是⊙O的弦,∠AEC=30°.(1)求证:直线AD是⊙O的切线;(2)若AE⊥BC,垂足为M,⊙O的半径为4,求AE的长.17.如图,以△ABC的边AC为直径的⊙O恰为△ABC的外接圆,∠ABC的平分线交⊙O于点D,过点D作DE∥AC交BC的延长线于点E.(1)求证: DE是⊙O的切线;(2)若AB=2,BC=,求DE的长.18.如图,在△ABC中,AB=AC,AO⊥BC于点O,OE⊥AB于点E,以点O为圆心,OE为半径作半圆,交AO于点F.(1)求证:AC是⊙O的切线;(2)若点F是OA的中点,OE=3,求图中阴影部分的面积;(3)在(2)的条件下,点P是BC边上的动点,当PE+PF取最小值时,直接写出BP的长.参考答案1.(1)证明:连接OC.∵CB=CD,CO=CO,OB=OD,∴△OCB≌△OCD,∴∠ODC=∠OBC=90°,∴OD⊥DC,∴DC是⊙O的切线.(2)解:设⊙O的半径为r.在Rt△OBE中,∵OE2=EB2+OB2,∴(8﹣r)2=r2+42,∴r=3,∵tan∠E==,∴=,∴CD=BC=6,在Rt△ABC中,AC===6.2.证明:(1)连接OC,如图,∵AC平分∠DAB,∴∠1=∠2,∵OA=OC,∴∠1=∠3,∴∠2=∠3,∴OC∥AD,∵AD⊥CD,∴OC⊥CD,∴PD是⊙O的切线;(2)∵OC⊥PC,∴∠PCB+∠BCO=90°,∵AB为直径,∴∠ACB=90°,即∠3+∠BCO,∴∠3=∠PCB,而∠1=∠3,∴∠1=∠PCB,∵PC=PF,∴∠PCF=∠PFC,而∠PCF=∠PCB+∠BCF,∠PFC=∠1+∠ACF,∴∠BCF=∠ACF,即CE平分∠ACB.3.(1)证明:连接OD,∵OA=OD,∴∠OAD=∠ODA,∵AD平分∠BAC,∴∠OAD=∠CAD,∴∠ODA=∠CAD,∴OD∥AC,又∵∠C=90°,∴∠ODB=∠C=90°,∴OD⊥BC,(2)过O作OF⊥AD于F,由勾股定理得:AD==2,∴DF=AD=,∵∠OFD=∠C=90°,∠ODA=∠CAD,∴△ACD∽△DFO,∴,∴,∴FO=,即圆心O到AD的距离是.4.解:BC与⊙O相切.理由如下:连接OD,如图,∵AD平分∠CAB,∴∠1=∠2,∵AD的中垂线交AB于O,∴OA=OD,∴∠2=∠3,∴∠1=∠3,∴OD∥AC,∵AC⊥BC,∴OD⊥BC,故答案为相切.5.(1)证明:连接OC,如图,∵CF为切线,∴OC⊥CF,∴∠1+∠3=90°,∵BM⊥AB,∴∠2+∠4=90°,∵OC=OB,∴∠1=∠2,∴∠3=∠4,∵AB为直径,∴∠ACB=90°,∴∠3+∠5=90°,∠4+∠BDC=90°,∴∠BDC=∠5,∴CF=DF;(2)解:在Rt△ABC中,AC==8,∵∠BAC=∠DAB,∴△ABC∽△ABD,∴=,即=,∴AD=,∵∠3=∠4,∴FC=FB,而FC=FD,而BO=AO,∴OF为△ABD的中位线,∴OF=AD=.6.(1)证明:连接OC,如图,∵OA=OC,∴∠ACO=∠A,∴∠COB=∠A+∠ACO=2∠A,又∵∠D=2∠A,∴∠D=∠COB.又∵OD⊥AB,∴∠COB+∠COD=90°.∴∠D+∠COD=90°.即∠DCO=90°,∴OC⊥DC,又点C在⊙O上,∴CD是⊙O的切线;(2)证明:∵∠DCO=90°,∴∠DCE+∠ACO=90°.又∵OD⊥AB,∴∠AEO+∠A=90°,又∵∠A=∠ACO,∠DEC=∠AEO,∴∠DEC=∠DCE,∴DE=DC;(3)解:∵∠DCO=90°,OD=5,DC=3,∴AB=2OC=8,又DE=DC=3,∴OE=OD﹣DE=2,∵∠A=∠A,∠AOE=∠ACB=90°,∴△AOE∽△ACB,∴=,即===,∴BC=AC,在△ABC中,∵AC2+BC2=AB2,∴AC2+AC2=82,∴AC=.7.解:∵点A(,0)与点B(0,﹣1),∴OA=,OB=1,∴AB==2,∵AB是⊙M的直径,∴⊙M的直径为2,∵∠COD=∠CBO,∠COD=∠CBA,∴∠CBO=∠CBA,即BD平分∠ABO;(2)如图,过点A作AE⊥AB于E,交BD的延长线于点E,过E作EF⊥OA于F,即AE是切线,∵在Rt△ACB中,tan∠OAB===,∴∠OAB=30°,∵∠ABO=90°,∴∠OBA=60°,∴∠ABC=∠OBC==30°,∴OC=OB•tan30°=1×=,∴AC=OA﹣OC=,∴∠ACE=∠ABC+∠OAB=60°,∴∠EAC=60°,∴△ACE是等边三角形,∴AE=AC=,∴AF=AE=,EF==1,∴OF=OA﹣AF=,∴点E的坐标为(,1).8.(1)证明:∵AB为直径,∴∠ADB=90°,∵BA=BC,∴AD=CD;(2)证明:连接OD,如图,∵AD=CD,AO=OB,∴OD为△BAC的中位线,∴OD∥BC,∴DE⊥BC,∴OD⊥DE,∴DE为⊙O的切线;(3)解:在Rt△CDE中,∠C=60°,DE=,∴CE=DE=×2=2,∴CD=2CE=4,∵∠A=∠C=60°,AD=CD=4,在Rt△ADB中,AB=2AD=8,即⊙O半径的长为4.9.(1)解:连接OE,过O作OM⊥AC于M,则∠AMO=90°,∵DF⊥AC,∴∠DFC=90°,∵∠FDC=15°,∴∠C=180°﹣90°﹣15°=75°,∵AB=AC,∴∠ABC=∠C=75°,∴∠BAC=180°﹣∠ABC﹣∠C=30°,∴OM=OA==,AM=OM=,∵OA=OE,OM⊥AC,∴AE=2AM=3,∴∠BAC=∠AEO=30°,∴∠AOE=180°﹣30°﹣30°=120°,∴阴影部分的面积S=S扇形AOE﹣S△AOE=﹣=3π﹣;(2)证明:连接OD,∵AB=AC,OB=OD,∴∠ABC=∠C,∠ABC=∠ODB,∴∠ODB=∠C,∴AC∥OD,∵DF⊥AC,∴DF⊥OD,∵OD过O,∴DF是⊙O的切线;(3)证明:连接BE,∵AB为⊙O的直径,∴∠AEB=90°,∴BE⊥AC,∵DF⊥AC,∴BE∥DF,∴∠FDC=∠EBC,∵∠EBC=∠DAC,∴∠FDC=∠DAC,∵A、B、D、E四点共圆,∴∠DEF=∠ABC,∵∠ABC=∠C,∴∠DEC=∠C,∵DF⊥AC,∴∠EDF=∠FDC,∴∠EDF=∠DAC.10.