初中数学经典习题资料
数学初中经典试题及答案

数学初中经典试题及答案一、选择题1. 下列哪个选项是方程x^2 - 5x + 6 = 0的解?A. x = 2B. x = 3C. x = 1D. x = 4答案:A2. 如果一个三角形的两边长分别为3和4,且这两边夹角的余弦值为1/2,那么第三边的长度是多少?A. √7B. √13C. √15D. √21答案:C3. 一个数的立方根是它自身的数是?A. 0B. 1C. -1D. 以上都是答案:D二、填空题4. 一个圆的直径是10厘米,那么它的半径是______厘米。
答案:55. 一个长方体的长、宽、高分别为2米、3米、4米,那么它的体积是______立方米。
答案:24三、解答题6. 已知一个等差数列的前三项分别为2,5,8,求这个数列的第10项。
答案:第10项为27。
7. 一个矩形的长是宽的两倍,如果长增加4厘米,宽增加1厘米,那么面积增加24平方厘米,求原来矩形的长和宽。
答案:原来矩形的长为8厘米,宽为4厘米。
四、证明题8. 证明:如果一个三角形的两边相等,那么这两边所对的角也相等。
答案:设三角形ABC中,AB=AC,根据等边对等角的性质,可以得出∠B=∠C,从而证明命题成立。
五、应用题9. 一个农场主有一块矩形的土地,长是宽的3倍,如果长增加20米,宽增加10米,那么面积增加600平方米。
求原来矩形土地的长和宽。
答案:原来矩形土地的长为90米,宽为30米。
10. 一个班级有40名学生,其中男生人数是女生人数的1.5倍。
求男生和女生各有多少人。
答案:男生有24人,女生有16人。
初中数学经典试题及答案

初中数学经典试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项是偶数?A. 3B. 5C. 8D. 72. 如果一个数的相反数是它本身,那么这个数是:A. 0B. 1C. -1D. 23. 一个数的绝对值是它本身,那么这个数是:A. 正数B. 负数C. 非负数D. 非正数4. 计算下列算式的结果:(2x - 3) + (3x + 4) =A. 5x + 1B. 5x - 1C. 2x + 1D. 2x - 15. 下列哪个选项是方程的解?A. x + 2 = 5,x = 3B. x - 2 = 5,x = 3C. 2x + 3 = 7,x = 2D. 3x - 4 = 5,x = 36. 一个三角形的三个内角之和是:A. 90°B. 180°C. 360°D. 270°7. 一个圆的直径是10厘米,那么它的半径是:A. 5厘米B. 10厘米C. 20厘米D. 15厘米8. 下列哪个选项是不等式的解集?A. x > 5B. x < 5C. x = 5D. x ≠ 59. 一个数的立方是它本身,那么这个数是:A. 0B. 1C. -1D. 以上都是10. 一个数的平方等于它本身,那么这个数是:A. 0B. 1C. -1D. 以上都是二、填空题(每题4分,共20分)11. 一个数的平方根是它本身,那么这个数可以是______。
12. 如果一个数的绝对值是5,那么这个数可以是______。
13. 一个数的倒数是它本身,那么这个数是______。
14. 一个数的相反数是它本身,那么这个数是______。
15. 一个数的立方等于它本身,那么这个数可以是______。
三、解答题(每题5分,共50分)16. 解方程:2x - 5 = 9。
17. 计算:(3x + 2)(2x - 3)。
18. 证明:在一个直角三角形中,斜边的平方等于两直角边的平方和。
数学初中经典试题及答案

数学初中经典试题及答案一、选择题(每题3分,共30分)1. 已知一个数的平方等于36,这个数可能是:A. 6B. -6C. 6或-6D. 以上都不是2. 一个三角形的两边长分别为3和5,第三边长为:A. 2B. 4C. 6D. 83. 计算下列表达式的值:\((-3) \times (-2)\)A. 6B. -6C. 3D. -34. 一个圆的半径为5厘米,那么它的面积是:A. 78.5平方厘米B. 25平方厘米C. 78.5平方分米D. 25平方分米5. 以下哪个是等腰三角形?A. 三边长分别为3, 4, 5B. 三边长分别为5, 5, 5C. 三边长分别为2, 3, 4D. 三边长分别为1, 2, 36. 一个数的绝对值是5,这个数可能是:A. 5B. -5C. 5或-5D. 以上都不是7. 计算下列表达式的值:\((-2)^2\)A. 4B. -4C. 2D. -28. 一个直角三角形的两条直角边长分别为6和8,那么斜边长为:A. 10B. 14C. 16D. 209. 一个数的立方等于-64,这个数是:A. 4B. -4C. 2D. -210. 计算下列表达式的值:\((-1)^3\)A. 1B. -1C. 3D. -3二、填空题(每题2分,共20分)1. 一个数的相反数是-7,这个数是________。
