初中数学圆的经典测试题及解析

合集下载

人教版初中数学几何图形初步经典测试题及答案解析

人教版初中数学几何图形初步经典测试题及答案解析

人教版初中数学几何图形初步经典测试题及答案解析一、选择题1.如图,一副三角板按如图所示的位置摆放,其中//AB CD ,45A ∠=︒,60C ∠=°,90AEB CED ∠=∠=︒,则AEC ∠的度数为( )A .75°B .90°C .105°D .120°【答案】C【解析】【分析】 延长CE 交AB 于点F ,根据两直线平行,内错角相等可得∠AFE =∠C ,再根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.【详解】解:如图,延长CE 交AB 于点F ,∵AB ∥CD ,∴∠AFE =∠C =60°,在△AEF 中,由三角形的外角性质得,∠AEC =∠A +∠AFE =45°+60°=105°.故选:C .【点睛】本题考查了平行线的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记相关性质并作出正确的辅助线是解题的关键.2.将一副三角板如下图放置,使点A 落在DE 上,若BC DE P ,则AFC ∠的度数为( )A .90°B .75°C .105°D .120°【答案】B【解析】【分析】 根据平行线的性质可得30E BCE ==︒∠∠,再根据三角形外角的性质即可求解AFC ∠的度数.【详解】∵//BC DE∴30E BCE ==︒∠∠∴453075AFC B BCE =+=︒+︒=︒∠∠∠故答案为:B .【点睛】本题考查了三角板的角度问题,掌握平行线的性质、三角形外角的性质是解题的关键.3.如图,有A ,B ,C 三个地点,且AB BC ⊥,从A 地测得B 地在A 地的北偏东43︒的方向上,那么从B 地测得C 地在B 地的( )A .北偏西43︒B .北偏西90︒C .北偏东47︒D .北偏西47︒【答案】D【解析】【分析】 根据方向角的概念和平行线的性质求解.【详解】如图,过点B 作BF ∥AE ,则∠DBF=∠DAE=43︒,∴∠CBF=∠DBC-∠DBF=90°-43°=47°,∴从B 地测得C 地在B 地的北偏西47°方向上,故选:D.【点睛】此题考查方位角,平行线的性质,正确理解角度间的关系求出能表示点位置的方位角是解题的关键.4.如图,将矩形纸片沿EF折叠,点C在落线段AB上,∠AEC=32°,则∠BFD等于()A.28°B.32°C.34°D.36°【答案】B【解析】【分析】根据折叠的性质和矩形的性质,结合余角的性质推导出结果即可.【详解】解:如图,设CD和BF交于点O,由于矩形折叠,∴∠D=∠B=∠A=∠ECD=90°,∠ACE+∠BCO=90°,∠BCO+∠BOC=90°,∵∠AEC=32°,∴∠ACE=90°-32°=58°,∴∠BCO=90°-∠ACE=32°,∴∠BOC=90°-32°=58°=∠DOF,∴∠BFD=90°-58°=32°.故选B.【点睛】本题考查了折叠的性质和矩形的性质和余角的性质,解题的关键是掌握折叠是一种对称变换,折叠前后图形的形状和大小不变,位置变化,对应角相等.5.如图,O 是直线AB 上一点,OC 平分∠DOB,∠COD=55°45′,则∠AOD=( )A .68°30′B .69°30′C .68°38′D .69°38′【答案】A【解析】【分析】先根据平分,求出∠COB ,再利用互补求∠AOD【详解】∵OC 平分∠DOB ,∠COD=55°45′∴∠COB=55°45′,∠DOB=55°45′+55°45′=111°30′∴∠AOD=180-111°30′=68°30′故选:A【点睛】本题考查角度的简单推理,计算过程中,设计到了分这个单位,需要注意,分与度的进率是606.如图,已知直线AB 和CD 相交于G 点,CG EG ⊥,GF 平分AGE ∠,34CGF ∠=︒,则BGD ∠大小为( )A .22︒B .34︒C .56︒D .90︒【答案】A【解析】【分析】先根据垂直的定义求出∠EGF 的度数,然后根据GF 平分∠ABE 可得出∠AGF 的度数,再由∠AGC=∠AGF-∠CGF 求出∠AGC 的度数,最后根据对顶角相等可得出∠BGD 的度数.【详解】解:∵CG ⊥EG ,∴∠EGF=90°-∠CGF=90°-34°=56°,又GF 平分∠AGE ,∴∠AGF=∠EGF=56°,∴∠AGC=∠AGF-∠CGF=56°-34°=22°,∴∠BGD=∠AGC=22°.故选:A .【点睛】本题考查了对顶角的性质,垂直的定义以及角平分线的定义,掌握基本概念和性质是解题的关键.7.如图,已知ABC ∆的周长是21,OB ,OC 分别平分ABC ∠和ACB ∠,OD BC ^于D ,且4OD =,则ABC ∆的面积是( )A .25米B .84米C .42米D .21米【答案】C【解析】【分析】 根据角平分线的性质可得点O 到AB 、AC 、BC 的距离为4,再根据三角形面积公式求解即可.【详解】连接OA∵OB ,OC 分别平分ABC ∠和ACB ∠,OD BC ^于D ,且4OD =∴点O 到AB 、AC 、BC 的距离为4∴ABC AOC OBC ABO S S S S =++△△△△()142AB BC AC =⨯⨯++ 14212=⨯⨯ 42=(米)故答案为:C .【点睛】本题考查了三角形的面积问题,掌握角平分线的性质、三角形面积公式是解题的关键.8.如图将两块三角板的直角顶点重叠在一起,DOB ∠与DOA ∠的比是2:11,则BOC ∠的度数为( )A .45︒B .60︒C .70︒D .40︒【答案】C【解析】【分析】 设∠DOB=2x ,则∠DOA=11x ,可推导得到∠AOB=9x=90°,从而得到角度大小【详解】∵∠DOB 与∠DOA 的比是2:11∴设∠DOB=2x ,则∠DOA=11x∴∠AOB=9x∵∠AOB=90°∴x=10°∴∠BOD=20°∴∠COB=70°故选:C【点睛】本题考查角度的推导,解题关键是引入方程思想,将角度推导转化为计算的过程,以便简化推导9.已知点C 在线段AB 上,则下列条件中,不能确定点C 是线段AB 中点的是( ) A .AC =BC B .AB =2AC C .AC +BC =AB D .12BC AB =【解析】【分析】根据线段中点的定义,结合选项一一分析,排除答案.显然A、B、D都可以确定点C是线段AB中点【详解】解:A、AC=BC,则点C是线段AB中点;B、AB=2AC,则点C是线段AB中点;C、AC+BC=AB,则C可以是线段AB上任意一点;D、BC=12AB,则点C是线段AB中点.故选:C.【点睛】本题主要考查线段中点,解决此题时,能根据各选项举出一个反例即可.10.一把直尺和一块三角板ABC(含30°,60°角)的摆放位置如图,直尺一边与三角板的两直角边分别交于点D、点E,另一边与三角板的两直角边分别交于点F、点A,且∠CED =50°,那么∠BAF=()A.10°B.50°C.45°D.40°【答案】A【解析】【分析】先根据∠CED=50°,DE∥AF,即可得到∠CAF=50°,最后根据∠BAC=60°,即可得出∠BAF的大小.【详解】∵DE∥AF,∠CED=50°,∴∠CAF=∠CED=50°,∵∠BAC=60°,∴∠BAF=60°﹣50°=10°,【点睛】此题考查平行线的性质,几何图形中角的和差关系,掌握平行线的性质是解题的关键. 11.将下面平面图形绕直线l旋转一周,可得到如图所示立体图形的是()A.B.C.D.【答案】B【解析】分析:根据面动成体,所得图形是两个圆锥体的复合体确定答案即可.详解:由图可知,只有B选项图形绕直线l旋转一周得到如图所示立体图形.故选:B.点睛:本题考查了点、线、面、体,熟悉常见图形的旋转得到立体图形是解题的关键.12.如图是正方体的表面展开图,请问展开前与“我”字相对的面上的字是()A.是B.好C.朋D.友【答案】A【解析】【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【详解】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“我”与“是”是相对面,“们”与“朋”是相对面,“好”与“友”是相对面.故选:A.本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.13.下列图形中,不是正方体平面展开图的是()A.B.C.D.【答案】D【解析】【分析】由平面图形的折叠及正方体的展开图解题.【详解】解:由四棱柱四个侧面和上下两个底面的特征可知,A,B,C选项可以拼成一个正方体;而D选项,上底面不可能有两个,故不是正方体的展开图.故选:D.【点睛】本题考查四棱柱的特征及正方体展开图的各种情形,难度适中.14.下列说法中,正确的个数为( )①过同一平面内5点,最多可以确定9条直线;②连接两点的线段叫做两点的距离;=,则点B是线段AC的中点;③若AB BC④三条直线两两相交,一定有3个交点.A.3个B.2个C.1个D.0个【答案】D【解析】【分析】根据直线交点、两点间距离、线段中点定义分别判断即可得到答案.【详解】①过同一平面内5点,最多可以确定10条直线,故错误;②连接两点的线段的长度叫做两点的距离,故错误;=,则点B不一定是线段AC的中点,故错误;③若AB BC④三条直线两两相交,可以都交于同一点,故错误;【点睛】此题考查直线交点、两点间距离定义、线段中点定义,正确理解定义是解题的关键.15.下列说法中不正确的是()①过两点有且只有一条直线②连接两点的线段叫两点的距离③两点之间线段最短④点B在线段AC上,如果AB=BC,则点B是线段AC的中点A.①B.②C.③D.④【答案】B【解析】【分析】依据直线的性质、两点间的距离、线段的性质以及中点的定义进行判断即可.【详解】①过两点有且只有一条直线,正确;②连接两点的线段的长度叫两点间的距离,错误③两点之间线段最短,正确;④点B在线段AC上,如果AB=BC,则点B是线段AC的中点,正确;故选B.16.若∠AOB =60°,∠AOC =40°,则∠BOC等于()A.100°B.20°C.20°或100°D.40°【答案】C【解析】【分析】画出符合题意的两个图形,根据图形即可得出答案.【详解】解: 如图1,当∠AOC在∠AOB的外部时,∵∠AOB=60°,∠AOC=40°∴∠BOC=∠AOB+∠AOC=60°+40°=100°如图2,当∠AOC 在∠AOB 的内部时,∵∠AOB=60°,∠AOC=40°∴ ∠BOC=∠AOB-∠AOC=60°-40°=20°即∠BOC 的度数是100°或20°故选:C【点睛】本题考查了角的有关计算的应用,主要考查学生根据图形进行计算的能力,分类讨论思想和数形结合思想的运用.17.如图,某河的同侧有A ,B 两个工厂,它们垂直于河边的小路的长度分别为2AC km =,3BD km =,这两条小路相距5km .现要在河边建立一个抽水站,把水送到A ,B 两个工厂去,若使供水管最短,抽水站应建立的位置为( )A .距C 点1km 处B .距C 点2km 处 C .距C 点3km 处D .CD 的中点处【答案】B【解析】【分析】 作出点A 关于江边的对称点E ,连接EB 交CD 于P ,则PA PB PE PB EB +=+=,根据两点之间线段最短,可知当供水站在点P 处时,供水管路最短.再利用三角形相似即可解决问题.【详解】作出点A 关于江边的对称点E ,连接EB 交CD 于P ,则PA PB PE PB EB +=+=.根据两点之间线段最短,可知当供水站在点P 处时,供水管路最短.根据PCE PDB ∆∆:,设PC x =,则5PD x =-,根据相似三角形的性质,得PC CE PD BD =,即253x x =-,解得2x .故供水站应建在距C点2千米处.故选:B.【点睛】本题为最短路径问题,作对称找出点P,利用三角形相似是解题关键.18.小张同学的座右铭是“态度决定一切”,他将这几个字写在一个正方体纸盒的每个面上,其平面展开图如图所示,那么在该正方体中,和“一”相对的字是()A.态B.度C.决D.切【答案】A【解析】【分析】正方体的平面展开图中,相对面的特点是之间一定相隔一个正方形,据此可得和“一”相对的字.【详解】正方体的平面展开图中,相对面的特点是之间一定相隔一个正方形,所以和“一”相对的字是:态.故选A.【点睛】注意正方体的空间图形,从相对面入手,分析及解答问题.19.如图,△ABC的角平分线CD、BE相交于F,∠A=90°,EG∥BC,且CG⊥EG于G,下列结论:①∠CEG=2∠DCB;②∠ADC=∠GCD;③CA平分∠BCG;④∠DFB=12∠CGE.其中正确的结论是( )A.②③B.①②④C.①③④D.①②③④【答案】B【解析】【分析】根据平行线的性质、角平分线的定义、垂直的性质及三角形内角和定理依次判断即可得出答案.【详解】①∵EG∥BC,∴∠CEG=∠ACB,又∵CD是△ABC的角平分线,∴∠CEG=∠ACB=2∠DCB,故正确;②∵∠A=90°,∴∠ADC+∠ACD=90°,∵CD平分∠ACB,∴∠ACD=∠BCD,∴∠ADC+∠BCD=90°.∵EG∥BC,且CG⊥EG,∴∠GCB=90°,即∠GCD+∠BCD=90°,∴∠ADC=∠GCD,故正确;③条件不足,无法证明CA平分∠BCG,故错误;④∵∠EBC+∠ACB=∠AEB,∠DCB+∠ABC=∠ADC,∴∠AEB+∠ADC=90°+12(∠ABC+∠ACB)=135°,∴∠DFE=360°-135°-90°=135°,∴∠DFB=45°=12∠CGE,,正确.故选B.【点睛】本题主要考查了角平分线的定义,平行线的性质,三角形内角和定理及多边形内角和,三角形外角的性质,熟知直角三角形的两锐角互余是解答此题的关键.20.木杆AB斜靠在墙壁上,当木杆的上端A沿墙壁NO竖直下滑时,木杆的底端B也随之沿着射线OM方向滑动.下列图中用虚线画出木杆中点P随之下落的路线,其中正确的是()A.B.C.D.【答案】D【解析】解:如右图,连接OP,由于OP是Rt△AOB斜边上的中线,所以OP=12AB,不管木杆如何滑动,它的长度不变,也就是OP是一个定值,点P就在以O为圆心的圆弧上,那么中点P下落的路线是一段弧线.故选D.。

2023年山东省泰安市中考数学真题(原卷版和解析版)

2023年山东省泰安市中考数学真题(原卷版和解析版)