证明:(1)连接OC,如图,∵AB是⊙O的直径,∴∠ACB=90°,即∠2+∠3=90°,∵OB=OC,∴∠B=∠3,而∠1=∠B,∴∠1=∠3,∴∠1+∠2=90°,即∠OCM=90°,∴OC⊥CM,∴MC是⊙O的切线;(2)∵EG⊥AB,∴∠B+∠BFH=90°,而∠BFH=∠4,∴∠4+∠B=90°,∵MD为切线,∴OC⊥CD,∴∠5+∠3=90°,而∠3=∠B,∴∠4=∠5,∴△DCF是等腰三角形.11.解:(1)如图,连接OE,∵FG=EG,∴∠GEF=∠GFE=∠AFH,∵OA=OE,∴∠OAE=∠OEA,∵CD⊥AB,∴∠AFH+∠FAH=90°,∴∠GEF+∠AEO=90°,∴∠GEO=90°,∴GE⊥OE,∴EG是⊙O的切线;(2)连接OC,设⊙O的半径为r,∵AH=3、CH=4,∴OH=r﹣3,OC=r,则(r﹣3)2+42=r2,解得:r=,∵GM∥AC,∴∠CAH=∠M,∵∠OEM=∠AHC,∴△AHC∽△MEO,∴=,即=,解得:EM=.12.(1)证明:如图1,∵PC=PB,∴∠PCB=∠PBC,∵四边形ABCD内接于圆,∴∠BAD+∠BCD=180°,∵∠BCD+∠PCB=180°,∴∠BAD=∠PCB,∵∠BAD=∠BFD,∴∠BFD=∠PCB=∠PBC,∴BC∥DF,∵DE⊥AB,∴∠DEB=90°,∴∠ABC=90°,∴AC是⊙O的直径,∴∠ADC=90°,∵BG⊥AD,∴∠AGB=90°,∴∠ADC=∠AGB,∴BG∥CD;(2)由(1)得:BC∥DF,BG∥CD,∴四边形BCDH是平行四边形,∴BC=DH,在Rt△ABC中,∵AB=DH,∴tan∠ACB==,∴∠ACB=60°,∠BAC=30°,∴∠ADB=60°,BC=AC,∴DH=AC,①当点O在DE的左侧时,如图2,作直径DM,连接AM、OH,则∠DAM=90°,∴∠AMD+∠ADM=90°∵DE⊥AB,∴∠BED=90°,∴∠BDE+∠ABD=90°,∵∠AMD=∠ABD,∴∠ADM=∠BDE,∵DH=AC,∴DH=OD,∴∠DOH=∠OHD=80°,∴∠ODH=20°∵∠ADB=60°,∴∠ADM+∠BDE=40°,∴∠BDE=∠ADM=20°,②当点O在DE的右侧时,如图3,作直径DN,连接BN,由①得:∠ADE=∠BDN=20°,∠ODH=20°,∴∠BDE=∠BDN+∠ODH=40°,综上所述,∠BDE的度数为20°或40°.13.(1)证明:连接OD,如图,∵OB=OD,∴∠OBD=∠ODB,∵AB=AC,∴∠ABC=∠C,∴∠ODB=∠C,∴OD∥AC,∵DE⊥AC,∴OD⊥DE,∴DE为⊙O的切线;(2)解:∵AB为直径,∴∠AFB=90°,∵∠EGF=∠AGF,∴Rt△GEF∽△Rt△GAE,∴=,即=,整理得GF2+3GF﹣4=0,解得GF=1或GF=﹣4(舍去),在Rt△AEG中,sin∠EAG===,∴∠EAG=30°,即∠EAF的度数为30°.14.(1)证明:连接OC,如图,∵CE为切线,∴OC⊥CE,∴∠OCE=90°,即∠1+∠4=90°,∵DO⊥AB,∴∠3+∠B=90°,而∠2=∠3,∴∠2+∠B=90°,而OB=OC,∴∠4=∠B,∴∠1=∠2,∴CE=FE;(2)解:①当∠D=30°时,∠DAO=60°,而AB为直径,∴∠ACB=90°,∴∠B=30°,∴∠3=∠2=60°,而CE=FE,∴△CEF为等边三角形,∴CE=CF=EF,同理可得∠GFE=60°,利用对称得FG=FC,∵FG=EF,∴△FEG为等边三角形,∴EG=FG,∴EF=FG=GE=CE,∴四边形ECFG为菱形;②当∠D=22.5°时,∠DAO=67.5°,而OA=OC,∴∠OCA=∠OAC=67.5°,∴∠AOC=180°﹣67。
人教版初三数学圆的测试题附详细标准答案

九年级圆测试题一、选择题(每题3分,共30分)1.如图,直角三角形ABC 中,∠C =90°,AC =2,AB =4,分别以AC 、BC 为直径作半圆,则图中阴影地面积为 ( )A 2π-3B 4π-43C 5π-4D 2π-232.半径相等地圆内接正三角形、正方形、正六边形地边长之比为 ( ) A 1∶2∶3 B 1∶2∶3 C3∶2∶1 D 3∶2∶13.在直角坐标系中,以O(0,0)为圆心,以5为半径画圆,则点A(3-,4)地位置在 ( )A ⊙O 内B ⊙O 上C ⊙O 外D 不能确定4.如图,两个等圆⊙O 和⊙O ′外切,过O 作⊙O ′地两条切线OA 、OB ,A 、B 是切点,则∠AOB 等于 ( )A.30° B.45° C.60° D.90°5.在Rt △ABC 中,已知AB =6,AC =8,∠A =90°,如果把此直角三角形绕直线AC 旋转一周得到一个圆锥,其表面积为S 1;把此直角三角形绕直线AB 旋转一周得到另一个圆锥,其表面积为S 2,那么S 1∶S 2等于 ( )A 2∶3 B 3∶4 C 4∶9 D 5∶126.若圆锥地底面半径为 3,母线长为5,则它地侧面展开图地圆心角等于 ( ) A . 108° B . 144° C . 180° D . 216°7.已知两圆地圆心距d = 3 cm ,两圆地半径分别为方程0352=+-x x地两根,则两圆地位置关系是 ( )A 相交 B 相离 C 相切 D 内含8.