2. 一个数的倒数是\(\frac{1}{3}\),这个数是________。
3. 一个数的平方根是4,这个数是________。
4. 一个数的立方根是2,这个数是________。
5. 一个等差数列的首项是2,公差是3,那么第5项是________。
6. 一个等比数列的首项是3,公比是2,那么第3项是________。
7. 一个直角三角形的斜边长是10,一个直角边长是6,那么另一个直角边长是________。
8. 一个圆的直径是10厘米,那么它的周长是________厘米。
9. 一个数的绝对值是8,这个数是________或________。
初中数学经典题精选

数 学 试 题一、选择题1、若一次函数y=kx+1与两坐标轴围成的三角形面积为3,则k 为( )A 、16B 、-16C 、±16D 、±132、若11m n -=3,2322m mn nm mn n+---的值是( ) A 、1.5 B 、35 C 、-2 D 、-753、判断下列真命题有( )①任意两个全等三角形可拼成平行四边形②两条对角线垂直且相等的四边形是正方形③四边形ABCD ,AB=BC=CD ,∠A=90°,那么它是正方形④在同一平面内,两条线段不相交就会平行⑤有一条对角线平分一个内角的平行四边形是菱形 A 、②③ B 、①②④ C 、①⑤ D 、②③④4、如图,矩形ABCD 中,已知AB=5,AD=12,P 是AD 上的动点,PE ⊥AC ,E,PF ⊥BD 于F,则PE+PF=( ) A 、5 B 、6013 C 、245 D 、55125、在直角坐标系中,已知两点A (-8,3)、B (-4,5)以及动点C (0,n )、D(m,0),则当四边形ABCD 的周长最小时,比值为 mn( )A 、-23B 、-32C 、-34D 、34二、填空题 6、当x= 时,||3x x -与3x x-互为倒数。
9、已知x 2-3x+1=0,求(x-1x )2=7、一个人要翻过两座山到另外一个村庄,途中的道路不是上山就是下山,已知他上山的速度为v ,下山的速度为v ′,单程的路程为s .则这个人往返这个村庄的平均速度为 8、将点A (4,0)绕着原点O 顺时针方向旋转30°角到对应点A ',则点A '的坐标是9、菱形ABCD 的一条对角线长为6,边AB 的长是方程(X-3)(X-4)=0的解,则菱形ABCD 的周长为 10、△ABC 中,∠A=90°,AB=AC ,BD 是△ABC 的中线,△CDB 内以CD 为边的等腰直角三角形周长是 11. 如图,边长为6的菱形ABCD 中,∠DAB=60°,AE=AB ,F 是AC•上一动点,EF+BF 的最小值为 12、如图,边长为3的正方形ABCD 顺时针旋转30°,得上图,交DE 于D ’,阴影部分面积是11235...315211321④③13、如图,已知四边形ABCD 中,AC 和BD 相交于点O , 且∠AOD =90°,若BC =2AD ,AB =12,CD =9,四边形ABCD 的周长是14、有这样一组数:1,1,2,3,5…,现以这组数据的数作为正方形边长的长度构造如下正方形;再分别从左到右取2个、3个、4个、5个正方形拼成如下矩形记为①、②、③、④.第⑩个矩形周长是15、如图,在直线y=-33x+1与x 轴、y 轴交于点A 、B ,以线段AB 为直角边在第一象限内作等腰直角△ABC ,∠BAC=90°,第二象限内有一点P (a,12 ),且△ABP 的面积与△ABC 的面积相等,则a=三、解答题16、如图,已知矩形ABCD ,延长CB 到E ,使CE=CA ,连结AE 并取中点F ,连结AE 并取中点F ,连结BF 、DF ,求证BF ⊥DF 。
初中全册必刷题练习册

初中全册必刷题练习册【数学篇】一、选择题1. 如果一个数的平方等于它本身,那么这个数可能是:A. 0B. 1C. -1D. 以上都是2. 下列哪个选项是二次根式:A. √3B. √(-1)C. √(2x)D. √(0)二、填空题1. 一个直角三角形的两条直角边分别为3cm和4cm,其斜边的长度是_______cm。
三、计算题1. 计算下列表达式的值:(1) (-2)^3(2) √(64)四、解答题1. 一个班级有40名学生,其中男生人数是女生人数的2倍。
