2020届中考模拟南京市江宁区中考数学二模试卷(含参考答案)

合集下载

2020年江苏省南京市中考数学二模试卷含答案

2020年江苏省南京市中考数学二模试卷含答案
第 4 页,共 19 页
23. 如图,港口 B 位于港口 A 的南偏西 45°方向,灯塔 C 恰好在 AB 的中点处.一艘海 轮位于港口 A 的正南方向,港口 B 的南偏东 45°方向的 D 处,它沿正北方向航行 18.5km 到达 E 处,此时测得灯塔 C 在 E 的南偏西 70°方向上,求 E 处距离港口 A 有多远? (参考数据:sin70°≈0.94,cos70°≈0.34,tan70°≈2.75)
10.【答案】
【解析】解:原式= =.
第 9 页,共 19 页
故答案为 . 先把二次根式化为最简二次根式,然后合并即可. 本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后合并同类二次 根式即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质, 选择恰当的解题途径,往往能事半功倍.
在点 B 的右侧. (1)求 x 的取值范围; (2)当 AB=2BC 时,x 的值为______.
19. 某校 1200 名学生发起向贫困山区学生捐款活动,为了解捐款情况,学生会随机抽 取了部分学生的捐款金额,并用得到的数据绘制了如下统计图①和图②.
请根据以上信息,解答下列问题: (1)本次抽样调查的样本容量为______; (2)图①中“20 元”对应扇形的圆心角的度数为______°; (3)估计该校本次活动捐款金额为 15 元以上(含 15 元)的学生人数.
16. 如图,正方形 ABCD 与正方形 CEFG,E 是 AD 的中点,若 AB=2,则点 B 与点 F 之间的距离为______.
三、计算题(本大题共 1 小题,共 7.0 分) 17. 计算(x+ +2)÷(x- ).
第 2 页,共 19 页
四、解答题(本大题共 10 小题,共 81.0 分) 18. 如图,在数轴上点 A、B、C 分别表示-1、-2x+3、xƣ 页

2020年中考数学全真模拟试卷(江苏南京专用)(二)含解析)

2020年中考数学全真模拟试卷(江苏南京专用)(二)含解析)

2020年中考考前(江苏南京卷)全真模拟卷(2)数学(考试时间:120分钟试卷满分:120分)一、选择题(本大题有6个小题,共2分,满分12分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.在百度搜索引擎中输入“南京市”,能搜索到与之相关的结果个数约为86 900 000,请将86 900 000用科学记数法表示为()A.0.869×108B.8.69×107C.869×105D.8.69×1082.下列计算正确的是()A.a5-a3=a2 B.a4•a3=a12 C.(-3a3)2=9a6 D.a8÷a2=a43.给出下列4个说法:①只有正数才有平方根;②2是4的平方根;③平方根等于它本身的数只有0;④27的立方根是±3.其中,正确的有()A.①②B.①②③C.②③D.②③④4.下列选项错误的是()A.若a>b,b>c,则a>c B.若a>b,则a-3>b-3C.若a>b,则-2a>-2b D.若a>b,则-2a+3<-2b+35.)A.3和4 B.4和5 C.5和6 D.6和76.下列说法中,正确的是()A.将一个图形先向左平移3厘米,再向下平移5厘米,那么平移的距离是8厘米B.将一个图形绕任意一点旋转360°后,能与初始图形重合C.等边三角形至少旋转60°能与本身重合二、填空题(本大题有10个小题,每小题2分,共20分)7.数a的绝对值一定是______.8.计算:227=_________.39.分解因式:4(a+b)2-(a-b)2=__________.10.已知关于x的一元二次方程ax2-3bx-5=0的一个根是2,则8a-12b的值是________.11.如图,直线a、b被直线c、d所截,若∠1=100°,∠2=80°,∠3=125°,则∠4的度数是_________.12.如图,要为一段高为6米,长为10米的楼梯铺上红地毯,则红地毯至少要_______米长.13.某中学随机调查了15名学生,了解他们一周在校参加体育锻炼的时间,列表如下,则这15名学生一周在校参加体育锻炼时间的中位数为______h.14.如图,△ABC周长为20cm,BC=6cm,圆O是△ABC的内切圆,圆O的切线MN与AB、CA相交于点M、N,则△AMN的周长为_________.15.如图,在△ABC中,AC=2,BC=4,D为BC边上的一点,且∠CAD=∠B,若△ADC的面积为3,则△ABD的面积为__________.16.在△ABC中,AB=4,∠C=60°,∠A≠∠B,则BC的长的取值范围是________.三、解答题(本大题有11个小题,共88分.解答应写出文字说明、证明过程或演算步骤)17.(7分)计算x(x2+x-1)+(2x2-1)(x-4)18.(7分)解方程32+131x-=262x-.19.(7分)如图,在▱ABCD中,AM⊥BD,CN⊥BD,垂足分别为点M,N.求证:四边形AMCN 是平行四边形.20.(8分)甲、乙两名学生参加数学素质测试(有四项),每项测试成绩采用百分制,成绩如表:(1)将表格中空缺的数据补充完整,根据表中信息判断哪个学生数学综合素质测试成绩更稳定?请说明理由.(2)若数与代数、空间与图形、统计与概率、综合与实践的成绩按4:3:2:1,计算哪个学生数学综合素质测试成绩更好?请说明理由.21.(8分)欢欢放学回家看到桌上有三个礼包,是爸爸送给欢欢和姐姐的礼物,其中A礼包是芭比娃娃,B和C礼包都是智能对话机器人.这些礼包外表一样的包装盒装着,看不到里面的礼物.(1)欢欢随机地从桌上取出一个礼包,取出的是芭比娃娃的概率是多少?(2)请用树状图或列表法表示欢欢随机地从桌上取出两个礼包的所有可能结果,并求取出的两个礼包都是智能对话机器人的概率.22.(7分)如图,⊙O中,弦AB与CD相交于点E,AB=CD,连接AD、BC.求证:AE=CE.23.(8分)如图,直线l1:y1=2x+1与直线l2:y2=mx+4相交于点P(1,b).(1)求b和m的值;(2)结合图象,直接写出当y1>y2时x的取值范围.24.(8分)如图,电线杆AB直立于地面上,它的影子恰好照在土坡的坡面CD和地面BC 上,若CD与地面成45°,∠A=60°,CD=4m,BC=(46-22)m,则电线杆AB的长为多少米?25.(8分)如图,某城建部门计划在新修的城市广场的一块长方形空地上修建一个面积为1200m2的停车场,将停车场四周余下的空地修建成同样宽的通道,已知长方形空地的长为50m,宽为40m.(1)求通道的宽度;(2)某公司希望用80万元的承包金额承揽修建广场的工程,城建部门认为金额太高需要降价,通过两次协商,最终以51.2万元达成一致,若两次降价的百分率相同,求每次降价的百分率.26.(9分)如图,点O是边为2的正方形ABCD的中心,点E从A点开始沿AD边运动,点F从D点开始沿DC边运动,并且AE=DF.(1)求正方形ABCD的对角线AC的长;(2)若点E、F同时运动,连接OE、OF,请你探究:四边形DEOF的面积S与正方形ABCD 的面积关系,并求出四边形DEOF的面积S;(3)在(2)的基础上,设AE=x,△EOF的面积为y,y与x之间的函数关系式,写出自.变量x的取值范围,并利用图象说明当x在什么范围时,y≥5827.(11分)阅读理解:在平面直角坐标系中,若两点P、Q的坐标分别是P(x1,y1)、Q (x2,y2),则P、Q这两点间的距离为|PQ|=.如P(1,2),Q (3,4),则|PQ|==2.对于某种几何图形给出如下定义:符合一定条件的动点形成的图形,叫做符合这个条件的点的轨迹.如平面内到线段两个端点距离相等的点的轨迹是这条线段的垂直平分线.解决问题:如图,已知在平面直角坐标系xOy中,直线y=kx+交y轴于点A,点A关于x轴的对称点为点B,过点B作直线l平行于x轴.(1)到点A的距离等于线段AB长度的点的轨迹是_________.(2)若动点C(x,y)满足到直线l的距离等于线段CA的长度,求动点C轨迹的函数表达式;问题拓展:(3)若(2)中的动点C的轨迹与直线y=kx+交于E、F两点,分别过E、F作直线l的垂线,垂足分别是M、N,求证:①EF是△AMN外接圆的切线;②+为定值.2020年中考考前(江苏南京卷)全真模拟卷(2)数学(考试时间:120分钟试卷满分:120分)注意事项:1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上。

