初中数学经典例题讲解

合集下载

初中数学10大解题方法及典型例题详解

初中数学10大解题方法及典型例题详解

初中数学10大解题方法及典型例题详解1、配方法所谓配方,就是把一个解析式利用恒等变形的方法,把其中的某些项配成一个或几个多项式正整数次幂的和形式。

通过配方解决数学问题的方法叫配方法。

其中,用的最多的是配成完全平方式。

配方法是数学中一种重要的恒等变形的方法,它的应用十分非常广泛,在因式分解、化简根式、解方程、证明等式和不等式、求函数的极值和解析式等方面都经常用到它。

例题:用配方法解方程x2+4x+1=0,经过配方,得到( )A.(x+2) 2=5 B.(x-2) 2=5 C.(x-2) 2=3 D.(x+2) 2=3 【分析】配方法:若二次项系数为1,则常数项是一次项系数的一半的平方,若二次项系数不为1,则可先提取二次项系数,将其化为1后再计算。

【解】将方程x2+4x+1=0,移向得:x2+4x=-1,配方得:x2+4x+4=-1+4,即(x+2) 2=3;因此选D。

2、因式分解法因式分解,就是把一个多项式化成几个整式乘积的形式。

因式分解是恒等变形的基础,它作为数学的一个有力工具、一种数学方法在代数、几何、三角等的解题中起着重要的作用。

因式分解的方法有许多,除中学课本上介绍的提取公因式法、公式法、分组分解法、十字相乘法等外,还有如利用拆项添项、求根分解、换元、待定系数等等。

例题:若多项式x2+mx-3因式分解的结果为(x-1)(x+3),则m的值为()A.-2 B.2 C.0 D.1【分析】根据因式分解与整式乘法是相反方向的变形,先将(x-1)(x+3)乘法公式展开,再根据对应项系数相等求出m的值。

【解】∵x2+mx-3因式分解的结果为(x-1)(x+3),即x2+mx-3=(x-1)(x+3),∴x2+mx-3=(x-1)(x+3)=x2+2x-3,∴m=2;因此选B。

3、换元法换元法是数学中一个非常重要而且应用十分广泛的解题方法。

我们通常把未知数或变数称为元,所谓换元法,就是在一个比较复杂的数学式子中,用新的变元去代替原式的一个部分或改造原来的式子,使它简化,使问题易于解决。

初中数学函数典型例题

初中数学函数典型例题

初中数学函数典型例题1、已知:m n 、是方程2650x x -+=的两个实数根,且m n <,抛物线2y x bx c =-++的图像经过点A(,0m )、B(0n ,).(1) 求这个抛物线的解析式;(2) 设(1)中抛物线与x 轴的另一交点为C,抛物线的顶点为D ,试求出点C 、D 的坐标和△BCD 的面积;(注:抛物线2y ax bx c =++(0)a ≠的顶点坐标为24(,)24b ac b a a --) (3) P 是线段OC 上的一点,过点P 作PH ⊥x 轴,与抛物线交于H 点,若直线BC 把△PCH 分成面积之比为2:3的两部分,请求出P 点的坐标.[解析] (1)解方程2650,x x -+=得125,1x x ==由m n <,有1,5m n ==所以点A 、B 的坐标分别为A (1,0),B (0,5).将A (1,0),B (0,5)的坐标分别代入2y x bx c =-++.得105b c c -++=⎧⎨=⎩解这个方程组,得45b c =-⎧⎨=⎩所以,抛物线的解析式为245y x x =--+(2)由245y x x =--+,令0y =,得2450x x --+= 解这个方程,得125,1x x =-=所以C 点的坐标为(-5,0).由顶点坐标公式计算,得点D (-2,9).过D 作x 轴的垂线交x 轴于M. 则1279(52)22DMC S ∆=⨯⨯-= 12(95)142MDBO S =⨯⨯+=梯形,1255522BOC S ∆=⨯⨯= 所以,2725141522BCD DMC BOC MDBO S S S S ∆∆∆=+-=+-=梯形. (3)设P 点的坐标为(,0a )因为线段BC 过B 、C 两点,所以BC 所在的值线方程为5y x =+.那么,PH 与直线BC 的交点坐标为(,5)E a a +,PH 与抛物线245y x x =--+的交点坐标为2(,45)H a a a --+.由题意,得①32EH EP =,即23(45)(5)(5)2a a a a --+-+=+ 解这个方程,得32a =-或5a =-(舍去) ②23EH EP =,即22(45)(5)(5)3a a a a --+-+=+ 解这个方程,得23a =-或5a =-(舍去) P 点的坐标为3(,0)2-或2(,0)3-.2、某工厂用一种自动控制加工机制作一批工件,该机器运行过程分为加油过程和加工过程:加工过程中,当油箱中油量为10升时,机器自动停止加工进入加油过程,将油箱加满后继续加工,如此往复.已知机器需运行185分钟才能将这批工件加工完.下图是油箱中油量y(升)与机器运行时间x(分)之间的函数图象.根据图象回答下列问题:(1)求在第一个加工过程中,油箱中油量y(升)与机器运行时间x(分)之间的函数关系式(不必写出自变量x 的取值范围);(2)机器运行多少分钟时,第一个加工过程停止?(3)加工完这批工件,机器耗油多少升?[解析] (1)设所求函数关系式为y=kx+b .由图象可知过(10,100),(30,80)两点,得101003080k b k b +=⎧⎨+=⎩解得1110k b =-⎧⎨=⎩∴ y=-x+llO(2)当y=10时,-x+110=10,x=100机器运行100分钟时,第一个加工过程停止(3)第一个加工过程停止后再加满油只需9分钟加工完这批工件,机器耗油166升3、(2006北京海淀)已知抛物线y x x c 122=-+的部分图象如图1所示。

初中数学《一次函数变量与函数》典型例题及答案解析

初中数学《一次函数变量与函数》典型例题及答案解析
【详解】
解:由题意,得 ,
解得x≤3且x≠2,
故选:C.
【点睛】
本题考查了函数自变量的取值范围,利用被开方数是非负数,分母不能为零得出不等式组是解题关键.
10.下列各曲线中,不能表示y是x的函数的是( )
A. B. C. D.
【答案】D
【Hale Waihona Puke 析】【分析】根据函数的定义可知,满足对于x的每一个取值,y都有唯一确定的值与之对应关系,据此即可确定函数的个数.
【答案】C
【解析】
【分析】
根据函数定义:对于函数中的每个值x,变量y按照一定的法则有一个确定的值y与之对应,解答即可.
【详解】
A项中,长方形的宽一定,是常量,而面积=长×宽,长与面积是两个变量,若长改变,则面积也变,是函数关系;
B项中,正方形的周长与面积是两个变量,给出一个周长的值C,边长即为 ,相应地面积为 ,是函数关系;
【答案】A
【解析】
【分析】
由三角形外角性质可得结论.
【详解】
∵三角形一个外角等于与它不相邻的两个内角和,
∴y=x+60.
故选:A.
【点睛】
考查了三角形外角的性质,解题关键是运用三角形一个外角等于与它不相邻的两个内角和得出关系式.
5.小明和他爸爸做了一个实验,小明由一幢245米高的楼顶随手放下一只苹果,由他爸爸测量有关数据,得到苹果下落的路程和下落的时间之间有下面的关系:
【详解】
解;观察表格,得
时间在变,人口在变,故C正确;
故选;C.
【点睛】
本题考查的知识点是常量与变量,解题关键是利用常量与变量的定义.
12.在圆周长计算公式C=2πr中,对半径不同的圆,变量有( )

初中数学经典例题解析

初中数学经典例题解析

初中数学经典例题解析方法通过把一个解析式利用恒等变形的方法,把其中的某些项配成一个或几个多项式正整数次幂的和形式解决数学问题的方法,叫配方法。

配方法用的最多的是配成完全平方式,它是数学中一种重要的恒等变形的方法,它的应用十分非常广泛,在因式分解、化简根式、解方程、证明等式和不等式、求函数的极值和解析式等方面都经常用到它。

