前测数据分析--信度和效度分析

合集下载

SPSS信度分析和效度分析

SPSS信度分析和效度分析

SPSS信度分析和效度分析SPSS是一种常用的统计分析软件,被广泛用于统计学和社会科学领域的数据分析。

在进行数据分析之前,需要对数据进行信度分析和效度分析,以确保数据的可靠性和有效性。

1. 信度分析(Reliability Analysis)信度分析是指通过测量工具或问卷的内部一致性来评估测量工具或问卷的信度。

信度分析的目的是确定测量工具或问卷的测量结果的一致性和稳定性。

SPSS提供了多种方法来进行信度分析,包括Cronbach's alpha系数、Kuder-Richardson系数、Split-Half法等。

最常用的信度分析方法是Cronbach's alpha系数,该系数用于评估内部一致性。

Cronbach's alpha系数的取值范围为0到1,越接近1表示测量工具或问卷的信度越高。

通常认为,Cronbach's alpha系数大于0.7即表示测量工具或问卷具有较好的信度。

在SPSS中进行Cronbach'salpha系数的计算非常简单,只需要选择“Analyze”菜单下的“Scale”选项。

使用SPSS进行信度分析的步骤如下:1)打开SPSS软件并导入数据。

2)选择“Analyze”菜单下的“Scale”选项。

3)将要分析的变量添加到右侧的“Variables”列表中。

4)点击“Statistics”按钮,选择“Scale if item deleted”选项,以获得分别删除每个项目后的信度系数。

5)点击“Continue”按钮。

6)点击“OK”按钮,即可得到Cronbach's alpha系数的结果。

根据Cronbach's alpha系数的值,可以确定测量工具或问卷的内部一致性。

2. 效度分析(Validity Analysis)效度分析是指通过比较测量工具或问卷的的测量结果与其所要测量的概念之间的关系来评估测量工具或问卷的效度。

信度和效度分析

信度和效度分析

信度和效度分析信度分析信度分析是一种测度综合评价体系是否具有一定稳定性和可靠性的有效分析方法。

信度是根据测验工具所得到的结果的一致性或稳定性,反映被测特征真实程度的指标。

信度指标多以相关系数表示,大致可分为三类:稳定系数(跨时间的一致性),等值系数(跨形式的一致性)和内在一致性系数(跨项目的一致性)。

信度分析的方法主要有四种:重测信度法、复本信度法、折半信度法、克朗巴哈(Cronbach)α系数信度法。

在实证研究中,学术界普遍使用克朗巴哈(Cronbach)α系数信度法。

一般来说,信度的判别标准如下表:信度?0.30不可信0.30<信度?0.40初步的研究,勉强可信0.40<信度?0.50稍微可信0.50<信度?0.70可信(最常见的信度范围)0.70<信度?0.90很可信(次常见的信度范围)0.90<信度十分可信本文采用克朗巴哈(Cronbach)α系数信度法测量,根据量表中的5个维度分别计算各个维度的Cronbachα值,对各个维度的内部一致性信度进行分析,结果如下:变量Cronbach α值价格0.796质量0.735分销渠道0.777广告宣传0.611工作人员0.799品牌影响力0.696从上述Cronbach α值分析结果中,我们发现,所有的计量尺度的内部一致性系数都在0.6到0.8之间,均可以接受。