四边形中,有内切圆地是 ( )A 平行四边形 B 菱形 C 矩形 D 以上答案都不对OO'AB 第4题图9.如图,以等腰三角形地腰为直径作圆,交底边于D ,连结AD ,那么 ( )A ∠BAD +∠CAD= 90° B ∠BAD >∠CAD C ∠BAD =∠CAD D ∠BAD <∠CAD.10.下面命题中,是真命题地有 ( )①平分弦地直径垂直于弦;②如果两个三角形地周长之比为3∶2,则其面积之比为3∶4;③圆地半径垂直于这个圆地切线;④在同一圆中,等弧所对地圆心角相等;⑤过三点有且只有一个圆.A 1个 B 2个 C 3个 D 4个二、填空题(每题3分,共24分)11.一个正多边形地内角和是720°,则这个多边形是正边形;12.现用总长为m 80地建筑材料,围成一个扇形花坛,当扇形半径为_______时,可使花坛地面积最大;13.如图是一个徽章,圆圈中间是一个矩形,矩形中间是一个菱形, 菱形地边长 是 1 cm ,那么徽章地直径是 ;14.如图,弦AB 地长等于⊙O 地半径,如果C 是AmC 上任意一点,则sinC =;15.一条弦分圆成2∶3两部分,过这条弦地一个端点引远地切线,则所成地两弦切角为;16.如图,⊙A 、⊙B 、⊙C 、⊙D 、⊙E 相互外离,它们地半径都为1. 顺次连接五个圆心得到五边形ABCDE ,则图中五个阴影部分地面积 之和是;17.如图:这是某机械传动部分地示意图,已知两轮地O·mBABCDAO外沿直径分别为2分米和8分米,轴心距为6分米,那么两轮上地外公切线长为分米.18.如图,ABC 是圆内接三角形,BC 是圆地直径,∠B=35°,MN 是过A 点地切线,那么∠C=________;∠CAM=________; ∠BAM=________;三、解答题19.求证:菱形地各边地中点在同一个圆上.已知:如图所示,菱形ABCD 地对角线AC 、BD 相交于O ,E 、F 、G 、H 分别是AB 、BC 、CD 、DA 地中点.求证:E 、F 、G 、H 在同一个圆上.20.已知:如图,AB 是⊙O 地直径,C 是⊙O 上一点,AD 和⊙O 在点C 地切线相垂直,垂足为D ,延长AD 和BC 地延长线交于点E ,求证:AB=AE .★•第50题图 20题图21.如图,⊙O 以等腰三角形ABC 一腰AB 为直径,它交另一腰 AC 于 E ,交 BC 于D . 求证:BC=2DE22.如图,过圆心O 地割线PAB 交⊙O 于A 、B ,PC 切⊙O 于C ,弦CD ⊥AB 于点H ,点H分AB 所成地两条线段AH 、HB 地长分别为2和8. 求PA 地长.23.已知:⊙O 1、⊙O 2地半径分别为2cm 和7cm ,圆心O 1O 2=13cm ,AB 是⊙O 1、⊙O 2地外公切线,切点分别是A 、B.求:公切线地长AB.圆测试题题答案一、选择题1. D.提示:设两个半圆交点为D.连接CD,CD ⊥AB.阴影地面积为两个半圆地面积减去直角三角形地面积2242 3.则CD=3,AD=1,BD=3.2.C .提示:设圆地半径为R,则三角形边长为3R,正方形边长为2R,正六边形地边长为R.3.B.提示:用勾股定理可以求出点A到圆心地距离为5.4.C.提示:连接O’A,O’B.O’O.O’A⊥OA,O’B⊥OB.则OO’=2R,sin2A B∠=2RR,∠AOB=60°.5.A.提示:绕直线AC旋转一周时,底面边长6,高为8.表面积S1=π(r2+r l)=96π. 绕直线AB旋转一周时,底面边长8,高为6.表面积S1=π(r2+r l)=144π.6.D.提示:2πr=2360lπα︒.侧面展开图地圆心角等于216°.7.D.提示:设两圆地半径r1,r2.r1+r2=22ba=ba=5.r1-r21-r2.两圆内含.8.B.提示:从圆地圆心引两条相交直径,再过直径端点作切线,可以得到菱形.9.C.提示:AB是直径,所以AD垂直BD.ABC是等腰三角形.AB=AC,∠BAD =∠CAD. . 10.A.提示:④正确.①错在两条直径平分但不互相垂直.②面积之比为3∶2.③直径垂直于过直径端点地切线.⑤这三点可能在同一直线上.二、填空题11.6.提示:根据多边形地内角和公式,180°(n-2)=720°,n=6.12.20.提示:设半径为r,则弧长为(80-2r),S=1(802)2r r-=r(40-r)=-r2+40r=-(r-20)2+400,r=20时,S取得最大值.13.2.设矩形长为a,宽为b,则有22a b+=4r2,解得a2+b2=r2.菱形地边长22()()22a b+=1.r=1.14.12.提示:连接OA,OB,则△OAB是正三角形.∠AOB=60°.AB=60°,∠C=30°.15.72°.提示:如图.劣弧AB=144°,∠AOB=144°,∠OBA=18°,∠ABC=72°,OCBA16.32π,五边形ABCDE地内角和为540°,五个阴影部分地扇形地圆心角为540°,540°地扇形相当于32个圆.图中五个阴影部分地面积之和是32π.17.提示:将两圆圆心与切点连接起来,并将两圆地圆心联结起来,两圆地半径差是3,可抽象出如下地图形.过O作OC⊥O’B,OO’=6,O’C=CBAO'O18.55°,35°,125°.提示:∠C与∠B互余,∠C=55°,∠CAM是弦切角,∠CAM=∠B.∠BAM=90°+35°=125°.三、解答题19.证明:连结OE、OF、OG、OH.∵AC、BD是菱形地对角线,∴AC⊥BD于O.∴△AOB、△BOC、△COD、△DOA都是直角三角形.又OE、OF、OG、OH都是各直角三角形斜边上地中线,∴OE=12AB,OF=12BC,OG=12CD,OH=12AD∵AB=BC=CD=DA,∴OE=OF=OG=OH.