例:用配方法将二次函数一般式变为顶点式2、因式分解法因式分解,就是把一个多项式化成几个整式乘积的形式,是恒等变形的基础,它作为数学的一个有力工具、一种数学方法在代数、几何、三角等的解题中起着重要的作用。

因式分解的方法有许多,除中学课本上介绍的提取公因式法、公式法、分组分解法、十字相乘法等外,还有如利用拆项添项、求根分解、换元、待定系数等等。

例:用因式分解法解一元二次方程3、换元法换元法是数学中一个非常重要而且应用十分广泛的解题方法。

通常把未知数或变数称为元,所谓换元法,就是在一个比较复杂的数学式子中,用新的变元去代替原式的一个部分或改造原来的式子,使它简化,使问题易于解决。

例:换元法化简整式(x+2y)2-(x-2y)2换元法1令a= x+2y,b= x-2y原式=a2-b2=(a+b)(a-b)a+b=2x,a-b=4y∴原式=2x?4y=8xy换元法2令a=x,b=2y原式=(a+b)2-(a-b)2=(a2+2ab+b2)-(a2-2ab+b2)=4ab=8xy4、判别式法与韦达定理一元二次方程x2+bx+c=0(a≠0)中,△=b2-4ac,不仅用来判定根的性质,而且作为一种解题方法,在代数式变形,解方程(组),解不等式,研究函数乃至几何、三角运算中都有非常广泛的应用。

韦达定理除了已知一元二次方程的一个根,求另一根;已知两个数的和与积,求这两个数等简单应用外,还可以求根的对称函数,计论二次方程根的符号,解对称方程组,以及解一些有关二次曲线的问题等,都有非常广泛的应用。

例:判别式:△=b2-4ac韦达定理5、待定系数法在解数学问题时,若先判断所求的结果具有某种确定的形式,其中含有某些待定的系数,而后根据题设条件列出关于待定系数的等式,最后解出这些待定系数的值或找到这些待定系数间的某种关系,从而解答数学问题,这种解题方法称为待定系数法。

(完整版)初一年级数学经典例题

(完整版)初一年级数学经典例题

数学天地:初一年级数学核心题目赏析有理数及其运算篇【核心提示】有理数部分概念较多,其中核心知识点是数轴、相反数、绝对值、乘方. 通过数轴要尝试使用“数形结合思想”解决问题,把抽象问题简单化.相反数看似简单,但互为相反数的两个数相加等于0这个性质有时总忘记用..绝对值是中学数学中的难点,它贯穿于初中三年,每年都有不同的难点,我们要从七年级把绝对值学好,理解它的几何意义.乘方的法则我们不仅要会正向用,也要会逆向用,难点往往出现在逆用法则方面.【核心例题】例1计算:200720061......431321211⨯++⨯+⨯+⨯ 分析 此题共有2006项,通分是太麻烦.有这么多项,我们要有一种“抵消”思想,如能把一些项抵消了,不就变得简单了吗?由此想到拆项,如第一项可拆成2111211-=⨯,可利用通项()11111+-=+⨯n n n n ,把每一项都做如此变形,问题会迎刃而解.解 原式=)2007120061(......413131212111-++-+-+-)()()( =2007120061......41313121211-++-+-+- =200711- =20072006 例2 已知有理数a 、b 、c 在数轴上的对应点分别为A 、B 、C(如右图).化简b c b a a -+-+. 分析 从数轴上可直接得到a 、b 、c 的正负性,但本题关键是去绝对值,所以应判断绝对值符号内表达式的正负性.我们知道“在数轴上,右边的数总比左边的数大”,大数减小数是正数,小数减大数是负数,可得到a-b<0、c-b>0.解 由数轴知,a<0,a-b<0,c-b>0所以,b c b a a -+-+= -a-(a-b)+(c-b)= -a-a+b+c-b= -2a+c例3 计算:⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-⋅⋅⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-211311 (9811991110011)分析 本题看似复杂,其实是纸老虎,只要你敢计算,马上就会发现其中的技巧,问题会变得很简便.解 原式=2132......9897999810099⨯⨯⨯⨯⨯=1001 例4 计算:2-22-23-24-……-218-219+220.分析 本题把每一项都算出来再相加,显然太麻烦.怎么让它们“相互抵消”呢?我们可先从最简单的情况考虑.2-22+23=2+22(-1+2)=2+22=6.再考虑2-22-23+24=2-22+23(-1+2)=2-22+23=2+22(-1+2)=2+22=6.这怎么又等于6了呢?是否可以把这种方法应用到原题呢?显然是可以的.解 原式=2-22-23-24-……-218+219(-1+2)=2-22-23-24-……-218+219=2-22-23-24-……-217+218(-1+2)=2-22-23-24-……-217+218=……=2-22+23=6【核心练习】1、已知│ab-2│与│b-1│互为相反数,试求:()()......1111++++b a ab ()()200620061++b a 的值. (提示:此题可看作例1的升级版,求出a 、b 的值代入就成为了例1.) 2、代数式abab b b a a ++的所有可能的值有( )个(2、3、4、无数个) 【参考答案】1、20082007 2、3 字母表示数篇【核心提示】用字母表示数部分核心知识是求代数式的值和找规律.求代数式的值时,单纯代入一个数求值是很简单的.如果条件给的是方程,我们可把要求的式子适当n=1,S=1①n=2,S=5②③n=3,S=9变形,采用整体代入法或特殊值法.【典型例题】例1已知:3x-6y-5=0,则2x-4y+6=_____分析 对于这类问题我们通常用“整体代入法”,先把条件化成最简,然后把要求的代数式化成能代入的形式,代入就行了.这类问题还有一个更简便的方法,可以用“特殊值法”,取y=0,由3x-6y-5=0,可得35=x ,把x 、y 的值代入2x-4y+6可得答案328.这种方法只对填空和选择题可用,解答题用这种方法是不合适的.解 由3x-6y-5=0,得352=-y x 所以2x-4y+6=2(x-2y)+6=6352+⨯=328 例2已知代数式1)1(++-n n x x ,其中n 为正整数,当x=1时,代数式的值是 ,当x=-1时,代数式的值是 .分析 当x=1时,可直接代入得到答案.但当x=-1时,n 和(n-1)奇偶性怎么确定呢?因n 和(n-1)是连续自然数,所以两数必一奇一偶.解 当x=1时,1)1(++-n n x x =111)1(++-n n =3当x=-1时,1)1(++-n n x x =1)1()1()1(+-+--n n =1例3 152=225=100×1(1+1)+25, 252=625=100×2(2+1)+25352=1225=100×3(3+1)+25, 452=2025=100×4(4+1)+25……752=5625= ,852=7225=(1)找规律,把横线填完整;(2)请用字母表示规律;(3)请计算20052的值.分析 这类式子如横着不好找规律,可竖着找,规律会一目了然.100是不变的,加25是不变的,括号里的加1是不变的,只有括号内的加数和括号外的因数随着平方数的十位数在变.解 (1)752=100×7(7+1)+25,852=100×8(8+1)+25(2)(10n+5)2=100×n (n+1)+25(3) 20052=100×200(200+1)+25=4020025例4如图①是一个三角形,分别连接这个三角形三边的中点得到图②,再分别连接图②中间小三角形三边的中点,得到图③.S 表示三角形的个数.(1)当n=4时,S= ,(2)请按此规律写出用n 表示S 的公式.分析 当n=4时,我们可以继续画图得到三角形的个数.怎么找规律呢?单纯从结果有时我们很难看出规律,要学会从变化过程找规律.如本题,可用列表法来找,规律会马上显现出来的.解 (1)S=13(2)可列表找规律:所以S=4(n-1)+1.(当然也可写成4n-3.)【核心练习】1、观察下面一列数,探究其中的规律:—1,21,31-,41,51-,61 ①填空:第11,12,13三个数分别是 , , ;②第2008个数是什么?③如果这列数无限排列下去,与哪个数越来越近?.2、观察下列各式: 1+1×3 = 22, 1+2×4 = 32, 1+3×5 = 42,……请将你找出的规律用公式表示出来:【参考答案】1、①111-,121,1311-;②20081;③0. 2、1+n ×(n+2) = (n+1)2平面图形及其位置关系篇【核心提示】平面图形是简单的几何问题.几何问题学起来很简单,但有时不好表述,也就是写不好过程.所以这部分的核心知识是写求线段、线段交点或求角的过程.每个人写的可能都不一样,但只要表述清楚了就可以了,不过在写清楚的情况下要尽量简便.【典型例题】例1平面内两两相交的6条直线,其交点个数最少为______个,最多为______个.分析 6条直线两两相交交点个数最少是1个,最多怎么求呢?我们可让直线由少到多一步步找规律.列出表格会更清楚.解例2 两条平行直线m 、n 上各有4个点和5个点,任选9点中的两个连一条直线,则一共可以连( )条直线. A .20 B .36 C .34 D .22分析与解 让直线m 上的4个点和直线n 上的5个点分别连可确定20条直线,再加上直线m 上的4个点和直线n 上的5个点各确定的一条直线,共22条直线.故选D. 例3 如图,OM 是∠AOB 的平分线.射线OC 在∠BOM 内,ON 是∠BOC 的平分线,已知∠AOC=80°,那么∠MON 的大小等于_______. 分析 求∠MON 有两种思路.可以利用和来求,即∠MON=∠MOC+∠CON.也可利用差来求,方法就多了,∠MON=∠MOB-∠BON=∠AON-∠AOM=∠AOB-∠AOM-∠BON.根据两条角平分线,想办法和已知的∠AOC 靠拢.解这类问题要敢于尝试,不动笔是很难解出来的.解 因为OM 是∠AOB 的平分线,ON 是∠BOC 的平分线,所以∠MOB=21∠AOB ,∠NOB=21∠COB 所以∠MON=∠M OB-∠N OB=21∠AOB-21∠C OB=21(∠AOB-∠C OB )=21∠AOC=21×80°=40° 例4 如图,已知∠AOB=60°,OC 是∠AOB 的平分线,OD 、OE 分别平分∠BOC 和∠AOC. (1)求∠DOE 的大小; O AM C N O B AC D E 图1图2图3(2)当OC 在∠AOB 内绕O 点旋转时,OD 、OE 仍是∠BOC 和∠AOC 的平分线,问此时∠DOE 的大小是否和(1)中的答案相同,通过此过程你能总结出怎样的结论.分析 此题看起来较复杂,OC 还要在∠AOB 内绕O 点旋转,是一个动态问题.当你求出第(1)小题时,会发现∠DOE 是∠AOB 的一半,也就是说要求的∠DOE , 和OC 在∠AOB 内的位置无关.解 (1)因为OC 是∠AOB 的平分线,OD 、OE 分别平分∠BOC 和∠AOC.所以∠DOC=21∠BOC ,∠COE=21∠COA 所以∠DOE=∠DOC+∠COE=21∠BOC+21∠COA=21(∠BOC+∠COA )=21∠AOB 因为∠AOB=60°所以∠DOE =21∠AOB= 21×60°=30° (2)由(1)知∠DOE =21∠AOB ,和OC 在∠AOB 内的位置无关.故此时∠DOE 的大小和(1)中的答案相同.【核心练习】1、A 、B 、C 、D 、E 、F 是圆周上的六个点,连接其中任意两点可得到一条线段,这样的线段共可连出_______条.2、在1小时与2小时之间,时钟的时针与分针成直角的时刻是1时 分.【参考答案】1、15条2、分分或1165411921.一元一次方程篇【核心提示】一元一次方程的核心问题是解方程和列方程解应用题。