求这个班级男生和女生各有多少人?【答案】一、选择题1. D2. A二、填空题1. 5三、计算题1. (1) -8(2) 8四、解答题1. 设女生人数为x,则男生人数为2x。
根据题意,x + 2x = 40,解得x = 13.33,但人数必须是整数,因此女生人数为13人,男生人数为26人。
【语文篇】一、选择题1. 下列哪个成语是形容人很谨慎的?A. 小心翼翼B. 马马虎虎C. 粗心大意D. 心不在焉2. 下列句子中,使用了哪种修辞手法?“春风又绿江南岸,明月何时照我还。
”A. 拟人B. 比喻C. 排比D. 对仗二、填空题1. 请填写下列诗句的下一句:“床前明月光,______。
”三、阅读理解1. 阅读下面的文章,回答以下问题:(文章内容略)(1) 文章的中心思想是什么?(2) 作者通过哪些细节描写来表达主题?【答案】一、选择题1. A2. A二、填空题1. 疑是地上霜三、阅读理解1. (1) 文章的中心思想是…(根据具体文章内容填写)(2) 作者通过…(根据具体文章内容填写)【英语篇】一、选择题1. What does the word "unique" mean?A. CommonB. SimilarC. UnusualD. Unique2. How do you ask for permission to do something?A. Can I do it?B. I must do it.C. I will do it.D. I did it.二、完形填空(文章内容略)1. Choose the best word to fill in the blanks.三、阅读理解1. Read the following passage and answer the questions:(文章内容略)(1) What is the main idea of the passage?(2) What does the author suggest we should do?【答案】一、选择题1. D2. A二、完形填空(根据文章内容填写)三、阅读理解1. (1) The main idea of the passage is…(根据具体文章内容填写)(2) The author suggests that we should…(根据具体文章内容填写)结束语:通过本练习册的练习,希望同学们能够巩固所学知识,提高解题能力,为即将到来的考试做好充分准备。
初中数学典型试题及答案

初中数学典型试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项是无理数?A. 0.5B. 2.718C. 3.1416D. √2答案:D2. 一个数的相反数是它本身的是:A. 0B. 1C. -1D. 2答案:A3. 一个数的绝对值是:A. 总是正数B. 总是非负数C. 可以是负数D. 可以是正数或负数答案:B4. 以下哪个选项是二次方程?A. x + 2 = 0B. x^2 + 2x + 1 = 0C. 2x = 0D. x^3 - 2x^2 + x - 2 = 0答案:B5. 一个三角形的内角和是:A. 90度B. 180度C. 360度D. 720度答案:B6. 以下哪个选项是一次函数的表达式?A. y = 2x + 3B. y = x^2 + 1C. y = 1/xD. y = x^3 - 2答案:A7. 一个圆的直径是10厘米,那么它的半径是:A. 5厘米B. 10厘米C. 20厘米D. 15厘米答案:A8. 以下哪个选项是不等式的解集?A. x > 3B. x = 3C. x < 3D. x ≠ 3答案:A9. 一个数的立方根是它本身的是:A. 0B. 1C. -1D. 8答案:A10. 以下哪个选项是等腰三角形的特征?A. 两边相等B. 三边相等C. 三角相等D. 两边和一角相等答案:A二、填空题(每题4分,共20分)1. 一个数的平方根是3,那么这个数是______。
答案:92. 如果一个数的绝对值是5,那么这个数可以是______或______。
答案:5或-53. 一个角的补角是它的______倍。
答案:180度4. 一个数的立方是27,那么这个数是______。
答案:35. 在一个直角三角形中,如果一个锐角是30度,那么另一个锐角是______。
答案:60度三、解答题(每题10分,共50分)1. 解方程:2x - 5 = 9答案:x = 72. 计算:(3x^2 - 2x + 1) + (2x^2 + 3x - 4)答案:5x^2 + x - 33. 证明:如果一个三角形的两边相等,那么它的两个角也相等。