2020年江苏省南京市中考数学二模试卷

2020年江苏省南京市中考数学二模试卷

2020年江苏省南京市中考数学二模试卷一、单选题1.设a 是最小的自然数,b 是最大的负整数,c 是绝对值最小的有理数,a ,b ,c 三个数的和为( ) A .1-B .0C .1D .不存在2.已知点2(1,1)P m -+与点Q 关于原点对称,则点Q 一定在( ) A .第一象限B .第二象限C .第三象限D .第四象限3.若不等式组12x x k<⎧⎨>⎩有解,则k 的取值范围是( )A .2k <B .2kC .1k <D .12k <4.如图,二次函数2y ax bx c =++的图象经过点(1,1)和点(3,0).关于这个二次函数的描述:①0a <,0b >,0c <;②当2x =时,y 的值等于1;③当3x >时,y 的值小于0.正确的是( )A .①②B .①③C .②③D .①②③5.计算99399-的结果更接近( ) A .999B .989C .969D .3396.如图,点P 是O 外任意一点,PM 、PN 分别是O 的切线,M 、N 是切点.设OP 与O 交于点K .则点K 是PMN ∆的( )A .三条高线的交点B .三条中线的交点C .三个角的角平分线的交点D .三条边的垂直平分线的交点二、填空题7.8-的立方根是 . 8.计算:232()x y-= .9.因式分解:32a ab -= .10.如图,O 的半径为2,点A ,B 在O 上,90AOB ∠=︒,则阴影部分的面积为 .11.直线12y x =与双曲线k y x =在第一象限的交点为(,1)a ,则k = .12.已知方程230x mx m --=的两根是1x 、2x ,若121x x +=,则12x x = .13.如图,若正方形EFGH 由正方形ABCD 绕图中某点顺时针旋转90︒得到,则旋转中心应该是 点.14.如图,在四边形ABCD 中,//AD BC ,2AD =,22AB =,以点A 为圆心,AD 为半径的圆与BC 相切于点E ,交AB 于点F ,则DF 的长为 .15.平面直角坐标系中,原点O 关于直线443y x =-+对称点1O 的坐标是 .16.定点O 、P 的距离是5,以点O 为圆心,一定的长为半径画圆O ,过点P 作O 的两条切线,切点分别是B 、C ,则线段BC 的最大值是 . 三、解答题17.先化简,再求值:22212212x x xxx x x--+÷-+-,其中3x=.18.(1)解不等式1132x x--,并把它的解集在数轴上表示出来;(2)若关于x的一元一次不等式x a只有3个负整数解,则a的取值范围是.19.一个不透明箱子中有2个红球,1个黑球和1个白球,四个小球的形状、大小完全相同.(1)从中随机摸取1个球,则摸到黑球的概率为.(2)小明和小贝做摸球游戏,游戏规则如下.游戏规则让小明先从箱子中随机摸取个小球,记下颜色后放回箱子,摇匀后再让小贝随机摸取一个小球,记下颜色,若两人所摸小球的颜色相同,则小明胜:反之,则小贝胜你认为这个游戏公平吗?请说明理由.20.某工厂有甲、乙两台机器加工同一种零件,已知一小时甲加工的零件数与一小时乙加工的零件数的和为36个,甲加工80个零件与乙加工100个零件的所用时间相等.求甲、乙两台机器每小时分别加工零件多少个?21.如图,等腰三角形ABC中,AB AC=.(1)用尺规作出圆心在直线BC上,且过A、C两点的O;(注:保留作图痕迹,标出点O,并写出作法)(2)若30B∠=︒,求证:AB与(1)中所作O相切.22.现在正是草莓热销的季节,某水果零售商店分两批次从批发市场共购进草莓40箱,已知第一、二次进货价分别为每箱50元、40元,且第二次比第一次多付款700元.(1)设第一、二次购进草莓的箱数分别为a箱、b箱,求a,b的值;(2)若商店对这40箱草莓先按每箱60元销售了x箱,其余的按每箱35元全部售完.①求商店销售完全部草莓所获利润y (元)与x (箱)之间的函数关系式; ②当x 的值至少为多少时,商店才不会亏本. (注:按整箱出售,利润=销售总收入-进货总成本)23.某长方体包装盒的表面积为2146cm ,其展开图如图所示.求这个包装盒的体积.24.如图,已知30ABM ∠=︒,20AB =,C 是射线BM 上一点.(1)在下列条件中,可以唯一确定BC 长的是 ;(填写所有符合条件的序号)①13AC =;②12tan 5ACB ∠=;③ABC ∆的面积为126. (2)在(1)的答案中,选择一个作为条件,画出示意图,求BC 的长.25.某商场经市场调查,发现进价为40元的某童装每月的销售量y (件)与售价x (元)的相关信息如下: 售价x (元) 60 70 80 90 ⋯ 销售量y (件)280260240220⋯(1)试用你学过的函数来描述y 与x 的关系,这个函数可以是 (填一次函数、反比例函数或二次函数),求这个函数关系式; (2)售价为多少元时,当月的利润最大?最大利润是多少?26.(1)如图①,在矩形ABCD 中,4AB =,10AD =,在BC 边上是否存在点P ,使90APD ∠=︒,若存在,请用直尺和圆规作出点P 并求出BP 的长.(保留作图痕迹) (2)如图②,在ABC ∆中,60ABC ∠=︒,12BC =,AD 是BC 边上的高,E 、F 分别为AB ,AC 的中点,当6AD =时,BC 边上是否存在一点Q ,使90EQF ∠=︒,求此时BQ 的长.27.如图,在Rt ABC ∆中,90ACB ∠=︒,8CA =,6CB =,动点P 从C 出发沿CA 方向,以每秒1个单位长度的速度向A 点匀速运动,到达A 点后立即以原来速度沿AC 返回;同时动点Q 从点A 出发沿AB 以每秒1个单位长度向点B 匀速运动,当Q 到达B 时,P 、Q 两点同时停止运动.设P 、Q 运动的时间为t 秒(0)t >.(1)当t 为何值时,//PQ CB ?(2)在点P 从C 向A 运动的过程中,在CB 上是否存在点E 使CEP ∆与PQA ∆全等?若存在,求出CE 的长;若不存在,请说明理由;(3)伴随着P 、Q 两点的运动,线段PQ 的垂直平分线DF 交PQ 于点D ,交折线QB BC CP --于点F .当DF 经过点C 时,求出t 的值.2020年江苏省南京市中考数学二模试卷参考答案与试题解析一、单选题1.设a 是最小的自然数,b 是最大的负整数,c 是绝对值最小的有理数,a ,b ,c 三个数的和为( ) A .1-B .0C .1D .不存在【分析】先根据自然数,整数,有理数的概念分析出a ,b ,c 的值,再进行计算. 【解答】解:最小的自然数是0,最大的负整数是1-,绝对值最小的有理数是0, 0(1)01a b c ∴++=+-+=-.故选:A .【点评】此题的关键是知道最小的自然数是0,最大的负整数是1-,绝对值最小的有理数是0.2.已知点2(1,1)P m -+与点Q 关于原点对称,则点Q 一定在( ) A .第一象限B .第二象限C .第三象限D .第四象限【分析】根据关于原点对称,横纵坐标都互为相反数,进行计算即可. 【解答】解:点2(1,1)P m -+与点Q 关于原点对称,2(1,1)Q m ∴--,∴点Q 一定在第四象限,故选:D .【点评】本题考查了关于原点对称,掌握关于原点对称,横纵坐标都互为相反数是解题的关键.3.若不等式组12x x k <⎧⎨>⎩有解,则k 的取值范围是( )A .2k <B .2kC .1k <D .12k <【分析】根据不等式组的解集为两个不等式解集的公共部分,所以在有解的情况下,k 的值必须小于2.【解答】解:因为不等式组12x x k <⎧⎨>⎩有解,根据口诀可知k 只要小于2即可.故选:A .【点评】主要考查了已知一元一次不等式解集求不等式中的字母的值,同样也是利用口诀求解,但是要注意当两数相等时,解集也是2x >,不要漏掉相等这个关系.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到.4.如图,二次函数2y ax bx c =++的图象经过点(1,1)和点(3,0).关于这个二次函数的描述:①0a <,0b >,0c <;②当2x =时,y 的值等于1;③当3x >时,y 的值小于0.正确的是( )A .①②B .①③C .②③D .①②③【分析】由抛物线的开口方向判断a 与0的关系,由抛物线与y 轴的交点判断c 与0的关系,然后根据对称轴及抛物线与x 轴交点情况进行推理,进而对所得结论进行判断. 【解答】解:①如图所示,抛物线开口方向向下,则0a <. 对称轴在y 轴的右侧,则a 、b 异号,即0b >. 抛物线与y 轴交于负半轴,则0b <. 综上所述,0a <,0b >,0c <. 故①正确;②抛物线与x 轴另一交点横坐标01x <<,∴抛物线的顶点横坐标322x <<. 抛物线开口向下,且过点(1,1),∴点(1,1)关于对称轴对称的点的横坐标大于2, ∴当2x =时,y 的值大于1,故②错误;③观察函数图象,可知:当3x >时,y 的值小于0,故③正确; 故选:B .【点评】本题考查了二次函数图象上点的坐标特征以及二次函数的最值,观察函数图象,逐一分析四个选项的正误是解题的关键. 5.计算99399-的结果更接近( ) A .999B .989C .969D .339【分析】根据因式分解解答即可. 【解答】解:99339699999(91)9-=-≈, 故选:A .【点评】此题考查因式分解,关键是根据提公因式法解答.6.如图,点P 是O 外任意一点,PM 、PN 分别是O 的切线,M 、N 是切点.设OP 与O 交于点K .则点K 是PMN ∆的( )A .三条高线的交点B .三条中线的交点C .三个角的角平分线的交点D .三条边的垂直平分线的交点【分析】连接OM 、ON 、MK 、NK ,根据切线长定理得出PM PN =,易证得POM PON ∆≅∆,得出OP 是MPN ∠的平分线,然后根据圆周角定理证得12PMK MOK ∠=∠,12PNK NOK ∠=∠,12NMK NOK ∠=∠,12MNK MOK ∠=∠,即可证得PMK NMK PNK MNK ∠=∠=∠=∠,从而证得结论. 【解答】解:连接OM 、ON 、MK 、NK ,PM 、PN 分别是O 的切线,PM PN ∴=,PMN PNM ∴∠=∠,OM ON =易证POM PON ∆≅∆, OP ∴是MPN ∠的平分线,由圆周角定理可得12PMK MOK ∠=∠,12PNK NOK ∠=∠,12NMK NOK ∠=∠,12MNK MOK ∠=∠,PMK NMK PNK MNK ∴∠=∠=∠=∠,∴点K 是PMN ∆的三个角的角平分线的交点,故选:C .【点评】本题考查了切线的性质,三角形全等的判定和性质,圆周角定理的应用等,熟练掌握性质定理是解题的关键. 二、填空题7.8-的立方根是 2- .【分析】利用立方根的定义即可求解. 【解答】解:3(2)8-=-, 8∴-的立方根是2-.故答案为:2-.【点评】本题主要考查了立方根的概念.如果一个数x 的立方等于a ,即x 的三次方等于3()a x a =,那么这个数x 就叫做a 的立方根,也叫做三次方根.读作“三次根号a ”其中,a 叫做被开方数,3叫做根指数.8.计算:232()x y -= 638x y- .【分析】直接利用积的乘方运算法则计算得出答案. 【解答】解:263328()x x y y -=-.故答案为:638x y-.【点评】此题主要考查了分式的乘除运算,正确掌握运算法则是解题关键. 9.因式分解:32a ab -= ()()a a b a b +- .【分析】观察原式32a ab -,找到公因式a ,提出公因式后发现22a b -是平方差公式,利用平方差公式继续分解可得.【解答】解:3222()()()a ab a a b a a b a b -=-=+-.【点评】本题是一道典型的中考题型的因式分解:先提取公因式,然后再应用一次公式. 本题考点:因式分解(提取公因式法、应用公式法).10.如图,O 的半径为2,点A ,B 在O 上,90AOB ∠=︒,则阴影部分的面积为 2π- .【分析】根据90AOB ∠=︒,OA OB =可知OAB ∆是等腰直角三角形,根据OAB OAB S S S ∆=-阴影扇形即可得出结论. 【解答】解:90AOB ∠=︒,OA OB =, OAB ∴∆是等腰直角三角形. 2OA =,290212223602OABOAB S S S ππ∆⋅∴=-=-⨯⨯=-阴影扇形.故答案为2π-.【点评】本题考查的是扇形面积的计算,熟记扇形的面积公式是解答此题的关键. 11.直线12y x =与双曲线k y x =在第一象限的交点为(,1)a ,则k = 2 .【分析】先把(,1)a 代入12y x =中求出a 得到交点坐标,然后把交点坐标代入k y x =中可求出k 的值.【解答】解:把(,1)a 代入12y x =得112a =,解得2a =,把(2,1)代入ky x=得212a =⨯=. 故答案为2.【点评】本题考查了反比例函数与一次函数的交点问题:求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,若方程组有解则两者有交点,方程组无解,则两者无交点.12.已知方程230x mx m --=的两根是1x 、2x ,若121x x +=,则12x x = 3- . 【分析】根据根与系数的关系结合121x x +=,可求出m 的值,再将其代入123x x m =-中即可求出结论.【解答】解:方程230x mx m --=的两根是1x 、2x , 12x x m ∴+=,123x x m =-,又121x x +=,1m ∴=,1233x x m ∴=-=-.故答案为:3-.【点评】本题考查了根与系数的关系,牢记两根之和等于b a -、两根之积等于ca是解题的关键.13.如图,若正方形EFGH 由正方形ABCD 绕图中某点顺时针旋转90︒得到,则旋转中心应该是 M 点.【分析】根据以M 为旋转中心,把正方形ABCD 顺时针旋转90︒解答即可.【解答】解:若以M 为旋转中心,把正方形ABCD 顺时针旋转90︒,A 点对应点为H ,B 点对应点为E ,C 点对应点为F ,D 点对应点为G ,则可得到正方形EFGH . 故答案为:M【点评】本题考查了旋转的性质:旋转前后两图形全等,即对应角相等,对应线段相等;对应点与旋转中心的连线段的夹角等于旋转角.也考查了正方形的性质.14.如图,在四边形ABCD 中,//AD BC ,2AD =,22AB =A 为圆心,AD 为半径的圆与BC 相切于点E ,交AB 于点F ,则DF 的长为32π.【分析】连接AE ,根据圆的切线的性质可得AE BC ⊥,解Rt AEB ∆可求出ABE ∠,进而得到DAB ∠,然后运用弧长公式就可求出DF 的长度. 【解答】解:连接AE ,如图,AD 为半径的圆与BC 相切于点E ,AE BC ∴⊥,2AE AD ==.在Rt AEB ∆中, 22sin 222AE ABE AB ∠===, 45ABE ∴∠=︒. //AD BC ,180DAB ABE ∴∠+∠=︒, 135DAB ∴∠=︒,∴DF 的长度为135231802ππ⨯=; 故答案为:32π.【点评】本题考查了切线的性质、平行线的性质和等腰直角三角形的判定、特殊三角函数值,熟练掌握圆的切线垂直于过切点的半径和同圆的半径相等是关键.15.平面直角坐标系中,原点O 关于直线443y x =-+对称点1O 的坐标是 96(25,72)25 .【分析】由直线的解析式求得A 、B 的坐标,设1O O 与直线443y x =-+的交点为D ,作1O E x ⊥轴于E ,根据题意1OO AB ⊥,根据三角形面积公式求得OD 的长,即可求得1OO 的长,然后通过三角形相似求得OE 的长,进一步根据勾股定理求得1O E 的长,即可求得对称点1O 的坐标.【解答】解:如图,原点O 关于直线443y x =-+对称点1O ,1OO AB ∴⊥,设1O O 与直线443y x =-+的交点为D ,作1O E x ⊥轴于E ,由直线443y x =-+可知(3,0)A ,(0,4)B ,3OA ∴=,4OB =, 5AB ∴=,1122AOB S OA OB AB OD ∆==,125OA OB OD AB ∴==, 1245OO ∴=, 190ADO O EO ∠=∠=︒,1AOD EOO ∠=∠,AOD ∴∆∽△1O OE ,∴1OO OEOA OD=,即2451235OE =,9625OE ∴=, 17225O E ∴, ∴点1O 的坐标是96(25,72)25, 故答案为96(25,72)25.