初中数学《一次函数、正比例函数》典型例题及答案解析

初中数学《一次函数、正比例函数》典型例题及答案解析

初中数学《一次函数、正比例函数》典型例题及答案解析1.如图,过A点的一次函数的图象与正比例函数y=2x的图象相交于点B,则这个一次函数的表达式是()A.y=x﹣3. B.y=2x+3. C.y=﹣x+3. D.y=2x﹣3.【答案】C【解析】【分析】根据正比例函数图象确定B点坐标再根据图象确定A点的坐标,设出一次函数解析式,代入一次函数解析式,即可求出.【详解】∵B点在正比例函数y=2x的图象上,横坐标为1,∴y=2×1=2,∴B(1,2),设一次函数解析式为:y=kx+b,∵一次函数的图象过点A(0,3),与正比例函数y=2x的图象相交于点B(1,2),∴可得出方程组,解得,则这个一次函数的解析式为y=−x+3,故选:C.【点睛】本题主要考查一次函数的解析式和一次函数的图象与性质,熟悉掌握是关键.2.下列式子中,表示y是x的正比例函数的是()A.y=. B.y=x+2. C.y=x2. D.y=2x.根据正比例函数的定义条件:k为常数且,自变量次数为1,判断各选项,即可得出答案.【详解】A、,自变量次数不为1,故本选项错误;B、. y=x+2,是和的形式,故本选项错误;C、y=x2,自变量次数不为1,故本选项错误;D、y=2x ,符合正比例函数的含义,故本选项正确;所以D选项是正确的.【点睛】本题考查了正比例函数的定义.解题关键是掌握正比例函数的定义条件:正比例函数的定义条件是:k为常数且,自变量次数为1.3.定义(p,q)为一次函数y=px+q的特征数.若特征数是(2,k-2)的一次函数为正比例函数,则k的值是()A.0 B.-2 C.2 D.任何数【答案】C【解析】【分析】根据新定义写出一次函数的表达式;由正比例函数的定义确定k的值.【详解】解:根据题意,特征数是(2,k-2)的一次函数表达式为:y=2x+(k-2).因为此一次函数为正比例函数,所以k-2=0,解得:k=2.故选C.【点睛】本题主要考查一次函数、正比例函数的定义,有新意,但难度不大.4.一个正比例函数的图象经过(2,-1),则它的表达式为A.y=-2x B.y=2x C.D.设该正比例函数的解析式为,再把点代入求出的值即可.【详解】设该正比例函数的解析式为,正比例函数的图象经过点,,解得,这个正比例函数的表达式是.故选:.【点睛】考查的是待定系数法求正比例函数的解析式,熟知正比例函数图象上点的坐标一定适合此函数的解析式是解答此题的关键.5.在平面直角坐标系中,记直线与两坐标围成的面积为,则最接近( )A.B.C.D.【答案】C【解析】令x=0,y=,令y=0,x=,则直线(k为正整数)与x轴的交点坐标为(,0),与y轴的交点坐标为(0,),∴直线与两坐标轴所围成的图形的面积为S k=,当k为正整数时,S k=当k=1,S1=;当k=2,S2=,,=,=,=,故选C.6.已知等腰三角形周长为,则底边长关于腰长的函数图象是( )A.B.C.D.【答案】D【解析】根据题意得y+2x=20,y=-2x+20,∵y>0且2x>y,∴-2x+20>0且2x>-2x+20,∴5<x<10,∴底边长y关于腰长x的函数关系为y=-2x+20(5<x<10),∵k=-2<0,∴y随x的增大而减小,故选D.7.如果是的正比例函数,是的一次函数,那么是的( )A.正比例函数B.一次函数C.正比例函数或一次函数D.不构成函数关系【答案】B【解析】由题意得:y=kx,x=k1z+b,则y=kk1z+kb,当b≠0时,y是z的一次函数,②当b=0时,y是z的正比例函数,综上所述,y是z的一次函数,故选B.A.B.C.D.【答案】A【解析】因为一次函数y=-2x+4的图像与x轴交点坐标是(2,0)与y轴交点坐标是(0,4),故选A.9.若点在函数的图象上,则下列各点在此函数图象上的是( )A.B.C.D.【答案】A【解析】∵点A(2,4)在函数y=kx的图象上,∴4=2k,解得k=2,∴一次函数的解析式为y=2x,A选项,∵当x=1时,y=2,∴此点在函数图象上,故A选项正确,B选项,∵当x=-2时,y=-4≠-1,∴此点不在函数图象上,故B选项错误,C选项,∵当x=-1时,y=-2≠2,∴此点不在函数图象上,故C选项错误,D选项,∵当x=2时,y=4≠-4,∴此点不在函数图象上,故D选项错误,故选A.10.一辆汽车以平均速度千米/时的速度在公路上行驶,则它所走的路程(千米)与所用的时间(时)的关系表达式为( )A.B.C.D.【答案】D【解析】根据路程=速度×时间得:汽车所走的路程s(千米)与所用的时间t(时)的关系表达式为:s=60t,故选D.11.正比例函数y=3x的大致图像是( )A.B.C.D.【答案】B【解析】∵3>0,∴图像经过一、三象限.点睛:本题考查了正比例函数图象与系数的关系:对于y=kx,当k>0时,y=kx的图象经过一、三象限;当k<0时,y=kx的图象经过二、四象限.12.已知函数y=k1x和,若常数k1,k2异号,且k1>k2,则它们在同一坐标系内的图象大致是(如图所示)()A.B.C.D.【答案】C【解析】首先由已知条件常数k1,k2异号,且k1>k2,得出k1,k2与0的关系,然后根据正比例函数及反比例函数的图象性质作答.解:因为k1,k2异号,且k1>0,k2<0,所以函数y=k1x的图象经过第一、三象限,函数的图象在第二、四象限,故选C.13.如图,在平面直角坐标系中,将△OAB沿直线y=-x平移后,点O′的纵坐标为6,则点B平移的距离为()A.4.5 B.6 C.8 D.10【答案】D【解析】根据题意得出O′点的纵坐标进而得出其横坐标,再得出O点到O′的距离,最后得出点B与其对应点B′之间的距离.解:∵点O的坐标为(0,0),△OAB沿x轴向右平移后得到△O′A′B′,点O的对应点O′在直线y=-x上,且O′点纵坐标为:6,故6=-x,解得:x=−8,即O到O′的距离为10,则点B与其对应点B′之间的距离为10.故选:D点睛:本题考查了函数图象上的点及平移的性质.根据函数解析式求出点的坐标是解题的关键.14.经过以下一组点可以画出函数y=2x图象的是()A.(0,0)和(2,1) B.(0,0)和(1,2)C.(1,2)和(2,1) D.(-1,2)和(1,2)【答案】B【解析】分别把各点坐标代入函数y=2x进行检验即可.解答:A. ∵当x=2时,y=4≠1,∴点(2,1)不符合,故本选项错误;B. ∵当x=1时,y=2;当x=0时,y=0,∴两组数据均符合,故本选项正确;C. ∵当x=2时,y=4≠1,∴点(2,1)不符合,故本选项错误;D. ∵当x=−1时,y=−2≠2;∴点(-1,2)不符合,故本选项错误.故选B.15.某正比例函数的图象如图所示,则此正比例函数的表达式为()A.y=x B.y=x C.y=-2x D.y=2x【答案】A【解析】【分析】本题可设该正比例函数的解析式为y=kx,然后结合图象可知,该函数图象过点A(-2,1),由此可利用方程求出k的值,进而解决问题.