因此,研究结果表明各个计量尺度都较为可靠。

效度分析低效度的问卷往往无法达到测量目的,因此对效度的评价非常重要。

一般可以侧重两个个角度进行判断:一是观察问卷内容切合主题的程度;二是从实证角度分析其结构效度。

内容效度内容效度主要是用来反映量表内容切合主题的程度。

若测量内容涵盖所有研究计划所要探讨的构架及内容,就说明是具有优良的内容效度。

检验的方法需要采用专家判断法,由相关专家和专业人士就题项恰当与否进行评价。

构建效度构建效度也称结构效度,主要是用来检验量表是否可以真正度两处所要度量的变量。

信度和效度分析范文

信度和效度分析范文

信度和效度分析范文信度分析:信度是指测量工具在不同时间、不同测量者或不同测量内容下的稳定性和一致性。

如果测量工具具有高信度,那么它将能够产生相似或一致的结果。

以下是几种常见的信度分析方法:1.重测信度方法:重测信度方法是通过对同一组被试者进行两次以上的测量来评估测量工具的信度。

可以使用相关系数(如皮尔森相关系数、斯皮尔曼相关系数)来计算两次测试结果之间的相关性。

如果相关系数接近于1,则表明测量工具具有较高的重测信度。

2.分裂半信度方法:分裂半信度方法通过将测量工具分为两部分或多部分,然后计算这些部分得分之间的相关性来评估信度。

常见的方法包括将问卷的奇数题目和偶数题目分开计分,然后计算这两个得分之间的相关系数。

如果相关系数接近于1,则说明测量工具具有较高的分裂半信度。

3.内部一致性信度方法:内部一致性信度方法通过统计测量工具各个项目之间的相似性来评估信度。

最常见的方法是计算Cronbach's Alpha系数。

Cronbach's Alpha 系数越接近1,说明测量工具的内部一致性越高。

效度分析:效度是指测量工具能否准确地度量所要研究的概念或变量。

以下是几种常见的效度分析方法:1.内容效度:内容效度评估测量工具中各个项目是否能够充分覆盖研究的内容领域。

一般通过专家评审的方式来进行评估,专家将判断每个项目是否与所要研究的概念相关。

通常采用一致性指数来衡量内容效度,如简单一致性指数。

2.结构效度:结构效度评估测量工具所测量的概念结构的一致性。

可以使用因子分析或验证性因子分析来进行评估。

如果因子载荷值较高且具有合理的因子结构,那么测量工具就具有较高的结构效度。

3.判据效度:判据效度评估测量工具与其他已经被接受为有效的判据测量工具之间的相关性。

例如,对于一个测试学生的数学能力的测量工具,可以与学生成绩进行相关性分析。

如果相关系数较高,则说明测量工具具有较高的判据效度。

综上所述,信度和效度分析是量化研究中评估测量工具的关键步骤。

第4章 测量的信度与效度

第4章 测量的信度与效度
2 2 X T2 E
实得分数的方差等于真分数的方差与误差方差之和。
调研人员应运用所掌握的统计知识,分析其是属于系统 误差还是属于随机误差。 系统误差会使调查结果有误,所以应尽量避免。 随机误差可通过提高样本代表性、增大样本量来减少。
信度一般规定是:真分数的方差在总体方差中所占的比 重,即信度系数:
当题目间的相关系数越大时,α系数也会越大。 当题目数目n越多时,S
2 H
n 值越大, 越接近于0, 2 SH n 1
2 S i
越接近于1,故α系数也会越接近于1。
要做信度分析须先检查每个题目是否都是同方向的,即 都是正面问法,反向问题需要做处理后才可以加入分析。
在计算α系数时,应该注意有些调查量表测量的内容包 含几个领域,这时宜分别计算各个领域的α系数。 克朗巴哈α系数适用于项目多重计分的测验数据或问卷 数据,可以用该系数测量Likert量表的信度。 在基础研究中,信度至少应达到0.8才可接受; 在探索性研究中,信度只要达到0.7就可以接受; 在旅游调查测量实践中,信度只要达到0.6即可接受。 α系数通常与量表题目数量有关,题目数量越多,α系 数就越大。
理想(甚佳,信度 佳(信度高) 很高) 非常理想(信度非 非常理想(甚佳, 常好) 信度很高)
二、克朗巴哈 α系数的手工计算
以一份有8个题项的量表为例,8个题项均为正向题, 受试样本数有6位,采用Likert 5点量表填答,获得调查 结果如下表:
题号 样本
量表试题
01 5 5 5 5 5 4 02 1 1 2 1 1 1 03 2 2 2 2 2 1 04 5 4 5 5 5 5 05 2 3 3 3 3 3 06 5 5 5 5 5 4 07 4 5 5 5 5 4 08 3 2 2 3 2 2 总分 27 27 29 29 28 24