∴E、F、G、H都在以O为圆心,OE为半径地圆上.应当指出地是:由于我们是在平面几何中研究地平面图形,所以在圆地定义中略去了“平面内”一词.更准确而严格地定义应是,圆是平面内到定点地距离等于定长地点地集合.证明四点共圆地另一种方法是证明这四个点所构成地四边形对角互补.20.提示:AB与AC位于同一个三角形中,所以只需证明∠B=∠E.圆中有直径地,通常要将圆上地一点与直径地端点连接起来,构造直角三角形.我们发现∠ACD是弦切角,∠ACD =∠B.∠ACD与∠CAD互余.在△ACE中,∠CAD与∠E互余,所以∠B=∠E.证明:连结AC.∵CD是⊙O地切线,∴∠ACD=∠B.又∵AB是⊙O地直径,∴∠ACB=∠ACE=90°,∴∠CAB+∠B=90°,∠CAE+∠E=90°.又∵CD⊥AE于D,∴∠ADC=90°.∴∠ACD+∠CAE=90°,∴∠ACD=∠E,∴∠B=∠E,∴AB=AE.21.提示:由等腰三角形地性质可得∠B=∠C,由圆内接四边形性质可得∠B=∠DEC,所以∠C=∠DEC,所以DE=CD,连结AD,可得AD⊥BC,利用等腰三角形“三线合一”性质得BC=2CD,即BC=2DE.证明:连结AD∵AB是⊙O直径∴AD⊥BC∵AB=AC∴BC=2CD,∠B=∠C∵⊙O内接四边形ABDE∴∠B=∠DEC(四点共圆地一个内角等于对角地外角)∴∠C=∠DEC∴DE=DC∴BC=2DE22.提示:圆中既有切线也有割线,考虑使用切割线定理.PC2=PA•PB=PA(PA+PB)=PA2+10PA.又有相交弦,故也考虑用相交弦定理,AH•BH=CH2解:∵PC为O地切线,∴PC2=PA•PB=PA(PA+AB)=PA2+10PA又∵AB⊥CD,∴CH2=AH•BH=16PC2=CH2+PH2=16+(PA+2)2=PA2+4PA+20∴PA2+10PA=PA2+4PA+20∴PA=10 323.提示:因为切线垂直于过切点地半径,为求公切线地长AB,首先应连结O1A、O2B,得直角梯形O1ABO2.这样,问题就转化为在直角梯形中,已知上、下底和一腰,求另一腰地问题了.解:连结O1A、O2B,则O1A⊥AB,O2B⊥AB.过O1作O1C⊥O2B,垂足为C,则四边形O1ABC为矩形,于是有O 1C ⊥CO 2,O 1C=AB,O 1A=CB. 在Rt △O 1CO 2中, O 1O 2=13, O 2C=O 2B-O 1A=5, ∴O 1C=1251322=-(cm). ∴AB=12cm.由圆地对称性可知,图中有两条外公切线,并且这两条外公切线地长相等.版权申明本文部分内容,包括文字、图片、以及设计等在网上搜集整理.版权为个人所有This article includes some parts, including text, pictures, and design. Copyright is personal ownership.83lcP 。
初三数学圆测试题及答案.doc

1. 下列命题:①长度相等的弧是等弧②任意三点确定一个圆③相等的圆心角所对的弦相等④外心 在三角形的一条边上的三角形是直角三角形,其中真命题共冇()A. 0个B. 1个C. 2个D. 3个2. 同一平血内两圆的半径是R 和「圆心距是d,若以R 、r 、d 为边长,能围成一个三角形,则这两个3. 如图,四边形ABCD 内接于©0,若它的一个外角ZDCE=70° ,则ZB0D 二()单元测试的位置关系是()A.外离B.相切 C •相交 D •内含 A. 35° B. 70°6.如图, B.4W0MW5D.4<0M<5 5.如图, 00的直径AB 与弦CD 的延长线交于点E,若DE 二0B,ZA0C=84° ,则 ZE 等于() A. 42 °B. 28°C. 21°△ABC 内接于00, AD 丄BC 于点D,AC 二3cnb 则00的直径是()A. 2cmB. 4cmC. 6cmD. 8cm7.如图, 圆心角部是90°的扇形0AB与扇形OCD亞放在一起, 0A二3, 0C=b分别连结AC、BD,则图屮阴影部分的面积为()一打A. 2 8・已知OO :与OO2外切于点A,的半径R=2, OO2的半径一 1,若半径为4的OC 与。
0:、都相 切,则满足条件的。
(:冇()A. 2个B. 4个C. 5个D. 6个9. 设00的半径为2,鬪心0到直线?的距离0P 二m, 使得关于x 的方程2x 3 - = °有 实数根,则直线'与O0的位置关系为()A.相离或相切B.相切或相交C.相离或相交D.无法确定10. 如图,把直角AABC 的斜边AC 放在定直线/上,按顺时针的方向在直线•'上转动两次,使它转到A. 二、填空题(本大题共5小题,每小4分,共计20分)11.(山西)某圆柱形网球筒,其底面直径是10cm,长为80cm,将七个这样的网球筒如图所示放置并包12.(山西)如图,在“世界杯”足球比赛中,甲带球向对方球门PQ 进攻,当他带球冲到A 点时,同样乙已经助攻冲到B 点.有两种射门方式:笫一•种是甲直接射门;笫二种是甲将球传给乙,由乙射门.仅 从射门角度考虑,应选择 _________ 种射门方式.D.△A2B2C2的位置,设AB 二历,装侧面,则需BC 二 1, 点A 所经过的路线为()13.如果圆的内接正六边形的边长为6cm,则其外接圆的半径为_____________ ・14.(北京)如图,直角坐标系屮一条圆弧经过网格点A、B、C,具中,B点坐标为(4, 4),则该圆弧所在圆的圆心坐标为 _____________ ・15. _________________________________________ 如图,两条互相垂直的弦将00分成四部分,相对的两部分而积Z和分别记为弘S2,若圆心到两弦的距离分别为2和3,则|S-S2|= .