【详解】正比例函数的图象过点M(−2,1),∴将点(−2,1)代入y=kx,得:1=−2k,∴k=﹣,∴y=﹣x,故选:A.【点睛】本题考查了待定系数法求正比例函数解析式,牢牢掌握该法求函数解析式是解答本题的关键.16.已知在正比例函数y=(a-1)x的图像中,y随x的增大而减小,则a的取值范围是()A.a<1 B.a>1 C.a≥1 D.a≤1【答案】A【解析】∵y随x的增大而减小,∴a-1<0,∴a<1.故选A.点睛:本题考查了正比例函数图象与系数的关系:对于y=kx,当k>0时,y=kxb的图象经过一、三象限;当k<0时,y=kx的图象经过二、四象限.17.正比例函数y=x的大致图像是()A.A B.B C.C D.D【答案】C【解析】∵1>0,∴正比例函数y=x的大致图像经过一、三象限.故选C.点睛:本题考查了正比例函数图象与系数的关系:对于y=kx,当k>0时,y=kxb的图象经过一、三象限;当k<0时,y=kx的图象经过二、四象限.18.已知函数y=(k-1)为正比例函数,则()A.k≠±1 B.k=±1 C.k=-1 D.k=1【答案】C【解析】由题意得k2=1且k-1≠0,∴k=-1.故选C.19.6月份以来,猪肉价格一路上涨.为平抑猪肉价格,某省积极组织货源,计划由A、B、C三市分别组织10辆、10辆和8辆运输车向D、E两市运送猪肉,现决定派往D、E两地的运输车分别是18辆、10辆,已知一辆运输车从A市到D、E两市的运费分别是200元和800元,从B市到D、E两市的运费分别是300元和700元,从C市到D、E两市的运费分别是400元和500元.若设从A、B两市都派x辆车到D市,则当这28辆运输车全部派出时,总运费W(元)的最小值和最大值分别是()A.8000,13200 B.9000,10000 C.10000,13200 D.13200,15400【答案】C【解析】由题意可知A、B、C三市派往D市的运输车的辆数分别是x、x、(18-2x)辆,派往E市的运输车的辆数为10-x,10-x,2x-10,则总运费W=200x+300x+400(18-2x)+800(10-x)+700(10-x)+500(2x-10)=-800x+17200.依题意有0≤x≤10,0≤18-2x≤8,解得:5≤x≤9,当x=9时,W 最小 =10000元.故选C.点睛:选择方案问题的方法(1)从不同的角度感知问题中的数量关系,对实际问题中的数量关系既可以用函数的图像表示,也可以用方程和不等式表示,构建不同的模型,用不同的方法解决问题.(2)在解决问题中,能适时调整思路,解决问题后,能对解决问题步骤、程序和方法进行总结提炼.20.若m<-1,有下列函数:①(x>0);②y=-mx+1;③y=mx;④y=(m+1)x.其中y随x的增大而增大的是( )A.①②B.②③C.①③D.③④【答案】A【解析】对于反比例函数,当k<0,在每个象限内,y随x的增大而增大,故①正确;根据一次函数的性质,y随x的增大而增大,得出k>0,故④正确.故选A.21.已知正比例函数y=kx(k≠0)的函数值y随x的增大而减小,则函数y=kx-k的图象大致是()A.A B.B C.C D.D【答案】D【解析】y=kx-k=k(x-1),恒过(1,0);根据正比例函数y=kx(k≠0)的函数值y随x的增大而减小,则k<0,易得D.故选D.22.如果通过平移直线得到的图象,那么直线必须().A.向上平移5个单位B.向下平移5个单位C.向上平移个单位D.向下平移个单位【解析】根据“上加下减常数项”,=+.看做由直线向上平移个单位得到.故选C.23.已知一次函数与的图象都经过A(,0),且与y轴分别交于B、C两点,则△ABC的面积为().A.4 B.5 C.6 D.7【答案】C【解析】根据题意得:a=4,b=-2,所以B(0,4),C(0,-2),则△ABC的面积为故选C.24.在糖水中继续放入糖x(g)、水y(g),并使糖完全溶解,如果甜度保持不变,那么y与x的函数关系一定是()A.正比例函数B.反比例函数C.图象不经过原点的一次函数D.二次函数【答案】A【解析】设原来溶液中有糖ag,水bg,则=,即y=x,为正比例函数.故选A.点睛:本题关键根据甜度不变列比例式求解.25.一次函数y=-x的图象平分()A.第一、三象限B.第一、二象限C.第二、三象限D.第二、四象限【答案】D【解析】y=-x的图像平分第二、四象限.故选D.点睛:y=x的图像平分第一、三象限.26.已知正比例函数y=kx(k≠0),当x=–1时,y=–2,则它的图象大致是()A.B.C.D.【答案】C【解析】将x=-1,y=-2代入y= kx(k≠0)中得,k=2>0,∴函数图像经过原点,且经过第一、三象限.故选C.27.已知正比例函数y=(m+1)x,y随x的增大而减小,则m的取值范围是()A.m<-1 B.m>-1 C.m≥-1 D.m≤-1【答案】A【解析】∵y随着x的增大而减小,∴m+1<0,即m<-1.故选A.28.已知正比例函数y=kx(k≠0),点(2,–3)在函数上,则y随x的增大而()A.增大B.减小C.不变D.不能确定【答案】B【解析】将(2,-3)代入函数解析式得:2k=-3,解得k=-<0,∴y随着x的增大而减小.故选B.29.在正比例函数y=–3mx中,函数y的值随x值的增大而增大,则P(m,5)在()A.第一象限B.第二象限C.第三象限D.第四象限【答案】B【解析】∵y随着x的增大而增大,∴-3m>0,解得m<0.∴P(m,5)在第二象限.故选B.点睛:正比例函数y=kx(k≠0),若y随着x的增大而增大,那么k>0;若y随着x的增大而减小,那么k<0.30.若正比例函数y=kx的图象在第一、三象限,则k的取值可以是()A.1 B.0或1C.±1 D.–1【答案】A【解析】∵函数图像经过一、三象限,∴k>0.故选A.31.关于函数y=2x,下列结论中正确的是()A.函数图象都经过点(2,1)B.函数图象都经过第二、四象限C.y随x的增大而增大D.不论x取何值,总有y>0【答案】C【解析】A:当x=2时,y=4≠1,∴函数图像不经过(2,1),故错误;B:k=2>0,∴函数图像经过一、三象限,故错误;C:k>0,y随着x的增大而增大,故正确;D:当x<0时,y<0,故错误.故选C.点睛:掌握正比例函数图像的性质.32.若一个正比例函数的图象经过点(2,-3),则这个图象一定也经过点()A.(-3,2)B.(,-1)C.(,-1)D.(-,1)【答案】C【解析】∵正比例函数y=kx经过点(2,−3),∴−3=2k,解得k=−;∴正比例函数的解析式是y=−x;A. ∵当x=−3时,y≠2,∴点(−3,2)不在该函数图象上;故本选项错误;B. ∵当x=时,y≠−1,∴点(,−1)不在该函数图象上;故本选项错误;C. ∵当x=时,y=−1,∴点(,−1)在该函数图象上;故本选项正确;D. ∵当x=时,y≠1,∴点(1,−2)不在该函数图象上;故本选项错误。