泰安市2023年初中学业水平考试数学试题一、选择题1.23-的倒数是()A.23B.23- C.32D.32-2.下列运算正确的是()A.235a b ab +=B.222()a b a b -=-C.()3235ab a b = D.()3253412a aa⋅-=-3.2023年1月17日,国家航天局公布了我国嫦娥五号月球样品的科研成果.科学家们通过对月球样品的研究,精确测定了月球的年龄是20.3亿年,数据20.3亿年用科学记数法表示为()A.82.0310⨯年B.92.0310⨯年C.102.0310⨯年D.920.310⨯年4.小亮以四种不同的方式连接正六边形的两条对角线,得到如下四种图形,则既是轴对称图形又是中心对称图形的是()A.B.C.D.5.把一块直角三角板和一把直尺如图放置,若135∠=︒,则2∠的度数等于()A .65︒B.55︒C.45︒D.60︒6.为了解学生的身体素质状况,国家每年都会进行中小学生身体素质抽测.在今年的抽测中,某校九年级二班随机抽取了10名男生进行引体向上测试,他们的成绩(单位:个)如下:7,11,10,11,6,14,11,10,11,9.根据这组数据判断下列结论中错误..的是()A.这组数据的众数是11B.这组数据的中位数是10C.这组数据的平均数是10D.这组数据的方差是4.67.如图,AB 是O 的直径,D ,C 是O 上的点,115ADC ∠=︒,则BAC ∠的度数是()A.25︒B.30︒C.35︒D.40︒8.一次函数y ax b =+与反比例函数aby x=(a ,b 为常数且均不等于0)在同一坐标系内的图象可能是()A. B.C. D.9.如图,O 是ABC 的外接圆,半径为4,连接OB ,OC ,OA ,若40CAO ∠=︒,70ACB ∠=︒,则阴影部分的面积是()A.4π3B.8π3C.16π3D.32π310.《九章算术》是我国古代数学的经典著作,书中有一个问题:“今有黄金九枚,白银一十一枚,称之重适等,交易其一,金轻十三两,问金、银各重几何?”意思是:甲袋中装有黄金9枚(每枚黄金重量相同),乙袋中装有白银11枚(每枚白银重量相同),称重两袋相等,两袋互相交换1枚后,甲袋比乙袋轻了13两(袋子重量忽略不计),问黄金、白银每枚各重多少两?设每枚黄金重x 两,每枚白银重y 两.根据题意得()A.()()11910813x y y x x y =⎧⎨+-+=⎩,.B.10891311y x x y x y +=+⎧⎨+=⎩,.C.()()91110813x y y x x y =⎧⎨+-+=⎩,. D.()()91181013x yx y y x =⎧⎨+-+=⎩.11.如图,ABC 是等腰三角形,36AB AC A =∠=︒,.以点B 为圆心,任意长为半径作弧,交AB 于点F ,交BC 于点G ,分别以点F 和点G 为圆心,大于12FG 的长为半径作弧,两弧相交于点H ,作射线BH 交AC 于点D ;分别以点B 和点D 为圆心,大于12BD 的长为半径作弧,两孤相交于M 、N 两点,作直线MN 交AB 于点E ,连接DE .下列四个结论:①AED ABC ∠=∠;②BC AE =;③12ED BC =;④当2AC =时,51AD =.其中正确结论的个数是()A.1B.2C.3D.412.如图,在平面直角坐标系中,Rt AOB △的一条直角边OB 在x 轴上,点A 的坐标为(64)-,;Rt COD中,9030COD OD D ∠=︒=∠=︒,,连接BC ,点M 是BC 中点,连接AM .将Rt COD 以点O 为旋转中心按顺时针方向旋转,在旋转过程中,线段AM 的最小值是()A.3B.4C.2- D.2二、填空题13.已知关于x 的一元二次方程240x x a --=有两个不相等的实数根,则a 的取值范围是_______.14.为了测量一个圆形光盘的半径,小明把直尺、光盘和三角尺按图所示放置于桌面上,并量出4cm AB =,则这张光盘的半径是_______cm .(精确到0.1cm 173≈.)15.二次函数234y x x =--+的最大值是__________.16.在一次综合实践活动中,某学校数学兴趣小组对一电视发射塔的高度进行了测量.如图,在塔前C 处,测得该塔顶端B 的仰角为50︒,后退60m (60m CD =)到D 处有一平台,在高2m (2m DE =)的平台上的E 处,测得B 的仰角为266︒..则该电视发射塔的高度AB 为_______m .(精确到1m .参考数据:tan 50 1.2tan 26.60.5︒≈︒≈,)17.如图,在ABC 中,16AC BC ==,点D 在AB 上,点E 在BC 上,点B 关于直线DE 的轴对称点为点B ',连接DB ',EB ',分别与AC 相交于F 点,G 点,若87,4AF DF B F '===,,则CG 的长度为__________.18.已知,12345678,,,OA A A A A A A A △△△都是边长为2的等边三角形,按下图所示摆放.点235,,,A A A 都在x 轴正半轴上,且2356891A A A A A A ==== ,则点2023A 的坐标是______.三、解答题19.(1)化简:2211025224x x x x x -++⎛⎫-÷ ⎪+-⎝⎭;(2)解不等式组:2731132x x x +>⎧⎪+-⎨>⎪⎩.20.2022年10月16日至10月22日,中国共产党第二十次全国代表大会在北京召开.为激励青少年争做党的事业接班人,某市团市委在党史馆组织了“红心永向党”为主题的知识竞赛,依据得分情况将获奖结果分为四个等级:A 级为特等奖,B 级为一等奖,C 级为二等奖,D 级为优秀奖.并将统计结果绘制成了如图所示的两幅不完整的统计图.请根据相关信息解答下列问题:(1)本次竞赛共有______名选手获奖,扇形统计图中扇形C 的圆心角度数是______度;(2)补全条形统计图;(3)若该党史馆有一个入口,三个出口.请用树状图或列表法,求参赛选手小丽和小颖由馆内恰好从同一出口走出的概率.21.如图,一次函数122y x =-+的图象与反比例函数2ky x=的图象分别交于点A ,点B ,与y 轴,x 轴分别交于点C ,点D ,作AE y ⊥轴,垂足为点E ,4OE =.(1)求反比例函数的表达式;(2)在第二象限内,当12y y <时,直接写出x 的取值范围;(3)点P 在x 轴负半轴上,连接PA ,且PA AB ⊥,求点P 坐标.22.为进行某项数学综合与实践活动,小明到一个批发兼零售的商店购买所需工具.该商店规定一次性购买该工具达到一定数量后可以按批发价付款,否则按零售价付款.小明如果给学校九年级学生每人购买一个,只能按零售价付款,需用3600元;如果多购买60个,则可以按批发价付款,同样需用3600元,若按批发价购买60个与按零售价购买50个所付款相同,求这个学校九年级学生有多少人?23.如图,矩形ABCD 中,对角线AC BD ,相交于点O ,点F 是DC 边上的一点,连接AF ,将ADF△沿直线AF 折叠,点D 落在点G 处,连接AG 并延长交DC 于点H ,连接FG 并延长交BC 于点M ,交AB的延长线于点E ,且AC AE =.(1)求证:四边形DBEF 是平行四边形;(2)求证:FHME =.24.如图,ABC 、CDE 是两个等腰直角三角形,EF AD ⊥.(1)当AF DF =时,求AED ∠;(2)求证:EHG ADG ∽△△;(3)求证:AE ACEH HC=.25.如图1,二次函数24y ax bx =++的图象经过点(4,0),(1,0)A B --.(1)求二次函数的表达式;(2)若点P 在二次函数对称轴上,当BCP 面积为5时,求P 坐标;(3)小明认为,在第三象限抛物线上有一点D ,使90DAB ACB +=︒∠∠;请判断小明的说法是否正确,如果正确,请求出D 的坐标;如果不正确,请说明理由.泰安市2023年初中学业水平考试数学试题一、选择题1.23-的倒数是()A.23B.23-C.32D.32-【答案】D 【解析】【分析】根据乘积是1的两个数叫做互为倒数解答.【详解】解:∵23132⎛⎫⎛⎫-⨯-= ⎪ ⎪⎝⎭⎝⎭,∴23-的倒数是32-,故选:D .【点睛】本题考查倒数的定义,掌握互为倒数的两个数积为1,是解题的关键.2.下列运算正确的是()A.235a b ab +=B.222()a b a b -=-C.()3235ab a b = D.()3253412a aa⋅-=-【答案】D 【解析】【分析】A 、不能合并,本选项错误;B 、利用完全平方公式展开得到结果,即可作出判断;C 和D 、利用积的乘方及幂的乘方运算法则计算得到结果,即可作出判断.【详解】解:2a 和3b 不是同类项,不能合并,故A 选项错误,不符合题意;222()2a b a ab b -=-+,故B 选项错误,不符合题意;()3236ab a b =,故C 选项错误,不符合题意;()3253412a a a ⋅-=-,故D 选项正确,符合题意;故选:D .【点睛】此题考查了完全平方公式,合并同类项,同底数幂的除法,积的乘方与幂的乘方,熟练掌握完全平方公式是解本题的关键.3.2023年1月17日,国家航天局公布了我国嫦娥五号月球样品的科研成果.科学家们通过对月球样品的研究,精确测定了月球的年龄是20.3亿年,数据20.3亿年用科学记数法表示为()A.82.0310⨯年B.92.0310⨯年C.102.0310⨯年D.920.310⨯年【答案】B 【解析】【分析】科学记数法的表现形式为10n a ⨯的形式,其中110a ≤<,n 为整数,确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同,当原数绝对值大于等于10时,n 是正数,当原数绝对值小于1时n 是负数;由此进行求解即可得到答案.【详解】解:20.3亿年2030000000=年92.0310=⨯年,故选B .【点睛】本题主要考查了科学记数法,解题的关键在于能够熟练掌握科学记数法的定义.4.小亮以四种不同的方式连接正六边形的两条对角线,得到如下四种图形,则既是轴对称图形又是中心对称图形的是()A. B. C. D.【答案】D 【解析】【分析】根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形;根据中心对称图形的概念:在平面内,把一个图形绕着某个点旋转180度后与原图重合,即可得到答案.【详解】解:A 、既不是轴对称图形也不是中心对称图形,故该选项不符合题意;B 、既不是轴对称图形也不是中心对称图形,故该选项不符合题意;C 、既不是轴对称图形也不是中心对称图形,故该选项不符合题意;D 、是轴对称图形也是中心对称图形,故该选项符合题意;故选:D .【点睛】本题考查了轴对称图形和中心对称图形,掌握概念是解题关键.5.把一块直角三角板和一把直尺如图放置,若135∠=︒,则2∠的度数等于()A.65︒B.55︒C.45︒D.60︒【答案】B 【解析】【分析】如图所示,过点O 作OE ∥AB ,则OE AB CD ∥∥,由平行线的性质得到21EOC AOE ==∠∠,∠∠,进而推出1290∠+∠=︒,由此即可得到答案.【详解】解:如图所示,过点O 作OE ∥AB ,∵AB CD ,∴OE AB CD ∥∥,∴21EOC AOE ==∠∠,∠∠,∵90AOC EOC AOE =+=︒∠∠∠,∴1290∠+∠=︒,∵135∠=︒,∴290155∠=︒-=︒∠,故选B .【点睛】本题主要考查了平行线的性质与判定,正确作出辅助线是解题的关键.6.为了解学生的身体素质状况,国家每年都会进行中小学生身体素质抽测.在今年的抽测中,某校九年级二班随机抽取了10名男生进行引体向上测试,他们的成绩(单位:个)如下:7,11,10,11,6,14,11,10,11,9.根据这组数据判断下列结论中错误..的是()A.这组数据的众数是11B.这组数据的中位数是10C.这组数据的平均数是10D.这组数据的方差是4.6【答案】B【解析】【分析】根据众数的定义,中位数,平均数,方差的计算方法即可求解.【详解】解:A 、这组数据中出现次数最多的是11,故众数是11,正确,不符合题意;B 、这组数据重新排序为:6,7,9,10,10,11,11,11,11,14,故中位数是101110.52+=,错误,符合题意;C 、这组数据的平均数是71110116141110119100101010+++++++++==,故平均数是10,正确,不符合题意;D 、这组数据的平均数是10,方差是2222(107)(1011)(109) 4.610S ⎡⎤-+-++-⎣⎦== ,故方差是4.6,正确,不符合题意;故选:B .【点睛】本题主要考查调查与统计中的相关概念和计算,掌握众数的概念,中位数,平均数,方差的计算方法是解题的关键.7.如图,AB 是O 的直径,D ,C 是O 上的点,115ADC ∠=︒,则BAC ∠的度数是()A.25︒B.30︒C.35︒D.40︒【答案】A【解析】【分析】根据圆内接四边形对角互补和直径所对圆周角等于90度求解即可.【详解】解:∵115ADC ∠=︒,∴65B ∠=︒,∵AB 是O 的直径,∴90ACB ∠=︒,∴180906525BAC ∠=︒-︒-︒︒=,故选:A .【点睛】本题考查圆的性质,涉及到圆内接四边形对角互补和直径所对圆周角等于90度,熟记知识点是关键.8.一次函数y ax b =+与反比例函数ab y x=(a ,b 为常数且均不等于0)在同一坐标系内的图象可能是()A. B.C. D.【答案】D【解析】【分析】先根据一次函数图象确定a 、b 的符号,进而求出ab 的符号,由此可以确定反比例函数图象所在的象限,看是否一致即可.【详解】解:A 、∵一次函数图象经过第一、二、三象限,∴00a b >>,,∴0ab >,∴反比例函数ab y x=的图象见过第一、三象限,这与图形不符合,故A 不符合题意;B 、∵一次函数图象经过第一、二、四象限,∴00a b <>,,∴0ab <,∴反比例函数ab y x=的图象见过第二、四象限,这与图形不符合,故B 不符合题意;C 、∵一次函数图象经过第一、三、四象限,∴00a b ><,,∴0ab <,∴反比例函数ab y x=的图象见过第二、四象限,这与图形不符合,故C 不符合题意;D 、∵一次函数图象经过第一、二、四象限,∴00a b <>,,∴0ab <,∴反比例函数ab y x=的图象见过第二、四象限,这与图形符合,故D 符合题意;故选D .【点睛】本题主要考查了一次函数与反比例函数图象和性质,熟练掌握相关性质与函数图象的关系是解决本题的关键.9.如图,O 是ABC 的外接圆,半径为4,连接OB ,OC ,OA ,若40CAO ∠=︒,70ACB ∠=︒,则阴影部分的面积是()A.4π3B.8π3C.16π3D.32π3【答案】C【解析】【分析】先根据等腰三角形的性质以及三角形内角和定理求得180302120BOC ∠=︒-︒⨯=︒,再根据扇形的面积公式即可求解.【详解】解:∵OC OB =,OA OC =,40CAO ∠=︒,∴40OCA OAC ∠=∠=︒,OCB OBC ∠=∠,∵70ACB ∠=︒,∴704030OBC OCB ACB ACO ∠=∠=∠-∠=︒-︒=︒,∴180302120BOC ∠=︒-︒⨯=︒,∴22120116ππ4π36033S r ︒=⨯=⨯⨯=︒阴影,故选:C .【点睛】本题考查等腰三角形的性质、三角形内角和定理以及扇形的面积公式等知识,求出120BOC ∠=︒是解答的关键.10.《九章算术》是我国古代数学的经典著作,书中有一个问题:“今有黄金九枚,白银一十一枚,称之重适等,交易其一,金轻十三两,问金、银各重几何?”意思是:甲袋中装有黄金9枚(每枚黄金重量相同),乙袋中装有白银11枚(每枚白银重量相同),称重两袋相等,两袋互相交换1枚后,甲袋比乙袋轻了13两(袋子重量忽略不计),问黄金、白银每枚各重多少两?设每枚黄金重x 两,每枚白银重y 两.根据题意得()A .()()11910813x y y x x y =⎧⎨+-+=⎩,.B.10891311y x x y x y +=+⎧⎨+=⎩,.C.()()91110813x y y x x y =⎧⎨+-+=⎩,.D.()()91181013x y x y y x =⎧⎨+-+=⎩.【答案】C【解析】【分析】根据题意可得等量关系:①9枚黄金的重量=11枚白银的重量;②(10枚白银的重量1+枚黄金的重量)-(1枚白银的重量8+枚黄金的重量)13=两,根据等量关系列出方程组即可.【详解】解:设每枚黄金重x 两,每枚白银重y 两,由题意得,()()91110813x y y x x y =⎧⎨+-+=⎩,故选C .【点睛】本题主要考查了从实际问题中抽象出二元一次方程组,正确理解题意找到等量关系是解题的关键.11.如图,ABC 是等腰三角形,36AB AC A =∠=︒,.以点B 为圆心,任意长为半径作弧,交AB 于点F ,交BC 于点G ,分别以点F 和点G 为圆心,大于12FG 的长为半径作弧,两弧相交于点H ,作射线BH 交AC 于点D ;分别以点B 和点D 为圆心,大于12BD 的长为半径作弧,两孤相交于M 、N 两点,作直线MN 交AB 于点E ,连接DE .下列四个结论:①AED ABC ∠=∠;②BC AE =;③12ED BC =;④当2AC =时,1AD =.其中正确结论的个数是()A.1B.2C.3D.4【答案】C【解析】【分析】根据等腰三角形两底角相等与36A ∠=︒,得到72ABC C ∠=∠=︒,根据角平分线定义得到36ABD CBD ∠=∠=︒,根据线段垂直平分线性质得到EB ED =,得到EBD EDB ∠=∠,推出EDB CBD ∠=∠,得到DE BC ∥,推出AED ABC ∠=∠,①正确;根据等角对等边得到AD AE =,AD BD =,根据三角形外角性质得到72BDC C ∠=︒=∠,得到BC BD =,推出BC AE =,②正确;根据AED ABC △∽△,得到ED AD AD BC AC AD DC ==+,推出512ED BC -=,③错误;根据2AC =时,512CD AD =,得到5122AD AD =-,推出51AD =-,④正确.【详解】∵ABC 中,AB AC =,36A ∠=︒,∴()1180722ABC C A ∠=∠=︒-∠=︒,由作图知,BD 平分ABC ∠,MN 垂直平分BD ,∴1362ABD CBD ABC ∠=∠=∠=︒,EB ED =,∴EBD EDB ∠=∠,∴EDB CBD ∠=∠,∴DE BC ∥,∴AED ABC ∠=∠,①正确;ADE C ∠=∠,∴AED ADE ∠=∠,∴AD AE =,∵A ABD ∠=∠,∴AD BD =,∵72BDC A ABD ∠=∠+∠=︒,∴BDC C ∠=∠,∴BC BD =,∴BC AE =,②正确;设ED x =,BC a =,则AD a =,BE x =,∴CD BE x ==,∵AED ABC △∽△,∴ED AD AD BC AC AD DC ==+,∴x a a a x =+,∴220x ax a +-=,∵0x >,∴512x a -=,即12ED BC =,③错误;当2AC =时,2CD AD =-,∵12CD AD -=,∴5122AD AD -=-,∴1AD =,④正确∴正确的有①②④,共3个.故选:C .【点睛】本题主要考查了等腰三角形,相似三角形,解决问题的关键是熟练掌握等腰三角形判定和性质,相似三角形的判定和性质,角平分线的定义和线段垂直平分线的性质.12.如图,在平面直角坐标系中,Rt AOB △的一条直角边OB 在x 轴上,点A 的坐标为(64)-,;Rt COD中,9030COD OD D ∠=︒=∠=︒,,连接BC ,点M 是BC 中点,连接AM .将Rt COD 以点O 为旋转中心按顺时针方向旋转,在旋转过程中,线段AM 的最小值是()A.3B.4 C.2- D.2【答案】A【解析】【分析】如图所示,延长BA 到E ,使得AE AB =,连接OE CE ,,根据点A 的坐标为(64)-,得到8BE =,再证明AM 是BCE 的中位线,得到12AM CE =;解Rt COD 得到4OC =,进一步求出点C 在以O 为圆心,半径为4的圆上运动,则当点M 在线段OE 上时,CE 有最小值,即此时AM 有最小值,据此求出CE 的最小值,即可得到答案.【详解】解:如图所示,延长BA 到E ,使得AE AB =,连接OE CE ,,∵Rt AOB △的一条直角边OB 在x 轴上,点A 的坐标为(64)-,,∴46AB OB ==,,∴4AE AB ==,∴8BE =,∵点M 为BC 中点,点A 为BE 中点,∴AM 是BCE 的中位线,∴12AM CE =;在Rt COD 中,9030COD OD D ∠=︒=∠=︒,,∴343OC ==,∵将Rt COD 以点O 为旋转中心按顺时针方向旋转,∴点C 在以O 为圆心,半径为4的圆上运动,∴当点M 在线段OE 上时,CE 有最小值,即此时AM 有最小值,∵10OE ==,∴CE 的最小值为1046-=,∴AM 的最小值为3,故选A .【点睛】本题主要考查了一点到圆上一点的最值问题,勾股定理,三角形中位线定理,坐标与图形,含30度角的直角三角形的性质等等,正确作出辅助线是解题的关键.二、填空题13.已知关于x 的一元二次方程240x x a --=有两个不相等的实数根,则a 的取值范围是_______.【答案】4a >-##4a-<【解析】【分析】利用一元二次方程根的判别式求解即可.【详解】解:∵关于x 的一元二次方程240x x a --=有两个不相等的实数根,∴()()22Δ44410b ac a =-=--⨯⋅->,∴4a >-,故答案为:4a >-.【点睛】本题主要考查了一元二次方程根的判别式,对于一元二次方程()200ax bx c a ++=≠,若240b ac ∆=->,则方程有两个不相等的实数根,若240b ac ∆=-=,则方程有两个相等的实数根,若24<0b ac ∆=-,则方程没有实数根.14.为了测量一个圆形光盘的半径,小明把直尺、光盘和三角尺按图所示放置于桌面上,并量出4cm AB =,则这张光盘的半径是_______cm .(精确到0.1cm 173≈.)【答案】6.9【解析】【分析】设光盘的圆心为O ,三角尺和光盘的切点为C ,连接OC OB OA ,,,经过圆外一点A 的两条直线AC AB ,都与圆O 相切,所以OA 为BAC ∠的角平分线,1602OAC OAB BAC ∠=∠=∠=︒,同时由切线的性质得到OC AC OB AB ⊥⊥,,在Rt AOB △中,tan tan 60OB OAB AB ∠=︒=,求出43cm OB =,即为圆的半径,进而确定出圆的直径.【详解】解:设光盘的圆心为O ,三角尺和光盘的切点为C ,连接OC OB OA ,,,如下图所示:∵AC AB ,分别为圆O 的切线,∴OA 为BAC ∠的角平分线,即OC AC OB AB ⊥⊥,,又∵60CAD ∠=︒,∴1602OAC OAB BAC ∠=∠=∠=︒,在Rt AOB △中,60OAB ∠=︒,4cm AB =,∴tan tan 60OB OAB AB ∠=︒=,34OB =,∴43cm 6.9cm OB ≈=,则这张光盘的半径为6.9cm ;故答案为:6.9.【点睛】此题考查了切线的性质,切线长定理,锐角三角函数定义,以及特殊角的三角函数值,熟练掌握性质及定理是解本题的关键.15.二次函数234y x x =--+的最大值是__________.【答案】254【解析】【分析】利用配方法把二次函数一般式化为顶点式,即可求解.【详解】解:利用配方法,将一般式化成顶点式:234y x x =--+232524x =-++( 二次函数开口向下,∴顶点处取最大值,即当32x =-时,最大值为254.故答案为:254.【点睛】本题考查二次函数的相关知识.将一般式化为顶点式,顶点处取到最值.其中配方法是解决问题的关键,也是易错点.16.在一次综合实践活动中,某学校数学兴趣小组对一电视发射塔的高度进行了测量.如图,在塔前C 处,测得该塔顶端B 的仰角为50︒,后退60m (60m CD =)到D 处有一平台,在高2m (2m DE =)的平台上的E 处,测得B 的仰角为266︒..则该电视发射塔的高度AB 为_______m .(精确到1m .参考数据:tan 50 1.2tan 26.60.5︒≈︒≈,)【答案】55【解析】【分析】如图所示,过点E 作EF AB ⊥于F ,则四边形ADEF 是矩形,可得到2m AF DE EF AD ===,;设m BF x =,则()2m AB x =+,解Rt ABC △得到()52m 6AC x ≈+,解Rt BEF △得到2m EF x ≈,进而建立方程()522606x x =++,解方程即可得到答案.【详解】解:如图所示,过点E 作EF AB ⊥于F ,由题意得,AB AD DE AD ⊥,⊥,∴四边形ADEF 是矩形,∴2m AF DE EF AD ===,,设m BF x =,则()2m AB AF BF x =+=+,在Rt ABC △中,tan AB ACB AC ∠=,∴()252m tan tan506AB x AC x ACB +==≈+︒∠,在Rt BEF △中,tan BF BEF EF ∠=,∴2m tan tan 26.6BF x EF x BEF ==≈∠︒,∵EF AD =,∴()522606x x =++,∴53x ≈,∴255m AB x =+≈,故答案为:55.【点睛】本题主要考查了解直角三角形的实际应用,矩形的性质与判定等等,正确理解题意作出辅助线是解题的关键.17.如图,在ABC 中,16AC BC ==,点D 在AB 上,点E 在BC 上,点B 关于直线DE 的轴对称点为点B ',连接DB ',EB ',分别与AC 相交于F 点,G 点,若87,4AF DF B F '===,,则CG 的长度为__________.【答案】4.5【解析】【分析】根据等边对等角和折叠的性质证明A B '∠=∠,进而证明AFD B FG ' ∽,则AF DF B F GF =',然后代值计算求出 3.5GF =,则 4.5CG AC AF GF =--=.【详解】解:∵16AC BC ==,∴A B ∠=∠,由折叠的性质可得B B '∠=∠,∴A B '∠=∠,又∵AFD B FG ∠=∠',∴AFD B FG ' ∽,∴AF DF B F GF =',即874GF=,∴ 3.5GF =,∴ 4.5CG AC AF GF =--=,故答案为:4.5.【点睛】本题主要考查了折叠的性质,相似三角形的性质与判定,等边对等角等等,证明AFD B FG ' ∽是解题的关键.18.已知,12345678,,,OA A A A A A A A △△△都是边长为2的等边三角形,按下图所示摆放.点235,,,A A A 都在x 轴正半轴上,且2356891A A A A A A ==== ,则点2023A 的坐标是______.【答案】(2023,【解析】【分析】先确定前几个点的坐标,然后归纳规律,按规律解答即可.【详解】解:由图形可得:()()()()()()2356892,0,3,0,5,0,6,0,8,0,9,0,A A A A A A 如图:过1A 作1AB x ⊥轴,∵12,OA A∴111cos 601,sin 60OB OA A B OA =︒⨯==︒⨯=∴(1A ,同理:(((4774,,,10,,A A A ∴()()(3133131,0,3,0,3n n n A n A n A n -+-+()31n +为偶数,(3131,n A n ++为奇数;∵202336741÷= ,2023为奇数∴(20232023,A .故答案为(2023,.【点睛】本题主要考查了等边三角形的性质、解直角三角形、坐标规律等知识点,先求出几个点、发现规律是解答本题的关键.三、解答题19.(1)化简:2211025224x x x x x -++⎛⎫-÷ ⎪+-⎝⎭;(2)解不等式组:2731132x x x +>⎧⎪+-⎨>⎪⎩.【答案】(1)25x x -+;(2)25x -<<【解析】【分析】(1)根据分式的混合计算法则求解即可;(2)先求出每个不等式的解集,再根据“同大取大,同小取小,大小小大中间找,大大小小找不到(无解)”求出不等式组的解集即可.【详解】解:(1)2211025224x x x x x -++⎛⎫-÷ ⎪+-⎝⎭()()()252412222x x x x x x x ++-⎛⎫=-÷ ⎪+++-⎝⎭()()()222525x x x x x +-+=⋅++25x x -=+;(2)2731132x x x +>⎧⎪⎨+->⎪⎩①②解不等式①得:2x >-,解不等式②得:5x <,∴不等式组的解集为25x -<<【点睛】本题主要考查了分式的混合计算,解一元一次不等式组,正确计算是解题的关键.20.2022年10月16日至10月22日,中国共产党第二十次全国代表大会在北京召开.为激励青少年争做党的事业接班人,某市团市委在党史馆组织了“红心永向党”为主题的知识竞赛,依据得分情况将获奖结果分为四个等级:A 级为特等奖,B 级为一等奖,C 级为二等奖,D 级为优秀奖.并将统计结果绘制成了如图所示的两幅不完整的统计图.请根据相关信息解答下列问题:(1)本次竞赛共有______名选手获奖,扇形统计图中扇形C 的圆心角度数是______度;(2)补全条形统计图;(3)若该党史馆有一个入口,三个出口.请用树状图或列表法,求参赛选手小丽和小颖由馆内恰好从同一出口走出的概率.【答案】(1)200,108(2)见解析(3)1 3【解析】【分析】(1)用A级的人数除以其人数占比即可求出获奖选手的总数,进而求出B级的人数,由此即可求出C级的人数,再用360度乘以C级的人数占比即可得到答案;(2)求出B级的人数,然后补全统计图即可;(3)先列出表格得到所有等可能性的结果数,再找到符合题意得结果数,最后依据概率计算公式求解即可.【小问1详解】解:14480200360︒÷=︒名,∴本次竞赛共有200名选手获奖,∴C级的人数为2008020025%1060--⨯-=名,∴扇形统计图中扇形C的圆心角度数是60 360108200︒⨯=度,故答案为:200,108;【小问2详解】解:B级的人数为20025%50⨯=名,补全统计图如下:【小问3详解】解:设这三个出口分别用E、F、G表示,列表如下:E F GE(E,E)(F,E)(G,E)F(E,F)(F,F)(G,F)G(E,G)(F,G)(G,G)由表格可知一共有9种等可能性的结果数,其中参赛选手小丽和小颖由馆内恰好从同一出口走出的结果数有3种,∴参赛选手小丽和小颖由馆内恰好从同一出口走出的概率3193==.【点睛】本题主要考查了扇形统计图与条形统计图信息相关联,树状图法或列表法求解概率,正确读懂统计图,画出树状图或列出表格是解题的关键.21.如图,一次函数122y x =-+的图象与反比例函数2k y x=的图象分别交于点A ,点B ,与y 轴,x 轴分别交于点C ,点D ,作AE y ⊥轴,垂足为点E ,4OE =.(1)求反比例函数的表达式;(2)在第二象限内,当12y y <时,直接写出x 的取值范围;(3)点P 在x 轴负半轴上,连接PA ,且PA AB ⊥,求点P 坐标.【答案】(1)4y x=-;(2)10x -<<;(3)()9,0-.【解析】【分析】(1)求出点A 坐标,即可求出反比例函数解析式;(2)观察图象特点,即可得出取值范围;(3)先证明三角形相似,再根据相似三角形的性质求出线段PD 长,最后由线段和差即可求出OP 的长.【小问1详解】∵4OE =,AE y ⊥轴,∴()0,4E ,点A 的纵坐标为4,∵点A 在122y x =-+图象上,∴当4y =时,422x =-+,解得:1x =-,∴点A 坐标为()1,4-,∵反比例函数2k y x =的图象过点A ,∴144k =-⨯=-,∴反比例函数的表达式为:4y x =-;【小问2详解】如图,在第二象限内,当12y y <时,10x -<<,【小问3详解】如图,过A 作AM x ⊥轴于点M ,∵AE y ⊥轴,∴90AEO EOM OMA ∠=∠=∠=︒,∴四边形AEOM 是矩形,∴4AM OE ==,1OM AE ==,∵PA AB ⊥,∴90PAD ∠=︒,即:90PAM DAM ∠+∠=︒,∵90DAM ADM ∠+∠=︒,∴PAM ADM ∠=∠,∴DAM APD ∠=∠,∴PAD AMD ∽,∴AD PD MD AD=,由22y x =-+得:0y =时,220x -+=,解得:1x =,∴点()1,0D ,∴AD ==2MD =,∴252=∴10PD =,∴点()9,0P -.【点睛】此题考查了一次函数和反比例函数的性质、求解反比例函数解析式、根据图象确定自变量x 的取值范围,相似三角形的判定等知识,注重数形结合是解答本题的关键.22.为进行某项数学综合与实践活动,小明到一个批发兼零售的商店购买所需工具.该商店规定一次性购买该工具达到一定数量后可以按批发价付款,否则按零售价付款.小明如果给学校九年级学生每人购买一个,只能按零售价付款,需用3600元;如果多购买60个,则可以按批发价付款,同样需用3600元,若按批发价购买60个与按零售价购买50个所付款相同,求这个学校九年级学生有多少人?【答案】这个学校九年级学生有300人.【解析】【分析】设零售价为x 元,批发价为y ,然后根据题意列二元一次方程组求得零售价为12元,然后用3600除以零售价即可解答.【详解】解:设零售价为x 元,批发价为y ,根据题意可得:50603600360060x y y x =⎧⎪⎨=+⎪⎩,解得:1210x y =⎧⎨=⎩,则学校九年级学生360012300÷=人.答:这个学校九年级学生有300人.【点睛】本题主要考查了二元一次方程组的应用,审清题意、列二元一次方程组求得零售价是解答本题的关键.23.如图,矩形ABCD 中,对角线AC BD ,相交于点O ,点F 是DC 边上的一点,连接AF ,将ADF △沿直线AF 折叠,点D 落在点G 处,连接AG 并延长交DC 于点H ,连接FG 并延长交BC 于点M ,交AB 的延长线于点E ,且AC AE =.(1)求证:四边形DBEF 是平行四边形;(2)求证:FH ME =.【答案】(1)证明见解析(2)证明见解析【解析】【分析】(1)根据矩形的性质和折叠的性质证明AD AG =,AE BD =,90AGE DAB ==︒∠∠,由此即可证明Rt Rt ABD GEA △≌△得到AEG DBA ∠=∠,进而推出BD EF ∥,再由BE DF ∥,即可证明四边形DBEF 是平行四边形;(2)由(1)的结论可得BE DF =,进一步证明BE GF =,再证明FGH EBM △≌△,即可证明FHME =.【小问1详解】证明:∵四边形ABCD 是矩形,∴1902AB CD AD BC ADC ABC BAD AC BD ====︒=∥,,∠∠,,由折叠的性质可得AD AG =,90AGF ADF ∠=∠=︒,∴90AGE DAB ==︒∠∠,∵AC AE =,AC BD =,∴AE BD =,∴()Rt Rt HL ABD GEA △≌△,∴AEG DBA ∠=∠,∴BD EF ∥,又∵BE DF ∥,∴四边形DBEF 是平行四边形;。