三、解答题(16〜21题,每题7分,22题8分,共计50分)16.(丽水)为了探究三角形的内切関半径r与周长?、面积SZ间的关系,在数学实验活动中,选取等边三角形(图甲)和在角三角形(图乙)进行研究.(D0是ZXABC的内切圆,切点分别为点D、E、F.⑴用刻度尺分别量出表屮未度量的AABC的长,填入空格处,并计算出周长•'和面积S.(结果精确到0.1厘米)AC BC AB r7S图甲0.6图乙1.0(2)观察图形,利用上表实验数据分析.猜测特殊三角形的r与?、SZ间关系,并证明这种关系对任意三角形(图丙)是否也成立?17. (成都)如图,以等腰三角形购7的一腰肋为直径的交底边于点二,交&于点三, 连结皿,并过点二作丄恥,垂足为三.根据以上条件写出三个正确结论(除 AB = AC 9 AO-BO.乙個C=Z J 4(JB 夕卜)是: (1) ____________________ ; (2) ____________________ ; (3) ___________________ .18. (黄冈)如图,要在直径为50 M 米的圆形木板上截出四个大小相同的圆形凳血.问怎样才能截出 直径最大的凳而,最大直径是多少厘米?19. (山西)如图是一纸杯,它的母线AC 和EF 延长后形成的立体图形是関锥,该|员]锥的侧面展开图 形是扇形OAB.经测量,纸杯上开口圆的直径是6cm,卜•底面直径为4cm,母线长为EF=8cm.求扇形OAB 的 圆心饬及这个纸杯的表面积(面积计算结杲用并表示).图丙'讥B 图乙Ch图甲 E20.如图,在AABC中,ZBCA =90°,以BC为直径的00交AB于点P, Q是AC的中点•判断直线PQ 与O0的位置关系,并说明理由.21.(武汉)有这样一道习题:如图1,已知0A和0B是。
人教版九年级数学上册圆单元测试题及答案

九年级数学第二十四章圆测试题(A )时间:45分钟 分数:100分一、选择题(每小题3分,共33分)1.若⊙O 所在平面内一点P 到⊙O 上的点的最大间隔 为10,最小间隔 为4则此圆的半径为( )A .14B .6C .14 或6D .7 或32.如图24—A —1,⊙O 的直径为10,圆心O 到弦AB 的间隔 OM 的长为3,则弦AB 的长是( )A .4B .6C .7D .83.已知点O 为△ABC 的外心,若∠A=80°,则∠BOC 的度数为( )A .40°B .80°C .160°D .120°4.如图24—A —2,△ABC 内接于⊙O ,若∠A=40°,则∠OBC 的度数为( )A .20°B .40°C .50°D .70°5.如图24—A —3,小明同学设计了一个测量圆直径的工具,标有刻度的尺子OA 、OB 在O 点钉在一起,并使它们保持垂直,在测直径时,把O 点靠在圆周上,读得刻度OE=8个单位,OF=6个单位,则圆的直径为( )A .12个单位B .10个单位C .1个单位 图24—A 图24—A图24—A —2 图24—A 图24—AD .15个单位6.如图24—A —4,AB 为⊙O 的直径,点C 在⊙O 上,若∠B=60°,则∠A 等于( )A .80°B .50°C .40°D .30°7.如图24—A —5,P 为⊙O 外一点,PA 、PB 分别切⊙O 于A 、B ,CD切⊙O 于点E ,分别交PA 、PB 于点C 、D ,若PA=5,则△PCD 的周长为( )A .5B .7C .8D .108.若粮仓顶部是圆锥形,且这个圆锥的底面直径为4m ,母线长为3m ,为防雨需在粮仓顶部铺上油毡,则这块油毡的面积是( )A .26mB .26m πC .212mD .212m π 9.如图24—A —6,两个同心圆,大圆的弦AB 与小圆相切于点P ,大圆的弦CD 经过点P ,且CD=13,PC=4,则两圆组成的圆环的面积是( )A .16πB .36πC .52πD .81π10.已知在△ABC 中,AB=AC=13,BC=10,那么△ABC 的内切圆的半径为( )A .310B .512C .2D .3 11.如图24—A —7,两个半径都是4cm 的圆外切于点C ,一只蚂蚁由点A 开场依A 、B 、C 、D 、E 、F 、C 、G 、A 的依次沿着圆周上的8段长度相等的途径绕行,蚂蚁在这8段途径上不断爬行,直到行走2019πcm 后才停下来,则蚂蚁停的那一个点为图24—A图24—A()A.D点 B.E点 C.F点 D.G点二、填空题(每小题3分,共30分)12.如图24—A—8,在⊙O中,弦AB等于⊙O的半径,OC⊥AB交⊙O 于点C,则∠AOC= 。
人教版初中数学九年级上册-:《圆》专题测试卷(有解析))

人教版初中数学九年级上册-:《圆》专题测试卷(有解析))本页仅作为文档页封面,使用时可以删除This document is for reference only-rar21year.March《圆》专题检测卷时间:100分钟满分:100分班级:_______ 姓名:________得分:_______一.选择题(每题3分,共30分)1.已知圆内接四边形ABCD中,∠A:∠B:∠C=1:2:3,则∠D的大小是()A.45°B.60°C.90°D.135°2.已知△ABC内接于⊙O,连接AO并延长交BC于点D,若∠B=62°,∠C=50°,则∠ADB的度数是()A.68°B.72°C.78°D.82°3.如图,AB是⊙O的直径,点C、D是圆上两点,且∠AOC=126°,则∠CDB =()A.54°B.64°C.27°D.37°4.如图,以△ABC的一边AB为直径作⊙O,交于BC的中点D,过点D作直线EF与⊙O相切,交AC于点E,交AB的延长线于点F.