【初中数学】二元一次方程8种典型例题详解

【初中数学】二元一次方程8种典型例题详解

【初中数学】二元一次方程8种典型例题详解1.列方程组解应用题的基本思想列方程组解应用题,是把“未知”转换成“已知”的重要方法,它的关键是把已知量和未知量联系起来,找出题目中的等量关系。

一般来说,有几个未知量就必须列出几个方程,所列方程必须满足:①方程两边表示的是同类量;②同类量的单位要统一;③方程两边的数要相等。

2.列二元一次方程组解应用题的一般步骤设:用两个字母表示问题中的两个未知数;列:列出方程组(分析题意,找出两个等量关系,根据等量关系列出方程组);解:解方程组,求出未知数的值;答:写出答案。

3.要点诠释(1)“设”、“答”两步,都要写清单位名称;(2)一般来说,设几个未知数就应该列出几个方程并组成方程组。

1.和差倍数问题知识梳理和差问题是已知两个数的和或这两个数的差,以及这两个数之间的倍数关系,求这两个数各是多少。

典型例题:【思路点拨】由甲乙两人2分钟共打了240个字可以得到第一个等量关系式2(x+y)=240,再由甲每分钟比乙多打10个字可以得到第二个等量关系式x-y=10,组成方程组求解即可。

变式拓展:【思路点拨】由甲组学生人数是乙组的3倍可以得到第一个等量关系式x=3y,由乙组的学生人数比甲组的3倍少40人可以得到第二个等量关系式3x-y=40,组成方程组求解即可。

2.产品配套问题知识梳理总人数等于生产各个产品的人数之和;各个产品数量之间的比例符合整体要求。

典型例题:【思路点拨】本题的第一个等量关系比较容易得出:生产螺钉和螺母的工人共有22名;第二个等量关系的得出要弄清螺钉与螺母是如何配套的,即螺母的数量是螺钉的数量的2倍(注意:别把2倍的关系写反)。

变式拓展:【思路点拨】根据共有170名学生可得出第一个等量关系x+y=170,根据每个树坑对应一棵树可得第二个等量关系3x=7y,组成方程组求解即可。

3.工作量问题知识梳理我们在解决工程问题时通常把工作总量看成1;工作量=工作效率×工作时间;总工作量=每个个体工作量之和;工作效率=工作量÷工作时间(即单位时间的工作量);工作效率=1÷完成工作的总时间。