【点评】本题考查了坐标和图形变化-对称,三角形相似的判定和性质,勾股定理的应用等,求得直线与坐标轴的交点是解题的关键.16.定点O 、P 的距离是5,以点O 为圆心,一定的长为半径画圆O ,过点P 作O 的两条切线,切点分别是B 、C ,则线段BC 的最大值是 5 .【分析】首先说明点C 、B 在以OP 为直径的圆上,根据直径是圆中最长的弦,即可解决问题.【解答】解:PC 、PB 是O 的切线, 90PCO PBO ∴∠=∠=︒,∴点C 、B 在以OP 为直径的圆上,BC 是这个圆的弦,∴当5BC OP ==时,BC 的值最大(直径是圆中最长的弦).故答案为5.【点评】本题考查切线的性质、直径的性质等知识,解题的关键是学会添加辅助圆解决问题,属于中考常考题型. 三、解答题17.先化简,再求值:22212212x x xx x x x --+÷-+-,其中3x =. 【分析】原式第二项利用除法法则变形,约分后两项通分并利用同分母分式的加法法则计算得到最简结果,将x 的值代入计算即可求出值. 【解答】解:原式2(1)(1)(2)1121(1)211x x x x x xx x x x x +--+=+=+=----,当3x =时,原式4633131==--.【点评】此题考查了分式的化简求值,分式的加减运算关键是通分,通分的关键是找最简公分母;分式的乘除运算关键是约分,约分的关键是找公因式.18.(1)解不等式1132x x --,并把它的解集在数轴上表示出来; (2)若关于x 的一元一次不等式x a 只有3个负整数解,则a 的取值范围是 43a -<- . 【分析】(1)①去分母;②去括号;③移项;④合并同类项;⑤化系数为1,据此解不等式1132x x --,并把它的解集在数轴上表示出来即可. (2)根据关于x 的一元一次不等式x a 的3个负整数解只能是3-、2-、1-,求出a 的取值范围即可.【解答】解:(1)23(1)6x x --,2336x x ∴-+,解得3x -,这个不等式的解集在数轴上表示如下:.(2)关于x 的一元一次不等式x a 只有3个负整数解,∴关于x 的一元一次不等式x a 的3个负整数解只能是3-、2-、1-,a ∴的取值范围是:43a -<-.故答案为:43a -<-.【点评】此题主要考查了一元一次不等式的整数解,要熟练掌握,解决此类问题的关键在于正确解得不等式的解集,然后再根据题目中对于解集的限制得到下一步所需要的条件,再根据得到的条件进而求得不等式的整数解.19.一个不透明箱子中有2个红球,1个黑球和1个白球,四个小球的形状、大小完全相同. (1)从中随机摸取1个球,则摸到黑球的概率为14.(2)小明和小贝做摸球游戏,游戏规则如下.游戏规则让小明先从箱子中随机摸取个小球,记下颜色后放回箱子,摇匀后再让小贝随机摸取一个小球,记下颜色,若两人所摸小球的颜色相同,则小明胜:反之,则小贝胜你认为这个游戏公平吗?请说明理由.【分析】(1)依据箱子中有2个红球,1个黑球和1个白球,从中随机摸取1个球,可得摸到黑球的概率为14;(2)共有16种等可能的结果,其中两人所摸小球的颜色相同的有6种,两人所摸小球的颜色不同的有10种,据此可得小贝胜的可能性大,故这个游戏不公平.【解答】解:(1)箱子中有2个红球,1个黑球和1个白球,从中随机摸取1个球,则摸到黑球的概率为14,故答案为:14;(2)画树状图:共有16种等可能的结果,其中两人所摸小球的颜色相同的有6种,两人所摸小球的颜色不同的有10种,∴两人所摸小球的颜色相同的概率为63168=,两人所摸小球的颜色不同的概率为105168=,∴小贝胜的可能性大,∴这个游戏不公平.【点评】此题考查了列表法或树状图法求概率.判断游戏公平性需要先计算每个事件的概率,然后比较概率的大小,概率相等就公平,否则就不公平.20.某工厂有甲、乙两台机器加工同一种零件,已知一小时甲加工的零件数与一小时乙加工的零件数的和为36个,甲加工80个零件与乙加工100个零件的所用时间相等.求甲、乙两台机器每小时分别加工零件多少个?【分析】设甲机器每小时加工零件x个,则乙机器每小时加工零件(36)x-个,根据工作时间=工作总量÷工作效率结合甲加工80个零件与乙加工100个零件的所用时间相等,即可得出关于x的分式方程,解之经检验后即可得出结论.【解答】解:设甲机器每小时加工零件x个,则乙机器每小时加工零件(36)x-个,根据题意得:8010036x x=-,解得:16x=,经检验,16x=是原方程的解,36361620x∴-=-=.答:甲机器每小时加工零件16个,乙机器每小时加工零件20个.【点评】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.21.如图,等腰三角形ABC中,AB AC=.(1)用尺规作出圆心在直线BC上,且过A、C两点的O;(注:保留作图痕迹,标出点O,并写出作法)(2)若30B∠=︒,求证:AB与(1)中所作O相切.【分析】(1)作线段AC的垂直平分线交BC于O,以O为圆心,OC为半径作O即可;(2)只要证明AB OA⊥即可;【解答】(1)解:如图O即为所求.(2)证明:AB AC=,30B C ∴∠=∠=︒OA OC =, 30OAC C ∴∠=∠=︒, 60AOB OAC C ∴∠=∠+∠=︒, 90ABO AOB ∴∠+∠=︒, 90BAO ∴∠=︒, AB OA ∴⊥,AB ∴是O 的切线.【点评】本题考查作图-复杂作图、等腰三角形的性质、切线的判定、线段的垂直平分线的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.22.现在正是草莓热销的季节,某水果零售商店分两批次从批发市场共购进草莓40箱,已知第一、二次进货价分别为每箱50元、40元,且第二次比第一次多付款700元. (1)设第一、二次购进草莓的箱数分别为a 箱、b 箱,求a ,b 的值;(2)若商店对这40箱草莓先按每箱60元销售了x 箱,其余的按每箱35元全部售完. ①求商店销售完全部草莓所获利润y (元)与x (箱)之间的函数关系式; ②当x 的值至少为多少时,商店才不会亏本. (注:按整箱出售,利润=销售总收入-进货总成本)【分析】(1)根据题意可以得到相应的方程组,从而可以解答本题; (2)①根据题意可以得到y 与x 的函数关系式;②由题意可知,若不亏本,则所获取利润不小于0,从而可以解答本题. 【解答】解:(1)由题意可得, 405070040a b a b +=⎧⎨+=⎩, 解得,1030a b =⎧⎨=⎩,即a ,b 的值分别是10,30;(2)①由题意可得,6035(40)1050304025300y x x x =+--⨯-⨯=-,即商店销售完全部草莓所获利润y (元)与x (箱)之间的函数关系式是25300y x =-; ②商店要不亏本,则0y ,253000x ∴-,解得,12x ,答:当x 的值至少为12时,商店才不会亏本.【点评】本题考查二元一次方程组的应用、一次函数的应用、一元一次不等式的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用函数的思想和不等式的性质解答.23.某长方体包装盒的表面积为2146cm ,其展开图如图所示.求这个包装盒的体积.【分析】分别表示出长方体的各侧面面积,进而得出等式求出答案.【解答】解:设高为x cm ,则长为(132)x cm -,宽为1(142)2x cm -.由题意,得11[(132)(142)(142)(132)]214622x x x x x x --+-+-⨯=,解得:12x =,29x =-(舍去),∴长为:9cm ,宽为:5cm .长方体的体积为:395290cm ⨯⨯=,答:这个包装盒的体积为390cm .【点评】此题主要考查了几何体的展开图以及几何体的表面积,正确表示出长方体的侧面积是解题关键.24.如图,已知30ABM ∠=︒,20AB =,C 是射线BM 上一点.(1)在下列条件中,可以唯一确定BC 长的是 ②③ ;(填写所有符合条件的序号)①13AC =;②12tan 5ACB ∠=;③ABC ∆的面积为126. (2)在(1)的答案中,选择一个作为条件,画出示意图,求BC 的长.【分析】(1)根据AC 的长大于点A 到直线的距离可判断①,利用AAS 可判断②,根据平行线间的距离可判断③;(2)②:先求得cos 103BD AB B ==,再求得25tan 6AD CD ACB ==∠即可;③:作CE AB ⊥,根据面积得出12.6CE =,由sin CEBC B=可得答案.【解答】解:(1)①以点A 为圆心、13为半径画圆,与BM 有两个交点,不唯一;②由12tan 5ACB ∠=知ACB ∠的大小确定,在ABC ∆中,ACB ∠、B ∠及AB 确定,此时的三角形唯一;③AB 的长度和三角形的面积均确定,则点C 到AC 的距离即可确定,则BM 上的点C 是唯一的; 故答案为:②③;(2)方案一:选② 作AD BC ⊥于D ,则90ADB ADC ∠=∠=︒. 在Rt ABD ∆中,90ADB ∠=︒,sin 10AD AB B ∴==,cos 103BD AB B == 在Rt ACD ∆中,90ADC ∠=︒,25tan 6AD CD ACB ∴==∠.256BC BD CD ∴=+=. 方案二:选③,作CE AB ⊥于E ,则90BEC ∠=︒. 由12ABC S AB CE ∆=得12.6CE =. 在Rt BEC ∆中,90BEC ∠=︒,25.2sin CEBC B∴==. 【点评】本题主要考查解直角三角形,熟练掌握三角函数的定义是解题的关键. 25.某商场经市场调查,发现进价为40元的某童装每月的销售量y (件)与售价x (元)的相关信息如下:(1)试用你学过的函数来描述y 与x 的关系,这个函数可以是 一次函数 (填一次函数、反比例函数或二次函数),求这个函数关系式; (2)售价为多少元时,当月的利润最大?最大利润是多少?【分析】(1)由x 的值每增加10元时,y 的值均减小20件知这个函数为一次函数,待定系数法求解可得;(2)根据“总利润=单件利润⨯销售量”列出函数解析式,再配方成顶点式依据二次函数的性质是解题的关键.【解答】解:(1)由表可知,x 的值每增加10元时,y 的值均减小20件, 据此可知y 与x 的函数关系为一次函数, 设该一次函数为y k = x b +, 代入(60,280)和(70,260),得:6028070260k b k b +=⎧⎨+=⎩,解得:2400k b =-⎧⎨=⎩,2400y x ∴=-+,将(80,240),(90,220)代入上式等式成立; 故答案为:一次函数.(2)设月利润为w 元,则2(40)(40)(2400)2(120)12800w x y x x x =-=--+=--+,20-<,∴当120x =时,w 有最大值12800,答:当售价定为120元时,利润最大,最大值为12800元.【点评】本题主要考查二次函数的应用,熟练掌握待定系数法求函数解析式及根据相等关系列出函数解析式是解题的关键.26.(1)如图①,在矩形ABCD 中,4AB =,10AD =,在BC 边上是否存在点P ,使90APD ∠=︒,若存在,请用直尺和圆规作出点P 并求出BP 的长.(保留作图痕迹) (2)如图②,在ABC ∆中,60ABC ∠=︒,12BC =,AD 是BC 边上的高,E 、F 分别为AB ,AC 的中点,当6AD =时,BC 边上是否存在一点Q ,使90EQF ∠=︒,求此时BQ 的长.【分析】(1)以AB 为直径作圆,交BC 于1P ,2P ,点1P 、2P 为所求的点; (2)如图②中,因为EF 分别为AB 、AC 的中点,推出//EF BC ,162EF BC ==,因为6AD =,AD BC ⊥,推出EF 与BC 间距离为3,推出以EF 为直径的O 与BC 相切,推出BC 上符合条件的点Q 只有一个,记O 与BC 相切于点Q ,连接OQ ,过点E 作EG BC ⊥,垂足为G ,想办法求出BQ 即可;【解答】解:(1)如图①所示,点1P 、2P 为所求的点;在矩形ABCD 中,连接1AP 、1DP ,10AD BC ==,4AB CD ==, 设1BP x =,则110PC x =-, 190APD ∠=︒, 1190APB CPD ∴∠+∠=︒, 1190BAP APB ∠+∠=︒, 11BAP CPD ∴∠=∠, 又90B C ∠=∠=︒, 1ABP ∴∆∽△1PCD , ∴11BPAB PC CD =, ∴4104xx =-, 解得:12x =,28x =,BP ∴的长是2或8.(2)如图②中,EF 分别为AB 、AC 的中点, //EF BC ∴,162EF BC ==, 6AD =,AD BC ⊥,EF ∴与BC 间距离为3,∴以EF 为直径的O 与BC 相切,BC ∴上符合条件的点Q 只有一个,记O 与BC 相切于点Q ,连接OQ ,过点E 作EG BC ⊥,垂足为G ,3EG OE ∴==,∴四边形EOQG 为正方形,在Rt EBG ∆中,60B ∠=︒,3EG =, 3BG ∴=,33BQ ∴=+.【点评】本题考查作图-复杂作图、直角三角形斜边中线的性质、矩形的性质、相似三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型. 27.如图,在Rt ABC ∆中,90ACB ∠=︒,8CA =,6CB =,动点P 从C 出发沿CA 方向,以每秒1个单位长度的速度向A 点匀速运动,到达A 点后立即以原来速度沿AC 返回;同时动点Q 从点A 出发沿AB 以每秒1个单位长度向点B 匀速运动,当Q 到达B 时,P 、Q 两点同时停止运动.设P 、Q 运动的时间为t 秒(0)t >.(1)当t 为何值时,//PQ CB ?(2)在点P 从C 向A 运动的过程中,在CB 上是否存在点E 使CEP ∆与PQA ∆全等?若存在,求出CE 的长;若不存在,请说明理由;(3)伴随着P 、Q 两点的运动,线段PQ 的垂直平分线DF 交PQ 于点D ,交折线QB BC CP --于点F .当DF 经过点C 时,求出t 的值.【分析】(1)根据勾股定理求出AB ,根据平行线分线段成比例定理列出比例式,计算即可; (2)根据全等三角形的性质得到90PQA ∠=︒,根据相似三角形的性质求出PE ,根据勾股定理计算;(3)分P 由C 向A 运动和P 由A 向C 运动两种情况,根据线段垂直平分线的性质、相似三角形的性质计算.【解答】解:(1)如图1,CP AQ t ==,则8AP t =-, 在Rt ABC ∆中,由勾股定理可得10AB =, //PQ CB ,∴AP AQAC AB=,即8810t t -=, 解得,409t =, ∴当409t =时,//PQ CB ; (2)存在,如图2,由题意可知CP AQ t ==,又90PCE ∠=︒, 要使CEP ∆与PQA ∆全等,只有90PQA ∠=︒这一种情况, 此时CE PQ =,PE AP =, PQA BCA ∆∆∽,∴AP AQ AB AC =,即8108t t-=,解得,329t =, 则4089PE AP t ==-=, 在Rt PCE ∆中,由勾股定理可得83CE =;(3)①当P 由C 向A 运动时,CQ CP AQ t ===, QCA QAC ∴∠=∠, QCB QBC ∴∠=∠, CQ BQ t ∴==, 12BQ AQ AB ∴==, 即2AB t =, 解得5t =;②如图3,当P 由A 向C 运动时,过Q 作QG CB ⊥交CB 于点G , 16CQ CP t ==-,10BQ t =-,则BQ GQ BA CA =,即10108t GQ-=, 解得,4(10)5GQ t =-,同理可求得3(10)5BG t =-,36(10)5GC t ∴=--,在Rt CGQ ∆中,由勾股定理可得:222CG GQ CQ +=, 即22234[6(10)][(10)](16)55t t t --+-=-,解得10t =,综上可知满足条件的t 的值为5和10.【点评】本题考查的是相似三角形的判定和性质、勾股定理的应用,掌握相似三角形的判定定理和性质定理是解题的关键.。