初中数学解一元二次方程经典练习题(含答案)

初中数学解一元二次方程经典练习题(含答案)解下列解一元二次方程:1、x2=121;2、(2x+3)2=9;3、3(4x+5)2-147=0;4、(2x−7)2+9 =6(2x-7);5、7x(x-6)=3(12-2x);6、(3x-5)(2x+5)= x+7;7、3(3x-4)+ x(4-3x)=0;8、x(2x+5)=4(2x-1)+3;9、(x−3)2+4=5(3-x);10、4x2+7x +1=0;11、512x2+ 13= x;12、(x−1)(x−2)2 -1 = (x+1)(x−3)3;13、14[12(x+1)+13(x+2)+2] =x2;14、(x+1)(x+2)+(x+3)(x+4)=(x+2)(x+3)+32;15、x= 2(0.3x+21)3 - (0.2x−1)(x+2)2;16、x2+(1+ 2√5)x +( 4+√5)=0;参考答案1、x2=121;解:x2=121等式两边同时开平方x= 11故原方程的根是:x1=11,x2= -112、(2x +3)2=9;解:(2x +3)2=9等式两边同时开平方(2x +3)=±3令2x +3 = 3,即2x=0,解得x=0令2x +3 =-3,即2x=-6,解得x=-3故原方程的根是:x 1=0,x 2=-33、3(4x +5)2-147=0;解:3(4x +5)2-147=03(4x +5)2=147等式两边同时除以3(4x +5)2= 49等式两边同时开平方4x+5=±7令4x+5=7, 解得x= 12 令4x+5= -7,解得x=-3故原方程的根是:x 1= 12,x 2=-34、(2x −7)2+9 =6(2x-7);解:(2x −7)2 +9 =6(2x-7)右边的项移到等号左边(2x−7)2-6(2x-7)+9 =0(2x−7)2 -2・3・(2x-7)+32=0[(2x−7)−3 ]2=0令(2x−7)−3 =0,解得 x=5故原方程的根是:x1=x2=55、7x(x-6)=3(12-2x);解:7x(x-6)=3(12-2x)等号左边提取-27x(x-6)=-6(x-6)右边的项移到等号左边7x(x-6)+6(x-6)=0提取公因式(x-6)(x-6)(7x+6)=0令x-6=0,解得x=6令7x+6=0,解得x= - 67故原方程的根是:x1=6,x2=- 676、(3x-5)(2x+5)= x+7;解(3x-5)(2x+5)= x+7等号左边去括号6x2+15x-10x-25 =x+76x2+5x-25=x+76x2+4x-32=03x2+2x-16=0(3x+8)(x-2)=0令3x+8=0,解得x= - 83令x-2 =0,解得x=2故原方程的根是:x1=- 8,x2=237、3(3x-4)+ x(4-3x)=0;解:3(3x-4)+ x(4-3x)=0 3(3x-4)- x(3x-4)=0 提取公因式(3x-4)(3x-4)(3- x)=0令3x-4=0,解得x= 43令3- x =0,解得x=3,x2=3 故原方程的根是:x1= 438、x(2x+5)=4(2x-1)+3;解:x(2x+5)=4(2x-1)+3 2x2 +5x =8x-4+32x2 +5x =8x-12x2 -3x +1=0(2x-1)(x-1)=0令2x-1=0,解得x= 12 令x-1=0,解得x=1故原方程的根是:x 1= 12 ,x 2=19、(x −3)2 +4=5(3-x );解:(x −3)2 +4= 5(3-x )等号左边提取-1(x −3)2 +4= -5(x-3)右边的项移到等号左边(x −3)2 +5(x-3)+4=0[(x -3)+1][(x-3)+4]=0(x-2)(x+1)=0令x-2=0,解得x=2令x+1=0,解得x=-1故原方程的根是:x 1=2,x 2=-110、4x 2+7x +1=0;解:4x 2+7x +1=0判别式△=72 -4×4×1 =33x= −7 ±√332×4 = −7 ±√338故原方程的根是:x 1=−7 +√338,x 2=−7 −√33811、512x 2 + 13 = x ; 解:512x 2 + 13 = x等式两边同时乘以125x 2 +4 =12x5x 2 +4 -12x =0(5x-2)(x-2)=0令5x-2=0,解得x= 25 令x-2=0,解得x=2故原方程的根是:x 1= 25,x 2=212、(x−1)(x−2)2-1 = (x+1)(x−3)3 ; 解:(x−1)(x−2)2 -1 = (x+1)(x−3)3 等式两边分子去括号x 2−3x+22 -1 = x 