教育评价中的信度与效度分析

教育评价中的信度与效度分析

教育评价中的信度与效度分析教育评价对于学生的学习和发展起着至关重要的作用。

在评价学生的综合素养和学科能力时,需要对教育评价中的信度和效度进行分析。

一、信度分析教育评价的信度是指其结果在可重复性的测试过程中的一致性程度。

简单来说,就是如何判断结果的可靠性和准确性。

在教育测评上,信度是很重要的指标,它直接影响到评价结果的可信度。

因此,教育评价中的信度分析是必不可少的一步。

1.维持测试条件的一致性对于同一测试,评估者、测验的难度、时间分配、测试的环境等因素都会影响测试的结果,所以需要尽可能保持稳定的测试条件。

例如,对于一项语言测试,在时限、环境、评分标准等方面,需要保持一致性,这可以增加测试的信度。

2.减少误差误差可能产生于测验对象的变化以及评估者或者测验本身的差错。

在评价中,我们希望避免这样的误差,因此需要考虑多元素测试的策略。

在这样的框架下,误差可能会分两次抵消,从而可以获得更准确的结果。

3.进行信度检测为了保证测试结果的可靠性,评价者需要对测试的信度进行检测。

常用的方法有测试重测法、内部互表法和平行测试法等。

如果测试结果可重复性好,则说明测试具有较高的信度。

二、效度分析教育评价的效度是指评估结果与被测评对象真实水平的相关程度。

效度分析的目的在于确认评估内容是否涵盖了今后的学习以及职业生涯中所需要的知识和技能。

1.内容效度内容效度是指测验内容与测量目标的相关程度。

学生的学习和待测能力需要符合被评价内容的范畴,这样才可以评价出考生的真实水平。

2.结构效度结构效度是指测验结构与测量目标的相关程度。

例如,在某种语言测验中,语法和词汇选择是非常重要的考察内容,因此需要对考生的词汇和语法能力进行精确的测评,确保最终结果的准确性。

3.预测效度预测效度是指通过测验结果预测学生未来能力表现的能力。

学生未来的表现不仅受到以前学习的影响,还受到个人意愿和环境等多种因素的影响。

因此,预测效度的测量和分析需要全面考虑各种因素的影响。

心理测量学中的信度和效度分析

心理测量学中的信度和效度分析

心理测量学中的信度和效度分析心理测量学是研究心理测量方法与技术的学科,旨在通过反映被测者的心理特征和过程,揭示其心理素质、智力水平等信息。

而在心理测量过程中,信度和效度分析是两个重要的概念。

一、信度分析信度是指测量工具在测量同一心理特征或过程时的稳定性和一致性。

换句话说,信度反映了测量工具在同一被测者群体中的结果是否稳定,并且是否能复现。

具体来说,信度分析主要从可靠性和稳定性两个方面来考量。

1.可靠性可靠性是指测量工具的结果是否稳定且一致。

在心理测量学中,一种常用的方式是通过内部一致性来评估可靠性,最常见的统计方法是Cronbach's α系数。

Cronbach's α系数介于0和1之间,数值越大代表内部一致性越高,通常要求α系数达到0.7以上为可靠。

2.稳定性稳定性是指测量工具在不同时间或在不同条件下所得到的结果是否一致。

为了评估测量工具的稳定性,常用的方法是再测法和半分法。

再测法是指在不同时间或条件下对同一样本重复测量,然后通过计算相关系数来评估稳定性。

而半分法则是将测量工具的题目分成两部分,分别进行测量并计算两部分得分的相关系数。

二、效度分析效度是指测量工具是否能够准确地测量所要测量的心理特征或过程。

也就是说,效度是评估测量工具是否真的测量到了我们想要测量的东西。

效度分析主要从描述效度、判别效度和预测效度三个方面来考量。

1.描述效度描述效度是指测量工具是否能够全面、准确地描述被测者的心理特征或过程。

具体来说,可以通过专家评定法和内容效度等方法来评估描述效度。

专家评定法是通过请相关领域的专家对测量工具进行评定,包括评估题目的合理性、适用性等方面。

而内容效度是指测量工具的题目是否充分、恰当地涵盖了被测者的心理特征或过程。

2.判别效度判别效度是指测量工具能否区分不同的心理特征或过程。