2020年江苏省南京市中考数学模拟检测试卷附解析

2020年江苏省南京市中考数学模拟检测试卷附解析

2020年江苏省南京市中考数学模拟检测试卷 学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.∠A 是锐角,tanA>33,则∠A ( ) A .小于30° B .大于30° C .小于60° D .大于60°2.下列四个命题:①直径所对的圆周角是直角;②圆既是轴对称图形,又是中心对称图形;③在同一个圆中,相等的圆周角所对的弦相等;④三个点确定一个圆. 其中正确命题的个数为( )A .1 个B .2 个C .3 个D .4 个 3.已知ABC △内接于⊙O ,OD AC ⊥于D ,如果32COD =∠,那么B ∠的度数为( )A .16°B .32°C .16°或164°D .32°或148°4.如图,一块等边三角形的木板,边长为 1,现将木板沿水平线翻滚(如图),那么B 点从开始至结束所走过的路程长度为( )A .32πB .43πC .4D .322π+5.用反证法证明“a b >”时应假设( )A .a b >B .a b <C .a b =D .a b ≤6.证明下列结论不能运用公理“同位角相等,两直线平行”的是 ( )A .同旁内角互补,两直线平行B .内错角相等,两直线平行C .对顶角相等D .平行于同一直线的两条直线平行7.编织一副手套收费3.5元,则加工费y (元)与加工件数x (副)之间的函数解析式为 ( )A .y=3.5+xB .y=3.5-xC .y=3.5xD . 3.5y x = 8.2421-可以被在60 和 70 之间的两个数整除,这两个数是( )A .61,63B .63,65C . 65,67D . 67,699.从1 到 20 的 20 个自然数中任取一个,既是2 的倍数,又是 3 的倍数的概率是( )A .120B .310C . 12 D .320 10.下列英文字母中是轴对称图形的是( )A .SB .HC .PD .Q二、填空题11.在一个有两层的书架中,上层放有语文、数学两本书,下层放有科学、英语、社会 3 本书,由于封面都被同样的纸包起来,无法辨认,现分别从上下层中各抽出一本书,恰好分别是数学和社会的概率是 .12.已知矩形的面积为 24㎝2,那么矩形的长y(㎝)与宽 x(cm)之间的函数解析式为 ,比例系数是 .13.已知223x x --与7x +的值相等,则x 的值是 .14.如图所示,□ABCD 中,AB=8 cm ,64ABCD S =cm 2,OE ⊥AB 于E ,则OE= cm .15.在平面直角坐标系中,横坐标、纵坐标都为整数的点称为整点:观察图中每一个正方形(实线)四条边上的整点的个数,请你猜测由里向外第l0个正方形(实线)四条边上的整点个数共有 个.16.在正数种运算“*”,其规则为a *b =11a b+,根据这个规则(1)*(1)0x x -+=的解为 . 17.(12a 3-8a 2+25a )÷4a= . 18.3227xy z -的次数是 ,系数是 . 19.33亿精确到 位,有 个有效数字,它们是 ;26.5万精确到 位,有 个有效数字,它们是 .三、解答题20.如图所示:大王站在墙前,小明站在墙后,大王不能让小明看见,请你画出小明的活动区域.21.已知:如图,P是正方形ABCD内一点,在正方形ABCD外有一点E,满足∠ABE=∠CBP,BE=BP,(1) 求证:△CPB≌△AEB;(2) 求证:PB⊥BE;(3) 若PA∶PB=1∶2,∠APB=135°,求PA∶AE的值.22.若规定两数a,b通过“※”运算,得到4ab,即a※b=4ab,例如 2※6=4×2×6 =48.(1)求3※5 的值;(2)求x※x+2※x-2※4=0中x的值.23.如图,在矩形ABCD中,AB=2BC,在CD上取一点E.使AE=AB,求∠EBC的度数.24.解不等式,并把不等式的解在数轴上表示出来:(1)3(3)4(1)2y y-<++;(2)323 228x x-≥-25.阅读下列解题过程:已知:a、b、c为△ABC一的三边,且满足222244a cbc a b-=-,试判定△ABC的形状.解:∵222244a cbc a b-=-(A)∴2222222()()()c a b a b a b-=+-,(B)∴222c a b=+, (C)∴△ABC是直角三角形.问:(1)上述解题过程中,从哪一步开始出现错误?请你写出该步的代号:.(2)错误的原因为:.(3)本题正确的结论是:.26.如图,已知∠ABC = 50°,∠ACB = 80°,∠ABC、∠ACB 的平分线交于点O.过点O 作BC 的平行线,分别交 AB、AC 于点D、E.求∠BOC的度数.27.探索发现:两个多项式相除,可以先把这两个多项式都按照同一字母降幂排列,然后再仿照两个多位数相除的计算方法,用竖式进行计算,例如(7x+2+6x2)÷(2x+1)•,•仿照672÷21计算如下:F E D C B A 因此(7x+2+6x 2)÷(2x+1)=3x+2,阅读上述材料后,试判断x 3-x 2-5x-3能否被x+1•整除,说明理由.28.如图,BD =CD ,∠ABD =∠ACD ,DE 、DF 分别垂直于AB 及AC 交延长线于E 、F . 求证:DE =DF .29. 已知一个角的补角比这个角小 30°,求这个角的度数.30.如图,射线OC 和OD 把平角AOB 三等分,OE 平分∠AOC ,OF 平分∠BOD .(1)求∠COD 的度数;(2)写出图中所有的直角;(3)写出∠COD 的所有余角和补角.【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.B2.C3.D4.B5.D6.C7.C8.B9.D10.B二、填空题11. 1612. 24y x=,24 13.5 或-214.415.4016.0x =17.85232+-a a 18. 4,87- 19.亿两;3,3;千,三;2,6,5三、解答题20.如图,阴影部分即为小明的活动区域.21.解(1) 正方形ABCD ,∴AB=BC , ∠ABE =∠CBP ,BE =BP ,∴△CPB ≌△AEB(2) ∠ABC =∠CBP+∠ABP =90°,∠PBE =∠EBA+∠ABP而∠ABE =∠CBP ,∴∠ABC =∠PBE=90°,∴PB ⊥BE .(3)连结PE , △CPB ≌△AEB ∴PB=EB PB ⊥BE ,∴△EPB 为等腰直角三角形,∴∠BPE =∠BEP=45°,∠APB =135°,∴∠APE =90°,PA ∶PB =1∶2,设PA=x ,则PB=2x ,PE=x 22,∴由勾股定理得AE=22)22(x x +=3x ,∴PA ∶AE=x ∶3x =1∶3. 22.(1) 60 (2)12x =,24x =-23.15°24.(1)y>-15;(2)x ≤412图略 25.(1)C ;(2)220a b -=可能成立;(3)△ABC 为等腰三角形或直角三角形26.115°27.能,商式为322--x x .28.∠ABD=∠ACD ,则∠E+∠BDE =∠F+∠CDF, 由于 ∠E=∠F ,∴∠BDE =∠CDF ,∴△BED ≌△CFD(AAS),∴DE=DF .29.105°30.(1)60° (2)∠DOE 与∠COF (2)∠COD 的余角:∠AOE 、∠EOC 、∠DOF 、∠FOB ;∠COD 的补角:∠AOD 、∠EOF 、∠BOC。

2020届中考模拟南京市江宁区中考数学二模试卷(含参考答案)

2020届中考模拟南京市江宁区中考数学二模试卷(含参考答案)