2−2x−33等式两边同时乘以63(x 2−3x +2)-6 =2(x 2−2x −3) 3x 2 -9x+6 -6= 2x 2 -4x −6x 2 -5x +6=0(x-2)(x-3)=0令x-2=0,解得x=2令x-3=0,解得x=3故原方程的根是:x 1=2,x 2=313、 14[12(x+1)+13(x+2)+2] =x 2;解:14[12(x+1)+13(x+2)+2] =x 2等号两边同时乘以412(x+1)+13(x+2)+2 =4x 2等号两边同时乘以63(x+1)+2(x+2)+12 =24x 23x+3+2x+4+12=24x 224x 2-5x-19=0(24x+19)(x-1)=0令24x+19=0,解得x= −1924令x-1=0,解得x= 1故原方程的根是:x 1=−1924,x 2= 114、(x+1)(x+2)+(x+3)(x+4)=(x+2)(x+3)+32;解:(x+1)(x+2)+(x+3)(x+4)=(x+2)(x+3)+32 等号两边去括号x 2+3x+2+x 2+7x+12 =x 2+5x+6+32整理得x 2+5x-24=0(x+8)(x-3)=0令x+8=0,解得x= -8令x-3=0,解得x= 3故原方程的根是:x 1=-8,x 2= 315、x=2(0.3x+21)3 - (0.2x−1)(x+2)2 ; 解:x= 2(0.3x+21)3 - (0.2x−1)(x+2)2等号两边同时乘以66x=4(0.3x+21)-3(0.2x-1)(x+2) 去括号6x=1.2x+84-0.6x 2+1.8x+6整理得0.6x 2+3x-90=0等号两边同时乘以10,然后再除以6 x 2+5x-150=0(x+15)(x-10)=0令x+15=0,解得x= -15令x-10=0,解得x= 10故原方程的根是:x 1= -15,x 2= 1016、x 2+(1+ 2√5)x +( 4+√5)=0; 解:x 2+(1+ 2√5)x +( 4+√5)=0 判别式△=(1+ 2√5)2-4・1・( 4+√5)=1+4√5+20-16-4√5=5x= −(1+ 2√5)±√52∙1即x= −(1+ 2√5)+√52=−(1+ √5)2或 x= −(1+ 2√5)−√52=−(1+3 √5)2故原方程的根是:x1=−(1+ √5)2,x2= −(1+3 √5)2。
经典初中数学试题及答案

经典初中数学试题及答案一、选择题(每题2分,共10分)1. 下列哪个选项是二次方程的解?A. \(x = 2\)B. \(x = -3\)C. \(x = 4\)D. \(x = \frac{1}{2}\)答案:D2. 一个圆的半径是5厘米,那么这个圆的周长是多少?A. 10π厘米B. 20π厘米C. 30π厘米D. 40π厘米答案:B3. 如果一个数的相反数是-7,那么这个数是多少?A. 7B. -7C. 0D. 14答案:A4. 一个等腰三角形的底边长为6厘米,两腰长为5厘米,那么这个三角形的周长是多少?A. 16厘米B. 21厘米C. 26厘米D. 31厘米答案:B5. 一个数的绝对值是5,这个数可能是?A. 5B. -5C. 5或-5D. 0答案:C二、填空题(每题2分,共10分)1. 一个数的平方是36,这个数是________。
答案:±62. 如果一个三角形的内角和为180°,其中一个角是90°,另外两个角的度数之和是________。
答案:90°3. 一个数除以3余2,除以5余3,除以7余2,这个数最小是________。
答案:534. 一个长方体的长、宽、高分别是10厘米、8厘米、5厘米,那么这个长方体的体积是________立方厘米。
答案:4005. 一个分数的分子是15,分母是30,这个分数化简后是________。
答案:\(\frac{1}{2}\)三、解答题(每题15分,共30分)1. 已知一个二次方程 \(ax^2 + bx + c = 0\) 的两个解是 \(x_1 =2\) 和 \(x_2 = -3\),求出 \(a\)、\(b\)、\(c\) 的值。
答案:根据韦达定理,我们有 \(x_1 + x_2 = -\frac{b}{a}\) 和\(x_1 \cdot x_2 = \frac{c}{a}\)。
将 \(x_1 = 2\) 和 \(x_2 = -3\) 代入,得到 \(-1 = -\frac{b}{a}\) 和 \(-6 = \frac{c}{a}\)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