【解析版】初中数学八年级下期中经典题(课后培优)(3)

【解析版】初中数学八年级下期中经典题(课后培优)(3)

一、选择题1.(0分)[ID:9912]如图,数轴上点A,B表示的数分别是1,2,过点B作PQ⊥AB,以点B为圆心,AB长为半径画弧,交PQ于点C,以原点O为圆心,OC长为半径画弧,交数轴于点M,则点M表示的数是( )A.3B.5C.6D.72.(0分)[ID:9905]如图,在矩形ABCD中,AB=2,BC=3.若点E是边CD的中点,连接AE,过点B作BF⊥AE交AE于点F,则BF的长为()A.3102B.3105C.105D.3553.(0分)[ID:9904]某学校组织学生进行社会主义核心价值观的知识竞赛,进入决赛的共有20名学生,他们的决赛成绩如下表所示:决赛成绩/分95908580人数4682那么20名学生决赛成绩的众数和中位数分别是( )A.85,90B.85,87.5C.90,85D.95,904.(0分)[ID:9900]如图,在菱形ABCD中,AB=6,∠ABC=60°,M为AD中点,P为对角线BD上一动点,连接PA和PM,则PA+PM的最小值是( )A.3 B.2√3C.3√3D.65.(0分)[ID:9896]已知P(x,y)是直线y=1322x 上的点,则4y﹣2x+3的值为( ) A .3B .﹣3C .1D .06.(0分)[ID :9894]实数a ,b 在数轴上的位置如图所示,则化简()()2212a b +--的结果是( )A .3a b -+B .1a b +-C .1a b --+D .1a b -++7.(0分)[ID :9889]如图,若点P 为函数(44)y kx b x =+-≤≤图象上的一动点,m 表示点P 到原点O 的距离,则下列图象中,能表示m 与点P 的横坐标x 的函数关系的图象大致是( )A .B .C .D .8.(0分)[ID :9882]有一直角三角形纸片,∠C =90°BC =6,AC =8,现将△ABC 按如图那样折叠,使点A 与点B 重合,折痕为DE ,则CE 的长为( )A .7B .74C .72D .49.(0分)[ID :9877]周末小丽从家里出发骑单车去公园,因为她家与公园之间是一条笔直的自行车道,所以小丽骑得特别放松.途中,她在路边的便利店挑选一瓶矿泉水,耽误了一段时间后继续骑行,愉快地到了公园.图中描述了小丽路上的情景,下列说法中错误的是( )A.小丽从家到达公园共用时间20分钟B.公园离小丽家的距离为2000米C.小丽在便利店时间为15分钟D.便利店离小丽家的距离为1000米10.(0分)[ID:9870]函数y=11xx+-中,自变量x的取值范围是()A.x>-1B.x>-1且x≠1C.x≥一1D.x≥-1且x≠1 11.(0分)[ID:9865]如图,函数y=2x和y=ax+4的图象相交于A(m,3),则不等式2x ax+4<的解集为()A.3x2>B.x3>C.3x2<D.x3<12.(0分)[ID:9862]如图,在菱形ABCD中,BE⊥CD于E,AD=5,DE=1,则AE=()A.4B.5C.34D.4113.(0分)[ID:9917]如图所示,▱ABCD的对角线AC,BD相交于点O,AE EB=,3OE=,5AB=,▱ABCD的周长()A.11B.13C.16D.2214.(0分)[ID:9872]下列计算正确的是()A.a2+a3=a5B.3221=C.(x2)3=x5D.m5÷m3=m2 15.(0分)[ID:9915]菱形周长为40cm,它的条对角线长12cm,则该菱形的面积为()A.24B.48C.96D.36二、填空题16.(0分)[ID :10029]某校在“爱护地球,绿化祖国“的创建活动中,组织了100名学生开展植数造林活动,其植树情况整理如下表: 植树棵数(单位:棵) 4 5 6 8 10 人数(人)302225158则这100名学生所植树棵数的中位数为_____.17.(0分)[ID :10024]小明这学期第一次数学考试得了72分,第二次数学考试得了86分,为了达到三次考试的平均成绩不少于80分的目标,他第三次数学考试至少得____分. 18.(0分)[ID :10019]当直线y=kx+b 与直线y=2x-2平行,且经过点(3,2)时,则直线y=kx+b 为______.19.(0分)[ID :10013]如图,点E 在正方形ABCD 的边AB 上,若1EB ,2EC =,那么正方形ABCD 的面积为_.20.(0分)[ID :9988]如图,正方形ABCD 的边长为3,点E 在BC 上,且CE=1,P 是对角线AC 上的一个动点,则PB+PE 的最小值为______.21.(0分)[ID :9987]在矩形ABCD 中,点E 为AD 的中点,点F 是BC 上的一点,连接EF 和DF ,若AB=4,BC=8,EF=25,则DF 的长为___________.22.(0分)[ID :9986]若菱形的两条对角线长分别是6㎝和8㎝,则该菱形的面积是 ㎝2.23.(0分)[ID :9976]如图,在ABC ∆中,D 、E 分别为AB 、AC 的中点,点F 在DE 上,且AF CF ⊥,若3AC =,5BC =,则DF =__________.24.(0分)[ID :9974]小明想知道学校旗杆的高,他发现旗杆上的绳子垂到地面还多出1m,当它把绳子的下端拉开旗杆4m后,发现下端刚好接触地面,则旗杆的高为________ 25.(0分)[ID:9940]如图,在∠MON的两边上分别截取OA、OB,使OA=OB;分别以点A、B为圆心,OA长为半径作弧,两弧交于点C;连接AC、BC、AB、OC.若AB=2cm,四边形OACB的面积为4cm2.则OC的长为_____cm.三、解答题26.(0分)[ID:10126]某单位计划在新年期间组织员工到某地旅游,参加旅游的人数估计为10到25人,甲乙两家旅行社的服务质量相同,且报价都是每人200元,经过协商,甲旅行社表示可以给每位游客七五折优惠,乙旅行社表示可以先免去一位游客的旅游费用,然后给予其余游客八折优惠.若单位参加旅游的人数为x人,甲乙两家旅行社所需的费用分别为y1和y2.(1)写出y1,y2与x的函数关系式并在所给的坐标系中画出y1,y2的草图;(2)根据图像回答,该单位选择哪家旅行社所需的费用最少?27.(0分)[ID:10114]先阅读,后解答:(1)由根式的性质计算下列式子得:①√32=3,②√(23)2=23,③√(−13)2=13,④√(−5)2=5,⑤√0=0.由上述计算,请写出√a2的结果(a为任意实数).(2)利用(1)中的结论,计算下列问题的结果:①√(3.14−π)2;②化简:√x2−4x+4(x<2).(3)应用:若√(x−5)2+√(x−8)2=3,求x的取值范围.28.(0分)[ID:10101]123101010 23429.(0分)[ID:10089]定义:到三角形的两个顶点距离相等的点,叫做此三角形的准外心.已知:在Rt ABC 中,90BAC ∠=︒,斜边5BC =,直角边3AB Rt ABC =,的准外心P 在AC 边上,试求PA 的长.30.(0分)[ID :10083]已知 90, 23,8,ACB BC AC CD ︒∠===是边AB 上的高,求CD 的长【参考答案】2016-2017年度第*次考试试卷 参考答案**科目模拟测试一、选择题 1.B 2.B 3.B 4.C 5.B 6.A 7.A 8.B 9.C 10.D 11.C12.C13.D14.D15.C二、填空题16.5【解析】【分析】直接利用中位数定义求解【详解】第50个数和第55个数都是5所以这100名学生所植树棵数的中位数为5(棵)故答案为5【点睛】考查了中位数:将一组数据按照从小到大(或从大到小)的顺序排17.82【解析】【分析】设第三次考试成绩为x根据三次考试的平均成绩不少于80分列不等式求出x的取值范围即可得答案【详解】设第三次考试成绩为x∵三次考试的平均成绩不少于80分∴解得:∴他第三次数学考试至少18.y=2x﹣4【解析】【分析】根据两直线平行可得出k=2再根据直线y=kx+b过点(32)利用一次函数图像上点的坐标特征即可得出关于b的一元一次方程解方程即可求出b值即可求y=kx+b【详解】解:∵直19.【解析】【分析】根据勾股定理求出BC根据正方形的面积公式计算即可【详解】解:由勾股定理得正方形的面积故答案为:【点睛】本题考查了勾股定理如果直角三角形的两条直角边长分别是ab斜边长为c那么a2+b220.【解析】【分析】已知ABCD是正方形根据正方形性质可知点B与点D关于AC对称DE=PB+PE求出DE长即是PB+PE最小值【详解】∵四边形ABCD是正方形∴点B与点D关于AC对称连接DE交AC于点P21.或【解析】【分析】分两种情况考虑①当BF>CF时②当BF<CF时然后过F作FG⊥AD于G根据勾股定理进行求解【详解】①如图所示当BF>CF时过F作FG⊥AD于G 则GF=4Rt△EFG中又∵E是AD的22.24【解析】已知对角线的长度根据菱形的面积计算公式即可计算菱形的面积解:根据对角线的长可以求得菱形的面积根据S=ab=×6×8=24cm2故答案为2423.1【解析】【分析】根据三角形中位线定理求出DE根据直角三角形的性质求出EF计算即可【详解】解:∵DE分别为ABAC的中点∴DE=BC=25∵AF⊥CFE为AC的中点∴EF =AC=15∴DF=DE﹣E24.【解析】【分析】根据题意画出示意图利用勾股定理可求出旗杆的高【详解】解:如图所示:设旗杆米则米在中即解得:旗杆的高为75米故答案为:75【点睛】本题考查了勾股定理的应用解答本题的关键是画出示意图熟练25.【解析】【分析】根据作法判定出四边形OACB是菱形再根据菱形的面积等于对角线乘积的一半列式计算即可得解【详解】根据作图AC=BC=OA∵OA=OB∴OA=OB=BC=AC∴四边形OACB是菱形∵AB三、解答题26.27.28.29.30.2016-2017年度第*次考试试卷参考解析【参考解析】**科目模拟测试一、选择题1.B解析:B【解析】【分析】先依据勾股定理可求得OC的长,从而得到OM的长,于是可得到点M对应的数.【详解】解:由题意得可知:OB=2,BC=1,依据勾股定理可知:.∴故选:B.【点睛】本题考查勾股定理、实数与数轴,熟练掌握相关知识是解题的关键.2.B解析:B 【解析】 【分析】 根据S △ABE =12S 矩形ABCD =3=12•AE•BF ,先求出AE ,再求出BF 即可. 【详解】 如图,连接BE .∵四边形ABCD 是矩形,∴AB=CD=2,BC=AD=3,∠D=90°, 在Rt △ADE 中,22AD DE +2231+10,∵S △ABE =12S 矩形ABCD =3=12•AE•BF , ∴BF=310. 故选:B . 【点睛】本题考查矩形的性质、勾股定理、三角形的面积公式等知识,解题的关键是灵活运用所学知识解决问题,学会用面积法解决有关线段问题,属于中考常考题型.3.B解析:B 【解析】试题解析:85分的有8人,人数最多,故众数为85分; 处于中间位置的数为第10、11两个数, 为85分,90分,中位数为87.5分. 故选B .考点:1.众数;2.中位数4.C解析:C 【解析】 【分析】首先连接AC ,交BD 于点O ,连接CM ,则CM 与BD 交于点P ,此时PA+PM 的值最小,由在菱形ABCD 中,AB=6,∠ABC=60°,易得△ACD 是等边三角形,BD 垂直平分AC,继而可得CM⊥AD,则可求得CM的值,继而求得PA+PM的最小值.【详解】解:连接AC,交BD于点O,连接CM,则CM与BD交于点P,此时PA+PM的值最小,∵在菱形ABCD中,AB=6,∠ABC=60°,∴∠ADC=∠ABC=60°,AD=CD=6,BD垂直平分AC,∴△ACD是等边三角形,PA=PC,∵M为AD中点,∴DM=12AD=3,CM⊥AD,∴CM=√CD2−DM2=3√3,∴PA+PM=PC+PM=CM=3√3.故选:C.【点睛】此题考查了最短路径问题、等边三角形的判定与性质、勾股定理以及菱形的性质.注意准确找到点P的位置是解此题的关键.5.B解析:B【解析】【分析】根据点P(x,y)是直线y=1322x-上的点,可以得到y与x的关系,然后变形即可求得所求式子的值.【详解】∵点P(x,y)是直线y=1322x-上的点,∴y=13 22x-,∴4y=2x-6,∴4y-2x=-6,∴4y-2x+3=-3,故选B.【点睛】本题考查一次函数图象上点的坐标特征,解答本题的关键是明确题意,利用一次函数的性6.A解析:A【解析】【分析】先根据数轴上两点的位置确定1a +和2b -的正负,再根据2a 的性质计算即可.【详解】观察数轴可得,1a >-,2b >,故10a +>,20b ->,∴()()2212a b +--()12a b =+--12a b =+-+3a b =-+故选:A.【点睛】本题结合数轴上点的位置考查了2a 的计算性质,熟练掌握该性质是解答的关键. 7.A解析:A【解析】【分析】当OP 垂直于直线y =kx +b 时,由垂线段最短可知:OP <2,故此函数在y 轴的左侧有最小值,且最小值小于2,从而得出答案.【详解】解:如图所示:过点O 作OP 垂直于直线y =kx +b ,∵OP 垂直于直线y =kx +b ,∴OP <2,且点P 的横坐标<0.故此当x <0时,函数有最小值,且最小值<2,根据选项可知A 符合题意.故选:A .【点睛】本题主要考查的是动点问题的函数图象,由垂线段最短判定出:当x <0时,函数有最小值,且最小值小于2是解题的关键.8.B【解析】【分析】已知,∠C=90°BC=6,AC=8,由勾股定理求AB,根据翻折不变性,可知△DAE≌△DBE,从而得到BD=AD,BE=AE,设CE=x,则AE=8-x,在Rt△CBE中,由勾股定理列方程求解.【详解】∵△CBE≌△DBE,∴BD=BC=6,DE=CE,在RT△ACB中,AC=8,BC=6,∴.∴AD=AB-BD=10-6=4.根据翻折不变性得△EDA≌△EDB∴EA=EB∴在Rt△BCE中,设CE=x,则BE=AE=8-x,∴BE2=BC2+CE2,∴(8-x)2=62+x2,解得x=74.故选B.【点睛】此题考查了翻折变换的问题,找到翻折后图形中的直角三角形,利用勾股定理来解答,解答过程中要充分利用翻折不变性.9.C解析:C【解析】解:A.小丽从家到达公园共用时间20分钟,正确;B.公园离小丽家的距离为2000米,正确;C.小丽在便利店时间为15﹣10=5分钟,错误;D.便利店离小丽家的距离为1000米,正确.故选C.10.D解析:D【解析】根据题意得:1010 xx+≥⎧⎨-≠⎩,解得:x≥-1且x≠1.11.C解析:C【解析】【分析】【详解】解:∵函数y=2x和y=ax+4的图象相交于点A(m,3),∴3=2m,解得m=32.∴点A的坐标是(32,3).∵当3x2<时,y=2x的图象在y=ax+4的图象的下方,∴不等式2x<ax+4的解集为3x2 <.故选C.12.C解析:C【解析】【分析】根据菱形的性质得出CD=AD=5,进而得出CE=4,利用勾股定理得出BE,进而利用勾股定理得出AE即可.【详解】∵菱形ABCD,∴CD=AD=5,CD∥AB,∴CE=CD﹣DE=5﹣1=4,∵BE⊥CD,∴∠CEB=90°,∴∠EBA=90°,在Rt△CBE中,BE3==,在Rt△AEB中,AE==故选C.【点睛】此题考查菱形的性质,关键是根据菱形的性质得出CD=AD.13.D解析:D【解析】【分析】根据平行四边形性质可得OE是三角形ABD的中位线,可进一步求解.【详解】因为▱ABCD的对角线AC,BD相交于点O,AE EB,所以OE是三角形ABD的中位线,所以AD=2OE=6所以▱ABCD的周长=2(AB+AD)=22故选D【点睛】本题考查了平行四边形性质,熟练掌握性质定理是解题的关键.14.D解析:D【解析】分析:直接利用合并同类项法则以及幂的乘方运算法则、同底数幂的乘除运算法则分别计算得出答案.详解:A、a2与a3不是同类项,无法计算,故此选项错误;B、32-2=22,故此选项错误;C、(x2)3=x6,故此选项错误;D、m5÷m3=m2,正确.故选:D.点睛:此题主要考查了合并同类项以及幂的乘方运算、同底数幂的乘除运算,正确掌握相关运算法则是解题关键.15.C解析:C【解析】【分析】根据菱形的性质,四条边相等且对角线互相平分且互相垂直,由勾股定理得出BO的长,进而得其对角线BD的长,再根据菱形的面积等于对角线乘积的一半计算即可.【详解】解:如图:四边形ABCD是菱形,对角线AC与BD相交于点O,∵菱形的周长为40,∴AB=BC=CD=AD=10,∵一条对角线的长为12,当AC=12,∴AO=CO=6,在Rt△AOB中,根据勾股定理,得BO=8,∴BD=2BO=16,∴菱形的面积=12AC•BD=96,故选:C.【点睛】此题主要考查了菱形的性质、菱形的面积公式以及勾股定理等知识,根据题意得出BO的长是解题关键.二、填空题16.5【解析】【分析】直接利用中位数定义求解【详解】第50个数和第55个数都是5所以这100名学生所植树棵数的中位数为5(棵)故答案为5【点睛】考查了中位数:将一组数据按照从小到大(或从大到小)的顺序排解析:5【解析】【分析】直接利用中位数定义求解.【详解】第50个数和第55个数都是5,所以这100名学生所植树棵数的中位数为5(棵).故答案为5.【点睛】考查了中位数:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.17.82【解析】【分析】设第三次考试成绩为x根据三次考试的平均成绩不少于80分列不等式求出x的取值范围即可得答案【详解】设第三次考试成绩为x∵三次考试的平均成绩不少于80分∴解得:∴他第三次数学考试至少解析:82【解析】【分析】设第三次考试成绩为x,根据三次考试的平均成绩不少于80分列不等式,求出x的取值范围即可得答案.【详解】设第三次考试成绩为x,∵三次考试的平均成绩不少于80分,∴7286803x++≥,解得:82x≥,∴他第三次数学考试至少得82分,故答案为:82【点睛】本题考查了一元一次不等式的应用.熟练掌握求平均数的方法,根据不等关系正确列出不等式是解题关键.18.y=2x﹣4【解析】【分析】根据两直线平行可得出k=2再根据直线y=kx+b 过点(32)利用一次函数图像上点的坐标特征即可得出关于b的一元一次方程解方程即可求出b值即可求y=kx+b【详解】解:∵直解析:y=2x﹣4【解析】【分析】根据两直线平行可得出k=2,再根据直线y=kx+b过点(3,2)利用一次函数图像上点的坐标特征即可得出关于b的一元一次方程,解方程即可求出b值,即可求y=kx+b.【详解】解:∵直线y=kx+b与直线y=2x-2平行,∴k=2.又∵直线y=kx+b过点(3,2),∴2=2×3+b,解得:b=-4.∴y=kx+b=2x-4.故答案为y=2x-4.【点睛】本题考查的知识点是两直线相交或平行问题已经一次函数图像上点的坐标特征,解题关键是求出k和b的值.19.【解析】【分析】根据勾股定理求出BC根据正方形的面积公式计算即可【详解】解:由勾股定理得正方形的面积故答案为:【点睛】本题考查了勾股定理如果直角三角形的两条直角边长分别是ab斜边长为c那么a2+b2解析:3.【解析】【分析】根据勾股定理求出BC,根据正方形的面积公式计算即可.【详解】解:由勾股定理得,BC==∴正方形ABCD的面积23==,BC故答案为:3.【点睛】本题考查了勾股定理,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2.20.【解析】【分析】已知ABCD是正方形根据正方形性质可知点B与点D关于AC对称DE=PB+PE求出DE长即是PB+PE最小值【详解】∵四边形ABCD是正方形∴点B与点D关于AC对称连接DE交AC于点P解析:10【解析】【分析】已知ABCD是正方形,根据正方形性质可知点B与点D关于AC对称,DE=PB+PE,求出DE长即是PB+PE最小值.【详解】∵四边形ABCD是正方形∴点B与点D关于AC对称,连接DE,交AC于点P,连接PB,则PB+PE=DE的值最小∵CE=1,CD=3,∠ECD=90°∴2222DE CE CD=++=1310∴PB+PE1010【点睛】本题考查正方形性质,作对称点,再连接,根据两点之间直线最短得结论.21.或【解析】【分析】分两种情况考虑①当BF>CF时②当BF<CF时然后过F 作FG⊥AD于G根据勾股定理进行求解【详解】①如图所示当BF>CF时过F作FG ⊥AD于G则GF=4Rt△EFG中又∵E是AD的解析:2513【解析】【分析】分两种情况考虑,①当BF>CF时,②当BF<CF时,然后过F作FG⊥AD于G,根据勾股定理进行求解.【详解】①如图所示,当BF>CF时,过F作FG⊥AD于G,则GF=4,Rt△EFG中,()22EG=-=,2542又∵E是AD的中点,AD=BC=8,∴DE=4,∴DG=4﹣2=2,∴Rt△DFG中,22DF+=4225②如图所示,当BF<CF时,过F作FG⊥AD于G,则GF=4,Rt△EFG中,()222542EG=-=,又∵E是AD的中点,AD=BC=8,∴DE=4,∴DG=4+2=6,∴Rt△DFG中,2246213DF=+=,故答案为:25或213.【点睛】本题考查矩形的性质,勾股定理,学会运用分类讨论的思想与巧作辅助线构造直角三角形是解题的关键.22.24【解析】已知对角线的长度根据菱形的面积计算公式即可计算菱形的面积解:根据对角线的长可以求得菱形的面积根据S=ab=×6×8=24cm2故答案为24解析:24【解析】已知对角线的长度,根据菱形的面积计算公式即可计算菱形的面积.解:根据对角线的长可以求得菱形的面积,根据S=12ab=12×6×8=24cm2,故答案为24.23.1【解析】【分析】根据三角形中位线定理求出DE根据直角三角形的性质求出EF计算即可【详解】解:∵DE分别为ABAC的中点∴DE=BC=25∵AF⊥CFE为AC的中点∴EF=AC=15∴DF=DE﹣E解析:1【解析】【分析】根据三角形中位线定理求出DE,根据直角三角形的性质求出EF,计算即可.解:∵D 、E 分别为AB 、AC 的中点,∴DE =12BC =2.5, ∵AF ⊥CF ,E 为AC 的中点,∴EF =12AC =1.5, ∴DF =DE ﹣EF =1,故答案为:1.【点睛】 本题考查的是三角形中位线定理、直角三角形的性质,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.24.【解析】【分析】根据题意画出示意图利用勾股定理可求出旗杆的高【详解】解:如图所示:设旗杆米则米在中即解得:旗杆的高为75米故答案为:75【点睛】本题考查了勾股定理的应用解答本题的关键是画出示意图熟练 解析:7.5m【解析】【分析】根据题意画出示意图,利用勾股定理可求出旗杆的高.【详解】解:如图所示:设旗杆AB x =米,则(1)AC x 米,在Rt ABC ∆中,222AC AB BC =+,即222(1)4x x ,解得:7.5x =.∴旗杆的高为7.5米故答案为:7.5.【点睛】本题考查了勾股定理的应用,解答本题的关键是画出示意图,熟练运用勾股定理. 25.【解析】【分析】根据作法判定出四边形OACB 是菱形再根据菱形的面积等于对角线乘积的一半列式计算即可得解【详解】根据作图AC =BC =OA ∵OA =OB ∴OA =OB =BC =AC ∴四边形OACB 是菱形∵AB解析:【解析】根据作法判定出四边形OACB 是菱形,再根据菱形的面积等于对角线乘积的一半列式计算即可得解.【详解】根据作图,AC =BC =OA ,∵OA =OB ,∴OA =OB =BC =AC ,∴四边形OACB 是菱形,∵AB =2cm ,四边形OACB 的面积为4cm 2, ∴12AB •OC =12×2×OC =4, 解得OC =4cm .故答案为:4.【点睛】 本题考查菱形的判定与性质,菱形的面积.解决本题的关键是能根据题目中作图的过程得出线段的等量关系.三、解答题26.(1)1150y x =,2160160y x =-,图象见解析;(2)当人数为16人时,两家均可选择,当人数在1016x ≤<之间时选择乙旅行社,当人数1625x <时,选择甲旅行社.【解析】【分析】(1)根据题意可以直接写出甲乙旅行社收费1y 、2y (元)与参加旅游的人数x (人)之间的关系式,再画出图象;(2)根据题意,可以列出相应的不等式,从而可以得到该单位选择哪一家旅行社支付的旅游费用较少.【详解】解:(1)由题意可得,12000.75150y x x =⨯=,即甲旅行社收费1y (元)与参加旅游的人数x (人)之间的关系式是1150y x =; 22000.80(1)160160y x x =⨯-=-,即乙旅行社收费2y (元)与参加旅游的人数x (人)之间的关系式是2160160y x =-;(2)当150160(1)x x =-时,解得,16x =,即当16x =时,两家费用一样;当150160(1)x x >-时,解得,16x <,即当1016x ≤<时,乙社费用较低;当150160(1)x x <-时,解得,16x >,即当1625x <时,甲社费用较低;答:当人数为16人时,两家均可选择,当人数在1016x ≤<之间时选择乙旅行社,当人数1625x <时,选择甲旅行社.【点睛】本题考查了一次函数的应用、一元一次不等式的应用,解答本题的关键是明确题意,利用一次函数的性质和不等式的性质解答.27.(1)√a 2=|a|={a(a >0)0(a =0)−a(a <9);(2)①π﹣3.14,②2﹣x ;(3)x 的取值范围是5≤x≤8.【解析】【分析】(1)将a 分为正数、0、负数三种情况得出结果;(2)①当a=3.14﹣π<0时,根据(1)中的结论可知,得其相反数﹣a ,即得π﹣3.14; ②先将被开方数化为完全平方式,再根据公式得结果;(3)根据(1)式得:√(x −5)2+√(x −8)2 =|x ﹣5|+|x ﹣8|,然后分三种情况讨论:①当x <5时,②当5≤x≤8时,③当x >8时,分别计算,哪一个结果为3,哪一个就是它的取值.【详解】(1)√a 2=|a|={a (a >0)0(a =0)−a (a <0);(2)①√(3.14−π)2=|3.14﹣π|=π﹣3.14,②√x 2−4x +4(x <2),=√(x −2)2,=|x ﹣2|,∵x <2,∴x ﹣2<0,∴√x 2−4x +4=2﹣x ;(3)∵√(x −5)2+√(x −8)2=|x ﹣5|+|x ﹣8|,①当x <5时,x ﹣5<0,x ﹣8<0,所以原式=5﹣x +8﹣x=13﹣2x ;②当5≤x≤8时,x ﹣5≥0,x ﹣8≤0,所以原式=x ﹣5+8﹣x=3;③当x >8时,x ﹣5>0,x ﹣8>0,所以原式=x ﹣5+x ﹣8=2x ﹣13,∵√(x −5)2+√(x −8)2=3,所以x 的取值范围是5≤x≤8.【点睛】本题考查了二次根式的性质和化简,明确二次根式的两个性质:①(√a )2=a (a≥0)(任何一个非负数都可以写成一个数的平方的形式);②√a 2=|a|={a (a >0)0(a =0)−a (a <0);尤其是第2个性质的运用,注意被开方数是完全平方式时,如第(3)小题,要分情况进行讨论. 28.【解析】【分析】本题考查了同类二次根式的加法,系数相加二次根式不变.【详解】原式123234⎛=+-= ⎝【点睛】本题主要考查了实数中同类二次根式的运算能力,.29.2PA =或78 【解析】【分析】 先利用勾股定理计算出AC=4,根据准外心分类讨论:当PA=PC 时,易得PA=12AC=2;当PB=PC 时,设PA=x ,则PC=PB=4-x ,利用勾股定理得x 2+32=(4-x )2,解得x=78;当PA=PB 时,此情况不成立,然后解方程求出x 即可.【详解】如图:3,5,BC AB ==224AC AB BC ∴=-,若,PB PC =设PA x =,则()22243,x x -=+ 78x ∴=,即78PA =, 若,PA PC =则2,PA =若,PA PB =此情况不成立;综上,2PA =或78【点睛】本题考查了勾股定理:在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.也考查了阅读理解能力. 30.230【解析】【分析】已知两直角边,利用勾股定理求出斜边长,再利用面积法即可求出斜边上的高.【详解】解:Rt ABC ∆中,由勾股定理得AB ===1122ABC S AC AB AB CD ∆==2352AC BC CD AB ∴=== 【点睛】此题考查勾股定理,关键是利用勾股定理求出斜边长.。