江苏省南京市江宁区中考数学二模试卷一、选择题:1.下列计算结果为负数的是()A.|﹣3| B.(﹣3)0C.﹣(+3) D.(﹣3)22.下列运算正确的是()A.3a2﹣a2=3 B.(a2)3=a5C.a3•a6=a9D.a6÷a3=a23.四名运动员参加了射击预选赛,他们成绩的平均环数及其方差s2如表所示.如果选出一个成绩较好且状态稳定的人去参赛,那么应选()甲乙丙丁7 8 8 7S2 1 1 1.2 1.8A.甲B.乙C.丙D.丁4.一个几何体的三视图如图所示,则这个几何体是()A.B. C.D.5.某小组在“用频率估计概率”的实验中,统计了某种结果出现的频率,绘制了如图的折线图,那么符合这一结果的实验最有可能的是()A.在“石头、剪刀、布”的游戏中,小明随机出的是“剪刀”B.袋子中有1个红球和2个黄球,它们只有颜色上的区别,从中随机地取出一个球是黄球C.掷一枚质地均匀的硬币,落地时结果是“正面向上”D.掷一个质地均匀的正六面体骰子,落地时面朝上的点数是66.直线l1∥l2∥l3,且l1与l2的距离为1,l2与l3的距离为3.把一块含有45°角的直角三角板如图放置,顶点A、B、C恰好分别落在三条直线上,则△ABC的面积为()A.B.C.12 D.25二、填空题(本大题共10小题,每小题2分,共20分)7.人的眼睛可以看见的红光的波长是0.000077cm,将0.000077用科学记数法表为.8.分解因式:x 3﹣x=.9.函数中,自变量x 的取值范围是.10.如图,已知D为△ABC边AB上一点,AD=2BD,DE∥BC交AC于E,AE=6,则EC= .11.如图,在⊙O中,弦AB∥CD,若∠ABC=40°,则∠BOD= .12.已知是二元一次方程组的解,则m+3n的值为.13.直接写出计算结果:﹣= .14.若一个圆锥底面圆的半径为3cm,高为4cm,则这个圆锥的侧面积为cm2.(结果保留π)15.一次函数y=kx+b与反比例函数y=中,若x与y的部分对应值如表:x …﹣3 ﹣2 ﹣11 2 3 …y=kx+b … 5 4 3 1 0 ﹣1 …y=… 1 3 ﹣3﹣﹣1 …则关于x的不等式≤kx+b的解集是.16.如图,AC=4,点B是线段AC的中点,直线l过点C且与AC的夹角为60°,则直线l上有点P,使得∠APB=30°,则PC的长为.三、解答题(本大题共11小题,共88分)17.解不等式组,并写出不等式组的整数解.18.化简分式:(﹣)÷,再从﹣2<x<3的范围内选取一个你最喜欢的值代入求值.19.已知关于x的方程x2﹣mx﹣3x+m﹣4=0(m为常数).(1)求证:方程有两个不相等的实数根;(2)设x1,x2是方程的两个实数根,求(x1﹣1)(x2﹣1)的值.20.如图,将△ABC在网格中(网格中每个小正方形的边长均为1)依次进行位似变换、轴对称变换和平移变换后得到△A3B3C3.(1)△ABC与△A1B1C1的位似比等于;(2)在网格中画出△A1B1C1关于y轴的轴对称图形△A2B2C2;(3)请写出△A3B3C3是由△A2B2C2怎样平移得到的?(4)设点P(x,y)为△ABC内一点,依次经过上述三次变换后,点P的对应点的坐标为.21.如图,在平行四边形ABCD中,点E为AD的中点,延长CE交BA的延长线于点F.(1)求证:AB=AF;(2)若BC=2AB,∠BCD=110°,求∠ABE的度数.22.为增强学生的身体素质,教育行政部门规定学生每天参加户外活动的平均时间不少于1小时.为了解学生参加户外活动的情况,对部分学生参加户外活动的时间进行抽样调查,并将调查结果绘制作成如下两幅不完整的统计图,请你根据图中提供的信息解答下列问题:(1)求户外活动时间为1.5小时的人数,并补充频数分布直方图;(2)表示户外活动时间1小时的扇形圆心角的度数为°;(3)本次调查中学生参加户外活动的平均时间是否符合要求?户外活动时间的众数和中位数是多少?23.江苏卫视《最强大脑》曾播出一期“辨脸识人”节目,参赛选手以家庭为单位,每组家庭由爸爸妈妈和宝宝3人组成,爸爸、妈妈和宝宝分散在三块区域,选手需在宝宝中选一个宝宝,然后分别在爸爸区域和妈妈区域中正确找出这个宝宝的父母,不考虑其他因素,仅从数学角度思考,已知在某分期比赛中有A、B、C三组家庭进行比赛:(1)选手选择A组家庭的宝宝,在妈妈区域中正确找出其妈妈的概率;(2)如果任选一个宝宝(假如选A组家庭),通过列表或树状图的方法,求选手至少正确找对宝宝父母其中一人的概率.24.小明想利用所学数学知识测量学校旗杆高度,如图,旗杆的顶端垂下一绳子,将绳子拉直钉在地上,末端恰好在C处且与地面成60°角,小明拿起绳子末端,后退至E处,并拉直绳子,此时绳子末端D距离地面1.6m且绳子与水平方向成45°角.求旗杆AB的高度和小明后退的距离EC.(参考数据:≈1.41,≈1.73,结果精确到0.1m)25.(9分)如图,正方形ABCD的边长为2cm,以边BC为直径作半圆O,点E在AB上,且AE=1.5cm,连接DE.(1)DE与半圆O相切吗?若相切,请给出证明;若不相切,请说明情况;(2)求阴影部分的面积.26.“双十一”淘宝网销售一款工艺品,每件的成本是50元.销售期间发现,销售单价是100元时,每天的销售量是50件,而销售单价每降低1元,每天就可多售出5件,但要求销售单价不得低于成本.(1)当降价了6元时,每天的销售利润是元(直接写出结果);(2)当降价了多少元时,每天的销售利润最大?最大利润是多少?(3)如果每天的销售利润不低于4000元,那么每天的总成本至少需要多少元?如图,在直线AD上放置一个等腰直角三角形AOB和一个正方形BODC,∠AOB=90°,等腰直角三角形的直角边和正方形的边长均为2,⊙O1为正方形BODC的外接圆,动点P从点A出发以每秒个单位长度的速度沿A→B→A运动后停止;动点Q从点A出发以每秒2个单位长度的速度沿A→O→D→C→B运动,AO1交BO于E点,P、Q运动的时间为t(秒).(1)直接写出:⊙O1的半径长为,S△ABE= ;(2)试探究点P、Q从开始运动到停止,直线PQ与⊙O1有哪几种位置关系?并直接写出对应的运动时间t 的范围;(3)当Q点在折线AD→DC上运动时,是否存在某一时刻t使得S△APQ:S△ABE=3:4?若存在,请求出t的值;若不存在,说明理由.江苏省南京市江宁区中考数学二模试卷参考答案与试题解析一、选择题:1.下列计算结果为负数的是()A.|﹣3| B.(﹣3)0C.﹣(+3) D.(﹣3)2【考点】零指数幂;相反数;绝对值;有理数的乘方.【分析】分别根据绝对值的性质:当a是负有理数时,a的绝对值是它的相反数﹣a;零次幂:a0=1(a≠0);相反数的概念:只有符号不同的两个数叫做互为相反数;乘方的意义进行计算,进而可得答案.【解答】解:A、|﹣3|=3,故此选项错误;B、(﹣3)0=1,故此选项错误;C、﹣(+3)=﹣3,故此选项正确;D、(﹣3)2=9,故此选项错误;故选:B、【点评】此题主要考查了零次幂、绝对值、相反数、乘方,关键是熟练掌握课本基础知识.2.下列运算正确的是()A.3a2﹣a2=3 B.(a2)3=a5C.a3•a6=a9D.a6÷a3=a2【考点】同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.【分析】根据合并同类项法则、积的乘方、同底数幂的乘法和除法,对各项计算后即可判断.【解答】解:A、3a2﹣a2=2a2,错误;B、(a2)3=a6,错误;C、a3•a6=a9,正确;D、a6÷a3=a3,错误;故选C.【点评】本题考查包括合并同类项、积的乘方、同底数幂的乘法和除法,需熟练掌握且区分清楚,才不容易出错.3.四名运动员参加了射击预选赛,他们成绩的平均环数及其方差s2如表所示.如果选出一个成绩较好且状态稳定的人去参赛,那么应选()甲乙丙丁7 8 8 7S2 1 1 1.2 1.8A.甲B.乙C.丙D.丁【考点】方差.【分析】此题有两个要求:①成绩较好,②状态稳定.于是应选平均数大、方差小的运动员参赛.【解答】解:由于乙的方差较小、平均数较大,故选乙.故选B.【点评】本题考查平均数和方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.4.一个几何体的三视图如图所示,则这个几何体是()A.B. C.D.【考点】由三视图判断几何体.【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.结合图形,使用排除法来解答.【解答】解:如图,俯视图为三角形,故可排除A、B.主视图以及左视图都是矩形,可排除C,故选:D.【点评】本题考查了由三视图判断几何体的知识,难度一般,考生做此类题时可利用排除法解答.5.某小组在“用频率估计概率”的实验中,统计了某种结果出现的频率,绘制了如图的折线图,那么符合这一结果的实验最有可能的是()A.在“石头、剪刀、布”的游戏中,小明随机出的是“剪刀”B.袋子中有1个红球和2个黄球,它们只有颜色上的区别,从中随机地取出一个球是黄球C.掷一枚质地均匀的硬币,落地时结果是“正面向上”D.掷一个质地均匀的正六面体骰子,落地时面朝上的点数是6【考点】模拟实验.【分析】根据统计图可知,试验结果在0.16附近波动,即其概率P≈0.16,计算四个选项的概率,约为0.16者即为正确答案.【解答】解:A、在“石头、剪刀、布”的游戏中,小明随机出的是“剪刀”的概率为,故本选项错误;B、袋子中有1个红球和2个黄球,它们只有颜色上的区别,从中随机地取出一个球是黄球的概率为,故本选项错误;C、掷一枚质地均匀的硬币,落地时结果是“正面向上”的概率是,故本选项错误;D、掷一个质地均匀的正六面体骰子,落地时面朝上的点数是6的概率为≈0.17,故本选项正确.故选D.【点评】本题考查了利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:频率=所求情况数与总情况数之比.同时此题在解答中要用到概率公式.6.直线l1∥l2∥l3,且l1与l2的距离为1,l2与l3的距离为3.把一块含有45°角的直角三角板如图放置,顶点A、B、C恰好分别落在三条直线上,则△ABC的面积为()A.B.C.12 D.25【考点】全等三角形的判定与性质;平行线之间的距离;等腰直角三角形.【分析】作BE⊥l3于E,作AF⊥l3于F,得出BE=3,AF=3+1=4,再证明△BEC≌△CFA,得出CE=AF,根据勾股定理求出BC,即可得出结果.【解答】解:作BE⊥l3于D,作AF⊥3于F,如图所示:则∠BEC=∠CFA=90°,BE=3,AF=3+1=4,∴∠ECB+∠EBC=90°,∵△ABC是等腰直角三角形,∴∠ACB=90°,AC=BC,∴∠ECB+∠FCA=90°,∴∠EBC=∠FCA,在△BEC和△CFA中,,∴△BEC≌△CFA(AAS),∴CE=AF=4,∴BC==5,∴AC=BC=5,∴S△ABC=AC•BC=×5×5=.故选:B.【点评】本题考查了全等三角形的判定与性质、平行线之间的距离、勾股定理以及等腰直角三角形的性质;通过作辅助线证明三角形全等得出对应边相等是解决问题的关键.二、填空题(本大题共10小题,每小题2分,共20分)7.人的眼睛可以看见的红光的波长是0.000077cm,将0.000077用科学记数法表为7.7×10﹣5.【考点】科学记数法—表示较小的数.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.000077=7.7×10﹣5.故答案为:7.7×10﹣5.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.8.分解因式:x3﹣x= x(x+1)(x﹣1).【考点】提公因式法与公式法的综合运用.【专题】因式分解.【分析】本题可先提公因式x,分解成x(x2﹣1),而x2﹣1可利用平方差公式分解.【解答】解:x3﹣x,=x(x2﹣1),=x(x+1)(x﹣1).故答案为:x(x+1)(x﹣1).【点评】本题考查了提公因式法,公式法分解因式,先提取公因式后再利用平方差公式继续进行因式分解,分解因式一定要彻底.9.函数中,自变量x的取值范围是x≠﹣5 .【考点】函数自变量的取值范围.【分析】根据分式的意义,分母不等于0,可以求出x的范围.【解答】解:根据题意得:x+5≠0,解得x≠﹣5.故答案为x≠﹣5.【点评】本题考查了函数自变量的取值范围问题,函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.10.如图,已知D为△ABC边AB上一点,AD=2BD,DE∥BC交AC于E,AE=6,则EC= 3 .【考点】平行线分线段成比例.【分析】由平行线分线段成比例定理得出比例式,即可得出结果.【解答】解:∵DE∥BC,AD=2BD,∴=2,∴CE=AE=3,故答案为:3.【点评】本题考查了平行线分线段成比例定理;由平行线分线段成比例定理得出比例式是解决问题的关键.11.如图,在⊙O中,弦AB∥CD,若∠ABC=40°,则∠BOD= 80°.【考点】圆周角定理;平行线的性质.【分析】根据平行线的性质由AB∥CD得到∠C=∠ABC=40°,然后根据圆周角定理求解.【解答】解:∵AB∥CD,∴∠C=∠ABC=40°,∴∠BOD=2∠C=80°.故答案为80°.【点评】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,一条弧所对的圆周角的度数等于它所对的圆心角度数的一半.也考查了平行线的性质.12.已知是二元一次方程组的解,则m+3n的值为 3 .【考点】二元一次方程组的解.