为了评估判别效度,常用的方法是构太效度。

构太效度是通过与已知测量工具或理论进行比较,来确定测量工具是否能够与其他相关测量工具或理论得到一致或相似的结果。

信度与效度分析步骤

信度与效度分析步骤

信度与效度分析步骤信度与效度是社会科学研究中的重要概念,其对于研究结果的可靠性和有效性有着至关重要的影响。

在进行量表研究、问卷调查等量化方法的研究时,需要进行信度与效度分析,以确保研究结果的准确性。

下面将介绍信度与效度分析的步骤。

一、信度分析步骤1. 了解信度在进行信度分析之前,首先需要了解什么是信度。

信度是指量表或问卷的稳定性、一致性和可靠性程度。

在同样条件下,如数据的采集方式、研究对象、时间等条件不变的情况下,同一测验所得分数的一致性程度越高,则表明该测验的信度越高。

2. 测量信度的方法测量信度的方法有很多种,如测试重测法、平行测验法、内部一致性检验法等。

其中,测试重测法是最常用的方法之一。

该方法的基本思想是在不同的时间或条件下,对相同的受试者进行同一测验的重复测量,用相关系数或可信度系数来评价测试结果的稳定性和一致性。

3. 数据处理与分析在获得原始数据后,需要进行数据处理和分析。

常用的方法是计算相关系数和可信度系数。

常用的相关系数有皮尔逊相关系数和斯皮尔曼等级相关系数。

可信度系数是反映量表或问卷信度的最常用的统计指标之一。

常用的可信度系数有克朗巴赫α系数、Mcnemar法、Kappa系数、ICC系数等。

4. 结果解释最后需要对得出的数字进行解释,并结合实际情况来评估测量工具的信度程度。

一般来说,可信度系数越高,信度越高。

二、效度分析1. 了解效度效度是指测量工具所充分、准确地反映测量对象的特征和属性的程度,即测量工具所提供的信息与真实情况的匹配程度。

在进行效度分析之前,需要了解量表或问卷的检验目的和测量内容。

2. 提高效度的方法提高效度是所有研究中的重点,效度的提高有多种方法,如构思效度、判别效度、预测效度等。

在测量工具的设计初期,需要充分考虑效度,并进行合理的测量工具设计。

同时,还需要加强试题的设计和选择。

在进行测量之前,还需要对测量工具进行预测效度的检验,以确保测量结果的准确性。

3. 数据处理与分析在获得原始数据后,需要进行数据处理和分析。

信度与效度分析

信度与效度分析

信度与效度分析(from 中调网)一、信度分析信度(Reliability)即可靠性,是指采用同一方法对同一对象进行调查时,问卷调查结果的稳定性和一致性,即测量工具(问卷或量表)能否稳定地测量所测的事物或变量。

信度指标多以相关系数表示,具体评价方法大致可分为三类:稳定系数(跨时间的一致性),等值系数(跨形式的一致性)和内在一致性系数(跨项目的一致性)。

信度分析的方法主要有以下四种:1、重测信度法同样的问卷,对同一组访问对象在尽可能相同的情况下,在不同时间进行两次测量。

两次测量相距一般在两到四周之内。

用两次测量结果间的相关分析或差异的显著性检验方法,评价量表信度的高低。

2、折半法。

折半法是将上述两份问卷合成一份问卷(通常要求这两份问卷的问题数目相等),每一份作为一部分,然后考察这两个部分的测量结果之间的相关性。

3、折半信度法折半信度法是将调查项目分为两半,计算两半得分的相关系数,进而估计整个量表的信度。

折半信度属于内在一致性系数,测量的是两半题项得分间的一致性。

这种方法一般不适用于事实式问卷(如年龄与性别无法相比),常用于态度、意见式问卷的信度分析。

在问卷调查中,态度测量最常见的形式是5级李克特(Likert)量表。

进行折半信度分析时,如果量表中含有反意题项,应先将反意题项的得分作逆向处理,以保证各题项得分方向的一致性,然后将全部题项按奇偶或前后分为尽可能相等的两半,计算二者的相关系数(rhh,即半个量表的信度系数),最后用斯皮尔曼-布朗(Spearman-Brown)公式:求出整个量表的信度系数(ru)。