最新初中数学几何图形初步经典测试题附答案解析(1)

最新初中数学几何图形初步经典测试题附答案解析(1)

最新初中数学几何图形初步经典测试题附答案解析(1)一、选择题1.如图,AB CD ∥,BF 平分ABE ∠,且BF DE P ,则ABE ∠与D ∠的关系是( )A .2ABE D ∠=∠B .180ABE D ∠+∠=︒C .90ABED ∠=∠=︒D .3ABE D ∠=∠【答案】A【解析】【分析】 延长DE 交AB 的延长线于G ,根据两直线平行,内错角相等可得D G ∠=∠,再根据两直线平行,同位角相等可得G ABF ∠=∠,然后根据角平分线的定义解答.【详解】证明:如图,延长DE 交AB 的延长线于G ,//AB CD Q ,D G ∴∠=∠,//BF DE Q ,G ABF ∴∠=∠,D ABF ∴∠=∠,BF Q 平分ABE ∠,22ABE ABF D ∴∠=∠=∠,即2ABE D ∠=∠.故选:A .【点睛】本题考查了平行线的性质,角平分线的定义,熟记性质并作辅助线是解题的关键.2.∠1与∠2互余,∠1与∠3互补,若∠3=125°,则∠2=( )A .35°B .45°C .55°D .65°【答案】A【解析】【详解】解:根据题意得:∠1+∠3=180°,∠3=125°,则∠1=55°,∵∠1+∠2=90°,则∠2=35° 故选:A .【点睛】本题考查余角、补角的计算.3.如图为一直棱柱,其底面是三边长为5、12、13的直角三角形.若下列选项中的图形均由三个矩形与两个直角三角形组合而成,且其中一个为如图的直棱柱的展开图,则根据图形中标示的边长与直角记号判断,此展开图为何?( )A .B .C .D .【答案】D【解析】分析:三棱柱的侧面展开图是长方形,底面是三角形,据此进行判断即可.详解:A 选项中,展开图下方的直角三角形的斜边长为12,不合题意;B 选项中,展开图上下两个直角三角形中的直角边不能与其它棱完全重合,不合题意;C 选项中,展开图下方的直角三角形中的直角边不能与其它棱完全重合,不合题意;D 选项中,展开图能折叠成一个三棱柱,符合题意;故选:D .点睛:本题主要考查了几何体的展开图,从实物出发,结合具体的问题,辨析几何体的展开图,通过结合立体图形与平面图形的转化,建立空间观念,是解决此类问题的关键.4.如图,在正方形ABCD 中,E 是AB 上一点,2,3BE AE BE ==,P 是AC 上一动点,则PB PE +的最小值是( )A .8B .9C .10D .11【解析】【分析】连接DE,交AC于P,连接BP,则此时PB+PE的值最小,进而利用勾股定理求出即可.【详解】+的值最小解:如图,连接DE,交AC于P,连接BP,则此时PB PE∵四边形ABCD是正方形∴、关于AC对称B D∴PB PD=∴+=+=PB PE PD PE DEQ==BE AE BE2,3∴==6,8AE AB22DE∴=+=;6810+的最小值是10,故PB PE故选:C.【点睛】本题考查了轴对称——最短路线问题,正方形的性质,解此题通常是利用两点之间,线段最短的性质得出.5.已知:在Rt△ABC中,∠C=90°,BC=1,AC=3,点D是斜边AB的中点,点E是边AC 上一点,则DE+BE的最小值为()A.2B31C3D.23【答案】C【分析】作B关于AC的对称点B',连接B′D,易求∠ABB'=60°,则AB=AB',且△ABB'为等边三角形,BE+DE=DE+EB'为B'与直线AB之间的连接线段,其最小值为B'到AB的距离=AC=3,所以最小值为3.【详解】解:作B关于AC的对称点B',连接B′D,∵∠ACB=90°,∠BAC=30°,∴∠ABC=60°,∵AB=AB',∴△ABB'为等边三角形,∴BE+DE=DE+EB'为B'与直线AB之间的连接线段,∴最小值为B'到AB的距离=AC=3,故选C.【点睛】本题考查的是最短线路问题及等边三角形的性质,熟知两点之间线段最短的知识是解答此题的关键.6.在直角三角形ABC中,∠C=90°,AD平分∠BAC交BC于点D,BE平分∠ABC交AC于点E,AD、BE相交于点F,过点D作DG∥AB,过点B作BG⊥DG交DG于点G.下列结论:①∠AFB=135°;②∠BDG=2∠CBE;③BC平分∠ABG;④∠BEC=∠FBG.其中正确的个数是()A.1个B.2个C.3个D.4个【答案】C【解析】【分析】根据角平分线性质、三角形内角和定理以及平行线的性质,即可判定①②正确;根据等角的余角相等,即可判定④正确.【详解】∵AD平分∠BAC交BC于点D,BE平分∠ABC交AC于点E,∴∠BAF=12∠BAC,∠ABF=12∠ABC,又∵∠C=90°,∴∠ABC+∠BAC=90°,∴∠BAF+∠ABF=45°,∴∠AFB=135°,故①正确;∵DG∥AB,∴∠BDG=∠ABC=2∠CBE,故②正确;∵∠ABC的度数不确定,∴BC平分∠ABG不一定成立,故③错误;∵BE平分∠ABC,∴∠ABF=∠CBE,又∵∠C=∠ABG=90°,∴∠BEC+∠CBE=90°,∠ABF+∠FBG=90°,∴∠BEC=∠FBG,故④正确.故选:C【点睛】本题考查了角平分线性质、三角形内角和定理、平行线的性质以及等角的余角相等等知识,熟练运用这些知识点是解题的关键.7.如图是由若干个大小相同的小正方体堆砌而成的几何体,那么其三种视图中面积最小的是()A.主视图B.俯视图C.左视图D.一样大【答案】C【解析】如图,该几何体主视图是由5个小正方形组成,左视图是由3个小正方形组成,俯视图是由5个小正方形组成,故三种视图面积最小的是左视图,故选C.8.下列图形中,不是三棱柱的表面展开图的是()A.B.C.D.【答案】D【解析】利用棱柱及其表面展开图的特点解题.解:A、B、C中间三个长方形能围成三棱柱的侧面,上、下两个三角形围成三棱柱的上、下两底面,故均能围成三棱柱,均是三棱柱的表面展开图.D围成三棱柱时,两个三角形重合为同一底面,而另一底面没有.故D不能围成三棱柱.故选D.9.如图,直线AB,CD交于点O,射线OM平分∠AOC,若∠AOC=76°,则∠BOM等于()A.38°B.104°C.142°D.144°【答案】C【解析】∵∠AOC=76°,射线OM平分∠AOC,∴∠AOM=12∠AOC=12×76°=38°,∴∠BOM=180°−∠AOM=180°−38°=142°,故选C.点睛:本题考查了对顶角相等的性质,角平分线的定义,准确识图是解题的关键. 10.如图,点C是射线OA上一点,过C作CD⊥OB,垂足为D,作CE⊥OA,垂足为C,交OB 于点E ,给出下列结论:①∠1是∠DCE 的余角;②∠AOB =∠DCE ;③图中互余的角共有3对;④∠ACD =∠BEC ,其中正确结论有( )A .①②③B .①②④C .①③④D .②③④【答案】B【解析】【分析】 根据垂直定义可得BCA 90∠=o ,ADC BDC ACF 90∠∠∠===o ,然后再根据余角定义和补角定义进行分析即可.【详解】解:CE OA ⊥Q ,OCE 90o ∠∴=,ECD 190∠∠∴+=o ,1∠∴是ECD ∠的余角,故①正确;CD OB ⊥Q ,AOB COCE 90∠∠∴==o ,AOB OEC 90∠∠∴+=o ,DCE OEC 90∠∠+=o ,B BAC 90∠∠∴+=o ,1ACD 90∠∠+=o ,AOB DCE ∠∠∴=,故②正确;1AOB 1DCE DCE CED AOB CED 90∠∠∠∠∠∠∠∠+=+=+=+=o Q , ∴图中互余的角共有4对,故③错误;ACD 90DCE ∠∠=+o Q ,BEC 90AOB ∠∠=+o ,AOB DCE ∠∠=Q ,ACD BEC ∠∠∴=,故④正确.正确的是①②④;故选B .【点睛】考查了余角和补角,关键是掌握两角之和为90o 时,这两个角互余,两角之和为180o 时,这两个角互补.11.如图,点A 、B 、C 是直线l 上的三个点,图中共有线段条数是( )A .1条B .2条C .3条D .4条【答案】C【解析】解:图中线段有:线段AB、线段AC、线段BC,共三条.故选C.12.下列图形中,是圆锥的侧面展开图的为()A. B.C.D.【答案】B【解析】【分析】根据圆锥的侧面展开图的特点作答.【详解】圆锥的侧面展开图是光滑的曲面,没有棱,只是扇形.故选B.【点睛】考查了几何体的展开图,圆锥的侧面展开图是扇形.13.如图是一个由正方体和一个正四棱锥组成的立体图形,它的主视图是()A.B.C.D.【答案】A【解析】【分析】对一个物体,在正面进行正投影得到的由前向后观察物体的视图,叫做主视图.【详解】解:由主视图的定义可知A选项中的图形为该立体图形的主视图,故选择A.【点睛】本题考查了三视图的概念.14.下列说法中不正确的是( )①过两点有且只有一条直线②连接两点的线段叫两点的距离③两点之间线段最短④点B 在线段AC 上,如果AB=BC ,则点B 是线段AC 的中点A .①B .②C .③D .④【答案】B【解析】【分析】依据直线的性质、两点间的距离、线段的性质以及中点的定义进行判断即可.【详解】①过两点有且只有一条直线,正确;②连接两点的线段的长度叫两点间的距离,错误③两点之间线段最短,正确;④点B 在线段AC 上,如果AB=BC ,则点B 是线段AC 的中点,正确;故选B .15.如图,把一块含有45°角的直角三角板的两个顶点放在直尺的对边上.如果∠1=20°,那么∠2的度数是( )A .30°B .25°C .20°D .15°【答案】B【解析】根据题意可知∠1+∠2+45°=90°,∴∠2=90°﹣∠1﹣45°=25°,16.如图,在平行四边形ABCD 中,将ADC ∆沿AC 折叠后,点D 恰好落在DC 的延长线上的点E 处.若60B ∠=o ,AB=3,则ADE ∆的周长为()A .12B .15C .18D .2【答案】C【解析】【分析】依据平行四边形的性质以及折叠的性质,即可得到BC=2AB=6,AD=6,再根据△ADE 是等边三角形,即可得到△ADE 的周长为6×3=18.【详解】由折叠可得,∠ACD=∠ACE=90°,∴∠BAC=90°,又∵∠B=60°,∴∠ACB=30°,∴BC=2AB=6,∴AD=6,由折叠可得,∠E=∠D=∠B=60°,∴∠DAE=60°,∴△ADE 是等边三角形,∴△ADE 的周长为6×3=18,故选:C .【点睛】此题考查平行四边形的性质、轴对称图形性质以及等边三角形的判定.解题关键在于注意折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.17.如图,某河的同侧有A ,B 两个工厂,它们垂直于河边的小路的长度分别为2AC km =,3BD km =,这两条小路相距5km .现要在河边建立一个抽水站,把水送到A ,B 两个工厂去,若使供水管最短,抽水站应建立的位置为( )A .距C 点1km 处B .距C 点2km 处 C .距C 点3km 处D .CD 的中点处【答案】B【解析】【分析】 作出点A 关于江边的对称点E ,连接EB 交CD 于P ,则PA PB PE PB EB +=+=,根据两点之间线段最短,可知当供水站在点P 处时,供水管路最短.再利用三角形相似即可解决问题.【详解】作出点A 关于江边的对称点E ,连接EB 交CD 于P ,则PA PB PE PB EB +=+=.根据两点之间线段最短,可知当供水站在点P 处时,供水管路最短.根据PCE PDB ∆∆:,设PC x =,则5PD x =-,根据相似三角形的性质,得 PC CE PD BD =,即253x x =-, 解得2x =.故供水站应建在距C 点2千米处. 故选:B .【点睛】本题为最短路径问题,作对称找出点P ,利用三角形相似是解题关键.18.小张同学的座右铭是“态度决定一切”,他将这几个字写在一个正方体纸盒的每个面上,其平面展开图如图所示,那么在该正方体中,和“一”相对的字是( )A .态B .度C .决D .切 【答案】A【解析】【分析】 正方体的平面展开图中,相对面的特点是之间一定相隔一个正方形,据此可得和“一”相对的字.【详解】正方体的平面展开图中,相对面的特点是之间一定相隔一个正方形,所以和“一”相对的字是:态.故选A .【点睛】注意正方体的空间图形,从相对面入手,分析及解答问题.19.如图,△ABC 的角平分线CD 、BE 相交于F ,∠A =90°,EG ∥BC ,且CG ⊥EG 于G ,下列结论:①∠CEG =2∠DCB ;②∠ADC =∠GCD ;③CA 平分∠BCG ;④∠DFB =12∠CGE .其中正确的结论是( )A .②③B .①②④C .①③④D .①②③④【答案】B【解析】【分析】 根据平行线的性质、角平分线的定义、垂直的性质及三角形内角和定理依次判断即可得出答案.【详解】①∵EG ∥BC ,∴∠CEG=∠ACB ,又∵CD 是△ABC 的角平分线,∴∠CEG=∠ACB=2∠DCB ,故正确;②∵∠A=90°,∴∠ADC+∠ACD=90°,∵CD 平分∠ACB ,∴∠ACD=∠BCD ,∴∠ADC+∠BCD=90°.∵EG ∥BC ,且CG ⊥EG ,∴∠GCB=90°,即∠GCD+∠BCD=90°,∴∠ADC=∠GCD ,故正确;③条件不足,无法证明CA 平分∠BCG ,故错误;④∵∠EBC+∠ACB=∠AEB ,∠DCB+∠ABC=∠ADC ,∴∠AEB+∠ADC=90°+12(∠ABC+∠ACB )=135°, ∴∠DFE=360°-135°-90°=135°, ∴∠DFB=45°=12∠CGE ,,正确. 故选B .【点睛】本题主要考查了角平分线的定义,平行线的性质,三角形内角和定理及多边形内角和,三角形外角的性质,熟知直角三角形的两锐角互余是解答此题的关键.20.如图,一副三角板按如图所示的位置摆放,其中//AB CD ,45A ∠=︒,60C ∠=°,90AEB CED ∠=∠=︒,则AEC ∠的度数为( )A.75°B.90°C.105°D.120°【答案】C【解析】【分析】延长CE交AB于点F,根据两直线平行,内错角相等可得∠AFE=∠C,再根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.【详解】解:如图,延长CE交AB于点F,∵AB∥CD,∴∠AFE=∠C=60°,在△AEF中,由三角形的外角性质得,∠AEC=∠A+∠AFE=45°+60°=105°.故选:C.【点睛】本题考查了平行线的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记相关性质并作出正确的辅助线是解题的关键.。