【分析】根据方程组的解满足方程,把解代入,可得关于m、n的二元一次方程组,根据两方程相加,可得答案.【解答】解:把代入得,①+②得m+3n=3,故答案为:3.【点评】本题考查了二元一次方程组的解,先把解代入得到关于m、n得二元一次方程组,再把两方程相加.13.直接写出计算结果:﹣= ﹣.【考点】二次根式的混合运算.【专题】推理填空题.【分析】先对原式化简,然后合并同类项即可解答本题.【解答】解:==﹣,故答案为:﹣.【点评】本题考查二次根式的混合运算,解题的关键是明确二次根式的混合运算的计算方法.14.若一个圆锥底面圆的半径为3cm,高为4cm,则这个圆锥的侧面积为15πcm2.(结果保留π)【考点】圆锥的计算.【专题】计算题.【分析】先利用勾股定理计算出圆锥的母线长,然后根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形的面积公式计算这个圆锥的侧面积.【解答】解:这个圆锥的母线长==5,所以这个圆锥的侧面积=•2π•3•5=15π(cm2).故答案为15π.【点评】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.15.一次函数y=kx+b与反比例函数y=中,若x与y的部分对应值如表:x …﹣3 ﹣2 ﹣11 2 3 …y=kx+b … 5 4 3 1 0 ﹣1 …y=… 1 3 ﹣3﹣﹣1 …则关于x的不等式≤kx+b的解集是x≤﹣1或0<x≤3 .【考点】反比例函数与一次函数的交点问题.【分析】先根据x与y的部分对应值求得反比例函数的解析式,再求另一个交点坐标,即可得出关于x的不等式≤kx+b的解集.【解答】解:由表可知,一个交点坐标为(﹣1,3),反比例函数的解析式为y=﹣,另一个交点为(3,﹣1),故关于x的不等式≤kx+b的解集是x≤﹣1或0<x≤3.【点评】本题考查了反比例函数与一次函数的交点问题,由反比例函数的解析式得出另一个交点是解题的关键.16.如图,AC=4,点B是线段AC的中点,直线l过点C且与AC的夹角为60°,则直线l上有点P,使得∠APB=30°,则PC的长为4或2 .【考点】勾股定理;含30度角的直角三角形.【专题】分类讨论.【分析】过点B作AC的垂线交直线l于点P,作AP′⊥直线l于点P′,根据线段垂直平分线的性质、直角三角形的性质解答即可.【解答】解:过点B作AC的垂线交直线l于点P,则直线PB是线段AC的垂直平分线,∴PA=PC,又直线l过点C且与AC的夹角为60°,∴△PAC是等边三角形,∵AB=BC,∴∠APB=∠APC=30°,∴PC=PA=2AB=4,作AP′⊥直线l于点P′,∵AB=BC,∴P′B=BC,又直线l过点C且与AC的夹角为60°,∴△P′BC是等边三角形,∴P′C=BC=2,故答案为:4或2.【点评】本题考查的是线段的垂直平分线的性质和直角三角形的性质,掌握直角三角形斜边的中线等于斜边的一半是解题的关键,解答时,注意分情况讨论思想的应用.三、解答题(本大题共11小题,共88分)17.解不等式组,并写出不等式组的整数解.【考点】解一元一次不等式组;一元一次不等式组的整数解.【分析】此题可先根据一元一次不等式组解出x的取值,根据x是整数解得出x的可能取值.【解答】解:解不等式3(x+1)>4x+2,去括号得,3x+3>4x+2,移项、合并同类项得,﹣x>﹣1,化系数为1得,x<1;解不等式,去分母得,3x≥2x﹣2,移项、合并同类项得x≥﹣2,(3分)∴不等式组的解集是:﹣2≤x<1.(4分)∴不等式组的整数解是:﹣2,﹣1,0.(5分)【点评】本题主要考查不等式组的解法,及根据未知数的范围确定它所满足的特殊条件的值.一般方法是先解不等式组,再根据解集求出特殊值.18.化简分式:(﹣)÷,再从﹣2<x<3的范围内选取一个你最喜欢的值代入求值.【考点】分式的化简求值.【专题】计算题.【分析】先把括号内通分和除法运算化为乘法运算,再把分子分母因式分解后约分得到原式=2x+4,然后根据分式有意义的条件取x=2代入计算即可.【解答】解:原式=•=2x+4,当x=2,原式=2×2+4=8.【点评】本题考查了分式的化简求值:先把分式化简后,再把分式中未知数对应的值代入求出分式的值.在化简的过程中要注意运算顺序和分式的化简.化简的最后结果分子、分母要进行约分,注意运算的结果要化成最简分式或整式.19.已知关于x的方程x2﹣mx﹣3x+m﹣4=0(m为常数).(1)求证:方程有两个不相等的实数根;(2)设x1,x2是方程的两个实数根,求(x1﹣1)(x2﹣1)的值.【考点】根与系数的关系;根的判别式.【分析】(1)将原方程变形为一般式,代入系数求出△=(m+1)2+24>0,由此即可证出结论;(2)由根与系数的关系得出“x1+x2=m+3,x1•x2=m﹣4”,再将(x1﹣1)(x2﹣1)变形成含x1+x2和x1•x2的形式,代入数据即可得出结论.【解答】(1)证明:∵关于x的方程x2﹣mx﹣3x+m﹣4=0,∴此方程为x2﹣(m+3)x+m﹣4=0,∴△=[﹣(m+3)]2﹣4(m﹣4)=m2+2m+25=(m+1)2+24,∴△>0,∴关于x的方程x2﹣mx﹣3x+m﹣4=0有两个不相等的实数根.(2)解:∵x1,x2是方程的两个实数根,∴x1+x2=﹣=m+3,x1•x2==m﹣4,∴(x1﹣1)(x2﹣1)=x1•x2﹣(x1+x2)+1=(m﹣4)﹣(m+3)+1=﹣6.【点评】本题考查了根的判别式以及根与系数的关系,解题的关键是:(1)找出△=(m+1)2+24>0;(2)结合根与系数的关系找出x1+x2=m+3,x1•x2=m﹣4.本题属于基础题,难度不大,解决该题型题目时,由根的判别式的符号来判断方程根的个数是关键.20.如图,将△ABC在网格中(网格中每个小正方形的边长均为1)依次进行位似变换、轴对称变换和平移变换后得到△A3B3C3.(1)△ABC与△A1B1C1的位似比等于;(2)在网格中画出△A1B1C1关于y轴的轴对称图形△A2B2C2;(3)请写出△A3B3C3是由△A2B2C2怎样平移得到的?(4)设点P(x,y)为△ABC内一点,依次经过上述三次变换后,点P的对应点的坐标为(﹣2x﹣2,2y+2).【考点】作图﹣位似变换;作图﹣轴对称变换;作图﹣平移变换.【专题】作图题.【分析】(1)根据位似图形可得位似比即可;(2)根据轴对称图形的画法画出图形即可;(3)根据△A3B3C3与△A2B2C2的关系过程其变化过程即可;(4)根据三次变换规律得出坐标即可.【解答】解:(1))△ABC与△A1B1C1的位似比等于=;(2)如图所示(3)△A3B3C3是由△A2B2C2沿x轴向左平移2个单位,再沿y轴向上平移2个单位得到;(4)点P(x,y)为△ABC内一点,依次经过上述三次变换后,点P的对应点的坐标为(﹣2x﹣2,2y+2).故答案为:;(﹣2x﹣2,2y+2).【点评】此题考查作图问题,关键是根据轴对称图形的画法和位似图形的性质分析.21.如图,在平行四边形ABCD中,点E为AD的中点,延长CE交BA的延长线于点F.(1)求证:AB=AF;(2)若BC=2AB,∠BCD=110°,求∠ABE的度数.【考点】平行四边形的性质.【分析】(1)由四边形ABCD是平行四边形,点E为AD的中点,易证得△DEC≌△AEF(AAS),继而可证得DC=AF,又由DC=AB,证得结论;(2)由(1)可知BF=2AB,EF=EC,然后由∠BCD=110°求得BE平分∠CBF,继而求得答案.【解答】(1)证明:∵四边形ABCD是平行四边形,∴CD=AB,CD∥AB,∴∠DCE=∠F,∠FBC+∠BCD=180°,∵E为AD的中点,∴DE=AE.在△DEC和△AEF中,,∴△DEC≌△AEF(AAS).∴DC=AF.∴AB=AF;(2)解:由(1)可知BF=2AB,EF=EC,∵∠BCD=110°,∴∠FBC=180°﹣110°=70°,∵BC=2AB,∴BF=BC,∴BE平分∠CBF,∴∠ABE=∠FBC=×70°=35°.【点评】此题考查了平行四边形的性质、全等三角形的判定与性质以及等腰三角形的性质.注意证得△DEC ≌△AEF与△BCF是等腰三角形是关键.22.为增强学生的身体素质,教育行政部门规定学生每天参加户外活动的平均时间不少于1小时.为了解学生参加户外活动的情况,对部分学生参加户外活动的时间进行抽样调查,并将调查结果绘制作成如下两幅不完整的统计图,请你根据图中提供的信息解答下列问题:(1)求户外活动时间为1.5小时的人数,并补充频数分布直方图;(2)表示户外活动时间1小时的扇形圆心角的度数为144 °;(3)本次调查中学生参加户外活动的平均时间是否符合要求?户外活动时间的众数和中位数是多少?【考点】众数;频数(率)分布直方图;扇形统计图;中位数.【分析】(1)先根据条形统计图和扇形统计图的数据,由活动时间为0.5小时的数据求出参加活动的总人数,然后求出户外活动时间为1.5小时的人数;(2)先根据户外活动时间为1小时的人数,求出其占总人数的百分比,然后算出其在扇形统计图中的圆心角度数;(3)根据,求出平均时间与1小时进行比较,然后判断是否符合要求;根据中位数和众数的概念,求解即可.【解答】解:(1)调查总人数为:10÷20%=50(人),户外活动时间为1.5小时的人数为:50×24%=12(人),频数分布直方图如右图所示;(2)户外活动时间为1小时的人数占总人数的百分比为:,在扇形统计图中的圆心角度数为:40%×360°=144°.故答案为:144;(3)户外活动的平均时间为:(小时),∵1.18>1,∴平均活动时间符合要求;将50人的户外活动时间按照从小到大的顺序排列,可知第25和第26人的户外运动时间都为1小时,故本次户外活动时间的中位数为1小时;由频数分布直方图可知,户外活动时间为1小时的人数最多,故本次户外活动时间的众数为1小时.答:本次调查中学生参加户外活动的平均时间符合要求;户外活动时间的众数和中位数都为1小时.【点评】本题考查频数分布直方图、扇形统计图、众数和中位数的知识,解答本题的关键在于掌握众数和中位数的概念,以及从频数分布直方图和扇形统计图中获取相关信息并加以运用.23.江苏卫视《最强大脑》曾播出一期“辨脸识人”节目,参赛选手以家庭为单位,每组家庭由爸爸妈妈和宝宝3人组成,爸爸、妈妈和宝宝分散在三块区域,选手需在宝宝中选一个宝宝,然后分别在爸爸区域和妈妈区域中正确找出这个宝宝的父母,不考虑其他因素,仅从数学角度思考,已知在某分期比赛中有A、B、C三组家庭进行比赛:(1)选手选择A组家庭的宝宝,在妈妈区域中正确找出其妈妈的概率;(2)如果任选一个宝宝(假如选A组家庭),通过列表或树状图的方法,求选手至少正确找对宝宝父母其中一人的概率.【考点】列表法与树状图法;概率公式.【分析】(1)因为3组家庭都由爸爸、妈妈和宝宝3人组成,所以选手选择A组家庭的宝宝,在妈妈区域中正确找出其妈妈的概率是其中的三分之一;(2)设三个爸爸分别为A,B,C,对应的三个妈妈分别为A′,B′,C′,对应的三个宝宝分别为A″,B″,C″,通过画树形图即可求出任选一个宝宝,最少正确找对父母其中一人的概率.【解答】解:(1)∵3组家庭都由爸爸、妈妈和宝宝3人组成,∴选手选择A组家庭的宝宝,在妈妈区域中正确找出其妈妈的概率=;(2)设三个爸爸分别为A,B,C,对应的三个妈妈分别为A′,B′,C′,对应的三个宝宝分别为A″,B″,C″,以A″为例画树形图得:由树形图可知任选一个宝宝,最少正确找对父母其中一人的情况有5种,所以其概率=.【点评】本题考查的是用画树状图法求概率.画树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.24.小明想利用所学数学知识测量学校旗杆高度,如图,旗杆的顶端垂下一绳子,将绳子拉直钉在地上,末端恰好在C处且与地面成60°角,小明拿起绳子末端,后退至E处,并拉直绳子,此时绳子末端D距离地面1.6m且绳子与水平方向成45°角.求旗杆AB的高度和小明后退的距离EC.(参考数据:≈1.41,≈1.73,结果精确到0.1m)【考点】解直角三角形的应用.【分析】设绳子AC的长为x米;由三角函数得出AB,过D作DF⊥AB于F,根据△ADF是等腰直角三角形,得出方程,解方程即可.【解答】解:设绳子AC的长为x米;在△ABC中,AB=AC•sin60°,过D作DF⊥AB于F,如图:∵∠ADF=45°,∴△ADF是等腰直角三角形,∴AF=DF=x•sin45°,∵AB﹣AF=BF=1.6,则x•sin60°﹣x•sin45°=1.6,解得:x=10,∴AB=10×sin60°≈8.7(m),EC=EB﹣CB=x•cos45°﹣x•cos60°=10×﹣10×≈2.1(m)答:旗杆AB的高度为8.7m,小明后退的距离为2.1m.【点评】本题考查了解直角三角形的应用﹣仰角、等腰直角三角形的判定与性质;熟练掌握三角函数,根据题意得出方程是解决问题的关键,本题难度适中.25.如图,正方形ABCD的边长为2cm,以边BC为直径作半圆O,点E在AB上,且AE=1.5cm,连接DE.(1)DE与半圆O相切吗?若相切,请给出证明;若不相切,请说明情况;(2)求阴影部分的面积.【考点】切线的判定;正方形的性质;扇形面积的计算.【专题】计算题.【分析】(1)过点O作OF⊥DE,垂足为点F,在Rt△ADE中利用勾股定理计算出DE=2.5,再利用面积法求出OF=1,然后根据切线的判定方法可判断DE与半圆O相切;(2)利用阴影部分的面积=梯形BECD的面积﹣半圆的面积求解.【解答】解:(1)DE与半圆O相切.理由如下:过点O作OF⊥DE,垂足为点F,在Rt△ADE中,∵AD=2,AE=1.5,∴DE==2.5,∵S四边形BCDE=S△DOE+S△BOE+S△CDO,。