初一数学下册知识点《实数的定义》经典例题及解析

初一数学下册知识点《实数的定义》经典例题及解析

实数的定义一、选择题(本大题共80小题,共240.0分)1.实数a,b在数轴上对应点的位置如图所示,化简|a|+的结果是()A. -2a+bB. 2a-bC. -bD. b【答案】A【解析】解:由图可知:a<0,a-b<0,则|a|+=-a-(a-b)=-2a+b.故选:A.直接利用数轴上a,b的位置,进而得出a<0,a-b<0,再利用绝对值以及二次根式的性质化简得出答案.此题主要考查了二次根式的性质以及实数与数轴,正确得出各项符号是解题关键.2.实数a,b,c,d在数轴上对应的点的位置如图所示,这四个数中最大的是()A. aB. bC. cD. d【答案】D【解析】解:由数轴可得:a<b<c<d,故选:D.根据实数的大小比较解答即可.此题利用数轴比较大小,在数轴上右边的点表示的数总是大于左边的点表示的数.3.关于的叙述正确的是()A. 在数轴上不存在表示的点B. =+C. =±2D. 与最接近的整数是3【答案】D【解析】解:A、在数轴上存在表示的点,故选项错误;B、≠+,故选项错误;C、=2,故选项错误;D、与最接近的整数是3,故选项正确.故选:D.根据数轴上的点与实数是一一对应的关系,实数的加法法则,算术平方根的计算法则计算即可求解.考查了实数与数轴,实数的加法,算术平方根,关键是熟练掌握计算法则计算即可求解.4.下列各数中是有理数的是()A. πB. 0C.D.【答案】B【解析】解:A、π是无限不循环小数,属于无理数,故本选项错误;B、0是有理数,故本选项正确;C、是无理数,故本选项错误;D、无理数,故本选项错误;故选:B.根据有理数是有限小数或无限循环小,可得答案.本题考查了有理数,有限小数或无限循环小数是有理数.5.已知实数a,b在数轴上的位置如图所示,下列结论中正确的是()A. a>bB. |a|<|b|C. ab>0D. -a>b【答案】D【解析】解:由数轴可得,-2<a<-1<0<b<1,∴a<b,故选项A错误,|a|>|b|,故选项B错误,ab<0,故选项C错误,-a>b,故选项D正确,故选:D.根据数轴可以判断a、b的正负,从而可以判断各个选项中的结论是否正确,从而可以解答本题.本题考查实数与数轴、绝对值,解答本题的关键是明确题意,利用数形结合的思想解答.6.关于的叙述不正确的是()A. =2B. 面积是8的正方形的边长是C. 是有理数D. 在数轴上可以找到表示的点【答案】C【解析】解:A、=2,所以此选项叙述正确;B、面积是8的正方形的边长是,所以此选项叙述正确;C、=2,它是无理数,所以此选项叙述不正确;D、数轴既可以表示有理数,也可以表示无理数,所以在数轴上可以找到表示的点;所以此选项叙述正确;本题选择叙述不正确的,故选:C.=2,是无理数,可以在数轴上表示,还可以表示面积是8的正方形的边长,由此作判断.本题考查了实数的定义、二次根式的化简、数轴,熟练掌握实数的有关定义是关键.7.下列实数中,属于有理数的是()A. B. C. π D.【答案】D【解析】解:A、-是无理数,故A错误;B、是无理数,故B错误;C、π是无理数,故C错误;D、是有理数,故D正确;故选:D.根据有理数是有限小数或无限循环小数,可得答案.本题考查了实数,有限小数或无限循环小数是有理数,无限不循环小数是无理数.8.如图,已知数轴上的点A、B、C、D分别表示数-2、1、2、3,则表示数3-的点P应落在线段()A. AO上B. OB上C. BC上D. CD上【答案】B【解析】解:∵2<<3,∴0<3-<1,故表示数3-的点P应落在线段OB上.故选:B.根据估计无理数的方法得出0<3-<1,进而得出答案.此题主要考查了估算无理数的大小,得出的取值范围是解题关键.9.-的相反数是()A. B. - C. - D. -2【答案】A【解析】解:-的相反数是.故选:A.根据只有符号不同的两个数叫做互为相反数解答.本题考查了实数的性质,熟记相反数的定义是解题的关键.10.实数a,b在数轴上的位置如图所示,则化简-+b的结果是()A. 1B. b+1C. 2aD. 1-2a【答案】A【解析】解:由数轴可得:a-1<0,a-b<0,则原式=1-a+a-b+b=1.故选A.利用数轴得出a-1<0,a-b<0,进而利用二次根式的性质化简求出即可.此题主要考查了二次根式的性质与化简,得出各项的符号是解题关键.11.下列说法错误的是()A. 正整数和正分数统称正有理数B. 两个无理数相乘的结果可能等于零C. 正整数,0,负整数统称为整数D. 3.1415926是小数,也是分数【答案】B【解析】解:A、正整数和正分数统称为正有理数,正确;B、两个无理数相乘的结果不可能为零,错误;C、正整数,0负整数统称为整数,正确;D、3.1415926是小数,也是分数,正确,故选B利用有理数,整数,无理数,以及分数的定义判断即可.此题考查了实数,涉及的知识有:有理数,无理数,整数与分数,熟练掌握各自的定义是解本题的关键.12.有下列说法:①任何无理数都是无限小数;②有理数与数轴上的点一一对应;③在1和3之间的无理数有且只有这4个;④是分数,它是有理数.⑤近似数7.30所表示的准确数a的范围是:7.295≤a<7.305.其中正确的个数是()A. 1B. 2C. 3D. 4【答案】B【解析】解:①任何无理数都是无限小数,故说法正确;②实数与数轴上的点一一对应,故说法错误;③在1和3之间的无理数有无数个,故说法错误;④不是分数,它不是有理数,故说法错误.⑤近似数7.30所表示的准确数a的范围是:7.295≤a<7.305,故说法正确.故选B.①根据无理数就是无限不循环小数即可判定;②根据有理数与数轴上的点的对应关系即可的;③根据无理数的定义及开平方运算的法则即可判定;④根据无理数、有理数的定义即可判定;⑤根据近似数的精确度即可判定.此题主要考查了实数的定义及其分类.注意分数能表示成的形式,其中A、B都是整数.因而像不是分数,而是无理数.13.下列说法中正确的是()A. 实数-a2是负数B.C. |-a|一定是正数D. 实数-a的绝对值是a【答案】B【解析】【分析】本题考查的是实数的分类及二次根式、绝对值的性质,解答此题时要注意0既不是正数,也不是负数.分别根据平方运算的特点,平方根的性质和绝对值的性质进行逐一分析即可.【解答】解:A、实数-a2是负数,a=0时不成立,故选项错误;B、,符合二次根式的意义,故选项正确,C、|-a|不一定是正数,a=0时不成立,故选项错误;D、实数-a的绝对值不一定是a,a为负数时不成立,故选项错误.故选B.14.在,,0,,,227,,相邻两个6之间1的个数逐次加中,有理数的个数为( )A. 4B. 5C. 6D. 7【答案】C【解析】【分析】本题考查的是有理数问题,关键是根据实数的分类及无理数、有理数的定义分析.分别根据实数的分类及有理数、无理数的概念进行解答.【解答】在-3,,0,-3.5,﹣10%,227,π,0.61611611 6…(相邻两个6之间1的个数逐次加1)中,有理数为:-3,,0,-3.5,10%,227,共有6个.故选C.15.下列说法正确的是()A. 无限小数都是无理数B. 9的立方根是3C. 平方根等于本身的数是0D. 数轴上的每一个点都对应一个有理数【答案】C【解析】解:A、无限不循环小数都是无理数,故A错误;B、9的立方根是,故B错误;C、平方根等于本身的数是0,故C正确;D、数轴上的每一个点都对应一个实数,故D错误;故选:C.根据实数的分类、平方根和立方根的定义进行选择即可.本题考查了实数、单项式以及多项式,掌握实数的分类、平方根和立方根的定义是解题的关键.16.关于的叙述,错误的是()A. 是有理数B. 面积为12的正方形边长是C. =2D. 在数轴上可以找到表示的点【答案】A【解析】解:A、是无理数,原来的说法错误,符合题意;B、面积为12的正方形边长是,原来的说法正确,不符合题意;C、=2,原来的说法正确,不符合题意;D、在数轴上可以找到表示的点,原来的说法正确,不符合题意.故选:A.根据无理数的定义:无理数是开方开不尽的实数或者无限不循环小数或π;由此即可判定选择项.本题主要考查了实数,有理数,无理数的定义,要求掌握实数,有理数,无理数的范围以及分类方法.17.下列语句中正确的是()A. 正整数和负整数统称为整数B. 有理数和无理数统称为实数C. 开方开不尽的数和π统称为无理数D. 正数、0、负数统称为有理数【答案】B【解析】解:A、正整数和负整数,还有零统称为整数,故A错误;B、有理数和无理数统称为实数,故B正确;C、开方开不尽的数和π都是无理数,故C错误;D、整数、分数统称为有理数,故D错误;故选B.