若△ABC的面积为△CDE的面积的8倍,则下列结论中,错误的是()A.AC=2AO B.EF=2AE C.AB=2BF D.DF=2DE 5.已知⊙O是正六边形ABCDEF的外接圆,P为⊙O上除C、D外任意一点,则∠CPD的度数为()A.30°B.30°或150°C.60°D.60°或120°6.以O为中心点的量角器与直角三角板ABC如图所示摆放,直角顶点B在零刻度线所在直线DE上,且量角器与三角板只有一个公共点P,若点P的读数为35°,则∠CBD的度数是()A.55°B.45°C.35°D.257.如图,是用一把直尺、含60°角的直角三角板和光盘摆放而成,点A为60°角与直尺交点,点B为光盘与直尺唯一交点,若AB=3,则光盘的直径是()A.6B.3C.6 D.38.如图,⊙O的半径OD⊥弦AB于点C,连结AO并延长交⊙O于点E,连结EC.若AB=8,OC=3,则EC的长为()A.B.8 C.D.9.如图,等腰△ABC中,AB=AC=5cm,BC=8cm.动点D从点C出发,沿线段CB以2cm/s的速度向点B运动,同时动点O从点B出发,沿线段BA以1cm/s的速度向点A运动,当其中一个动点停止运动时另一个动点也随时停止.设运动时间为t(s),以点O为圆心,OB长为半径的⊙O与BA交于另一点E,连接ED.当直线DE与⊙O相切时,t的取值是()A.B.C.D.10.如图,在Rt△ABC中,∠ACB=90°,∠A=30°,BC=4,以BC为直径的半圆O交斜边AB于点D,则图中阴影部分的面积为()A.π﹣B.π﹣C.π﹣D.π﹣二.填空题(每题4分,共20分)11.如图,在三角形广场ABC的三个角处各建一个半径相等的扇形草坪,草坪的半径长为20m,则草坪的总面积为.(保留π)12.如图所示,△ABC是⊙O的内接三角形,若∠BAC与∠BOC互补,则∠BOC 的度数为.13.如图,已知C为上一点,若∠AOB=100°,则∠ACB的度数为度.14.如图,四边形ABCD内接于⊙O,且四边形OABC是平行四边形,则∠D =.15.如图,等边△ABC中,AB=2,点D是以A为圆心,半径为1的圆上一动点,连接CD,取CD的中点E,连接BE,则线段BE的最大值与最小值之和为.三.解答题(每题10分,共50分)16.如图,AB为⊙O的直径,C,D为⊙O上的两点,∠BAC=∠DAC,过点C 做直线EF⊥AD,交AD的延长线于点E,连接BC.(1)求证:EF是⊙O的切线;(2)若∠BAC=∠DAC=30°,BC=2,求劣弧的长l.17.如图,一个装满玉米的粮囤,上面是圆锥形,下面是圆柱形,圆柱底面的半径是10米,高是4米,圆锥的高是3米.(π≈)(1)求这个粮囤能装多少立方米的玉米?(2)若每立方米玉米重吨,这囤玉米有多少吨?(3)在(2)的条件下,粮库欲将这些玉米运往食品加工厂,甲、乙两个运输队承担此次运输任务,已知甲运输队每天比乙运输队多运送,在运送过程中,甲、乙两运输队合运7天后,甲运输队有其他任务,剩下由乙运输队单独运送6天,恰好运完.求甲、乙两运输队每天各运送多少吨玉米?18.如图,点E是△ABC的内心,AE的延长线和△ABC的外接圆相交于点D,交BC于F.(1)若∠ABC=40°,∠C=80°,求∠CBD的度数;(2)求证:DB=DE;(3)若AB=6,AC=4,BC=5,求DE的长.19.如图,在△ABC中,BC=4,且△ABC的面积为4,以点A为圆心,2为半径的⊙A交AB于E,交AC于F,点P是⊙A上一点,且∠EPF=45°.(1)求证:BC为⊙A的切线;(2)求图中阴影部分的面积.20.如图①,AB为⊙O的直径,点C在⊙O上,AD平分∠CAB,AD与BC交于点F,过点D作DE⊥AB于点E.(1)求证:BC=2DE;(2)如图②,连接OF,若∠AFO=45°,半径为2时,求AC的长.参考答案一.选择题1.解:∵四边形ABCD为圆的内接四边形,∴∠A:∠B:∠C:∠D=1:2:3:2,而∠B+∠D=180°,∴∠D=×180°=90°.故选:C.2.解:延长AD交⊙O于E,连接CE,则∠E=∠B=62°,∠ACE=90°,∴∠CAE=90°﹣62°=28°,∵∠ADB=∠CAE+∠ACB=78°,故选:C.3.解:∵∠AOC=126°,∴∠BOC=180°﹣∠AOC=54°,∵∠CDB=∠BOC=27°.故选:C.4.解:连接OD、AD,∵OB=OA,BD=DC,∴AC=2OD,∵OA=OD,∴AC=2OD,A正确,不符合题意;∵EF是⊙O的切线,∴OD⊥EF,∵OB=OA,BD=DC,∴OD∥AC,∴AE⊥EF,∵△ABC的面积为△CDE的面积的8倍,D是BC的中点,∴△ADC的面积为△CDE的面积的4倍,∴△ADE的面积为△CDE的面积的3倍,∴AE=3EC,∴=,∵OD∥AC,∴==,∴FA=2AE,B错误,符合题意;AB=2BF,C正确,不符合题意;==,∴DF=2DE,D正确,不符合题意;故选:B.5.解:连接OC、OD,如图,∵⊙O是正六边形ABCDEF的外接圆,∴∠COD=60°,当P点在弧CAD上时,∠CPD=∠COD=30°,当P点在弧CD上时,∠CPD=180°﹣30°=150°,综上所述,∠CPD的度数为30°或150°.故选:B.6.解:∵AB是⊙O的切线,∴∠OPB=90°,∵∠ABC=90°,∴OP∥BC,∴∠CBD=∠POB=35°,故选:C.7.解:设三角板与圆的切点为C,连接OA、OB,由切线长定理知AB=AC=3,OA平分∠BAC,∴∠OAB=60°,在Rt△ABO中,OB=AB tan∠OAB=3,∴光盘的直径为6,故选:A.8.解:连接BE,∵AE为⊙O直径,∴∠ABE=90°,∵OD⊥AB,OD过O,∴AC=BC=AB==4,∵AO=OE,∴BE=2OC,∵OC=3,∴BE=6,在Rt△CBE中,EC===2,故选:D.9.