备战2020中考南京市中考第二次模拟考试数学试题含答案(1)【含多套模拟】

备战2020中考南京市中考第二次模拟考试数学试题含答案(1)【含多套模拟】

中学数学二模模拟试卷一.选择题(满分24分,每小题3分)1.下列说法正确的是()A.0是无理数B.π是有理数C.4是有理数D.是分数2.12月2日,2018年第十三届南宁国际马拉松比赛开跑,2.6万名跑者继续刷新南宁马拉松的参与人数纪录!把2.6万用科学记数法表示为()A.0.26×103B.2.6×103C.0.26×104D.2.6×1043.下列计算错误的是()A.4x3•2x2=8x5B.a4﹣a3=aC.(﹣x2)5=﹣x10D.(a﹣b)2=a2﹣2ab+b24.已知一个几何体及其左视图如图所示,则该几何体的主视图是()A.B.C.D.5.如图,下列条件中,不能判断直线a∥b的是()A.∠1+∠3=180°B.∠2=∠3 C.∠4=∠5 D.∠4=∠66.解分式方程=﹣2时,去分母变形正确的是()A.﹣1+x=﹣1﹣2(x﹣2)B.1﹣x=1﹣2(x﹣2)C.﹣1+x=1+2(2﹣x)D.1﹣x=﹣1﹣2(x﹣2)7.数学课上,小明进行了如下的尺规作图(如图所示):(1)在△AOB(OA<OB)边OA、OB上分别截取OD、OE,使得OD=OE;(2)分别以点D、E为圆心,以大于DE为半径作弧,两弧交于△AOB内的一点C;(3)作射线OC交AB边于点P.那么小明所求作的线段OP是△AOB的()A.一条中线B.一条高C.一条角平分线D.不确定8.如图,平面内一个⊙O半径为4,圆上有两个动点A、B,以AB为边在圆内作一个正方形ABCD,则OD的最小值是()A.2 B.C.2﹣2 D.4﹣4二.填空题(满分30分,每小题3分)9.若a,b都是实数,b=+﹣2,则a b的值为.10.如图,在4×4的正方形方格图形中,小正方形的顶点称为格点,△ABC的顶点都在格点上,则∠BAC的余弦值是.11.因式分解:9a3b﹣ab=.12.已知关于x的方程(k﹣1)x2﹣2kx+k﹣3=0有两个相等的实根,则k的值是.13.如图,李明从A点出发沿直线前进5米到达B点后向左旋转的角度为α,再沿直线前进5米,到达点C后,又向左旋转α角度,照这样走下去,第一次回到出发地点时,他共走了45米,则每次旋转的角度α为.14.如图,一次函数y=ax+b的图象经过A(2,0)、B(0,﹣1)两点,则关于x的不等式ax+b<0的解集是.15.已知圆锥的底面半径是2,母线长是4,则圆锥的侧面积是.16.反比例函数y=﹣图象上三点的坐标分别为A(﹣1,y1),B(1,y2),C(3,y3),则y1,y2,y3的大小关系是(用“>”连接)17.如图,边长为2的正方形ABCD中心与半径为2的⊙O的圆心重合,E、F分别是AD、BA 的延长线与⊙O的交点,则图中阴影部分的面积是.(结果保留π)18.如图1,在等边三角形ABC中,点P为BC边上的任意一点,且∠APD=60°,PD交AC 于点D,设线段PB的长度为x,CD的长度为y,若y与x的函数关系的大致图象如图2,则等边三角形ABC的面积为.三.解答题19.(8分)(1)计算:2cos60°﹣(﹣π)0+﹣()﹣2(2)解不等式组:,并求不等式组的整数解.20.(8分)先化简,再求值:()•(x2﹣1),其中x是方程x2﹣4x+3=0的一个根.21.(8分)初三年级教师对试卷讲评课中学生参与的深度与广度进行评价调查,其评价项目为主动质疑、独立思考、专注听讲、讲解题目四项.评价组随机抽取了若干名初中学生的参与情况,绘制成如图所示的频数分布直方图和扇形统计图(均不完整),请根据图中所给信息解答下列问题:(1)在这次评价中,一共抽查了名学生;(2)在扇形统计图中,项目“主动质疑”所在的扇形的圆心角的度数为度;(3)请将频数分布直方图补充完整;(4)如果全市有6000名初三学生,那么在试卷评讲课中,“独立思考”的初三学生约有多少人?22.(8分)现如今,“垃圾分类”意识已深入人心,如图是生活中的四个不同的垃圾分类投放桶.其中甲投放了一袋垃圾,乙投放了两袋垃圾.(1)直接写出甲投放的垃圾恰好是“厨余垃圾”的概率;(2)求乙投放的两袋垃圾不同类的概率.23.(10分)五月初,某地遭遇了持续强降雨的恶劣天气,造成部分地区出现严重洪涝灾害,某爱心组织紧急筹集了部分资金,计划购买甲、乙两种救灾物品共4000件送往灾区,已知每件甲种物品的价格比每件乙种物品的价格贵10元,用450元购买甲种物品的件数恰好与用400元购买乙种物品的件数相同(1)求甲、乙两种救灾物品每件的价格分别是多少元?(2)经调查,灾区对乙种物品件数需求量是甲种物品件数的3倍,若该爱心组织按照此求的比例购买这4000件物品,而筹集资金多少元?24.(10分)如图,四边形ABCD为矩形,点E是边BC的中点,AF∥ED,AE∥DF (1)求证:四边形AEDF为菱形;(2)试探究:当AB:BC=,菱形AEDF为正方形?请说明理由.25.(10分)已知:如图,△ABC内接于⊙O,AD为⊙O的弦,∠1=∠2,DE⊥AB于E,DF ⊥AC于F.求证:BE=CF.26.(10分)如图,是一座古拱桥的截面图,拱桥桥洞的上沿是抛物线形状,当水面的宽度为10m时,桥洞与水面的最大距离是5m.(1)经过讨论,同学们得出三种建立平面直角坐标系的方案(如图),你选择的方案是(填方案一,方案二,或方案三),则B点坐标是,求出你所选方案中的抛物线的表达式;(2)因为上游水库泄洪,水面宽度变为6m,求水面上涨的高度.27.(12分)已知在梯形ABCD中,AD∥BC,AC=BC=10,cos∠ACB=,点E在对角线AC 上(不与点A、C重合),∠EDC=∠ACB,DE的延长线与射线CB交于点F,设AD的长为x.(1)如图1,当DF⊥BC时,求AD的长;(2)设EC=y,求y关于x的函数解析式,并直接写出定义域;(3)当△DFC是等腰三角形时,求AD的长.28.(12分)如图,抛物线y=ax2+bx(a>0)过点E(8,0),矩形ABCD的边AB在线段OE 上(点A在点B的左侧),点C、D在抛物线上,∠BAD的平分线AM交BC于点M,点N 是CD的中点,已知OA=2,且OA:AD=1:3.(1)求抛物线的解析式;(2)F、G分别为x轴,y轴上的动点,顺次连接M、N、G、F构成四边形MNGF,求四边形MNGF周长的最小值;(3)在x轴下方且在抛物线上是否存在点P,使△ODP中OD边上的高为?若存在,求出点P的坐标;若不存在,请说明理由;(4)矩形ABCD不动,将抛物线向右平移,当平移后的抛物线与矩形的边有两个交点K、L,且直线KL平分矩形的面积时,求抛物线平移的距离.参考答案一.选择题1.解:A、0是有理数,所以A选项错误;B、π不是有理数,是无理数,所以B选项错误;C、4是有理数中的正整数,所以C选项正确;D、是一个无理数,所以选项D错误.故选:C.2.解:2.6万用科学记数法表示为:2.6×104,故选:D.3.解:A、4x3•2x2=8x5,故原题计算正确;B、a4和a3不是同类项,不能合并,故原题计算错误;C、(﹣x2)5=﹣x10,故原题计算正确;D、(a﹣b)2=a2﹣2ab+b2,故原题计算正确;故选:B.4.解:由主视图定义知,该几何体的主视图为:故选:A.5.解:A.由∠1+∠3=180°,∠1+∠2=180°,可得∠2=∠3,故能判断直线a∥b;B.由∠2=∠3,能直接判断直线a∥b;C.由∠4=∠5,不能直接判断直线a∥b;D.由∠4=∠6,能直接判断直线a∥b;故选:C.6.解:去分母得:1﹣x=﹣1﹣2(x﹣2),故选:D.7.解:利用作法可判断OC平分∠AOB,所以OP为△AOB的角平分线.故选:C.8.解:如图,连接OA,OB,将△OAB绕点A逆时针旋转90°得到△PAD,则OA=PD=4,∠OAP=90°,∴OP==4,∵四边形ABCD为正方形,∴AB=AD,∠DAB=99°,∴∠DBP=∠BAO,∴△DBP≌△ABO(SAS),∴PD=OA=4,∵OD+PD≥OP,∴OD≥OP﹣PD=4﹣4.故选:D.二.填空题(共10小题,满分30分,每小题3分)9.解:∵b=+﹣2,∴1﹣2a=0,解得:a=,则b=﹣2,故a b=()﹣2=4.故答案为:4.10.解:∵AB2=32+42=25、AC2=22+42=20、BC2=12+22=5,∴AC2+BC2=AB2,∴△ABC为直角三角形,且∠ACB=90°,则cos∠B AC==,故答案为:.11.解:原式=ab(9a2﹣1)=ab(3a+1)(3a﹣1).故答案为:ab(3a+1)(3a﹣1)12.解:∵关于x的方程(k﹣1)x2﹣2kx+k﹣3=0有两个相等的实根,∴,解得:k=.故答案为:.13.解:向左转的次数45÷5=9(次),则左转的角度是360°÷9=40°.故答案是:40°.14.解:由一次函数y=ax+b的图象经过A(2,0)、B(0,﹣1)两点,根据图象可知:x的不等式ax+b<0的解集是x<2,故答案为:x<2.15.解:底面半径是2,则底面周长=4π,圆锥的侧面积=×4π×4=8π.16.解:反比例函数y=﹣图象在二、四象限,点A在第二象限,y1>0,点B、C都在第四象限,在第四象限,y随x的增大而增大,且纵坐标为负数,所以y2<y3<0,因此,y2<y3<0<y1,即:y1>0>y3>y2.故答案为:y1>y3>y2.17.解:延长DC,CB交⊙O于M,N,则图中阴影部分的面积=×(S圆O ﹣S正方形ABCD)=×(4π﹣4)=π﹣1,故答案为:π﹣1.18.解:由题可得,∠APD=60°,∠ABC=∠C=60°,∴∠BAP=∠CPD,∴△ABP∽△PCD,∴,设AB=a,则,∴y=,当x=时,y取得最大值2,即P为BC中点时,CD的最大值为2,∴此时∠APB=∠PDC=90°,∠CPD=30°,∴PC=BP=4,∴等边三角形的边长为8,∴根据等边三角形的性质,可得S=×82=16.故答案为:16.三.解答题(共10小题,满分96分)19.解:(1)原式=2×﹣1﹣2﹣9=1﹣1﹣2﹣9=﹣11;(2)解不等式①得:x≥﹣2,解不等式②得:x<5,∴不等式组的解集为:﹣2≤x<5,∴不等式组的整数解为﹣2,﹣1,0,1,2,3,4.20.