232-2-11-11O x y(第7题)(第4题)O xP · 121-1 1y -1 1-2 22 -2 23 3选择题1.|2|-等于 ( ) A .2B .2-C .21D .21-2.下列长度的三条线段,能组成三角形的是 ( ) A .1、1、2 B .3、4、5 C .1、4、6 D .2、3、73.下列计算正确的是 ( ) A .331-=-B .632a a a =⋅C .1)1(22+=+x x D .22223=-4.如图,在平面直角坐标系中,点P (-1,2)向右平移3个单位长度后的坐标是( )A .(2,2)B .( -4,2)C .(-1,5)D .(-1,-1)5.一个多边形的内角和是900︒,则这个多边形的边数为( )A .6B .7C .8D .9 6.若⎩⎨⎧==21y x 是关于x ,y 的二元一次方程13=-y ax 的解,则a 的值为( ) A .-5B .-1C .2D .77.如图,关于抛物线2)1(2--=x y ,下列说法错误的是( )A .顶点坐标为(1,-2)B .对称轴是直线x =1C .开口方向向上D .当x >1时,y 随x 的增大而减小8.如上右图是每个面上都有一个汉字的正方体的一种展开图,那么在原正方体的表 面上,与 汉字“美”相对的面上的汉字是 ( )A .我B .爱C .长D .沙9.谢老师对班上某次数学模拟考试成绩进行统计,绘制了如图所示的统计图, 根据图中给出的信息,这次考试成绩达到A 等级的人数占总人数的 ( )DA B C (第10题)AB EC DA .6%B .10%C .20%D .25%10.如图,等腰梯形ABCD 中,AD ∥BC ,∠B =45︒,AD =2,BC =4,则梯形的面积为A .3B .4C .6D .8二、填空题11.分解因式:22b a -= .12.反比例函数xk y =的图象经过点A (-2,3),则k 的值为 .13.如图,CD 是△ABC 的外角∠ACE 的平分线,AB ∥CD ,∠ACE =100︒,则∠A = ︒.14. 化简:xx x 11-+= .(第13题)15.在某批次的100件产品中,有3件是不合格产品,从中任意抽取一件检验,则抽到不合 格产品的概率是 .16.菱形的两条对角线的长分别是6cm 和8cm ,则菱形的周长是 cm .17.已知33=-b a ,则b a 38+-的值是 .18.如图,P 是⊙O 的直径AB 延长线上的一点,PC 与⊙O 相切于点C ,若∠P =20︒, 则∠A = ︒.PCAO B (第18题)三、解答题P DCBO A 19.已知a =9,b =20110,c =)2(--,求c b a +-的值.20.解不等式)2(2-x ≤x 36-,并写出它的正整数解.21.“珍惜能源从我做起,节约用电人人有责”.为了解某小区居民节约用电情况,物业公司随 机抽取了今年某一天本小区10户居民的日用电量,数据如下:用户序号12 3 4 5 6 7 8 9 10 日用电量(度) 4.4 4.05.05.63.44.83.45.24.04.2(1)求这组数据的极差和平均数;(2)已知去年同一天这10户居民的平均日用电量为7.8度,请你估计,这天与去年同日相比,该小区200户居民这一天共节约了多少度电?弦CD 相交于点P ,∠CAB =40︒,∠22.如图,在⊙O 中,直径AB 与APD =65︒.(第22题)(1)求∠B 的大小;(2)已知圆心O 到BD 的距离为3,求AD 的长.23.某工程队承包了某标段全长1755米的过江隧道施工任务, 甲、乙两个班组分别从东、西两端同时掘进.已知甲组比乙组 平均每天多掘进0.6米,经过5天施工,两组共掘进了45米.NM E A B C D 37︒(1)求甲、乙两个班组平均每天各掘进多少米?(2)为加快工程进度,通过改进施工技术,在剩余的工程中,甲组平均每天能比原来多 掘进0.2米,乙组平均每天能比原来多掘进0.3米.按此施工进度,能够比原来少用多少 天完成任务?24.如图是一座人行天桥的引桥部分的示意图,上桥通道由两段互相平行并且与地面成37︒角 的楼梯AD 、BE 和一段水平平台DE 构成.已知天桥高度BC =4.8米,引桥水平跨度AC =8米.(1)求水平平台DE 的长度;(2)若与地面垂直的平台立柱MN 的高度为3米,求两段楼梯AD 与BE 的长度之比.(参考数据:取sin37︒=0.60,cos37︒=0.80,tan37︒=0.75)(第24题) 25.使得函数值为零的自变量的值称为函数的零点.例如,对于函数1-=x y ,令0=y ,可得1=x ,我们就说1是函数1-=x y 的零点. 