解:作AH⊥BC于H,如图,BE=2t,BD=8﹣2t,∵AB=AC=5,∴BH=CH=BC=4,当BE⊥DE,直线DE与⊙O相切,则∠BED=90°,∵∠EBD=∠ABH,∴△BED∽△BHA,∴=,即=,解得t=.故选:A.10.解:∵在Rt△ABC中,∠ACB=90°,∠A=30°,∴∠B =60°,∴∠COD =120°,∵BC =4,BC 为半圆O 的直径,∴∠CDB =90°,∴OC =OD =2,∴CD =BC =2,图中阴影部分的面积=S 扇形COD ﹣S △COD =﹣2×1=﹣,故选:A .二.填空题(共5小题)11.解:S 草坪==200π(m 2),故答案为200πm 2.12.解:∵∠BAC 和∠BOC 所对的弧都是, ∴∠BAC =∠BOC∵∠BAC +∠BOC =180°, ∴∠BOC +∠BOC =180°,∴∠BOC =120°.故答案为120°.13.解:在优弧AB 上取一点D ,连接AD 、BD ,∵∠AOB =100°,∴∠D =AOB =50°, ∵A 、D 、B 、C 四点共圆,∴∠D +∠ACB =180°,∴∠ACB =180°﹣∠D =130°,故答案为:130.14.解:∵四边形OABC是平行四边形,∴∠AOC=∠ABC,∵∠D+∠ABC=180°,∠D=∠AOC=∠ABC,∴设∠D=x,则∠ABC=2x,∴x+2x=180°,解得:x=60°,故∠D=60°.故答案为:60°.15.解:延长CB到T,使得BT=BC,连接AT,DT,AD.∵△ABC是等边三角形,∴BA=BC=AC=BT=2,∠ACB=60°,∴∠CAT=90°,∴AT=CT•sin60°=2,∵AD=1,∴2﹣1≤DT≤2+1,∵CB=BT,CE=DE,∴BE=DT,∴≤BE≤,∴线段BE的最大值与最小值之和为2,故答案为2.三.解答题(共5小题)16.(1)证明:连接OC,∵OA=OC,∴∠OAC=∠DAC,∴∠DAC=∠OCA,∴AD∥OC,∵∠AEC=90°,∴∠OCF=∠AEC=90°,∴EF是⊙O的切线;(2)解:∵AB为⊙O的直径,∴∠ACB=90°,∵∠BAC=∠DAC=30°,BC=2,∴∠BOC=60°,AB=2BC=4,∴OB=AB=2,∴的长==π.17.解:(1)=×=1570(立方米)答:这个粮囤能装1570立方米的玉米;(2)×1570=1256(吨).答:这囤玉米有1256吨;(3)设乙运输队每天运送x吨玉米,则甲运输队每天运送吨玉米.根据题意得,,解得x=60,(吨).答:乙运输队每天运送60吨玉米,甲运输队每天运送68吨玉米.18.解:(1)∵∠ABC=40°,∠C=80°,∴∠BAC=180°﹣40°﹣80°=60°,∵点E是△ABC的内心,∴∠CAD=∠BAD=BAC=30°,∴∠CBD=∠CAD=30°.答:∠CBD的度数为30°;(2)证明:如图,连接BE,∴∠1=∠2,∠3=∠4,∵∠2=∠6,∴∠1=∠6,∵∠5=∠1+∠3,∠DBE=∠6+∠4=∠1+∠3,∴∠5=∠DBE,∴DB=DE;(3)∵∠1=∠2,AB=6,AC=4,BC=5,∴==,∴BF=3,CF=2,∵∠6=∠2,∠D=∠C,∴△BDF∽△ACF,∴===2,=,∴DF=BD,DF•AF=BF•CF=6,∵∠1=∠2=∠6,∠BDF=∠ADB,∴△DBF∽△DAB,∴=,∴BD2=DF•DA=DF(AF+DF)=DF•AF+DF2=6+(BD)2,解得BD=2,∴DE=BD=2.答:DE的长为2.19.解:(1)过点A作AD⊥BC于点D,∵△ABC的面积为4,∴BC•AD=4,∴AD=2,∵⊙A的半径为2,∴BC是⊙A的切线.(2)∵∠EPF=45°,∴由圆周角定理可知:∠BAC=90°,==π,∴S扇形AEF∴阴影部分的面积为4﹣π.20.(1)证明:如图①中,延长DE交⊙O于G,连接AG.∵AB⊥DG,AB是直径,∴=,DE=EG,∵AD平分∠CAB,∴∠CAD=∠DAB,∴=,∴=,∴BC=DG=2DE.(2)解:如图②中,作FR⊥AB于R,OS⊥AD于S.∵AD平分∠CAB,FC⊥AC,FR⊥AB,∴∠CAD=∠BAD=x,FC=FR,∴∠FBO=90°﹣2x,∵∠AFO=45°,∴∠FOB=45°+x,∴∠OFB=180°﹣(90°﹣2x)﹣(45°+x)=45°+x,∴∠FOB=∠OFB∴BF=BO=OA,∵∠FRB=∠ACB=90°,∠FBR=∠ABC,∴△BFR∽△BAC,∴==,∴AC=2FR=2FC,∴tan∠FAR=tan∠FAC=,设SO=t,AS=2t,SF=SO=t,则t2+4t2=4,∵t>0,∴t=,∴AF=3t=,设CF=m,则AC=2m,则有5m2=,∵m>0,∴m=,∴AC=2m=.。
新人教版初三九年级上册数学人教版初三数学圆的测试题及答案试卷