4、α信度系数法Cronbach α信度系数是目前最常用的信度系数,其公式为:其中,K为量表中题项的总数,为第i题得分的题内方差,为全部题项总得分的方差。

从公式中可以看出,α系数评价的是量表中各题项得分间的一致性,属于内在一致性系数。

这种方法适用于态度、意见式问卷(量表)的信度分析。

二、效度分析效度(Validity)即有效性,它是指测量工具或手段能够准确测出所需测量的事物的程度。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二节信度和效度分析一、信度分析与预测试数据分析方法一样,为了确保问卷的可靠性,先进行信度分析,信度检验指标在前面已详细述,在此不再述。

问卷信度分析如表4-2所示:表4-2:量表信度检验结果经过SPSS24.0数据统计软件分析得知个变量Cronbach's α均大于0.6,且组合信度在0.792以上,说明所有问卷都具备可靠性,能够较好的反应变量的真实情况。

二、效度检验(一)容效度为了确保调研问卷容的有效性,问卷量表通过文献研究先初步圈定问卷容,所用量表大多采用国外已经开发出的成熟量表,对于这部分量表,本文给予直接采用的方式,其余量表则是在前人研究的基础上,根据本文的研究目的和方向进行谨慎的拟定。

因此,本问卷具有容效度。

(二)结构效度在测量结构效度时,通常采用探索性因子分析。

在进行因子分析时,通常采用主成分分析法,主成分分析的目的在于利用变量间的线性组合来解释每个层面的方差,变量的第一个线性组合可以解释最大的变异量,以此类推,所以主成分分析法的步骤是,选取特征值大于1的因子,然后利用方差最大旋转法进行旋转,使得旋转后题目在各个因子的负荷量大小出现明显差异,大部分题目在每个公共因子中有一个差异较大的因子负荷量出现。

但在因子分析之前需要进行KMO值和Bartlett球形检验,只有当KMO>0.5且Bartlett球形检验的Sig.值小于0.05时,问卷才具有结构效度,才能够进行因子分析。

本研究中对三个量表进行的结构效度分析具体情况如下。

(1)虚拟品牌社群价值的效度检测1.1虚拟品牌社群价值的KMO值和Bartlett球形检验在对虚拟品牌社群价值做因子分析之前,先做KMO值和Bartlett球形检验,检测结果如表4-3所示:表4-3:虚拟品牌社群价值的KMO值和Bartlett检验取样足够度的Kaiser-Meyer-Olkin度量.901Bartlett的球形度检验近似卡方4892.820df 186Sig. .000通过对虚拟品牌社群价值量表的14个题项进行KMO检验和Bartlett球形检验,发现虚拟品牌社群价值量表的KMO值为0.901,表明各个变量之间的相关系数非常高,适合做因子分析,同时Sig.值为0.000<0.05,达到显著性水平,综上可以得出虚拟品牌社群价值量表适合做因子分析。

1.2虚拟品牌社群价值因子分析通过KMO值和Bartlett球形检验可知,虚拟品牌社群价值适合做因子分析,运用主成分提取法进行因子旋转后得到以下数据,如:表4-4所示:表4-4:虚拟品牌社群价值旋转因子负荷值通过因子旋转对虚拟品牌社群价值量表的14个题目进行因子分析,旋转出5个因子,总方差解释率达到78.711%,表明这5个因子对虚拟品牌社群价值具有较强的解释性,同时各因子负荷量均在0.6以上,说明因子与变量之间的相关性很高。