初中数学几何图形初步经典测试题附答案解析

初中数学几何图形初步经典测试题附答案解析

初中数学几何图形初步经典测试题附答案解析一、选择题1.图①是由白色纸板拼成的立体图形,将它的两个面的外表面涂上颜色,如图②所示.则下列图形中,是图②的表面展开图的是( ).A .B .C .D .【答案】B【解析】 试题分析:由平面图形的折叠及立体图形的表面展开图的特点解题.解:由图中阴影部分的位置,首先可以排除C 、D ,又阴影部分正方形在左,三角形在右,而且相邻,故只有选项B 符合题意.故选B .点评:此题主要考查了几何体的展开图,本题虽然是选择题,但答案的获得需要学生经历一定的实验操作过程,当然学生也可以将操作活动转化为思维活动,在头脑中模拟(想象)折纸、翻转活动,较好地考查了学生空间观念.2.如图,一个正六棱柱的表面展开后恰好放入一个矩形内,把其中一部分图形挪动了位置,发现矩形的长留出5cm ,宽留出1,cm 则该六棱柱的侧面积是( )A .210824(3) cm -B .(2108123cm -C .(254243cm -D .(254123cm -【答案】A【解析】【分析】 设正六棱柱的底面边长为acm ,高为hcm ,分别表示出挪动前后所在矩形的长与宽,由题意列出方程求出a =2,h =9−36ah 求解.【详解】解:设正六棱柱的底面边长为acm ,高为hcm ,如图,正六边形边长AB =acm 时,由正六边形的性质可知∠BAD =30°,∴BD =12a cm ,AD =32a cm , ∴AC =2AD =3a cm ,∴挪动前所在矩形的长为(2h +23a )cm ,宽为(4a +12a )cm , 挪动后所在矩形的长为(h +2a +3a )cm ,宽为4acm , 由题意得:(2h +23a )−(h +2a +3a )=5,(4a +12a )−4a =1, ∴a =2,h =9−23,∴该六棱柱的侧面积是6ah =6×2×(9−23)=210824(3) cm ;故选:A .【点睛】本题考查了几何体的展开图,正六棱柱的性质,含30度角的直角三角形的性质;能够求出正六棱柱的高与底面边长是解题的关键.3.将如图所示的Rt △ACB 绕直角边AC 旋转一周,所得几何体的主视图(正视图)是( )A .B .C .D .【答案】D【解析】解:Rt △ACB 绕直角边AC 旋转一周,所得几何体是圆锥,主视图是等腰三角形. 故选D .首先判断直角三角形ACB 绕直角边AC 旋转一周所得到的几何体是圆锥,再找出圆锥的主视图即可.4.一副直角三角板如图放置,其中∠C =∠DFE =90°,∠A =45°,∠E =60°,点F 在CB 的延长线上.若DE ∥CF ,则∠BDF 等于( )A .30°B .25°C .18°D .15° 【答案】D【解析】【分析】根据三角形内角和定理可得45ABC ∠=︒和30EDF ∠=︒,再根据平行线的性质可得45EDB ABC ==︒∠∠,再根据BDF EDB EDF =-∠∠∠,即可求出BDF ∠的度数.【详解】∵∠C =90°,∠A =45°∴18045ABC A C =︒--=︒∠∠∠∵//DE CF∴45EDB ABC ==︒∠∠∵∠DFE =90°,∠E =60°∴18030EDF E DFE =︒--=︒∠∠∠∴15BDF EDB EDF =-=︒∠∠∠故答案为:D .【点睛】本题考查了三角板的角度问题,掌握三角形内角和定理、平行线的性质是解题的关键.5.下列立体图形中,侧面展开图是扇形的是()A .B .C.D.【答案】B【解析】根据圆锥的特征可知,侧面展开图是扇形的是圆锥.故选B.6.如图,如果用剪刀沿直线将一个正方形图片剪掉一部分,发现剩下部分的周长比原正方形图片的周长要小,能正确解释这一现象的数学知识是()A.线段比曲线短B.经过一点有无数条直线C.经过两点,有且仅有一条直线D.两点之间,线段最短【答案】D【解析】【分析】如下图,只需要分析AB+BC<AC即可【详解】∵线段AC 是点A 和点C 之间的连线,AB+BC 是点A 和点C 经过弯折后的路径又∵两点之间线段最短∴AC <AB+BC故选:D【点睛】本题考查两点之间线段最短,在应用的过程中,要弄清楚线段长度表示的是哪两个点之间的距离7.一个立方体的表面展开图如图所示,将其折叠成立方体后,“你”字对面的字是( )A .中B .考C .顺D .利【答案】C【解析】 试题解析:正方体的表面展开图,相对的面之间一定相隔一个正方形,“祝”与“考”是相对面,“你”与“顺”是相对面,“中”与“立”是相对面.故选C .考点:正方体展开图.8.如图,在平行四边形ABCD 中,4AB =,7AD =,ABC ∠的平分线BE 交AD 于点E ,则DE 的长是( )A .4B .3C .3.5D .2【答案】B【解析】【分析】 根据平行四边形的性质可得AEB EBC ∠=∠,再根据角平分线的性质可推出AEB ABE ∠=∠,根据等角对等边可得4AB AE ==,即可求出DE 的长.【详解】∵四边形ABCD 是平行四边形∴//AD BC∴AEB EBC ∠=∠∵BE 是ABC ∠的平分线∴ABE EBC ∠=∠∴AEB ABE ∠=∠∴4AB AE ==∴743DE AD AE =-=-=故答案为:B .【点睛】本题考查了平行四边形的线段长问题,掌握平行四边形的性质、平行线的性质、角平分线的性质、等角对等边是解题的关键.9.如图是由四个正方体组合而成,当从正面看时,则得到的平面视图是( )A .B .C .D .【答案】D【解析】【分析】 根据从正面看到的图叫做主视图,从左面看到的图叫做左视图,从上面看到的图叫做俯视图.根据图中正方体摆放的位置判定则可.【详解】解:从正面看,下面一行是横放3个正方体,上面一行最左边是一个正方体. 故选:D .【点睛】本题主要考查三视图的识别,解决本题的关键是要熟练掌握三视图的识别方法.10.已知:在Rt △ABC 中,∠C =90°,BC =1,AC 3D 是斜边AB 的中点,点E 是边AC 上一点,则DE +BE 的最小值为( )A.2B.31C.3D.23【答案】C【解析】【分析】作B关于AC的对称点B',连接B′D,易求∠ABB'=60°,则AB=AB',且△ABB'为等边三角形,BE+DE=DE+EB'为B'与直线AB之间的连接线段,其最小值为B'到AB的距离=AC=3,所以最小值为3.【详解】解:作B关于AC的对称点B',连接B′D,∵∠ACB=90°,∠BAC=30°,∴∠ABC=60°,∵AB=AB',∴△ABB'为等边三角形,∴BE+DE=DE+EB'为B'与直线AB之间的连接线段,∴最小值为B'到AB的距离3故选C.【点睛】本题考查的是最短线路问题及等边三角形的性质,熟知两点之间线段最短的知识是解答此题的关键.11.如图,小强从A处出发沿北偏东70°方向行走,走至B处,又沿着北偏西30°方向行走至C处,此时需把方向调整到与出发时一致,则方向的调整应是()A.左转 80°B.右转80°C.右转 100°D.左转 100°【答案】C【解析】【分析】过C点作CE∥AB,延长CB与点D,根据平行线的性质得出∠A+∠ABH=180°,∠ECB=∠ABC,求出∠ABH=110°,∠ABC=80°,即可求出∠ECB=80°,得出答案即可.【详解】过C点作CE∥AB,延长CB与点D,如图∵根据题意可知:AF∥BH,AB∥CE,∴∠A+∠ABH=180°,∠ECB=∠ABC,∵根据题意可知:∠FAB=70°,∠HBC=30°,∴∠ABH=180°−70°=110°,∠ABC=110°−30°=80°,∴∠ECB=80°,∴∠DCE=180°−80°=100°,即方向的调整应是右转100°.故答案选C.【点睛】本题考查了平行线的判定与性质,解题的关键是熟练的掌握平行线的判定与性质.12.一把直尺和一块三角板ABC(含30°,60°角)的摆放位置如图,直尺一边与三角板的两直角边分别交于点D、点E,另一边与三角板的两直角边分别交于点F、点A,且∠CED =50°,那么∠BAF=()A .10°B .50°C .45°D .40°【答案】A【解析】【分析】 先根据∠CED =50°,DE ∥AF ,即可得到∠CAF =50°,最后根据∠BAC =60°,即可得出∠BAF 的大小.【详解】∵DE ∥AF ,∠CED =50°,∴∠CAF =∠CED =50°,∵∠BAC =60°,∴∠BAF =60°﹣50°=10°,故选:A .【点睛】此题考查平行线的性质,几何图形中角的和差关系,掌握平行线的性质是解题的关键.13.如图,在Rt ABC 中,90C ∠=︒,以顶点A 为圆心,适当长为半径画弧,分别交AC 、AB 于点M 、N ,再分别以点M 、N 为圆心,大于12MN 的长为半径画弧,两弧交于点P ,作射线AP 交边BC 于点D ,若4CD =,15AB =,则ABD △的面积是( )A .15B .30C .45D .60【答案】B【解析】【分析】作DE AB ⊥于E ,根据角平分线的性质得4DE DC ==,再根据三角形的面积公式求解即可.【详解】作DE AB ⊥于E由尺规作图可知,AD 是△ABC 的角平分线∵90C ∠=︒,DE AB ⊥∴4DE DC ==∴△ABD 的面积1302AB DE =⨯⨯= 故答案为:B .【点睛】本题考查了三角形的面积问题,掌握角平分线的性质、三角形面积公式是解题的关键.14.如图,ABC ∆为等边三角形,点P 从A 出发,沿A B C A →→→作匀速运动,则线段AP 的长度y 与运动时间x 之间的函数关系大致是( )A .B .C .D .【答案】B【解析】【分析】根据题意可知点P 从点A 运动到点B 时以及从点C 运动到点A 时是一条线段,故可排除选项C 与D ;点P 从点B 运动到点C 时,y 是x 的二次函数,并且有最小值,故选项B 符合题意,选项A 不合题意.【详解】根据题意得,点P 从点A 运动到点B 时以及从点C 运动到点A 时是一条线段,故选项C 与选项D 不合题意;点P 从点B 运动到点C 时,y 是x 的二次函数,并且有最小值,∴选项B 符合题意,选项A 不合题意.故选B .【点睛】本题考查了动点问题的函数图象:通过分类讨论,利用三角形面积公式得到y 与x 的函数关系,然后根据二次函数和一次函数图象与性质解决问题.15.下列图形中,是圆锥的侧面展开图的为( )A .B .C .D .【答案】B【解析】【分析】 根据圆锥的侧面展开图的特点作答.【详解】圆锥的侧面展开图是光滑的曲面,没有棱,只是扇形.故选B .【点睛】考查了几何体的展开图,圆锥的侧面展开图是扇形.16.如图,在ABC 中,90C ∠=︒,30B ∠=︒,如图:(1)以A 为圆心,任意长为半径画弧分别交AB 、AC 于点M 和N ;(2)分别以M 、N 为圆心,大于MN 的长为半径画弧,两弧交于点P ;(3)连结AP 并延长交BC 于点D .根据以上作图过程,下列结论中错误的是( )A .AD 是BAC ∠的平分线B .60ADC ∠=︒ C .点D 在AB 的中垂线上D .:1:3DAC ABD S S =△△【答案】D【解析】【分析】 根据作图的过程可以判定AD 是∠BAC 的角平分线;利用角平分线的定义可以推知∠CAD=30°,则由直角三角形的性质来求∠ADC 的度数;利用等角对等边可以证得△ADB 的等腰三角形,由等腰三角形的“三线合一”的性质可以证明点D 在AB 的中垂线上;利用30度角所对的直角边是斜边的一半、三角形的面积计算公式来求两个三角形的面积之比.【详解】解:A 、根据作图方法可得AD 是∠BAC 的平分线,正确;B、∵∠C=90°,∠B=30°,∴∠CAB=60°,∵AD是∠BAC的平分线,∴∠DAC=∠DAB=30°,∴∠ADC=60°,正确;C、∵∠B=30°,∠DAB=30°,∴AD=DB,∴点D在AB的中垂线上,正确;D、∵∠CAD=30°,∴CD=12 AD,∵AD=DB,∴CD=12 DB,∴CD=13 CB,S△ACD=12CD•AC,S△ACB=12CB•AC,∴S△ACD:S△ACB=1:3,∴S△DAC:S△ABD≠1:3,错误,故选:D.【点睛】本题考查了角平分线的性质、线段垂直平分线的性质以及作图—基本作图.解题时,需要熟悉等腰三角形的判定与性质.17.用一副三角板(两块)画角,能画出的角的度数是()A.145C B.95C C.115C D.105C【答案】D【解析】【分析】一副三角板由两个三角板组成,其中一个三角板的度数有45°、45°、90°,另一个三角板的度数有30°、60°、90°,将两个三角板各取一个角度相加,和等于选项中的角度即可拼成.【详解】选项的角度数中个位是5°,故用45°角与另一个三角板的三个角分别相加,结果分别为:45°+30°=75°,45°+60°=105°,45°+90°=135°,故选:D.【点睛】此题主要考查学生对角的计算这一知识点的理解和掌握,解答此题的关键是分清两块三角板的锐角的度数分别是多少,比较简单,属于基础题.18.如图所示为几何体的平面展开图,则从左到右,其对应的几何体名称分别为()A.圆锥,正方体,三棱锥,圆柱B.圆锥,正方体,四棱锥,圆柱C.圆锥,正方体,四棱柱,圆柱D.正方体,圆锥,圆柱,三棱柱【答案】D【解析】【分析】根据常见的几何体的展开图进行判断,即可得出结果.【详解】根据几何体的平面展开图,则从左到右,其对应的几何体名称分别为:正方体,圆锥,圆柱,三棱柱.故选D.【点睛】本题考查了常见几何体的展开图;熟记常见几何体的平面展开图的特征,是解题的关键.19.下列说法中正确的有()(1)如果互余的两个角的度数之比为1:3,那么这两个角分别是45°和135°(2)如果两个角是同一个角的补角,那么这两个角不一定相等(3)一个锐角的余角比这个锐角的补角小90°(4)如果两个角的度数分别是73°42′与16°18′,那么这两个角互余.A.1个 B.2个 C.3个 D.4个【答案】B【解析】【分析】根据余角和补角的定义依次判断即可求解.【详解】(1)由互余的两个角的和为90°可知(1)错误;(2)由同角的补角相等可知(2)错误;(3)设这个角为x,则其余角为(90°﹣x),补角为(18 0°﹣x),则(180°﹣x)﹣(90°﹣x)=90°,由此可知(3)正确;(4)由73°42+16°18′=90°可知(4)正确.综上,正确的结论为(3)(4),共2个.故选B.【点睛】本题考查了余角和补角的定义,熟练运用余角和补角的定义是解决问题的关键.∠,20.如图,已知直线AB和CD相交于G点,CG EG⊥,GF平分AGE∠=︒,则BGDCGF34∠大小为()A.22︒B.34︒C.56︒D.90︒【答案】A【解析】【分析】先根据垂直的定义求出∠EGF的度数,然后根据GF平分∠ABE可得出∠AGF的度数,再由∠AGC=∠AGF-∠CGF求出∠AGC的度数,最后根据对顶角相等可得出∠BGD的度数.【详解】解:∵CG⊥EG,∴∠EGF=90°-∠CGF=90°-34°=56°,又GF平分∠AGE,∴∠AGF=∠EGF=56°,∴∠AGC=∠AGF-∠CGF=56°-34°=22°,∴∠BGD=∠AGC=22°.故选:A.【点睛】本题考查了对顶角的性质,垂直的定义以及角平分线的定义,掌握基本概念和性质是解题的关键.。

(必考题)中考数学填空题专项练习经典测试题(含答案解析)

(必考题)中考数学填空题专项练习经典测试题(含答案解析)