根据实数的分类进行选择即可.本题考查了实数,掌握实数的分类是解题的关键.18.下列说法:;数轴上的点与有理数成一一对应关系;是的平方根;任何实数不是有理数就是无理数;两个无理数的和还是无理数;无理数都是无限小数,正确的个数有A. 2个B. 3个C. 4个D. 5个【答案】B【解析】【分析】此题主要考查了有理数、无理数、实数的定义及其关系.有理数都可以化为小数,其中整数可以看作小数点后面是零的小数,分数可以化为有限小数或无限循环小数;无理数是无限不循环小数,其中有开方开不尽的数,如,等,也有π这样的数.①根据算术平方根的性质即可判定;②根据实数与数轴上的点的对应关系即可判定;③根据平方根的定义即可判定;④根据实数的分类即可判定;⑤根据无理数的性质即可判定;⑥根据无理数的定义即可判断.【解答】解:①,故说法错误;②数轴上的点与实数成一一对应关系,故说法错误;③-2是的平方根,故说法正确;④任何实数不是有理数就是无理数,故说法正确;⑤两个无理数的和还是无理数,如与的和是0,是有理数,故说法错误;⑥无理数都是无限小数,故说法正确.故正确的是③④⑥共3个.故选B.19.在实数范围内,下列判断正确的是()A. 若|m|=|n|,则m=nB. 若a2>b2,则a>bC. 若=()2,则a=bD. 若=,则a=b【答案】D【解析】解:A、根据绝对值的性质可知:两个数的绝对值相等,则这两个数相等或互为相反数,故选项错误;B、平方大的,即这个数的绝对值大,不一定这个数大,如两个负数,故说法错误;C、两个数可能互为相反数,如a=-3,b=3,故选项错误;D、根据立方根的定义,显然这两个数相等,故选项正确.故选:D.解答此题的关键是熟知以下概念:(1)一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0.(2)如果一个数的平方等于a,那么这个数叫作a的平方根.20.对于-3.7,下列说法不正确的是()A. 是负数B. 是分数C. 是有理数D. 是无理数【答案】D【解析】解:-3.7是无限循环小数,是负数,是分数,是有理数,不是无理数故选:D.根据有理数的定义可得.本题主要考查实数,熟练掌握有理数的定义是解题的关键.21.在数-2,π,0,2.6,+3,中,属于整数的个数为()A. 4B. 3C. 2D. 1【答案】B【解析】解:在数-2,π,0,2.6,+3,中,整数有-2,0,+3,属于整数的个数,3.故选:B.整数包括正整数、负整数和0,依此即可求解.本题考查了实数的分类.实数分为有理数和无理数;整数和分数统称有理数;整数包括正整数、负整数和0.22.下列数轴上的点A都表示实数a,其中,一定满足|a|>2的是()A. ①③B. ②③C. ①④D. ②④【答案】B【解析】【分析】本题考查了有理数比较大小,根据绝对值的大小解题是关键.根据绝对值是数轴上的点到原点的距离,图示表示的数,可得答案.【解答】解:一定满足|a|>2的,A在-2的左边,或A在2的右边,故选:B.23.下列说法正确的是()①0是绝对值最小的实数②相反数大于本身的数是负数③数轴上原点两侧的数互为相反数④带根号的数是无理数A. ①②③④B. ①②③C. ①③D. ①②【答案】D【解析】解:①0是绝对值最小的实数,故①正确;②相反数大于本身的数是负数,故②正确;③数轴上原点两侧且到原点距离相等的数互为相反数,故③错误;④带根号的数不一定是无理数,故④错误.故选:D.依据绝对值、相反数、无理数的概念进行判断即可.本题主要考查的是实数的相关概念,熟练掌握相关知识是解题的关键.24.如图,半径为1的圆从表示3的点开始沿着数轴向左滚动一周,圆上的点A与表示3的点重合,滚动一周后到达点B,点B表示的数是()A. ﹣2πB. 3﹣2πC. ﹣3﹣2πD. ﹣3+2π【答案】B【解析】解:由题意得:AB=2πr=2π,点A到原点的距离为3,则点B到原点的距离为2π-3,∵点B在原点的左侧,∴点B所表示的数为-(2π-3)=3-2π,故选:B.线段AB=2πr=2π,点A到原点的距离为3,则点B到原点的距离为2π-3,点B在原点的左侧,因此点B所表示的数为-(2π-3)=3-2π,于是得出答案.考查实数的意义,数轴等知识,理解符号和绝对值是确定一个数在数轴上位置的两个必要条件.25.下列说法,正确的有()个①m是一个实数,m2的算术平方根是m;②m是一个实数,则-m没有平方根;③带根号的数是无理数;④无理数是无限小数.A. 0B. 1C. 2D. 3【答案】B【解析】解:①如果m是一个实数,m2的算术平方根是|m|,当m是非负数时,m2的算术平方根是m;所以此说法不正确;②如果m是一个正数,则-m没有平方根;所以此选项不正确;③带根号的数不一定是无理数,如=2,是有理数;所以此选项说法不正确;④无理数是无限不循环小数,所以无理数是无限小数,所以此选项说法正确;所以本题说法正确的有1个:④,故选B.①根据算术平方根的定义进行判断;②根据平方根的定义进行判断;③带根号的数不一定是无理数,开方开不尽的数是无理数;④根据无理数的定义进行判断.此题主要考查了实数的定义、平方根及算术平方根的定义、无理数的定义.属于基础知识,熟练掌握这些基本概念是解题的关键.26.已知实数a在数轴上的位置如图,则化简|1-a|+的结果为()A. 1B. -1C. 1-2aD. 2a-1【答案】C【解析】解:由数轴可得:-1<a<0,则|1-a|+=1-a-a=1-2a.故选:C.直接利用二次根式的性质化简得出答案.此题主要考查了二次根式的性质与化简,正确化简二次根式是解题关键.27.下列说法错误的是()A. 的平方根是±2B. 是无理数C. 是有理数D. 是分数【答案】D【解析】【分析】本题主要考查了实数的有关概念及其分类,其中开不尽方才是无理数,无限不循环小数为无理数.A.根据算术平方根、平方根的定义即可判定;B.根据无理数的定义即可判定;C.根据无理数和立方根的定义即可判定;D.根据开平方和有理数、无理数和分数的定义即可判定.【解答】解:,,故A正确;是无理数,故B正确;是有理数,故C正确;不是分数,它是无理数,故D选项错误.故选D.28.有以下说法:其中正确的说法有()(1)开方开不尽的数是无理数;(2)无理数是无限循环小数(3)无理数包括正无理数和负无理数;(4)无理数都可以用数轴上的点来表示;(5)循环小数都是有理数A. 1个B. 2个C. 3个D. 4个【答案】D【解析】解:(1)开方开不尽的数是无理数,该说法正确;(2)无理数是无限不循环小数,原说法错误;(3)无理数包括正无理数和负无理数,该说法正确;(4)无理数都可以用数轴上的点来表示,该说法正确;(5)循环小数都是有理数,该说法正确.正确的有4个.故选:D.根据无理数的三种形式求解.本题考查了无理数的知识,解答本题的关键是掌握无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数.29.如图,数轴上点P表示的数可能是()A. B. C. D.【答案】B【解析】解:由被开方数越大算术平方根越大,得<<<<<,即<2<<3<<,故选:B.根据被开方数越大算术平方根越大,可得答案.本题考查了实数与数轴,利用被开方数越大算术平方根越大得出<<<<<是解题关键.30.如图,数轴上,AB=AC,A,B两点对应的实数分别是和-1,则点C所对应的实数是()A. 1+B. 2+C. 2-1D. 2+1【答案】D【解析】解:AC=AB=+1,C点坐标A点坐标加AC的长,即C点坐标为++1=2+1,故选:D.根据线段中点的性质,可得答案.本题考查了实数与数轴,利用线段中点的性质得出AC的长是解题关键.31.下列各数中,属于有理数的是()A.B.C. πD. 3.1313313331……(两个“1”之间依次多一个3)【答案】A【解析】解:A、是有理数,故此选项正确;B、是无理数,故此选项错误;C、π是无理数,故此选项错误;D、3.1313313331……(两个“1”之间依次多一个3)是无理数,故此选项错误;故选:A.直接利用有理数以及无理数的定义分别分析得出答案.此题主要考查了实数,正确掌握相关定义是解题关键.32.下列各组数中互为相反数的是()A. -3与B. -(-2)与-|-2|C. 5与D. -2与【答案】B【解析】解:A、-3与不符合相反数的定义,故选项错误;B、-(-2)=2,-|-2|=-2只有符号相反,故是相反数,故选项正确.C、无意义,故选项错误;D、-2=-2,=-2相等,不符合相反数的定义,故选项错误.故选:B.首先根据绝对值的定义化简,然后根据相反数的定义即可解答.此题主要考查相反数的定义:只有符号相反的两个数互为相反数,0的相反数是其本身.33.