已知函数)3(222+--=m mx x y (m 为常数). (1)当m =0时,求该函数的零点;(2)证明:无论m 取何值,该函数总有两个零点;(3)设函数的两个零点分别为1x 和2x ,且411121-=+x x ,此时函数图象与x 轴的交点分 (4)别为A 、B (点A 在点B 左侧),点M 在直线10-=x y 上,当MA +MB 最小时,(5)求直线AM 的函数解析式.26.如图,在平面直角坐标系中,已知点A (0,2),点P 是x 轴上一动点,以线段AP 为一xyQB A OP. .边,在其一侧作等边三角形APQ .当点P 运动到原点O 处时,记Q 的位置为B .(1)求点B 的坐标;(2)求证:当点P 在x 轴上运动(P 不与O 重 合)时,∠ABQ 为定值; (3)是否存在点P ,使得以A 、O 、Q 、B 为顶点的四边形是梯形?若存在,请求出P 点 的坐标;若不存在,请说明理由.(第26题)20XX 年长沙市初中毕业学业水平考试试卷数学参考答案及评分标准一、选择题(本题共10个小题,每小题3分,共30分)题号1234567891答案 A B D A B D D C CA1、A2、B3、D4、A5、B6、D7、D8、C9、C10、A二、填空题(本题共8个小题,每小题3分,共24分)11.))((b a b a -+12.-613.5014.115.0.0316.2017.518.35三、解答题(本题共2个小题,每小题6分,共12分)19.∵a =9=3,b =20110=1,c =)2(--=2, …………………………… 4分∴c b a +-=3-1+2=4. ………………………………………………… 6分20.原不等式)2(2-x ≤x 36-可化为42-x ≤x 36-, ……………… 1分即5x ≤10, ………………………………………………………… 3分 解得x ≤2.…………………………………………………………4分 ∴不等式的正整数解为1和2. ……………………………………… 6分四、解答题(本题共2个小题,每小题8分,共16分)21. (1)极差:5.6-3.4=2.2(度); ……………………………………… 2分 平均数:(4.4+4.0+5.0+5.6+3.4+4.8+3.4+5.2+4.0+4.2)÷10=4.4(度).… 4分 (2)这10户居民这一天平均每户节约:7.8-4.4=3.4(度), ……… 6分 由此估计整个小区居民这一天平均每户节约3.4度,所以该小区200户居民这一天共节约 3.4×200=680(度).……………… 8分22.(1)∵∠APD 是△APC 的外角,∴∠APD =∠CAP +∠C ,……………… 1分 即65︒=40︒+∠C , ∴∠C =25︒……………………… 2分∴∠B =∠C =25︒. ……………………… 4分 (2)过点O 作OE ⊥BD 于E , ……… 5分EP DCBO A根据垂径定理得 E 是BD 的中点,…… 6分 又∵O 是AB 的中点,∴OE 是△ABD 的中位线, ………………………………………………… 7分∴A D =2OE =6. ………………………………………………………………… 8分五、解答题(本题共2个小题,每小题9分,共18分)23.(1)设甲、乙两个班组平均每天分别掘进x 米、y 米,……………………… 1分依题意得⎩⎨⎧=+=-45)(56.0y x y x ……………………………………………………3分解得:⎩⎨⎧==2.48.4y x…………………………………………………………… 5分答:甲、乙两个班组平均每天分别掘进4.8米和4.2米. ………………… 6分 (2)设按原来的施工进度和改进施工技术后的进度分别还需要a 天、b 天完成任务,则a =(1755-45)÷(4.8+4.2)=190(天), ……………………………………… 7分b =(1755-45)÷(4.8+4.2+0.2+0.3)=180(天), …………………………… 8分∴a -b =190-180=10(天), 答:能比原来少用10天完成任务. ……………………………………… 9分24.(1)延长BE 交AC 于F ,∵AD ∥BE ,∴AD ∥EF ,又∵DE ∥AF ,∴四边形ADEF 是平行四边形,……………………… 1分∴DE =AF .…………………………………………………………… 2分在Rt △BFC 中,BC =4.8, ∠BFC =∠A=37︒, ∵tan ∠BFC =CF BC ,∴tan 37︒=CF8.4=0.75,………………………………… 3分∴CF =6.4(米). …………………………………………………………… 4分 AF =AC -CF =8-6.4=1.6(米),∴DE =1.6(米).