一、选择题1.已知a ,b 是方程230x x +-=的两个实数根,则22019a b -+的值是( ) A .2023 B .2021 C .2020 D .20192.如图,AB 是圆O 的直径,CD 是圆O 的弦,若35C ∠=︒,则ABD ∠=( )A .55︒B .45︒C .35︒D .65︒3.把球放在长方体纸盒内,球的一部分露出盒外,其截面如图所示,已知4EF CD ==,则球的半径长是( )A .2B .2.5C .3D .4 4.已知y 关于x 的函数表达式是24y ax x a =--,下列结论不正确的是( )A .若1a =-,函数的最大值是5B .若1a =,当2x ≥时,y 随x 的增大而增大C .无论a 为何值时,函数图象一定经过点(1,4)-D .无论a 为何值时,函数图象与x 轴都有两个交点5.如图,在△ABC 中,∠CAB=65°,在同一平面内,将△ABC 绕点A 旋转到△AB′C′的位置,使得CC′∥AB ,则∠BAB′的度数为( )A .25°B .30°C .50°D .55°6.下列四个图形中,既是轴对称图形,又是中心对称图形的是( )A .B .C .D .7.五粮液集团2018年净利润为400亿元,计划2020年净利润为640亿元,设这两年的年净利润平均增长率为x ,则可列方程是( )A .400(1)640x +=B .2400(1)640x +=C .2400(1)400(1)640x x +++=D .2400400(1)400(1)640x x ++++=8.受益于电子商务发展和法治环境改善等多重因素,“快递业”成为我国经济的一匹“黑马”,2016年我国快递业务量为300亿件,2018年快递量将达到450亿件,若设快递量平均每年增长率为x ,则下列方程中,正确的是( )A .()3001x 450+=B .()30012x 450+=C .2300(1x)450+=D .2450(1x)300-= 9.如图,四边形ABCD 是菱形,∠A=60°,AB=2,扇形BEF 的半径为2,圆心角为60°,则图中阴影部分的面积是( )A .2332π-B .233π-C .32π-D .3π-10.如图,AC 是⊙O 的内接正四边形的一边,点B 在弧AC 上,且BC 是⊙O 的内接正六边形的一边.若AB 是⊙O 的内接正n 边形的一边,则n 的值为( )A .6B .8C .10D .1211.如图,A 、D 是⊙O 上的两个点,BC 是直径,若∠D =34°,则∠OAC 等于( )A .68°B .58°C .72°D .56°12.如图1,一个扇形纸片的圆心角为90°,半径为4.如图2,将这张扇形纸片折叠,使点A 与点O 恰好重合,折痕为CD ,图中阴影为重合部分,则阴影部分的面积为( )A .4233π-B .8433π-C .8233π-D .843π- 13.若a 是方程22x x 30--=的一个解,则26a 3a -的值为( )A .3B .3-C .9D .9-14.下列判断中正确的是( )A .长度相等的弧是等弧B .平分弦的直线也必平分弦所对的两条弧C .弦的垂直平分线必平分弦所对的两条弧D .平分一条弧的直线必平分这条弧所对的弦15.已知关于x 的一元二次方程2(2)0a x c -+=的两根为12x =-,26x =,则一元二次方程220ax ax a c -++=的根为( )A .0,4B .-3,5C .-2,4D .-3,1二、填空题16.“明天的太阳从西方升起”这个事件属于________事件(用“必然”、“不可能”、“不确定”填空).17.已知二次函数y =(x −2)2+3,当x _______________时,y 随x 的增大而减小.18.二次函数22(1)3y x =+-上一动点(,)P x y ,当21x -<≤时,y 的取值范围是_____.19.在一个不透明的口袋中装有5个红球和3个白球,他们除颜色外其他完全相同,任意摸出一个球是白球的概率为________.20.一元二次方程x 2﹣2x ﹣3=0的解是x 1、x 2(x 1<x 2),则x 1﹣x 2=_____.21.一元二次方程22x 20-=的解是______.22.飞机着陆后滑行的距离s (单位:米)关于滑行的时间t (单位:秒)的函数解析式是23602s t t =-,则飞机着陆后滑行的最长时间为 秒. 23.如图,我们把一个半圆与抛物线的一部分围成的封闭图形称为“果圆”.已知点A 、B 、C 、D 分别是“果圆”与坐标轴的交点,抛物线的解析式为y=x 2﹣6x ﹣16,AB 为半圆的直径,则这个“果圆”被y 轴截得的线段CD 的长为_____.24.如图,点A 是抛物线24y x x =-对称轴上的一点,连接OA ,以A 为旋转中心将AO 逆时针旋转90°得到AO ′,当O ′恰好落在抛物线上时,点A 的坐标为______________.25.如图,△ABC 绕点A 顺时针旋转45°得到△AB′C′,若∠BAC =90°,AB =AC =2,则图中阴影部分的面积等于_____.三、解答题26.如图,斜坡AB 长10米,按图中的直角坐标系可用353y x =-+表示,点A ,B 分别在x 轴和y 轴上,且30OAB ︒∠=.在坡上的A 处有喷灌设备,喷出的水柱呈抛物线形落到B 处,抛物线可用213y x bx c =-++表示.(1)求抛物线的函数关系式(不必写自变量取值范围);(2)求水柱离坡面AB的最大高度;(3)在斜坡上距离A点2米的C处有一颗3.5米高的树,水柱能否越过这棵树?27.在平面直角坐标系中,已知二次函数y=ax2﹣2ax﹣3a(a>0)图象与x轴交于点A,B (点A在点B的左侧),与y轴交于点C,顶点为D.(1)求点A,B的坐标;(2)若M为对称轴与x轴交点,且DM=2AM.①求二次函数解析式;②当t﹣2≤x≤t时,二次函数有最大值5,求t值;③若直线x=4与此抛物线交于点E,将抛物线在C,E之间的部分记为图象记为图象P(含C,E两点),将图象P沿直线x=4翻折,得到图象Q,又过点(10,﹣4)的直线y=kx+b 与图象P,图象Q都相交,且只有两个交点,求b的取值范围.28.“六•一”前夕质监部门从某超市经销的儿童玩具、童车和童装中共抽查了300件儿童用品,以下是根据抽查结果绘制出的不完整的统计表和扇形图;类别儿童玩具童车童装抽查件数90请根据上述统计表和扇形提供的信息,完成下列问题:(1)分别补全上述统计表和统计图;(2)已知所抽查的儿童玩具、童车、童装的合格率分别为90%、88%、80%,若从该超市的这三类儿童用品中随机购买一件,买到合格品的概率是多少?29.如图,Rt△ABC中,∠ABC=90°,以AB为直径作⊙O,点D为⊙O上一点,且CD=CB、连接DO并延长交CB的延长线于点E(1)判断直线CD与⊙O的位置关系,并说明理由;(2)若BE=4,DE=8,求AC的长.30.某企业为响应国家教育扶贫的号召,决定对某乡镇全体贫困初、高中学生进行资助,初中学生每月资助200元,高中学生每月资助300元.已知该乡受资助的初中学生人数是受资助的高中学生人数的2倍,且该企业在2018年下半年7﹣12月这6个月资助学生共支出10.5万元.(1)问该乡镇分别有多少名初中学生和高中学生获得了资助?(2)2018年7﹣12月期间,受资助的初、高中学生中,分别有30%和40%的学生被评为优秀学生,从而获得了该乡镇政府的公开表扬.同时,提供资助的企业为了激发更多受资助学生的进取心和学习热情,决定对2019年上半年1﹣6月被评为优秀学生的初中学生每人每月增加a%的资助,对被评为优秀学生的高中学生每人每月增加2a%的资助.在此奖励政策的鼓励下,2019年1﹣6月被评为优秀学生的初、高中学生分別比2018年7﹣12月的人数增加了3a%、a%.这样,2019年上半年评为优秀学生的初、高中学生所获得的资助总金额一个月就达到了10800元,求a的值.【参考答案】2016-2017年度第*次考试试卷参考答案**科目模拟测试一、选择题1.A2.A3.B4.D5.C6.D7.B8.C9.B10.D11.D12.C13.C14.C15.B二、填空题16.不可能【解析】根据所学知识可知太阳应该从东方升起所以明天的太阳从西方升起这个事件属于不可能事件故答案为:不可能17.<2(或x≤2)【解析】试题分析:对于开口向上的二次函数在对称轴的左边y随x 的增大而减小在对称轴的右边y随x的增大而增大根据性质可得:当x<2时y随x的增大而减小考点:二次函数的性质18.【解析】【分析】先确定抛物线的对称轴和顶点坐标再根据抛物线的性质以对称轴为界分情况求解即得答案【详解】解:∵抛物线的解析式是∴抛物线的对称轴是直线:顶点坐标是(-1-3)抛物线的开口向上当x<-1时19.【解析】【分析】【详解】解:∵在一个不透明的口袋中装有5个红球和3个白球∴任意从口袋中摸出一个球来P(摸到白球)==20.-4【解析】【分析】利用根与系数的关系求出所求即可此题也可解出x的值直接计算【详解】∵一元二次方程x2﹣2x﹣3=0的解是x1x2(x1<x2)∴x1+x2=2x1x2=﹣3则x1﹣x2=﹣(x1+21.x1=1x2=-1【解析】分析:方程整理后利用平方根定义开方即可求出解详解:方程整理得:x2=1开方得:x=±1解得:x1=1x2=﹣1故答案为x1=1x2=﹣1点睛:本题考查了解一元二次方程﹣直接22.【解析】【分析】把解析式化为顶点式再根据二次函数的性质得出答案即可【详解】解:∴当t=20时s取得最大值此时s=600故答案为20考点:二次函数的应用;最值问题;二次函数的最值23.20【解析】【分析】抛物线的解析式为y=x2-6x-16可以求出AB=10;在Rt△COM中可以求出CO=4;则:CD=CO+OD=4+16=20【详解】抛物线的解析式为y=x2-6x-16则D(024.(22)或(2-1)【解析】∵抛物线y=x2-4x对称轴为直线x=-∴设点A坐标为(2m)如图所示作AP⊥y轴于点P作O′Q⊥直线x=2∴∠APO=∠AQO′=90°∴∠QAO′+∠AO′Q=90°25.-1【解析】由题意得ABBC于DBC于EBC交BC于FAB=勾股定理得AE=AD=1DB=-1三、解答题26.27.28.29.30.2016-2017年度第*次考试试卷 参考解析【参考解析】**科目模拟测试一、选择题1.A解析:A【解析】【分析】根据题意可知b=3-b 2,a+b=-1,ab =-3,所求式子化为a 2-b+2019=a 2-3+b 2+2019=(a+b )2-2ab+2016即可求解.【详解】a ,b 是方程230x x +-=的两个实数根,∴23b b =-,1a b +=-,-3ab =,∴222201932019a b a b -+=-++()2220161620162023a b ab =+-+=++=; 故选A .【点睛】本题考查一元二次方程的根与系数的关系;根据根与系数的关系将所求式子进行化简代入是解题的关键. 2.A【解析】【分析】根据同弧所对的圆周角相等可得35BAD C =∠=︒∠,再根据圆直径所对的圆周角是直角,可得90ADB ∠=︒,再根据三角形内角和定理即可求出ABD ∠的度数.【详解】∵35C ∠=︒∴35BAD C =∠=︒∠∵AB 是圆O 的直径∴90ADB ∠=︒∴18055ABD ADB BAD =︒--=︒∠∠∠故答案为:A .【点睛】本题考查了圆内接三角形的角度问题,掌握同弧所对的圆周角相等、圆直径所对的圆周角是直角、三角形内角和定理是解题的关键.3.B解析:B【解析】【分析】取EF 的中点M ,作MN ⊥AD 于点M ,取MN 上的球心O ,连接OF ,设OF=x ,则OM=4-x ,MF=2,然后在Rt △MOF 中利用勾股定理求得OF 的长即可.【详解】如图:EF 的中点M ,作MN ⊥AD 于点M ,取MN 上的球心O ,连接OF ,∵四边形ABCD 是矩形,∴∠C=∠D=90°,∴四边形CDMN 是矩形,∴MN=CD=4,设OF=x ,则ON=OF ,∴OM=MN-ON=4-x ,MF=2,在直角三角形OMF 中,OM 2+MF 2=OF 2,即:(4-x )2+22=x 2,解得:x=2.5,故选B .本题主考查垂径定理及勾股定理的知识,正确作出辅助线构造直角三角形是解题的关键.4.D解析:D【解析】【分析】将a 的值代入函数表达式,根据二次函数的图象与性质可判断A 、B ,将x=1代入函数表达式可判断C ,当a=0时,y=-4x 是一次函数,与x 轴只有一个交点,可判断D 错误.【详解】当1a =-时,()224125=--+=-++y x x x ,∴当2x =-时,函数取得最大值5,故A 正确;当1a =时,()224125y x x x =--=--,∴函数图象开口向上,对称轴为2x =,∴当2x ≥时,y 随x 的增大而增大,故B 正确;当x=1时,44=--=-y a a ,∴无论a 为何值,函数图象一定经过(1,-4),故C 正确;当a=0时,y=-4x ,此时函数为一次函数,与x 轴只有一个交点,故D 错误;故选D.【点睛】本题考查了二次函数的图象与性质,以及一次函数与x 轴的交点问题,熟练掌握二次函数的性质是解题的关键. 5.C解析:C【解析】试题解析:∵CC′∥AB ,∴∠ACC′=∠CAB=65°,∵△ABC 绕点A 旋转得到△AB′C′,∴AC=AC′,∴∠CAC′=180°﹣2∠ACC′=180°﹣2×65°=50°,∴∠CAC′=∠BAB′=50°.故选C .6.D解析:D【解析】【分析】根据轴对称图形与中心对称图形的概念求解.【详解】A 、是轴对称图形,不是中心对称图形,故此选项错误;B 、不是轴对称图形,是中心对称图形,故此选项错误;C 、是轴对称图形,不是中心对称图形,故此选项错误;D 、既是轴对称图形,又是中心对称图形,故此选项正确.故选D .【点睛】此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.7.B解析:B【解析】【分析】根据平均年增长率即可解题.【详解】解:设这两年的年净利润平均增长率为x ,依题意得:()24001640x +=故选B.【点睛】本题考查了一元二次方程的实际应用,属于简单题,熟悉平均年增长率概念是解题关键. 8.C解析:C【解析】【分析】快递量平均每年增长率为x ,根据我国2016年及2018年的快递业务量,即可得出关于x 的一元二次方程,此题得解.【详解】快递量平均每年增长率为x ,依题意,得:2300(1x)450+=,故选C .【点睛】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键. 9.B解析:B【解析】【分析】根据菱形的性质得出△DAB 是等边三角形,进而利用全等三角形的判定得出△ABG ≌△DBH ,得出四边形GBHD 的面积等于△ABD 的面积,进而求出即可.【详解】连接BD ,∵四边形ABCD 是菱形,∠A=60°,∴∠ADC=120°,∴∠1=∠2=60°,∴△DAB 是等边三角形,∵AB=2,∴△ABD 3,∵扇形BEF 的半径为2,圆心角为60°,∴∠4+∠5=60°,∠3+∠5=60°,∴∠3=∠4,设AD 、BE 相交于点G ,设BF 、DC 相交于点H ,在△ABG 和△DBH 中,2{34A AB BD ∠=∠=∠=∠,∴△ABG ≌△DBH (ASA ),∴四边形GBHD 的面积等于△ABD 的面积,∴图中阴影部分的面积是:S 扇形EBF -S △ABD =26021233602π⨯-⨯ =233π 故选B . 10.D解析:D【解析】【分析】连接AO 、BO 、CO ,根据中心角度数=360°÷边数n ,分别计算出∠AOC 、∠BOC 的度数,根据角的和差则有∠AOB =30°,根据边数n =360°÷中心角度数即可求解.【详解】连接AO 、BO 、CO ,∵AC 是⊙O 内接正四边形的一边,∴∠AOC =360°÷4=90°,∵BC 是⊙O 内接正六边形的一边,∴∠BOC =360°÷6=60°,∴∠AOB=∠AOC﹣∠BOC=90°﹣60°=30°,∴n=360°÷30°=12;故选:D.【点睛】本题考查正多边形和圆,解题的关键是根据正方形的性质、正六边形的性质求出中心角的度数.11.D解析:D【解析】【分析】根据圆周角定理求出∠AOC,再根据等腰三角形的性质以及三角形的内角和定理即可解决问题.【详解】∵∠ADC=34°,∴∠AOC=2∠ADC=68°.∵OA=OC,∴∠OAC=∠OCA12=(180°﹣68°)=56°.故选D.【点睛】本题考查了圆周角定理,等腰三角形的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.12.C解析:C【解析】【分析】连接OD,根据勾股定理求出CD,根据直角三角形的性质求出∠AOD,根据扇形面积公式、三角形面积公式计算,得到答案.【详解】解:连接OD,在Rt△OCD中,OC=12OD=2,∴∠ODC=30°,CD2223OD OC+∴∠COD=60°,∴阴影部分的面积=260418223=23 36023π⨯-⨯⨯π-,故选:C .【点睛】本题考查的是扇形面积计算、勾股定理,掌握扇形面积公式是解题的关键.13.C解析:C【解析】由题意得:2a 2-a-3=0,所以2a 2-a=3,所以6a 2-3a=3(2a 2-a)=3×3=9, 故选C.14.C解析:C【解析】【分析】根据等弧概念对A 进行判断,根据垂径定理对B 、C 、D 选项进行逐一判断即可. 本题解析.【详解】A.能够互相重合的弧,叫等弧,不但长度相等而且半径相等.故本选项错误.B. 由垂径定理可知平分弦(不是直径)的直径平分弦所对的两条弧,而不是直线,也未注明被平分的弦不是直径,故选项B 错误;C. 由垂径定理可知弦的垂直平分线经过圆心,并且平分弦所对的两条弧,故选项C 正确D.由垂径定理可知平分一条弧的直径必平分这条弧所对的弦,而不是直线.故本选项错误. 故选C.15.B解析:B【解析】【分析】先将12x =-,26x =代入一元二次方程2(2)0a x c -+=得出a 与c 的关系,再将c 用含a 的式子表示并代入一元二次方程220ax ax a c -++=求解即得.【详解】∵关于x 的一元二次方程2(2)0a x c -+=的两根为12x =-,26x =∴()2620a c -+=或()2220a c --+=∴整理方程即得:160a c +=∴16c a =-将16c a =-代入220ax ax a c -++=化简即得:22150x x --=解得:13x =-,25x =故选:B .【点睛】本题考查了含参数的一元二次方程求解,解题关键是根据已知条件找出参数关系,并代入要求的方程化简为不含参数的一元二次方程.二、填空题16.不可能【解析】根据所学知识可知太阳应该从东方升起所以明天的太阳从西方升起这个事件属于不可能事件故答案为:不可能解析:不可能【解析】根据所学知识可知太阳应该从东方升起,所以”明天的太阳从西方升起”这个事件属于不可能事件,故答案为:不可能.17.<2(或x≤2)【解析】试题分析:对于开口向上的二次函数在对称轴的左边y 随x 的增大而减小在对称轴的右边y 随x 的增大而增大根据性质可得:当x <2时y 随x 的增大而减小考点:二次函数的性质解析:<2(或x≤2).【解析】试题分析:对于开口向上的二次函数,在对称轴的左边,y 随x 的增大而减小,在对称轴的右边,y 随x 的增大而增大.根据性质可得:当x <2时,y 随x 的增大而减小. 考点:二次函数的性质18.【解析】【分析】先确定抛物线的对称轴和顶点坐标再根据抛物线的性质以对称轴为界分情况求解即得答案【详解】解:∵抛物线的解析式是∴抛物线的对称轴是直线:顶点坐标是(-1-3)抛物线的开口向上当x<-1时 解析:35y -≤≤【解析】【分析】先确定抛物线的对称轴和顶点坐标,再根据抛物线的性质以对称轴为界分情况求解即得答案.【详解】解:∵抛物线的解析式是22(1)3y x =+-,∴抛物线的对称轴是直线:1x =-,顶点坐标是(-1,-3),抛物线的开口向上,当x <-1时,y 随x 的增大而减小,当x >-1时,y 随x 的增大而增大,且当2x =-时,1y =-;当x =1时,y =5;∴当21x -<≤-时,31y -≤<-,当11x -<≤ 时,35y -<≤,∴当21x -<≤时,y 的取值范围是:35y -≤≤.故答案为:35y -≤≤.【点睛】本题考查的是二次函数的图象和性质,属于基本题型,熟练掌握抛物线的性质是解题关键.19.【解析】【分析】【详解】解:∵在一个不透明的口袋中装有5个红球和3个白球∴任意从口袋中摸出一个球来P (摸到白球)== 解析:38【解析】【分析】【详解】解:∵在一个不透明的口袋中装有5个红球和3个白球,∴任意从口袋中摸出一个球来,P (摸到白球)=353+ =38. 20.-4【解析】【分析】利用根与系数的关系求出所求即可此题也可解出x 的值直接计算【详解】∵一元二次方程x2﹣2x ﹣3=0的解是x1x2(x1<x2)∴x1+x2=2x1x2=﹣3则x1﹣x2=﹣(x1+解析:-4【解析】【分析】利用根与系数的关系求出所求即可.此题也可解出x 的值,直接计算.【详解】∵一元二次方程x 2﹣2x ﹣3=0的解是x 1、x 2(x 1<x 2),∴x 1+x 2=2,x 1x 2=﹣3,则x 1﹣x 2=﹣√(x 1+x 2)2−4x 1x 2=﹣√4+12=﹣4.故答案为﹣4.【点睛】本题考查了根与系数的关系,弄清根与系数的关系是解答本题的关键.21.x1=1x2=-1【解析】分析:方程整理后利用平方根定义开方即可求出解详解:方程整理得:x2=1开方得:x=±1解得:x1=1x2=﹣1故答案为x1=1x2=﹣1点睛:本题考查了解一元二次方程﹣直接解析:x 1=1,x 2=-1【解析】分析:方程整理后,利用平方根定义开方即可求出解.详解:方程整理得:x 2=1,开方得:x =±1,解得:x 1=1,x 2=﹣1.故答案为x 1=1,x 2=﹣1.点睛:本题考查了解一元二次方程﹣直接开平方法,熟练掌握直接开平方法是解答本题的关键.22.【解析】【分析】把解析式化为顶点式再根据二次函数的性质得出答案即可【详解】解:∴当t=20时s 取得最大值此时s=600故答案为20考点:二次函数的应用;最值问题;二次函数的最值解析:【解析】【分析】把解析式化为顶点式,再根据二次函数的性质得出答案即可。

初中数学九年级下期中经典测试(3)

初中数学九年级下期中经典测试(3)