在这5个维度对虚拟品牌社群价值的解释中,虚拟品牌社群功能价值的解释力最强,解释了总方差变异量的20.374%,其次是虚拟品牌社群利益价值,解释了总方差变异量的16.629%,虚拟品牌社群情感价值解释了总方差变异量的15.790%,然后是虚拟品牌社群社交价值,解释了总方差变异量的14.534%,虚拟品牌社群社交价值贡献率最低,解释了总方差变异量的11.384%。

因子分析的结果表明,虚拟品牌社群价值量表具有较好的效度,适合用于本研究。

(2)顾客满意的效度检测2.1顾客满意的KMO值和Bartlett球形检验在对顾客满意做因子分析之前,先做KMO值和Bartlett球形检验,检测结果如表4-5所示:表4-5:顾客满意的KMO值和Bartlett检验取样足够度的Kaiser-Meyer-Olkin度量.834Bartlett的球形度检验近似卡方1425.820df 120Sig. .000通过对顾客满意量表的4个题项进行KMO检验和Bartlett球形检验,发现顾客满意量表的KMO值为0.834,表明各个变量之间的相关系数非常高,适合做因子分析,同时Sig.值为0.000<0.05,达到显著性水平,综上可以得出顾客满意量表适合做因子分析。

2.2顾客满意因子分析通过KMO值和Bartlett球形检验可知,顾客满意适合做因子分析,运用主成分提取法进行因子旋转后得到以下数据,如:表4-6所示:表4-6:顾客满意旋转因子负荷值B1 .836B2 .875B3 .932B4 .792方差解释率82.56%通过因子旋转对顾客满意量表的4个题目进行因子分析,旋转出1个因子,方差解释率达到82.56%,各因子负荷量均在0.6以上,表明该因子对顾客满意具有较强的解释性,同时,说明因子与变量之间的相关性很高,具有良好的结构效度。

(3)口碑传播意愿的效度检测3.1口碑传播意愿的KMO值和Bartlett球形检验在对口碑传播意愿做因子分析之前,先做KMO值和Bartlett球形检验,检测结果如:表4-7所示:表4-7:口碑传播意愿的KMO值和Bartlett检验取样足够度的Kaiser-Meyer-Olkin度量.903Bartlett的球形度检验近似卡方758.820df 30Sig. .000通过对口碑传播意愿量表的3个题项进行KMO检验和Bartlett球形检验,发现口碑传播意愿量表的KMO值为0.903,表明各个变量之间的相关系数非常高,适合做因子分析,同时Sig.值为0.000<0.05,达到显著性水平,综上可以得出口碑传播意愿量表适合做因子分析。

3.2口碑传播意愿因子分析通过KMO值和Bartlett球形检验可知,口碑传播意愿适合做因子分析,运用主成分提取法进行因子旋转后得到以下数据,如表4-9所示:表4-9:口碑传播意愿旋转因子负荷值通过因子旋转对口碑传播意愿量表的3个题目进行因子分析,旋转出1个因子,方差解释率达到85.05%,各因子负荷量均在0.6以上,表明该因子对口碑传播意愿具有较强的解释性,同时,说明因子与变量之间的相关性很高,具有良好的结构效度。

第四节假设检验本节将采用相关分析和回归分析两种方法研究虚拟品牌社群价值、顾客满意和口碑传播意愿之间的作用机制,用相关分析探讨各因素之间的联系,用回归分析研究各因素之间的因果关系,从而对本文研究假设进行检验。

一、相关分析相关分析是一种常见的数据分析方法,主要是用于分析两个变量之间的关联程度,本文采用相关分析最常用的皮尔森相关系数来表示两个变量之间的关联程度,相关系数在-1到1之间,相关系数的绝对值越接近1,表明两个变量之间的关联程度越强,绝对值越小,关联程度越弱,通常情况下我们认为若绝对值小于0.3,则表明变量之间关系微弱,认为不相关;若绝对值在0.3-0.5之间,是低相关度,若在0.5-0.8之间为中度相关度,若大于0.8则为高相关度。

同时,如果相关系数是正数,则表明两个变量之间是正相关的关系,即一个变量增强,另一个变量也增强;相反,若相关系数是负数,表明两个变量之间是负相关的关系,即一个变量增强,另一个变量会减弱。