………………………………………………… 5分(2)过点E 作EG ⊥AC 于G ,37°G FN MEABCD∵MN ⊥AC ,DE ∥AC , ∴EG=MN=3(米), …………… 6分又∵BC ⊥AC ,EG ⊥AC ,∴EG ∥BC∴△FEG ∽△FBC ,∴BF EF =BC EG =8.43,∴BF EF =85, ∴BE EF =35, ………………… 8分 由(1)知,四边形ADEF 是平行四边形,AD =EF , ∴AD :BE =5:3. …………………………………………………………… 9分六、解答题(本题共2个小题,每小题10分,共20分)25.(1)当0=m 时,62-=x y , …………………………………… 1分令0=y ,即062=-x ,解得6±=x , ……………………… 2分 ∴当0=m 时,该函数的零点为6和-6. ……………………… 3分 (2)令0=y ,即0)3(222=+--m mx x , ……………………… 4分 △=(-2m )2-4[-2(m +3)]=4m 2+8m +24=4(m +1)2+20 ……………………………………… 5分∵无论m 为何值,4(m +1)2≥0,4(m +1)2+20>0,即△>0,∴无论m 为何值,方程0)3(222=+--m mx x 总有两个不相等的实数根, 即该函数总有两个零点. ………………………………………………… 6分 (3)依题意有,m x x 221=+,)3(221+-=m x x ,由411121-=+x x 得2121x x x x ⋅+=-41,即)3(22+-m m =-41, 解得m =1. …………………………………………………………… 7分 因此函数解析式为y =x 2-2x -8, 令y =0,解得x 1=-2,x 2=4, ∴A (-2,0),B (4,0),作点B 关于直线10-=x y 的对称点B ´,连结AB ´,MB'DCB AOxy则AB ´与直线10-=x y 的交点就是满足条件的M 点. …………… 8分 易求得直线10-=x y 与x 轴、y 轴的交点分别为C (10,0),D (0,-10), 连结CB ´,则∠BCD =45︒,∴B C =CB ´=6,∠B ´CD =∠BCD =45︒, ∴∠BCB ´=90︒. 即B ´(10,-6).……… 9分设直线AB ´的解析式为b kx y +=,则⎩⎨⎧-=+=+-61002b k b k , 解得21-=k ,1-=b . ∴直线AB ´的解析式为121--=x y ,即AM 的解析式为121--=x y . ……………………………………… 10分26.(1)过点B 作BC ⊥y 轴于点C ,…………………………………………… 1分xyCQBA OP∵A (0,2),△AOB 为等边三角形, ∴AB=OB=2,∠BAO =60︒, ∴BC =3,OC =AC =1, 即B (3,1).………………… 3分(2)当点P 在x 轴上运动(P 不与O 重合)时,不失一般性, ∵∠PAQ =∠O AB=60︒,∴∠PAO =∠QAB ,……………… 4分 在△APO 和△AQB 中,∵AP =AQ ,∠PAO =∠QAB ,AO =AB ,∴△APO ≌△AQB 总成立, …………………………………………… 5分∴∠ABQ =∠AOP =90︒总成立,∴点P 在x 轴上运动(P 不与O 重合)时,∠ABQ 为定值90︒. ………… 6分 (3)由(2)可知,点Q 总在过点B 且与AB 垂直的直线上, 可见AO 与BQ 不平行.………………………………………………7分①当点P 在x 轴负半轴上时,点Q 在点B 的下方, 此时,若AB ∥O Q ,四边形AOQB 即是梯形.当AB ∥OQ 时,∠BQO=90︒,∠BOQ =∠ABO =60︒, 又OB =OA =2,可求得BQ =3, 由(2)可知△APO ≌△AQB , ∴OP =BQ =3,xy QBAOP∴此时P 的坐标为(-3,0).………………………………………… 9分优秀学习资料欢迎下载②当点P在x轴正半轴上时,点Q在点B的上方,此时,若AQ∥OB,四边形AOBQ即是梯形.当AQ∥OB时,∠QAB=∠ABO=60°, ∠ABQ=90°,AB=2,2.∴BQ=3由(2)可知△APO≌△AQB,2,∴OP=BQ=32,0).∴此时P的坐标为(32,0). ………………………10分综上,P的坐标为(-3,0)或(3。