一、选择题1.(0分)[ID :11124]若反比例函数k y x =(x<0)的图象如图所示,则k 的值可以是( )A .-1B .-2C .-3D .-42.(0分)[ID :11123]如果反比例函数y =k x (k≠0)的图象经过点(﹣3,2),则它一定还经过( )A .(﹣12,8) B .(﹣3,﹣2) C .(12,12) D .(1,﹣6) 3.(0分)[ID :11121]如图,以O 为圆心,任意长为半径画弧,与射线OM 交于点A ,再以A 为圆心,AO 长为半径画弧,两弧交于点B ,画射线OB .则cos ∠AOB 的值等于( )A .√33 B .12 C .√22 D .√324.(0分)[ID :11119]如图,123∠∠∠==,则图中相似三角形共有( )A .1对B .2对C .3对D .4对5.(0分)[ID :11110]如图,已知直线a ∥b ∥c ,直线m 、n 与直线a 、b 、c 分别交于点A 、C 、E 、B 、D 、F ,AC=4,CE=6,BD=3,则BF=( )A.7B.7.5C.8D.8.56.(0分)[ID:11095]在函数y=21ax+(a为常数)的图象上有三个点(﹣1,y1),(﹣1 4,y2),(12,y3),则函数值y1、y2、y3的大小关系是()A.y2<y1<y3B.y3<y2<y1C.y1<y2<y3D.y3<y1<y2 7.(0分)[ID:11070]河堤横断面如图所示,堤高BC=5米,迎水坡AB的坡比1:3,则AC的长是( )A.10米B.53米C.15米D.103米8.(0分)[ID:11069]如图所示,在平行四边形ABCD中,AC与BD相交于点O,E为OD 的中点,连接AE并延长交DC于点F,则DF:FC=()A.1:3 B.1:4 C.2:3 D.1:29.(0分)[ID:11068]在ABC中,点D,E分别在边AB,AC上,:1:2AD BD=,那么下列条件中能够判断//DE BC的是( )A.12DEBC=B.31DEBC=C.12AEAC=D.31AEAC=10.(0分)[ID:11067]如图,在△ABC中,cos B=22,sin C=35,AC=5,则△ABC的面积是()A.212B.12C.14D.2111.(0分)[ID:11047]如图,小明同学用自制的直角三角形纸板DEF测量树的高度AB,他调整自己的位置,设法使斜边DF保持水平,并且边DE与点B在同一直线上.已知纸板的两条边DF=50cm,EF=30cm,测得边DF离地面的高度AC=1.5m,CD=20m,则树高AB为()A.12m B.13.5m C.15m D.16.5m12.(0分)[ID:11042]如图所示,在△ABC 中,AB=6,AC=4,P 是AC 的中点,过 P 点的直线交AB 于点Q,若以 A、P、Q 为顶点的三角形和以A、B、C为顶点的三角形相似,则AQ 的长为 ( )A.3B.3或43C.3或34D.4313.(0分)[ID:11033]给出下列函数:①y=﹣3x+2;②y=3x;③y=2x2;④y=3x,上述函数中符合条作“当x>1时,函数值y随自变量x增大而增大“的是()A.①③B.③④C.②④D.②③14.(0分)[ID:11093]如图,河堤横断面迎水坡AB的坡比是1:3,堤高BC=12m,则坡面AB的长度是()A.15m B.203m C.24m D.103m15.(0分)[ID:11059]如图,在△ABC中,AC=8,∠ABC=60°,∠C=45°,AD⊥BC,垂足为D,∠ABC的平分线交AD于点E,则AE的长为A.423B.22C.823D.32二、填空题16.(0分)[ID:11232]如图,在一段坡度为1∶2的山坡上种树,要求株距(即相邻两株树之间的水平距离)为6米,那么斜坡上相邻两株树之间的坡面距离为____米.17.(0分)[ID:11205]若点A(m,2)在反比例函数y=4x的图象上,则当函数值y≥-2时,自变量x的取值范围是____.18.(0分)[ID:11174]一个4米高的电线杆的影长是6米,它临近的一个建筑物的影长是36米.则这个建筑的高度是_____m.19.(0分)[ID:11153]如图,在直角坐标系中,正方形的中心在原点O,且正方形的一组对边与x轴平行,点P(3a,a)是反比例函数kyx(k>0)的图象上与正方形的一个交点.若图中阴影部分的面积等于9,则这个反比例函数的解析式为▲.20.(0分)[ID:11140]如图,在2×2的网格中,以顶点O为圆心,以2个单位长度为半径作圆弧,交图中格线于点A,则tan∠ABO的值为_____.21.(0分)[ID:11136]如图,四边形ABCD、CDEF、EFGH都是正方形,则∠1+∠2= .22.(0分)[ID:11226]如图,l1∥l2∥l3,直线a、b与l1、l2、l3分别相交于点A、B、C和点D、E、F.若AB=3,DE=2,BC=6,则EF=______.23.(0分)[ID:11220]如图,在平面直角坐标系中,点A是函数kyx=(x<0)图象上的点,过点A作y轴的垂线交y轴于点B,点C在x轴上,若△ABC的面积为1,则k的值为______.24.(0分)[ID:11215]如图,圆柱形容器高为18cm,底面周长为24cm,在杯内壁离杯底4cm的点B处有乙滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿2cm与蜂蜜相对的点A 处,则蚂蚁从外币A处到达内壁B处的最短距离为_______.25.(0分)[ID:11180]若函数y=(k-2)2k5x-是反比例函数,则k=______.三、解答题26.(0分)[ID:11304]马路两侧有两根灯杆AB、CD,当小明站在点N处时,在灯C的照射下小明的影长正好为NB,在灯A的照射下小明的影长为NE,测得BD=24m,NB=6m,NE=2m.(1)若小明的身高MN=1.6m,求AB的长;(2)试判断这两根灯杆的高度是否相等,并说明理由.27.(0分)[ID:11284]如图,有一路灯杆AB(底部B不能直接到达),在灯光下,小华在点D处测得自己的影长DF=3m,沿BD方向到达点F处再测得自己的影长FG=4m.如果小华的身高为1.5m,求路灯杆AB的高度.28.(0分)[ID:11282]如图:一辆汽车在一个十字路口遇到红灯刹车停下,汽车里的驾驶员看地面的斑马线前后两端的视角分别是∠DCA=30°和∠DCB=60°,如果斑马线的宽度是AB=3米,驾驶员与车头的距离是0.8米,这时汽车车头与斑马线的距离x是多少?29.(0分)[ID:11255]如图,AB和DE是直立在地面上的两根立柱.AB=6m,某一时刻AB在阳光下的投影BC=4m(1)请你在图中画出此时DE在阳光下的投影.(2)在测量AB的投影时,同时测量出DE在阳光下的投影长为9m,请你计算DE的长.30.(0分)[ID:11319]如图,一艘轮船位于灯塔P的北偏东60°方向,与灯塔P的距离为80海里的A处,它沿正南方向航行一段时间后,到达位于灯塔P的南偏东45°方向的B 处,求此时轮船所在的B处与灯塔P的距离.(参考数据:6≈2.449,结果保留整数)【参考答案】2016-2017年度第*次考试试卷参考答案**科目模拟测试一、选择题1.C2.D3.B4.D5.B6.A7.B8.D9.D10.A11.D12.B13.B14.C15.C二、填空题16.3米【解析】【分析】利用垂直距离:水平宽度得到水平距离与斜坡的比把相应的数值代入即可【详解】解:∵坡度为1:2且株距为6米∴株距:坡面距离=2:∴坡面距离=株距×(米)【点睛】本题是将实际问题转化为17.x≤-2或x>0【解析】【分析】先把点A(m2)代入解析式得A(22)再根据反比例函数的对称性求出A点关于原点的对称点A(-2-2)再根据函数图像即可求出函数值y≥-2时自变量的取值【详解】把点A(18.24米【解析】【分析】先设建筑物的高为h米再根据同一时刻物高与影长成正比列出关系式求出h的值即可【详解】设建筑物的高为h米由题意可得:则4:6=h:36解得:h=24(米)故答案为24米【点睛】本题19.【解析】待定系数法曲线上点的坐标与方程的关系反比例函数图象的对称性正方形的性质【分析】由反比例函数的对称性可知阴影部分的面积和正好为小正方形面积的设小正方形的边长为b图中阴影部分的面积等于9可求出b20.2+3【解析】【分析】连接OA过点A作AC⊥OB于点C由题意知AC=1OA=OB=2从而得出OC=OA2-AC2=3BC=OB﹣OC=2﹣3在Rt△ABC中根据tan∠ABO=ACBC可得答案【详解21.45°【解析】【分析】首先求出线段ACAFAG的长度(用a表示)求出两个三角形对应边的比进而证明△ACF∽△GCA问题即可解决【详解】设正方形的边长为a则AC=∵∴∵∠ACF=∠ACF∴△ACF∽△22.4【解析】【分析】利用平行线分线段成比例定理列出比例式求出EF结合图形计算即可【详解】∵∥∥∴又DE=2∴EF=4故答案为:4【点睛】本题考查的是平行线分线段成比例定理灵活运用定理找准对应关系是解题23.-2【解析】【分析】根据已知条件得到三角形ABC的面积=得到|k|=2即可得到结论【详解】解:∵AB⊥y轴∴AB∥CO∴∴∵∴故答案为:-2【点睛】本题考查了反比例函数系数k的几何意义明确是解题的关24.cm【解析】【分析】将杯子侧面展开建立A关于EF的对称点A′根据两点之间线段最短可知A′B的长度即为所求【详解】解:如答图将杯子侧面展开作A关于EF的对称点A′连接A′B则A′B即为最短距离根据勾股25.-2【解析】【分析】根据反比例函数的定义列出方程解出k的值即可【详解】解:若函数y=(k-2)是反比例函数则解得k=﹣2故答案为﹣2三、解答题26.27.28.29.30.2016-2017年度第*次考试试卷 参考解析【参考解析】**科目模拟测试一、选择题1.C解析:C【解析】【分析】由图像可知,反比例函数与线段AB 相交,由A 、B 的坐标,可求出k 的取值范围,即可得到答案.【详解】如图所示:由题意可知A (-2,2),B (-2,1),∴1-2⨯2<<-2⨯k ,即4-<<-2k故选C.【点睛】本题考查反比例函数的图像与性质,由图像性质得到k 的取值范围是解题的关键.2.D解析:D【解析】【分析】分别计算各点的横纵坐标之积,然后根据反比例函数图象上点的坐标特征进行判断.【详解】∵反比例函数y=kx(k≠0)的图象经过点(−3,2),∴k=−3×2=−6,∵−12×8=−4≠−6,−3×(−2)=6≠−6,12×12=6≠−6,1×(−6)=−6,则它一定还经过(1,−6).故答案选D.【点睛】本题考查了反比例函数图象上点的坐标特征,解题的关键是熟练的掌握反比例函数图象上点的坐标特征.3.B解析:B【解析】【分析】根据作图可以证明△AOB是等边三角形,则∠AOB=60°,据此即可求解.【详解】连接AB,由图可知:OA=0B,AO=AB∴OA=AB=OB,即三角形OAB为等边三角形,∴∠AOB=60°,∴cos∠AOB=cos60°=12.故选B.【点睛】本题主要考查了特殊角的三角函数值,正确理解△ABC是等边三角形是解题的关键.4.D解析:D【解析】【分析】根据已知及相似三角形的判定定理,找出题中存在的相似三角形即可.【详解】∵∠1=∠2,∠C=∠C,∴△ACE∽△ECD,∵∠2=∠3,∴DE∥AB,∴△BCA∽△ECD,∵△ACE∽△ECD,△BCA∽△ECD,∴△ACE∽△BCA,∵DE∥AB,∴∠AED=∠BAE,∵∠1=∠2,∴△AED∽△BAE,∴共有4对,故此选D 选项.【点睛】本题考查学生对相似三角形判断依据的理解掌握,也考察学生的看图分辨能力.5.B解析:B【解析】【分析】由直线a∥b∥c,根据平行线分线段成比例定理,即可得AC BDCE DF=,又由AC=4,CE=6,BD=3,即可求得DF的长,则可求得答案.【详解】解:∵a∥b∥c,∴AC BD CE DF=,∵AC=4,CE=6,BD=3,∴436DF =,解得:DF=92,∴937.52BF BD DF=+=+=.故选B.考点:平行线分线段成比例.6.A解析:A【解析】【分析】先根据反比例函数的解析式判断出反比例函数的图象所在的象限及增减性,再根据各点横坐标的值判断出y1,y2,y3的大小关系即可.【详解】∵反比例函数的比例系数为a2+1>0,∴图象的两个分支在一、三象限,且在每个象限y随x的增大而减小.∵﹣114-<<0,∴点(﹣1,y1),(14-,y2)在第三象限,∴y2<y1<0.∵12>0,∴点(12,y3)在第一象限,∴y3>0,∴y2<y1<y3.【点睛】本题考查了反比例函数图象上点的坐标特点,即反比例函数图象上各点的坐标一定适合此函数的解析式.7.B解析:B【解析】【分析】Rt△ABC中,已知了坡比是坡面的铅直高度BC与水平宽度AC之比,通过解直角三角形即可求出水平宽度AC的长.【详解】Rt△ABC中,BC=5米,tanA=1:3;∴AC=BC÷tanA=53米;故选:B.【点睛】此题主要考查学生对坡度坡角的掌握及三角函数的运用能力.8.D解析:D【解析】解:在平行四边形ABCD中,AB∥DC,则△DFE∽△BAE,∴DF:AB=DE:EB.∵O为对角线的交点,∴DO=BO.又∵E为OD的中点,∴DE=14DB,则DE:EB=1:3,∴DF:AB=1:3.∵DC=AB,∴DF:DC=1:3,∴DF:FC=1:2.故选D.9.D解析:D【解析】【分析】可先假设DE∥BC,由平行得出其对应线段成比例,进而可得出结论.【详解】如图,可假设DE∥BC,则可得12AD AEDB EC,13AD AEAB AC==,但若只有13DE ADBC AB==,并不能得出线段DE∥BC.【点睛】本题主要考查了由平行线分线段成比例来判定两条直线是平行线的问题,能够熟练掌握并运用.10.A解析:A【解析】【分析】根据已知作出三角形的高线AD,进而得出AD,BD,CD,的长,即可得出三角形的面积.【详解】解:过点A作AD⊥BC,∵△ABC中,2,sinC=35,AC=5,∴cosB=22=BDAB,∴∠B=45°,∵sinC=35=ADAC=5AD,∴AD=3,∴2253,∴BD=3,则△ABC的面积是:12×AD×BC=12×3×(3+4)=212.故选:A.【点睛】此题主要考查了解直角三角形的知识,作出AD⊥BC,进而得出相关线段的长度是解决问题的关键.11.D解析:D【解析】【分析】利用直角三角形DEF和直角三角形BCD相似求得BC的长后加上小明同学的身高即可求得树高AB.∵∠DEF=∠BCD=90°,∠D=∠D ,∴△DEF ∽△DCB , ∴BC DC EF DE =, ∵DF=50cm=0.5m ,EF=30cm=0.3m ,AC=1.5m ,CD=20m ,∴由勾股定理求得DE=40cm ,∴200.30.4BC =, ∴BC=15米, ∴AB=AC+BC=1.5+15=16.5(米).故答案为16.5m .【点睛】本题考查了相似三角形的应用,解题的关键是从实际问题中整理出相似三角形的模型.12.B解析:B【解析】AP AQ AB AC =,264AQ =,AQ=43,AP AQ AC AB =,246AQ =,AQ =3.故选B.点睛:相似常见图形(1)称为“平行线型”的相似三角形(如图,有“A 型”与“X 型”图)(2)如图:其中∠1=∠2,则△ADE∽△ABC称为“斜交型”的相似三角形,有“反A共角型”、“反A共角共边型”、“蝶型”,如下图:13.B解析:B【解析】分析:分别利用一次函数、正比例函数、反比例函数、二次函数的增减性分析得出答案.详解:①y=﹣3x+2,当x>1时,函数值y随自变量x增大而减小,故此选项错误;②y=3x,当x>1时,函数值y随自变量x增大而减小,故此选项错误;③y=2x2,当x>1时,函数值y随自变量x增大而减小,故此选项正确;④y=3x,当x>1时,函数值y随自变量x增大而减小,故此选项正确.故选B.点睛:本题主要考查了一次函数、正比例函数、反比例函数、二次函数的性质,正确把握相关性质是解题的关键.14.C解析:C【解析】【分析】直接利用坡比的定义得出AC的长,进而利用勾股定理得出答案.【详解】解:Rt△ABC中,BC=12cm,tanA=13∴AC=BC÷tanA=3cm,∴AB2212(123)24cm.故选:C.【点睛】此题主要考查了解直角三角形的应用,正确掌握坡比的定义是解题关键.15.C解析:C【解析】【分析】由已知可知△ADC 是等腰直角三角形,根据斜边AC=8可得,在Rt △ABD 中,由∠B=60°,可得BD=tan 60AD ︒=3,再由BE 平分∠ABC ,可得∠EBD=30°,从而可求得DE 长,再根据AE=AD-DE 即可【详解】∵AD ⊥BC ,∴△ADC 是直角三角形,∵∠C=45°,∴∠DAC=45°,∴AD=DC ,∵AC=8,∴,在Rt △ABD 中,∠B=60°,∴BD=tan 60AD ︒, ∵BE 平分∠ABC ,∴∠EBD=30°,∴,∴AE=AD-DE=33=, 故选C.【点睛】本题考查了解直角三角形的应用,熟练掌握直角三角形中边角之间的关系是解题的关键.二、填空题16.3米【解析】【分析】利用垂直距离:水平宽度得到水平距离与斜坡的比把相应的数值代入即可【详解】解:∵坡度为1:2且株距为6米∴株距:坡面距离=2:∴坡面距离=株距×(米)【点睛】本题是将实际问题转化为解析:【解析】【分析】利用垂直距离:水平宽度得到水平距离与斜坡的比,把相应的数值代入即可.【详解】解:∵坡度为1:2=6米,∴株距:坡面距离=2∴坡面距离=株距【点睛】本题是将实际问题转化为直角三角形中的数学问题,可把条件和问题放到直角三角形中,进行解决.要注意坡度是坡角的正切函数.17.x≤-2或x>0【解析】【分析】先把点A(m2)代入解析式得A(22)再根据反比例函数的对称性求出A点关于原点的对称点A(-2-2)再根据函数图像即可求出函数值y≥-2时自变量的取值【详解】把点A(解析:x≤-2或x>0【解析】【分析】先把点A(m,2)代入解析式得A(2,2),再根据反比例函数的对称性求出A点关于原点的对称点A’(-2,-2),再根据函数图像即可求出函数值y≥-2时自变量的取值.【详解】,把点A(m,2)代入y=4x得A(2,2),∵点A(2,2)关于原点的对称点A’为(-2,-2),故当函数值y≥-2时,自变量x的取值范围为x≤-2或x>0.【点睛】此题主要考查反比例函数的图像,解题的关键是利用反比例函数的中心对称性.18.24米【解析】【分析】先设建筑物的高为h米再根据同一时刻物高与影长成正比列出关系式求出h的值即可【详解】设建筑物的高为h米由题意可得:则4:6=h:36解得:h=24(米)故答案为24米【点睛】本题解析:24米.【解析】【分析】先设建筑物的高为h米,再根据同一时刻物高与影长成正比列出关系式求出h的值即可.【详解】设建筑物的高为h米,由题意可得:则4:6=h:36,解得:h=24(米).故答案为24米.【点睛】本题考查的是相似三角形的应用,熟知同一时刻物高与影长成正比是解答此题的关键.19.【解析】待定系数法曲线上点的坐标与方程的关系反比例函数图象的对称性正方形的性质【分析】由反比例函数的对称性可知阴影部分的面积和正好为小正方形面积的设小正方形的边长为b图中阴影部分的面积等于9可求出b解析:3yx =.【解析】待定系数法,曲线上点的坐标与方程的关系,反比例函数图象的对称性,正方形的性质.【分析】由反比例函数的对称性可知阴影部分的面积和正好为小正方形面积的,设小正方形的边长为b,图中阴影部分的面积等于9可求出b的值,从而可得出直线AB的表达式,再根据点P(3a,a)在直线AB上可求出a的值,从而得出反比例函数的解析式:∵反比例函数的图象关于原点对称,∴阴影部分的面积和正好为小正方形的面积.设正方形的边长为b,则b2=9,解得b=6.∵正方形的中心在原点O,∴直线AB的解析式为:x=3.∵点P(3a,a)在直线AB上,∴3a=3,解得a=1.∴P(3,1).∵点P在反比例函数3yx=(k>0)的图象上,∴k=3×1=3.∴此反比例函数的解析式为:.20.2+3【解析】【分析】连接OA过点A作AC⊥OB于点C由题意知AC=1OA=OB=2从而得出OC=OA2-AC2=3BC=OB﹣OC=2﹣3在Rt△ABC中根据tan∠ABO=ACBC可得答案【详解解析:2+√3.【解析】【分析】连接OA,过点A作AC⊥OB于点C,由题意知AC=1、OA=OB=2,从而得出OC=√OA2−AC2=√3、BC=OB﹣OC=2﹣√3,在Rt△ABC中,根据tan∠ABO=ACBC可得答案.【详解】如图,连接OA,过点A作AC⊥OB于点C,则AC=1,OA=OB=2,∵在Rt△AOC 中,OC=√OA 2−AC 2=√22−12=√3,∴BC=OB﹣OC=2﹣√3,∴在Rt△ABC 中,tan∠ABO=AC BC =2−√3=2+√3.故答案是:2+√3.【点睛】本题考查了解直角三角形,根据题意构建一个以∠ABO 为内角的直角三角形是解题的关键. 21.45°【解析】【分析】首先求出线段ACAFAG 的长度(用a 表示)求出两个三角形对应边的比进而证明△ACF∽△GCA 问题即可解决【详解】设正方形的边长为a 则AC=∵∴∵∠ACF=∠ACF∴△ACF∽△解析:45°.【解析】【分析】首先求出线段AC 、AF 、AG 的长度(用a 表示),求出两个三角形对应边的比,进而证明△ACF ∽△GCA ,问题即可解决.【详解】设正方形的边长为a ,则=,∵ACCF ==CG AC == ∴AC CG CF AC=, ∵∠ACF=∠ACF ,∴△ACF ∽△GCA ,∴∠1=∠CAF ,∵∠CAF+∠2=45°,∴∠1+∠2=45°.点睛:该题以正方形为载体,主要考查了相似三角形的判定及其应用问题;解题的关键是灵活运用有关定理来分析、判断、推理或解答.22.4【解析】【分析】利用平行线分线段成比例定理列出比例式求出EF 结合图形计算即可【详解】∵∥∥∴又DE=2∴EF=4故答案为:4【点睛】本题考查的是平行线分线段成比例定理灵活运用定理找准对应关系是解题解析:4【解析】【分析】利用平行线分线段成比例定理列出比例式,求出EF ,结合图形计算即可.【详解】∵1l∥2l∥3l,∴36 DE ABEF BC==又DE=2,∴EF=4,故答案为:4.【点睛】本题考查的是平行线分线段成比例定理,灵活运用定理、找准对应关系是解题的关键.23.-2【解析】【分析】根据已知条件得到三角形ABC的面积=得到|k|=2即可得到结论【详解】解:∵AB⊥y轴∴AB∥CO∴∴∵∴故答案为:-2【点睛】本题考查了反比例函数系数k的几何意义明确是解题的关解析:-2【解析】【分析】根据已知条件得到三角形ABC的面积=1•=12AB OB,得到|k|=2,即可得到结论.【详解】解:∵AB⊥y轴,∴AB∥CO,∴111•1222ABCS AB OB x y k====三角形,∴2k=,∵0k<,∴2k=-,故答案为:-2.【点睛】本题考查了反比例函数系数k的几何意义,明确1•=12ABCS AB OB=是解题的关键.24.cm【解析】【分析】将杯子侧面展开建立A关于EF的对称点A′根据两点之间线段最短可知A′B的长度即为所求【详解】解:如答图将杯子侧面展开作A关于EF的对称点A′连接A′B则A′B即为最短距离根据勾股解析:cm.【解析】【分析】将杯子侧面展开,建立A关于EF的对称点A′,根据两点之间线段最短可知A′B的长度即为所求.【详解】解:如答图,将杯子侧面展开,作A关于EF的对称点A′,连接A′B,则A′B即为最短距离.根据勾股定理,得A′B=√A′D2+BD2=√122+162=20(cm).故答案为:20cm.【点睛】本题考查了平面展开---最短路径问题,将图形展开,利用轴对称的性质和勾股定理进行计算是解题的关键.同时也考查了同学们的创造性思维能力.25.-2【解析】【分析】根据反比例函数的定义列出方程解出k的值即可【详解】解:若函数y=(k-2)是反比例函数则解得k=﹣2故答案为﹣2解析:-2【解析】【分析】根据反比例函数的定义列出方程2k-5=-1k-20⎧⎨≠⎩,解出k的值即可.【详解】解:若函数y=(k-2)2k5x-是反比例函数,则2k-5=-1 k-20⎧⎨≠⎩解得k=﹣2,故答案为﹣2.三、解答题26.(1)AB=6.4m;(2)AB=CD,理由见解析.【解析】【分析】(1)直接利用相似三角形的判定与性质分析得出答案;(2)直接利用平行线分线段成比例定理分析得出答案.【详解】(1)∵MN ∥AB ,∴△MNE ∽ABE ,∴MN AB =NE BE . ∵NB =6,NE =2,MN =1.6,∴1.6AB =28,∴AB =6.4(m ); (2)这两根灯杆的高度相等,理由如下:∵MN ∥CD ,BD =24,∴MN AB =NE BE =28=14,∴MN CD =BN BD =624=14,∴AB =CD .【点睛】本题考查了相似三角形的应用,正确得出相似三角形是解题的关键.27.路灯杆AB 的高度是6m .【解析】【分析】在同一时刻物高和影长成正比,根据相似三角形的性质即可解答.【详解】解:∵CD ∥EF ∥AB ,∴可以得到△CDF ∽△ABF ,△ABG ∽△EFG ,∴,CD DF FE FG AB BF AB BG==, 又∵CD =EF , ∴DF FG BF BG=, ∵DF =3m ,FG =4m ,BF =BD +DF =BD +3,BG =BD +DF +FG =BD +7,∴3437DB BD =++, ∴BD =9,BF =9+3=12, ∴1.5312AB =, 解得AB =6. 答:路灯杆AB 的高度是6m .【点睛】考查了相似三角形的应用和中心投影.只要是把实际问题抽象到相似三角形中,利用相似三角形的性质对应边成比例就可以求出结果.28.7【解析】【分析】根据已知角的度数,易求得∠BAC=∠BCA=30°,由此得BC=AB=3米;可在Rt△CBF中,根据BC的长和∠CBF的余弦值求出BF的长,进而由x=BF−EF求得汽车车头与斑马线的距离.【详解】如图:延长AB.∵CD∥AB,∴∠CAB=30°,∠CBF=60°;∴∠BCA=60°−30°=30°,即∠BAC=∠BCA;∴BC=AB=3米;Rt△BCF中,BC=3米,∠CBF=60°;∴BF=12BC=1.5米;故x=BF−EF=1.5−0.8=0.7米.答:这时汽车车头与斑马线的距离x是0.7米.【点睛】本题考查俯角的定义,要求学生能借助俯角构造直角三角形并解直角三角形.29.(1)见解析;(2)13.5m.【解析】【分析】(1)直接利用平行投影的性质得出答案;(2)利用同一时刻实际物体的影子与物体的高度比值相同进而得出答案.【详解】解:(1)如图所示:EF即为所求;(2)∵AB=6m,某一时刻AB在阳光下的投影BC=4m,DE在阳光下的投影长为9m,∴64=DE9,解得:DE=13.5m,答:DE的长为13.5m.【点睛】此题主要考查相似三角形的判定与性质,解题法的关键是熟知平行线的性质.30.此时轮船所在的B处与灯塔P的距离是98海里.【解析】【分析】过点P作PC⊥AB,则在Rt△APC中易得PC的长,再在直角△BPC中求出PB的长即可.【详解】作PC⊥AB于C点,∴∠APC=30°,∠BPC=45°,AP=80(海里),在Rt△APC中,cos∠APC=PC PA,∴PC=PA•cos∠3(海里),在Rt△PCB中,cos∠BPC=PC PB,∴PB=403cos cos45PCBPC=∠︒6≈98(海里),答:此时轮船所在的B处与灯塔P的距离是98海里.【点睛】本题考查了解直角三角形的应用举例,正确添加辅助线构建直角三角形是解题的关键.。