(一)虚拟品牌社群价值与消费者口碑传播意愿的相关分析首先,将虚拟品牌社群价值所包含的五个测量维度:功能价值、财务价值、社交价值、情感价值和形象价值与口碑传播意向进行相关性分析,如表4-10所示:表4-10:虚拟品牌社群价值与口碑传播意愿相关性分析由表结果可知,在0.01显著性水平下虚拟品牌社群功能价值、财务价值、社交价值、情感价值和形象价值与口碑传播意愿呈现正相关关系,相关系数分别为0.849、0.735、0.693、0.744、0.689,相关系数均为正数且大于0.5,因此可以证明虚拟品牌社群价值与口碑传播意愿具有正向相关关系。

(二)虚拟品牌社群价值与顾客满意的相关分析首先,将虚拟品牌社群价值所包含的五个测量维度:功能价值、财务价值、社交价值、情感价值和形象价值与顾客满意进行相关性分析,如表4-11所示:表4-11:虚拟品牌社群价值与顾客满意相关性分析由表结果可知,在0.01显著性水平下虚拟品牌社群功能价值、财务价值、社交价值、情感价值和形象价值与顾客满意呈现正相关关系,相关系数分别为0.792、0.635、0.834、0.689、0.676,相关系数均为正数且大于0.5,因此可以证明虚拟品牌社群价值与顾客满意具有正向相关关系。

(三)顾客满意与消费者口碑传播意愿的相关分析首先,将顾客满意与口碑传播意向进行相关性分析,如表4-12所示:表4-12:顾客满意与口碑传播意愿相关性研究**. 在0.01 级别(双尾),相关性显著。

由表结果可知,在0.01显著性水平下顾客满意与口碑传播意愿呈现正相关关系,相关系数分别为0.842,相关系数均为正数且大于0.5,因此可以证明顾客满意与口碑传播意向具有正相关关系。

因此,通过顾客满意与口碑传播意愿相关性分析可验证假设H11成立。

二、回归分析通过前一部分相关分析,已经验证了虚拟品牌社群价值、顾客满意与口碑传播意愿之间存在显著正向关系,但相关分析只能证明各因素之间是否存在关系,并不能对因果关系进行验证,因此本节将通过回归分析进一步指出关系的方向,运用逐步多元回归方法和回归方程验证模型的可信程度。

同时,本节运用回归分析方法验证顾客满意对虚拟品牌社群价值和口碑传播意愿的中介作用。

(一)虚拟品牌社群价值与口碑传播意愿的回归分析运用SPSS24.0对虚拟品牌社群的功能价值、财务价值、社交价值、情感价值和形象价值与口碑传播意愿进行回归系数分析,结果如表4-13所示:表4-13:虚拟品牌社群价值与口碑传播意愿的回归分析a. 因变量:口碑传播意愿功能价值的回归系数为0.214,Sig.值为0.000<0.05,表明功能价值对口碑传播意愿具有显著的预测作用。

标准化系数为0.347,为正数,表明功能价值对口碑传播意愿的预测作用是正向的。

调整R方为0.361,表明自变量功能价值可以解释因变量口碑传播意愿36.1%的变异。

因此,假设“H1:虚拟品牌社群功能价值对口碑传播意愿具有正向影响”成立。

财务价值的回归系数为0.211,Sig.值为0.012<0.05,表明财务价值对口碑传播意愿具有显著的预测作用。

标准化系数为0.123,是正数,表明财务价值对口碑传播意愿的预测作用是正向的。

调整R方为0.196,表明自变量财务价值可以解释因变量口碑传播意愿19.6%的变异。

因此,假设“H2:财务价值对口碑传播意愿具有正向影响”成立。

社交价值的回归系数为0.267,Sig.值为0.000<0.05,表明社交价值对口碑传播意愿具有显著的预测作用。

标准化系数为0.217,为正数,表明社交价值对口碑传播意愿的预测作用是正向的。

调整R方为0.248,表明自变量社交价值可以解释因变量24.8%的变异。

相关文档
最新文档