九年级圆测试题附参考答案一、选择题(每题3分,共30分)1.如图,直角三角形ABC 中,∠C =90°,AC =2,AB =4,分别以AC 、BC 为直径作半圆,则图中阴影的面积为 ( )A 2π-3B 4π-43C 5π-4D 2π-232.半径相等的圆内接正三角形、正方形、正六边形的边长之比为 ( ) A 1∶2∶3 B 1∶2∶3 C 3∶2∶1 D 3∶2∶13.在直角坐标系中,以O(0,0)为圆心,以5为半径画圆,则点A(3-,4)的位置在 ( ) A ⊙O 内 B ⊙O 上 C ⊙O 外 D 不能确定4.如图,两个等圆⊙O 和⊙O ′外切,过O 作⊙O ′的两条切线OA 、OB ,A 、B 是切点,则∠AOB 等于 ( ) A. 30° B. 45° C. 60° D. 90°5.在Rt △ABC 中,已知AB =6,AC =8,∠A =90°,如果把此直角三角形绕直线AC 旋转一周得到一个圆锥,其表面积为S 1;把此直角三角形绕直线AB 旋转一周得到另一个圆锥,其表面积为S 2,那么S 1∶S 2等于 ( ) A 2∶3 B 3∶4 C 4∶9 D 5∶126.若圆锥的底面半径为 3,母线长为5,则它的侧面展开图的圆心角等于 ( ) A . 108° B . 144° C . 180° D . 216°7.已知两圆的圆心距d = 3 cm ,两圆的半径分别为方程0352=+-x x 的两根,则两圆的位置关系是 ( ) A 相交 B 相离 C 相切 D 内含8.四边形中,有内切圆的是 ( ) A 平行四边形 B 菱形 C 矩形 D 以上答案都不对9.如图,以等腰三角形的腰为直径作圆,交底边于D ,连结AD ,那么( )A ∠BAD +∠CAD= 90°B ∠BAD >∠CADC ∠BAD =∠CAD D ∠BAD<∠CAD.10.下面命题中,是真命题的有 ( ) ①平分弦的直径垂直于弦;②如果两个三角形的周长之比为3∶2,则其面积之比为3∶4;③圆的半径垂直于这个圆的切线;④在同一圆中,等弧所对的圆心角相等;⑤过三点有且只有一个圆。
人教版九年级上册数学期末检测试卷(含答案)

人教版九年级上册数学期末检测试卷一、选择题(每题3分,共24分) 1. 已知⊙O 的半径为6cm ,点O 到直线l 的距离为7cm ,则直线l 与O 的位置关系是( ) A. 相交 B. 相离 C. 相切 D. 无法确定2. 线段2cm ,8cm 的比例中项为 cm 。
( ) A. 4 B. 4.5 C. ±4 D. ±83. 如图,已知直线a //b//c ,直线m 、n 与a 、b 、c 分别交于点A 、C 、E 、B 、D 、F 、AC=3,CE=6,BD=2,DF= ( ) A. 4 B.4.5 C. 3 D. 3.54. 张华同学的身高为1.6米,某一时刻他在阳光下的影长为2米,与他邻近的一棵树的影长为6米,则这棵树的高为 米. ( ) A. 3.2 B. 4.8 C.5.2 D. 5.6第3题图 第8题图5. 把抛物线y =2x ²向左平移2个单位,则平移后抛物线对应的函数表达式是 ( ) A. y=2x ²+2 B. y=2(x-2)² C. y=2x ²+2 D. y=2(x+2)²6. 在△ABC 中,若|21sinA -|+(cosB 22-)²=0,则∠C 的度数是 ( ) A. 45° B. 75° C. 105° D. 120°7. 如下图,小正方形的边长均为1,则下图中的三角形(阴影部分)与△ABC 相似的为( )8. 如图,矩形ABCD 的四个顶点分别在直线l3,l4,l2,l1上。
若直线l1∥l2∥l3∥l4且间距相等,AB =5,BC =3,则tan α的值为 ( ) A. 103 B. 53C. 126D. 25二、填空题(每题3分,共24分)9. 二次函数y=(x-1)²+2的顶点坐标为 。
10. 已知扇形的圆心角为120°,半径为2厘米,则这个扇形的弧长为 厘米。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人教版九年级数学上册期末考试复习专题训练
圆
1.已知圆锥的底面面积为9π cm2,母线长为6 cm,则圆锥的侧面积是( ) A.18π cm2B.27π cm2
C.18 cm2D.27 cm2
2.一个隧道的横截面如图18所示,它的形状是以点O为圆心,5 m为半径的圆的一部分,M是⊙O中弦CD的中点,EM经过圆心O交⊙O于点E.若CD=6 m,则隧道的高(ME的长)为( )
图18
A.4 m B.6 m
C.8 m D.9 m
3.如图19,半圆的直径BC恰与等腰直角三角形ABC的一条直角边完全重合.若BC=4,则图中阴影部分的面积是( )
图19
A.2+πB.2+2π
C.4+πD.2+4π
4.如图20,四边形ABCD是⊙O的内接四边形,点D是的中点,点E是上的一点.若∠CED=40°,则∠ADC=________度.
图20
5.如图21,在Rt△ABC中,∠ACB=90°,∠BAC=60°,将△ABC绕点A逆时针旋转60°后得到△ADE.若AC=1,则线段BC在上述旋转过程中所扫过部分(阴影部分)的面积是______(结果保留π).
图21
6.如图22,在Rt△ABC中,∠A=90°,BC=22,以BC的中点O为圆心分别与AB,AC相切于D,E两点,则DE的长为( )
图22
A.π
4
B.
π
2
C.πD.2π
7.如图23,在△ABC中,AB=AC,以AB为直径的⊙O交BC于点D,过点D作⊙O 的切线DE,交AC于点E,AC的反向延长线交⊙O于点F.
(1)求证:DE⊥AC;
(2)若DE+EA=8,⊙O的半径为10,求AF的长度.
图23
.
8.如图24,已知PA,PB分别切⊙O于A,B,E为劣弧AB上一点,过点E的切线交PA于C,交PB于D.
图24
(1)若PA=6,求△PCD的周长;
(2)若∠P=50°,求∠DOC的度数.
9.已知AB是⊙O的直径,AT是⊙O的切线,∠ABT=50°,BT交⊙O于点C,E是AB上一点,延长CE交⊙O于点D.
(1) (2)
图25
(1)如图25(1),求∠T和∠CDB的大小;
(2)如图25(2),当BE=BC时,求∠CDO的大小.
参考答案
1.A 2.D 3.A 4.100 5.π
2 6.B 7.(1)略 (2)AF =16. 8.(1)△PCD 的周长
=12. (2)∠COD =65°. 9.(1)∠T =40°,∠CDB =40°. (2)∠CDO =15°.。