人教版初中数学圆的经典测试题

人教版初中数学圆的经典测试题

人教版初中数学圆的经典测试题一、选择题1.如图,ABC ∆是一块绿化带,将阴影部分修建为花圃.已知15AB =,9AC =,12BC =,阴影部分是ABC ∆的内切圆,一只自由飞翔的小鸟将随机落在这块绿化带上,则小鸟落在花圃上的概率为( ).A .16 B .6π C .8π D .5π 【答案】B【解析】【分析】由AB=5,BC=4,AC=3,得到AB 2=BC 2+AC 2,根据勾股定理的逆定理得到△ABC 为直角三角形,于是得到△ABC 的内切圆半径=4+3-52=1,求得直角三角形的面积和圆的面积,即可得到结论.【详解】解:∵AB=5,BC=4,AC=3,∴AB 2=BC 2+AC 2,∴△ABC 为直角三角形,∴△ABC 的内切圆半径=4+3-52=1, ∴S △ABC =12AC•BC=12×4×3=6, S 圆=π,∴小鸟落在花圃上的概率=6π , 故选B .【点睛】本题考查几何概率,直角三角形内切圆的半径等于两直角边的和与斜边差的一半及勾股定理的逆定理,解题关键是熟练掌握公式.2.如图,在矩形ABCD 中,6,4AB BC ==,以A 为圆心,AD 长为半径画弧交AB 于点E ,以C 为圆心,CD 长为半径画弧交CB 的延长线于点F ,则图中阴影部分的面积是( )A .13πB .1324π+C .1324π-D .524π+【答案】C【解析】【分析】 先分别求出扇形FCD 和扇形EAD 的面积以及矩形ABCD 的面积,再根据阴影面积=扇形FCD 的面积﹣(矩形ABCD 的面积﹣扇形EAD 的面积)即可得解.【详解】解:∵S 扇形FCD 29036096ππ==⨯⨯,S 扇形EAD 24036094ππ==⨯⨯,S 矩形ABCD 6424=⨯=, ∴S 阴影=S 扇形FCD ﹣(S 矩形ABCD ﹣S 扇形EAD )=9π﹣(24﹣4π)=9π﹣24+4π=13π﹣24故选:C .【点睛】本题考查扇形面积的计算,根据阴影面积=扇形FCD 的面积﹣(矩形ABCD 的面积﹣扇形EAD 的面积)是解答本题的关键.3.下列命题中,是假命题的是( )A .任意多边形的外角和为360oB .在ABC V 和'''A B C V 中,若''AB A B =,''BC B C =,'90C C ∠=∠=o ,则ABC V ≌'''A B C VC .在一个三角形中,任意两边之差小于第三边D .同弧所对的圆周角和圆心角相等【答案】D【解析】【分析】根据相关的知识点逐个分析.【详解】解:A. 任意多边形的外角和为360o ,是真命题;B. 在ABC V 和'''A B C V 中,若''AB A B =,''BC B C =,'90C C ∠=∠=o ,则ABC V≌'''A B C V ,根据HL ,是真命题;C. 在一个三角形中,任意两边之差小于第三边,是真命题;D. 同弧所对的圆周角等于圆心角的一半,本选项是假命题.故选D .【点睛】本题考核知识点:判断命题的真假. 解题关键点:熟记相关性质或定义.4.如图,AB 是⊙O 的直径,EF ,EB 是⊙O 的弦,且EF=EB ,EF 与AB 交于点C ,连接OF ,若∠AOF=40°,则∠F 的度数是( )A .20°B .35°C .40°D .55°【答案】B【解析】【分析】 连接FB ,由邻补角定义可得∠FOB=140°,由圆周角定理求得∠FEB=70°,根据等腰三角形的性质分别求出∠OFB 、∠EFB 的度数,继而根据∠EFO =∠EBF-∠OFB 即可求得答案.【详解】连接FB ,则∠FOB=180°-∠AOF=180°-40°=140°,∴∠FEB =12∠FOB=70°, ∵FO =BO , ∴∠OFB =∠OBF=(180°-∠FOB)÷2=20°,∵EF =EB ,∴∠EFB =∠EBF=(180°-∠FEB)÷2=55°,∴∠EFO =∠EBF-∠OFB=55°-20°=35°,故选B.【点睛】本题考查了圆周角定理、等腰三角形的性质等知识,正确添加辅助线,熟练掌握和灵活运用相关知识是解题的关键.5.如图,点I为△ABC的内心,AB=4,AC=3,BC=2,将∠ACB平移使其顶点与I重合,则图中阴影部分的周长为()A.4.5 B.4 C.3 D.2【答案】B【解析】【分析】连接AI、BI,因为三角形的内心是角平分线的交点,所以AI是∠CAB的平分线,由平行的性质和等角对等边可得:AD=DI,同理BE=EI,所以图中阴影部分的周长就是边AB 的长.【详解】连接AI、BI,∵点I为△ABC的内心,∴AI平分∠CAB,∴∠CAI=∠BAI,由平移得:AC∥DI,∴∠CAI=∠AID,∴∠BAI=∠AID,∴AD=DI,同理可得:BE=EI,∴△DIE的周长=DE+DI+EI=DE+AD+BE=AB=4,即图中阴影部分的周长为4,故选B.【点睛】本题考查了三角形内心的定义、平移的性质及角平分线的定义等知识,熟练掌握三角形的内心是角平分线的交点是关键.6.如图,在⊙O,点A、B、C在⊙O上,若∠OAB=54°,则∠C()A .54°B .27°C .36°D .46°【答案】C【解析】【分析】 先利用等腰三角形的性质和三角形内角和计算出∠AOB 的度数,然后利用圆周角解答即可.【详解】解:∵OA =OB ,∴∠OBA =∠OAB =54°,∴∠AOB =180°﹣54°﹣54°=72°,∴∠ACB =12∠AOB =36°. 故答案为C .【点睛】 本题考查了三角形内角和和圆周角定理,其中发现并正确利用圆周角定理是解题的关键.7.如图,O e 的外切正六边形ABCDEF 的边长为2,则图中阴影部分的面积为( )A 32πB 332πC .23π-D 33π【答案】A【解析】【分析】【详解】 解:∵六边形ABCDEF 是正六边形,∴∠AOB =60°,∴△OAB 是等边三角形,OA =OB =AB =2,设点G 为AB 与⊙O 的切点,连接OG ,则OG ⊥AB ,∴OG =OA •sin 60°=2×32=3, ∴S 阴影=S △OAB ﹣S 扇形OMN =12×2×3﹣260(3)360π⨯=32π-.故选A .8.如图,弧 AB 等于弧CD ,OE AB ⊥于点E ,OF CD ⊥于点F ,下列结论中错误..的是( )A .OE=OFB .AB=CDC .∠AOB =∠COD D .OE >OF【答案】D【解析】【分析】 根据圆心角、弧、弦的关系可得B 、C 正确,根据垂径定理和勾股定理可得A 正确,D 错误.【详解】解:∵»»AB CD =,∴AB =CD ,∠AOB =∠COD ,∵OE AB ⊥,OF CD ⊥,∴BE =12AB ,DF =12CD , ∴BE =DF ,又∵OB =OD , ∴由勾股定理可知OE =OF ,即A 、B 、C 正确,D 错误,故选:D .【点睛】本题考查了圆心角、弧、弦的关系,垂径定理,勾股定理,熟练掌握基本性质定理是解题的关键.9.用一个直径为10cm 的玻璃球和一个圆锥形的牛皮纸纸帽制作一个不倒翁玩具,不倒翁轴截面如图所示,圆锥的母线AB 与O e 相切于点B ,不倒翁的顶点A 到桌面L 的最大距离是18cm .若将圆锥形纸帽表面全涂上颜色,则涂色部分的面积为( )A .260cm πB .260013cm πC .272013cm πD .272cm π【答案】C【解析】【分析】 连接OB ,如图,利用切线的性质得OB AB ⊥,在Rt AOB ∆中利用勾股定理得12AB =,利用面积法求得6013BH =,然后利用圆锥的侧面展开图为扇形和扇形的面积公式计算圆锥形纸帽的表面.【详解】 解:连接OB ,作BH OA ⊥于H ,如图,Q 圆锥的母线AB 与O e 相切于点B ,OB AB ∴⊥,在Rt AOB ∆中,18513OA =-=,5OB =,2213512AB ∴=-=,Q 1122OA BH OB AB =g g , 512601313BH ⨯∴==, Q 圆锥形纸帽的底面圆的半径为6013BH =,母线长为12, ∴形纸帽的表面2160720212()21313cm ππ=⨯⨯⨯=. 故选:C .【点睛】本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.也考查了圆锥的计算.10.中国科学技术馆有“圆与非圆”展品,涉及了“等宽曲线”的知识.因为圆的任何一对平行切线的距离总是相等的,所以圆是“等宽曲线”.除了例以外,还有一些几何图形也是“等宽曲线”,如勒洛只角形(图1),它是分别以等边三角形的征个顶点为圆心,以边长为半径,在另两个顶点间画一段圆弧.三段圆弧围成的曲边三角形.图2是等宽的勒洛三角形和圆.下列说法中错误的是( )A .勒洛三角形是轴对称图形B .图1中,点A 到¶BC上任意一点的距离都相等 C .图2中,勒洛三角形上任意一点到等边三角形DEF 的中心1O 的距离都相等 D .图2中,勒洛三角形的周长与圆的周长相等【答案】C【解析】【分析】根据轴对称形的定义,可以找到一条直线是的图像左右对着完全重合,则为轴对称图形.鲁列斯曲边三角形有三条对称轴. 鲁列斯曲边三角形可以看成是3个圆心角为60°,半径为DE 的扇形的重叠,根据其特点可以进行判断选项的正误.【详解】鲁列斯曲边三角形有三条对称轴,就是等边三角形的各边中线所在的直线,故正确;点A 到¶BC上任意一点的距离都是DE ,故正确; 勒洛三角形上任意一点到等边三角形DEF 的中心1O 的距离都不相等,1O 到顶点的距离是到边的中点的距离的2倍,故错误;鲁列斯曲边三角形的周长=3×60180DE DE ππ⨯=⨯ ,圆的周长=22DE DE ππ⨯=⨯ ,故说法正确.故选C.【点睛】主要考察轴对称图形,弧长的求法即对于新概念的理解.11.一个圆锥的侧面展开图是半径为1的半圆,则该圆锥的底面半径是( )A .13B .12C .34D .1【答案】B【解析】【分析】根据侧面展开图的弧长等于圆锥的底面周长,即可求得底面周长,进而即可求得底面的半径长.【详解】圆锥的底面周长是:π;设圆锥的底面半径是r ,则2πr=π.解得:r=12. 故选B .【点睛】本题考查了圆锥的计算,正确理解理解圆锥的侧面展开图与原来的扇形之间的关系是解决本题的关键,理解圆锥的母线长是扇形的半径,圆锥的底面圆周长是扇形的弧长.12.已知线段AB 如图,(1)以线段AB 为直径作半圆弧»AB ,点O 为圆心;(2)过半径OA OB 、的中点C D 、分别作CE AB DF AB ⊥⊥、,交»AB 于点E F 、;(3)连接,OE OF .根据以上作图过程及所作图形,下列结论中错误的是( )A .CE DF =B .»»AE BF =C .60EOF ∠=︒D . =2CE CO【答案】D【解析】【分析】 根据作图可知AC CO OD DB ===,据此对每个选项逐一判断即可.【详解】根据HL 可判定ECO FDO ≅V V ,得CE DF =,A 正确;∵过半径OA OB 、的中点C D 、分别作CE AB DF AB ⊥⊥、,连接AE ,CE 为OA 的中垂线,AE OE =在半圆中,OA OE =∴OA OE AE ==,AEO △为等边三角形,60EOF =o ∠AOE=∠FOD=∠, C 正确;∴圆心角相等,所对应的弧长度也相等,»»AE BF=,B 正确 ∵60,90EOC =o o ∠AOE=∠, ∴=3CE CO ,D 错误【点睛】 本题考查了全等三角形的判定和性质,勾股定理等知识点,解题的关键在于证明60o ∠AOE=.13.一个圆锥的底面半径是5,高为12,则这个圆锥的全面积是( )A .60πB .65πC .85πD .90π【答案】D【解析】【分析】根据勾股定理求出圆锥侧面母线长,再根据圆锥的全面积=底面积+侧面积求出答案.【详解】∵圆锥的底面半径是5,高为12,∴侧面母线长为2251213+=,∵圆锥的侧面积=51365ππ⨯⨯=,圆锥的底面积=2525ππ⨯=,∴圆锥的全面积=652590πππ+=,故选:D.【点睛】此题考查圆锥的全面积,圆锥侧面母线长与底面圆的半径、圆锥的高的关系,熟记计算公式是解题的关键.14.如图,已知圆O 的半径为10,AB ⊥CD ,垂足为P ,且AB =CD =16,则OP 的长为( )A .6B .6C .8D .8 【答案】B【解析】【分析】作OM⊥AB于M,ON⊥CD于N,连接OP,OB,OD,首先利用勾股定理求得OM的长,然后判定四边形OMPN是正方形,求得正方形的对角线的长即可求得OP的长.【详解】作OM⊥AB于M,ON⊥CD于N,连接OP,OB,OD,∵AB=CD=16,∴BM=DN=8,∴OM=ON==6,∵AB⊥CD,∴∠DPB=90°,∵OM⊥AB于M,ON⊥CD于N,∴∠OMP=∠ONP=90°∴四边形MONP是矩形,∵OM=ON,∴四边形MONP是正方形,∴OP=.故选B.【点睛】本题考查的是垂径定理,正方形的判定与性质及勾股定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键.15.若正六边形的半径长为4,则它的边长等于()A.4 B.2 C.23D.43【答案】A【解析】试题分析:正六边形的中心角为360°÷6=60°,那么外接圆的半径和正六边形的边长将组成一个等边三角形,故正六边形的半径等于4,则正六边形的边长是4.故选A.考点:正多边形和圆.16.如图在Rt△ABC中,∠ACB=90°,AC=6,BC=8,⊙O是△ABC的内切圆,连接AO,BO,则图中阴影部分的面积之和为()A.10﹣32πB.14﹣52πC.12 D.14【答案】B【解析】【分析】根据勾股定理求出AB,求出△ABC的内切圆的半径,根据扇形面积公式、三角形的面积公式计算,得到答案.【详解】解:设⊙O与△ABC的三边AC、BC、AB的切点分别为D、E、F,连接OD、OE、OF,在Rt△ABC中,AB=22AC BC+=10,∴△ABC的内切圆的半径=68102+-=2,∵⊙O是△ABC的内切圆,∴∠OAB=12∠CAB,∠OBA=12∠CBA,∴∠AOB=180°﹣(∠OAB+∠OBA)=180°﹣12(∠CAB+∠CBA)=135°,则图中阴影部分的面积之和=222902113525 21021436023602πππ⨯⨯-+⨯⨯-=-,故选B.【点睛】本题考查的是三角形的内切圆与内心、扇形面积计算、勾股定理,掌握扇形面积公式是解题的关键.17.如图,在⊙O中,OC⊥AB,∠ADC=26°,则∠COB的度数是()A.52°B.64°C.48°D.42°【答案】A【解析】【分析】由OC⊥AB,利用垂径定理可得出,再结合圆周角定理及同弧对应的圆心角等于圆周角的2倍,即可求出∠COB的度数.【详解】解:∵OC⊥AB,∴,∴∠COB=2∠ADC=52°.故选:A.【点睛】考查了圆周角定理、垂径定理以及圆心角、弧、弦的关系,利用垂径定理找出是解题的关键.18.如图,⊙O过点B、C,圆心O在等腰直角△ABC的内部,∠BAC=90°,OA=1,BC=6,则⊙O的半径为()A.23B.13C.4 D.32【答案】B【解析】【分析】如下图,作AD⊥BC,设半径为r,则在Rt△OBD中,OD=3-1,OB=r,BD=3,利用勾股定理可求得r.【详解】如图,过A作AD⊥BC,由题意可知AD必过点O,连接OB;∵△BAC是等腰直角三角形,AD⊥BC,∴BD=CD=AD=3;∴OD=AD-OA=2;Rt△OBD中,根据勾股定理,得:22+BD OD13故答案为:B.【点睛】本题考查了等腰直角三角形的性质和勾股定理的应用,解题关键是利用等腰直角三角形ABC判定点O在AD上.19.如图,⊙O 的直径CD =10cm ,AB 是⊙O 的弦,AB ⊥CD ,垂足为M ,OM :OC =3:5,则AB 的长为( )A .91cmB .8cmC .6cmD .4cm【答案】B【解析】【分析】 由于⊙O 的直径CD =10cm ,则⊙O 的半径为5cm ,又已知OM :OC =3:5,则可以求出OM =3,OC =5,连接OA ,根据勾股定理和垂径定理可求得AB .【详解】解:如图所示,连接OA .⊙O 的直径CD =10cm ,则⊙O 的半径为5cm ,即OA =OC =5,又∵OM :OC =3:5,所以OM =3,∵AB ⊥CD ,垂足为M ,OC 过圆心∴AM =BM ,在Rt △AOM 中,22AM=5-3=4,∴AB =2AM =2×4=8.故选:B .【点睛】本题考查了垂径定理和勾股定理的应用,构造以半径、弦心距和弦长的一半为三边的直角三角形,是解题的关键.20.在平面直角坐标系内,以原点O 为圆心,1为半径作圆,点P 在直线323y x =+上运动,过点P 作该圆的一条切线,切点为A ,则PA 的最小值为( )A .3B .2C 3D 2【答案】D【解析】【分析】先根据题意,画出图形,令直线y= 3x+ 23与x轴交于点C,与y轴交于点D,作OH ⊥CD于H,作OH⊥CD于H;然后根据坐标轴上点的坐标特点,由一次函数解析式,求得C、D两点的坐标值;再在Rt△POC中,利用勾股定理可计算出CD的长,并利用面积法可计算出OH的值;最后连接OA,利用切线的性质得OA⊥PA,在Rt△POH中,利用勾股定理,得到21PA OP=-,并利用垂线段最短求得PA的最小值即可.【详解】如图,令直线3x+23x轴交于点C,与y轴交于点D,作OH⊥CD于H,当x=0时,y=3D(0,3当y=033,解得x=-2,则C(-2,0),∴222(23)4CD=+=,∵12OH•CD=12OC•OD,∴2233⨯=连接OA,如图,∵PA为⊙O的切线,∴OA⊥PA,∴2221 PA OP OA OP=-=-当OP的值最小时,PA的值最小,而OP的最小值为OH的长,∴PA22(3)12-=故选D.【点睛】本题考查了切线的性质,解题关键是熟记切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【详解】
解:如图所示,正六边形的边长为2cm,OG⊥BC,
∵六边形ABCDEF是正六边形,
∴∠BOC=360°÷6=60°,
∵OB=OC,OG⊥BC,
∴∠BOG=∠COG= ∠BOC =30°,
∵OG⊥BC,OB=OC,BC=2cm,
∴BG= BC= ×2=1cm,
∴OB= =2cm,
∴OG= ,
∴圆形纸片的半径为 cm,
【详解】
解:如图所示,
∵等腰三角形的底边和高线长均为10cm,
∴等腰三角形的斜边长= =5 ,即圆锥的母线长为5 cm,圆锥底面圆半径为5,
A. B. C. D.
【答案】C
【解析】
【分析】
连接 ,如图,利用切线的性质得 ,在 中利用勾股定理得 ,利用面积法求得 ,然后利用圆锥的侧面展开图为扇形和扇形的面积公式计算圆锥形纸帽的表面.
【详解】
解:连接 ,作 于 ,如图,
圆锥的母线 与 相切于点 ,

在 中, , ,



圆锥形纸帽的底面圆的半径为 ,母线长为12,
【详解】
设P(x,y),
∵PA2=(x+1)2+y2,PB2=(x﹣1)2+y2,
∴PA2+PB2=2x2+2y2+2=2(x2+y2)+2,
∵OP2=x2+y2,
∴PA2+PB2=2OP2+2,
当点P处于OC与圆的交点上时,OP取得最值,
∴OP的最小值为CO﹣CP=3﹣1=2,
∴PA2+PB2最小值为2×22+2=10.
A. B. C. D.
【答案】A
【解析】
【分析】
如图,连接CE.图中S阴影=S扇形BCE−S扇形BOD−S△OCE.根据已知条件易求得OB=OC=OD=4,BC=CE=8,∠ECB=60°,OE=4 ,所以由扇形面积公式、三角形面积公式进行解答即可.
【详解】
解:如图,连接CE.
∵AC⊥BC,AC=BC=8,以BC为直径作半圆,圆心为点O;以点C为圆心,BC为半径作弧AB,
A.8 B.8C.3πD.4π
【答案】D
【解析】
【分析】
由题意可得翻转一次中心O经过的路线长就是1个半径为1,圆心角是90°的弧长,然后进行计算即可解答.
【详解】
解:∵正方形ABCD的边长为 cm,
∴对角线的一半=1cm,
则连续翻动8次后,正方形的中心O经过的路线长=8× =4π.
故选:D.
【点睛】
形纸帽的表面 .
故选: .
【点睛】
本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.也考查了圆锥的计算.
10.已知⊙O的直径CD=10cm,AB是⊙O的弦,AB=8cm,且AB⊥CD,垂足为M,则AC的长为( )
A.2 cmB.4 cmC.2 cm或4 cmD.2 cm或4 cm
初中数学圆的经典测试题及解析
一、选择题
1.如图,有一个边长为 的正六边形纸片,若在该纸片上沿虚线剪一个最大圆形纸片,则这个圆形纸片的半径是()
A. B. C. D.
【答案】A
【解析】
【分析】
根据题意画出图形,再根据正多边形圆心角的求法求出∠AOB的度数,最后根据等腰三角形及直角三角形的性质解答即可.
A.1B.2C.4D.5
【答案】C
【解析】
【分析】
首先连接CO并延长交⊙O于点D,连接AD,由CD是⊙O的直径,可得∠CAD=90°,又由⊙O的半径是5,sinB= ,即可求得答案.
【详解】
解:连接CO并延长交⊙O于点D,连接AD,
由CD是⊙O的直径,可得∠CAD=90°,
∵∠B和∠D所对的弧都为弧AC,
【详解】
解:连接OB,
∵AB=AC,
∴∠ABC=∠ACB=56°,
∴∠A=180°-56°-56°=68°= ∠BOC,
∴∠BOC=68°×2=136°,
∵OB=OC,
∴∠OBC=∠OCB=(180°-136°)÷2=22°,
∴∠OBE=∠EBC-∠OBC=56°-22°=34°,
∴∠AED=∠BEC=∠BOC-∠OBE=136°-34°=102°.
∵OC=5cm,
∴MC=5−3=2cm,
在Rt△AMC中,AC= cm.
故选C.
11.我们研究过的图形中,圆的任何一对平行切线的距离总是相等的,所以圆是“等宽曲线”.除了圆以外,还有一些几何图形也是“等宽曲线”,如勒洛三角形(如图 ),它是分别以等边三角形的每个顶点为圆心,以边长为半径,在另两个顶点间画一段圆弧,三段圆弧围成的曲边三角形.图 是等宽的勒洛三角形和圆形滚木的截面图.
∴S阴影=S△OAB﹣S扇形OMN= ×2× ﹣ = .故选A.
8.下列命题是假命题的是( )
A.三角形两边的和大于第三边
B.正六边形的每个中心角都等于
C.半径为 的圆内接正方形的边长等于
D.只有正方形的外角和等于
【答案】D
【解析】
【分析】
根据三角形三边关系、中心角的概念、正方形与圆的关系、多边形的外角和对各选项逐一进行分析判断即可.
【答案】A
【解析】
【分析】
先对原命题进行①若a>b,则ac>bc是假命题,逆命题是假命题;
②若a=1,则 =a是真命题,逆命题是假命题;
③内错角相等是假命题,逆命题是假命题;
④90°的圆周角所对的弦是直径是真命题,逆命题是真命题;
其中原命题与逆命题均为真命题的个数是1个;
7.如图, 的外切正六边形ABCDEF的边长为2,则图中阴影部分的面积为
A.
B.
C.
D.
【答案】A
【解析】
【分析】
【详解】
解:∵六边形ABCDEF是正六边形,
∴∠AOB=60°,∴△OAB是等边三角形,OA=OB=AB=2,
设点G为AB与⊙O的切点,连接OG,则OG⊥AB,
∴OG=OA•sin60°=2× = ,
∴∠B=∠D,即sinB=sinD= ,
∵半径AO=5,
∴CD=10,
∴ ,
∴AC=4,
故选:C.
【点睛】
本题考查了同弧所对的圆周角相等,以及三角函数的内容,注意到直径所对的圆周角是直角是解题的关键.
6.如图, , ,以 为直径作半圆,圆心为点 ;以点 为圆心, 为半径作 ,过点 作 的平行线交两弧于点 、 ,则图中阴影部分的面积是()
故选D.
【点睛】
本题考查了圆周角定理,等腰三角形的性质,外角的性质,解题的关键是作出辅助线OB,得到∠BOC的度数.
16.如图,已知某圆锥轴截面等腰三角形的底边和高线长均为10cm,则这个圆锥的侧面积为( )
A.50cm2B.50πcm2C.25 cm2D.25 πcm2
【答案】D
【解析】
【分析】
根据勾股定理求出圆锥的母线长,求出底面圆周长,根据扇形面积公式计算即可.
故选:C.
【点睛】
本题考查了圆的综合,解答本题的关键是设出点P坐标,将所求代数式的值转化为求解OP的最小值,难度较大.
4.已知下列命题:
①若a>b,则ac>bc;
②若a=1,则 =a;
③内错角相等;
④90°的圆周角所对的弦是直径.
其中原命题与逆命题均为真命题的个数是( )
A.1个B.2个C.3个D.4个
故选A.
点评:主要考查命题与定理,用到的知识点是互逆命题的知识,两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题.其中一个命题称为另一个命题的逆命题,判断命题的真假关键是要熟悉课本中的性质定理.
5.如图,△ABC的外接圆是⊙O,半径AO=5,sinB= ,则线段AC的长为()
故选:A.
【点睛】
本题考查的是正多边形和圆,根据题意画出图形,利用直角三角形的性质及正六边形的性质解答是解答此题的关键.
2.如图,正方形ABCD内接于⊙O,AB=2 ,则 的长是( )
A.πB. πC.2πD. π
【答案】A
【解析】
【分析】连接OA、OB,求出∠AOB=90°,根据勾股定理求出AO,根据弧长公式求出即可.
图 图
有如下四个结论:
①勒洛三角形是中心对称图形
②图 中,点 到 上任意一点的距离都相等
③图 中,勒洛三角形的周长与圆的周长相等
④使用截面是勒洛三角形的滚木来搬运东西,会发生上下抖动
上述结论中,所有正确结论的序号是()
A.①②B.②③C.②④D.③④
【答案】B
【解析】
【分析】
逐一对选项进行分析即可.
【详解】
A、三角形两边的和大于第三边,A是真命题,不符合题意;
B、正六边形 条边对应 个中心角,每个中心角都等于 ,B是真命题,不符合题意;
C、半径为 的圆内接正方形中,对角线长为圆的直径 ,设边长等于 ,则: ,解得边长为 ,C是真命题,不符合题意;
D、任何凸 边形的外角和都为 , 是假命题,符合题意,
本题考查了弧长的计算,审清题意、确定点O的路线和长度是解答本题的关键.
15.如图, 是 的内接三角形,且 , , 的直径 交 于点 ,则 的度数为()
A. B. C. D.
【答案】D
【解析】
【分析】
连接OB,根据等腰三角形的性质得到∠A,从而根据圆周角定理得出∠BOC,再根据OB=OC得出∠OBC,即可得到∠OBE,再结合外角性质和对顶角即可得到∠AED的度数.
【答案】D
【解析】
【分析】
从图中可以看出,线段AB扫过的图形面积为一个环形,环形中的大圆半径是AC,小圆半径是BC,圆心角是60度,所以阴影面积=大扇形面积-小扇形面积.
相关文档
最新文档