下列说法正确的是()A. 1的平方根是它本身B. 是分数C. 负数没有立方根D. 如果实数x、y满足条件y=,那么x和y都是非负实数【答案】D【解析】解:A、1的平方根是±1,错误;B、是无理数,错误;C、负数有立方根,错误;D、如果实数x、y满足条件y=,那么x和y都是非负实数,正确;故选:D.根据平方根、分数、立方根和实数的概念解答即可.此题考查实数问题,关键是根据平方根、分数、立方根和实数的概念解答.34.下列说法中,正确的是()①;②一定是正数;③无理数一定是无限小数;④16.8万精确到十分位;⑤(-4)2的算术平方根是4.A. ①②③B. ④⑤C. ②④D. ③⑤【答案】D【解析】解:-<-,故①错误;当m=0时,是0,不是正数,故②错误;无理数一定是无限小数,故③正确;16.8万精确到千位,故④错误;(-4)2的算术平方根是4.故⑤正确;即正确的有③⑤,故选:D.根据实数的大小比较,算术平方根的定义,无理数的定义,精确度逐个判断即可.本题考查了实数的大小比较,算术平方根的定义,无理数的定义,精确度等知识点,能熟记知识点的内容是解此题的关键.35.下列说法正确的是()A. 立方根等于它本身的实数只有0和1B. 平方根等于它本身的实数是0C. 1的算术平方根是D. 绝对值等于它本身的实数是正数【答案】B【解析】【分析】此题考查了立方根,平方根,算术平方根,绝对值,掌握这些概念是关键,逐项分析即可得到答案.【解答】解:A.立方根等于它本身的数是0,-1,1,故A错误;B.平方根等于它本身的实数是0,故B正确;C.1的算术平方根是1,故C错误;D.绝对值等于它本身的实数是正数,0,故C错误;故选B.36.已知实数a,b在数轴上对应的点如图所示,则下列式子正确的是()A. -a<-bB. a+b<0C. |a|<|b|D. a-b>0【答案】C【解析】解:根据点a、b在数轴上的位置可知-1<a<0,1<b<2,则-a>-b,a+b>0,|a|<|b|,a-b<0.故选:C.根据点a、b在数轴上的位置可判断出a、b的取值范围,即可作出判断.本题主要考查的是数轴的认识、有理数的加法、减法、绝对值性质的应用,掌握法则是解题的关键.37.设面积为6的正方形的边长为a.下列关于a的四种说法:①a是有理数;②a是无理数;③a可以用数轴上的一个点来表示;④2<a<3.其中说法正确的有()A. 1个B. 2个C. 3个D. 4个【答案】C【解析】解:∵面积为3的正方形的边长为a,∴a=,故①a是有理数,错误;②a是无理数,正确;③a可以用数轴上的一个点来表示,正确;④2<a<3,正确,则说法正确的是:②③④共3个.故选:C.直接利用得出正方形的边长,再利用实数的性质分析得出答案.此题主要考查了实数的性质以及无理数的估算,正确掌握实数有关性质是解题关键.38.实数a,b,c在数轴上的位置如图所示,则化简|b|+|c-a|-|a+b|的结果为()A. 2a+2b-cB. -cC. c-2aD. a-b-c【答案】B【解析】解:从数轴上a、b、c的位置关系可知:c<a<0,b>0且|b|>|a|,故a+b>0,c-a<0,即有|b|+|c-a|-|a+b|=b-(c-a)-(a+b)=b-c+a-a-b=-c.故选:B.首先从数轴上a、b、c的位置关系可知:c<a<0,b>0且|b|>|a|,接着可得a+b>0,c-a<0,然后即可化简|b|+|c-a|-|a+b|.此题主要考查了利用数轴比较两个的大小和化简绝对值.数轴的特点:从原点向右为正数,向左为负数,及实数与数轴上的点的对应关系.39.我们知道有一些整数的算术平方根是有理数,如,,,…已知n=1,2,3,…,99,100,易知中共有10个有理数,那么中的有理数的个数是()A. 20B. 14C. 13D. 7【答案】D【解析】解:∵是有理数,∴2n是完全平方数,∵n=1,2,3,…,99,100,∴2n=2,4,6,…,198,200,∴在2,4,6,…,198,200的这组数据中,完全平方数有2,8,18,36,64,100,144,196,∴中的有理数的个数是7,故选:D.在2,4,6,…,198,200的这组数据中,找出完全平方数即可.本题考查了实数,完全平方数,正确的找出完全平方数是解题的关键.40.将四个数-,,,表示在数轴上,被如图所示的墨迹覆盖的数是()A. -B.C.D.【答案】D【解析】解:,,,,因为盖住的数大于2小于3,故选:D.盖住的数大于2小于3,估计,,的值可确定答案.本题考查无理数值的大小估计.确定无理数在哪两个整数之间是解答的关键.41.正方形ABCD在数轴上的位置如图所示,点D、A对应的数分别为0和1,若正方形ABCD绕顶点顺时针方向在数轴上连续翻转,翻转1次后,点B所对应的数为2;按此规律继续翻转下去,则数轴上数2019所对应的点是()A. 点AB. 点BC. 点CD. 点D【答案】C【解析】解:当正方形在转动第一周的过程中,1所对应的点是A,2所对应的点是B,3所对应的点是C,4所对应的点是D,∴四次一循环,∵2019÷4=504…3,∴2019所对应的点是C.故选:C.由题意可知转一周后,A、B、C、D分别对应的点为1、2、3、4,可知其四次一循环,由次可确定出2019所对应的点.本题主要考查实数与数轴以及正方形的性质,确定出点的变化规律是解题的关键.42.下列格式中,化简结果与的倒数相同是()A. B. C. D.【答案】A【解析】解:的倒数是.A、原式=,故本选项正确.B、原式=,故本选项错误.C、原式=-,故本选项错误.D、原式=,故本选项错误.故选:A.的倒数是,根据实数的性质、绝对值的计算方法解答.考查了实数的性质,倒数的定义以及绝对值,属于基础题,熟记计算法则即可解题.43.实数a.b在数轴上的位置如图所示,下列各式中不成立的是()A. -a>bB. a+6<0C. a-b<a+bD. |a|+|b|<|a+b|【答案】D【解析】解:选项A正确:找出表示数a的点关于原点的对称点-a,与b相比较可得出-a>b.选项B正确:a+b<0;选项C正确:a-b<a+b;选项D正确的是|a|+|b|>|a+b|,故这个选项不成立.故选:D.根据一对相反数在数轴上的位置特点,先找出与点a相对应的-a,然后与b相比较,即可排除选项求解.本题考查了实数与数轴的关系.用字母表示数,具有抽象性.由于引进了数轴,我们把数和点对应起来,也就是把“数”和“形”结合起来,二者互相补充,相辅相成.因为是选择题,也可以采用特值法,如:取a=-2,b=1,代入四个选项,逐一检验,就可以得出正确答案.这样做具体且直观.44.关于下列说法中不正确的是()A. 是无理数B. 的平方是2C. 2的平方根是D. 面积为2的正方形的边长可表示为【答案】C【解析】解:A、是无理数,正确,故本选项不符合题意;B、的平方是2,正确,故本选项不符合题意;C、2的平方根是,错误,故本选项符合题意;D、面积为2的正方形的边长为,正确,故本选项不符合题意;故选:C.根据无理数、实数的乘方、平方根的定义、算术平方根的定义逐个判断即可.本题考查了实数及分类、无理数、实数的乘方、平方根的定义、算术平方根的定义,能熟记知识点的内容是解此题的关键,注意:实数包括无理数和有理数,无理数是指无限不循环小数.45.下列结论正确的是()A. 无限不循环小数叫做无理数B. 有理数包括正数和负数C. 0是最小的整数D. 两个有理数的和一定大于每一个加数【答案】A【解析】解:A、无限不循环小数叫做无理数,正确,故本选项符合题意;B、有理数包括正有理数、0和负有理数,不正确,故本选项不符合题意;C、0不是最小的整数,没有最小的整数,不正确,故本选项不符合题意;D、一个数同0相加仍得这个数,所以两个有理数的和不一定大于每一个加数,不正确,故本选项不符合题意.故选:A.根据有理数、无理数、整数及有理数的加法法则判断即可.本题考查了有理数、无理数、整数及有理数的加法法则,属于基础知识,需牢固掌握.46.①倒数等于本身的数为1;②若a、b互为相反数,那么a、b的商必定等于﹣1;③对于任意实数x,|x|+x一定是非负数;④一个数前面带有“﹣”号,则这个数是负数;⑤整数和小数统称为有理数;⑥数轴上的点都表示有理数;⑦绝对值等于自身的数为0和1;⑧平方等于自身的数为0和1;其中正确的个数是()A. 0个B. 1个C. 2个D. 3个【答案】C【解析】【分析】本题考查了相反数,绝对值,非负数的性质:绝对值,倒数,掌握相反数,绝对值,非负数的性质:绝对值,倒数的定义是解决问题的关键.直接利用倒数以及绝对值和相反数的性质分别分析得出答案。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档