解:()•(x 2﹣1) ==2x +2+x ﹣1=3x +1, 由x 2﹣4x +3=0得x 1=1,x 2=3,当x =1时,原分式中的分母等于0,使得原分式无意义,当x =3时,原式=3×3+1=10.21.解:(1)调查的总人数是:224÷40%=560(人),故答案是:560;(2)“主动质疑”所在的扇形的圆心角的度数是:360×=54°,故答案是:54;(3)“讲解题目”的人数是:560﹣84﹣168﹣224=84(人).;(4)在试卷评讲课中,“独立思考”的初三学生约有:6000×=1800(人).22.解:(1)∵垃圾要按A ,B ,C 、D 类分别装袋,甲投放了一袋垃圾,∴甲投放的垃圾恰好是A 类:厨余垃圾的概率为:;(2)记这四类垃圾分别为A 、B 、C 、D ,画树状图如下:由树状图知,乙投放的垃圾共有16种等可能结果,其中乙投放的两袋垃圾不同类的有12种结果,所以乙投放的两袋垃圾不同类的概率为=.23.解:(1)设甲种救灾物品每件的价格x元/件,则乙种救灾物品每件的价格为(x﹣10)元/件,可得:,解得:x=90,经检验x=90是原方程的解,答:甲单价 90 元/件、乙 80 元/件.(2)设甲种物品件数y件,可得:y+3y=4000,解得:y=1000,所以筹集资金=90×1000+80×3000=330000 元,答:筹集资金330000 元.24.(1)证明:∵AF∥ED,AE∥DF,∴四边形AEDF为平行四边形,∵四边形ABCD为矩形,∴AB=CD,∠B=∠C=90°,∵点E是边BC的中点,∴BE=CE,在△ABE和△DCE中,∴△ABE≌△DCE,∴EA=ED,∴四边形AEDF为菱形;(2)解:当AB:BC=1:2,菱形AEDF为正方形.理由如下:∵AB:BC=1:2,而点E是边BC的中点,∴AB=EA,∴△ABE为等腰直角三角形,∴∠AEB=45°,∵△ABE≌△DCE,∴∠DEC=45°,∴∠AED=90°,∵四边形AEDF为菱形,∴菱形AEDF为正方形.故答案为1:2.25.证明:连接DB、DF,∵∠A的平分线AD交圆于D,DE⊥AB于E,DF⊥AC于F,∴DE=DF,∠DFB=∠DFC=90°,∠BAD=∠CAD,∴DB=DC,∴在Rt△BED和Rt△CFD中,∴Rt△BED≌Rt△CFD(HL),∴BE=CF.26.解:(1)选择方案二,根据题意知点B的坐标为(10,0),由题意知,抛物线的顶点坐标为(5,5),且经过点O(0,0),B(10,0),设抛物线解析式为y=a(x﹣5)2+5,把点(0,0)代入得:0=a(0﹣5)2+5,即a=﹣,∴抛物线解析式为y=﹣(x﹣5)2+5,故答案为:方案二,(10,0);(2)由题意知,当x=5﹣3=2时,﹣(x﹣5)2+5=,所以水面上涨的高度为米.27.解:(1)设:∠ACB=∠EDC=∠α=∠CAD,∵cosα=,∴sinα=,过点A作AH⊥BC交于点H,AH=AC•sinα=6=DF,BH=2,如图1,设:FC=4a,∴cos∠ACB=,则EF=3a,EC=5a,∵∠EDC=∠α=∠CAD,∠ACD=∠ACD,∴△ADC∽△DCE,∴AC•CE=CD2=DF2+FC2=36+16a2=10•5a,解得:a=2或(舍去a=2),AD=HF=10﹣2﹣4a=;(2)过点C作CH⊥AD交AD的延长线于点H,CD2=CH2+DH2=(AC sinα)2+(AC cosα﹣x)2,即:CD2=36+(8﹣x)2,由(1)得:AC•CE=CD2,即:y=x2﹣x+10(0<x<16且x≠10)…①,(3)①当DF=DC时,∵∠ECF=∠FDC=α,∠DFC=∠DFC,∴△DFC∽△CFE,∵DF=DC,∴FC=EC=y,∴x+y=10,即:10=x2﹣x+10+x,解得:x=6;②当FC=DC,则∠DFC=∠FDC=α,则:EF=EC=y,DE=AE=10﹣y,在等腰△ADE中,cos∠DAE=cosα===,即:5x+8y=80,将上式代入①式并解得:x=;③当FC=FD,则∠FCD=∠FDC=α,而∠ECF=α≠∠FCD,不成立,故:该情况不存在;故:AD的长为6和.28.解:(1)∵点A在线段OE上,E(8,0),OA=2 ∴A(2,0)∵OA:AD=1:3∴AD=3OA=6∵四边形ABCD是矩形∴AD⊥AB∴D(2,﹣6)∵抛物线y=ax2+bx经过点D、E∴解得:∴抛物线的解析式为y=x2﹣4x(2)如图1,作点M关于x轴的对称点点M',作点N关于y轴的对称点点N',连接FM'、GN'、M'N'∵y=x2﹣4x=(x﹣4)2﹣8∴抛物线对称轴为直线x=4∵点C、D在抛物线上,且CD∥x轴,D(2,﹣6)∴y C=y D=﹣6,即点C、D关于直线x=4对称∴x C=4+(4﹣x D)=4+4﹣2=6,即C(6,﹣6)∴AB=CD=4,B(6,0)∵AM平分∠BAD,∠BAD=∠ABM=90°∴∠BAM=45°∴BM=AB=4∴M(6,﹣4)∵点M、M'关于x轴对称,点F在x轴上∴M'(6,4),FM=FM'∵N为CD中点∴N(4,﹣6)∵点N、N'关于y轴对称,点G在y轴上∴N'(﹣4,﹣6),GN=GN'=MN+NG+GF+FM=MN+N'G+GF+FM'∴C四边形MNGF∵当M'、F、G、N'在同一直线上时,N'G+GF+FM'=M'N'最小=MN+M'N'==2+10=12∴C四边形MNGF∴四边形MNGF周长最小值为12.(3)存在点P,使△ODP中OD边上的高为.过点P作PE∥y轴交直线OD于点E∵D(2,﹣6)∴OD=,直线OD解析式为y=﹣3x设点P坐标为(t, t2﹣4t)(0<t<8),则点E(t,﹣3t)①如图2,当0<t<2时,点P在点D左侧∴PE=y E﹣y P=﹣3t﹣(t2﹣4t)=﹣t2+t∴S△ODP =S△OPE+S△DPE=PE•x P+PE•(x D﹣x P)=PE(x P+x D﹣x P)=PE•x D=PE=﹣t2+t∵△ODP中OD边上的高h=,∴S△ODP=OD•h∴﹣t2+t=×2×方程无解②如图3,当2<t<8时,点P在点D右侧∴PE=y P﹣y E=t2﹣4t﹣(﹣3t)=t2﹣t∴S△ODP =S△OPE﹣S△DPE=PE•x P﹣PE•(x P﹣x D)=PE(x P﹣x P+x D)=PE•x D=PE=t2﹣t∴t2﹣t=×2×解得:t1=﹣4(舍去),t2=6∴P(6,﹣6)综上所述,点P坐标为(6,﹣6)满足使△ODP中OD边上的高为.(4)设抛物线向右平移m个单位长度后与矩形ABCD有交点K、L∵KL平分矩形ABCD的面积∴K在线段AB上,L在线段CD上,如图4∴K(m,0),L(2+m,0)连接AC,交KL于点H∵S△ACD =S四边形ADLK=S矩形ABCD∴S△AHK =S△CHL∵AK∥LC∴△AHK∽△CHL∴∴AH=CH,即点H为AC中点∴H(4,﹣3)也是KL中点∴∴m=3∴抛物线平移的距离为3个单位长度.中学数学二模模拟试卷一.选择题(满分24分,每小题3分)1.下列说法正确的是()A.0是无理数B.π是有理数C.4是有理数D.是分数2.12月2日,2018年第十三届南宁国际马拉松比赛开跑,2.6万名跑者继续刷新南宁马拉松的参与人数纪录!把2.6万用科学记数法表示为()A.0.26×103B.2.6×103C.0.26×104D.2.6×1043.下列计算错误的是()A.4x3•2x2=8x5B.a4﹣a3=aC.(﹣x2)5=﹣x10D.(a﹣b)2=a2﹣2ab+b24.已知一个几何体及其左视图如图所示,则该几何体的主视图是()A.B.C.D.5.如图,下列条件中,不能判断直线a∥b的是()A.∠1+∠3=180°B.∠2=∠3 C.∠4=∠5 D.∠4=∠66.解分式方程=﹣2时,去分母变形正确的是()A.﹣1+x=﹣1﹣2(x﹣2)B.1﹣x=1﹣2(x﹣2)C.﹣1+x=1+2(2﹣x)D.1﹣x=﹣1﹣2(x﹣2)7.数学课上,小明进行了如下的尺规作图(如图所示):(1)在△AOB(OA<OB)边OA、OB上分别截取OD、OE,使得OD=OE;(2)分别以点D、E为圆心,以大于DE为半径作弧,两弧交于△AOB内的一点C;(3)作射线OC交AB边于点P.那么小明所求作的线段OP是△AOB的()A.一条中线B.一条高C.一条角平分线D.不确定8.如图,平面内一个⊙O半径为4,圆上有两个动点A、B,以AB为边在圆内作一个正方形ABCD,则OD的最小值是()A.2 B.C.2﹣2 D.4﹣4二.填空题(满分30分,每小题3分)9.若a,b都是实数,b=+﹣2,则a b的值为.10.如图,在4×4的正方形方格图形中,小正方形的顶点称为格点,△ABC的顶点都在格点上,则∠BAC的余弦值是.11.因式分解:9a3b﹣ab=.12.已知关于x的方程(k﹣1)x2﹣2kx+k﹣3=0有两个相等的实根,则k的值是.13.如图,李明从A点出发沿直线前进5米到达B点后向左旋转的角度为α,再沿直线前进5米,到达点C后,又向左旋转α角度,照这样走下去,第一次回到出发地点时,他共走了45米,则每次旋转的角度α为.14.如图,一次函数y=ax+b的图象经过A(2,0)、B(0,﹣1)两点,则关于x的不等式ax+b<0的解集是.15.已知圆锥的底面半径是2,母线长是4,则圆锥的侧面积是.16.反比例函数y=﹣图象上三点的坐标分别为A(﹣1,y1),B(1,y2),C(3,y3),则y1,y2,y3的大小关系是(用“>”连接)17.如图,边长为2的正方形ABCD中心与半径为2的⊙O的圆心重合,E、F分别是AD、BA 的延长线与⊙O的交点,则图中阴影部分的面积是.(结果保留π)18.如图1,在等边三角形ABC中,点P为BC边上的任意一点,且∠APD=60°,PD交AC 于点D,设线段PB的长度为x,CD的长度为y,若y与x的函数关系的大致图象如图2,则等边三角形ABC的面积为.三.解答题19.(8分)(1)计算:2cos60°﹣(﹣π)0+﹣()﹣2(2)解不等式组:,并求不等式组的整数解.20.(8分)先化简,再求值:()•(x2﹣1),其中x是方程x2﹣4x+3=0的一个根.21.(8分)初三年级教师对试卷讲评课中学生参与的深度与广度进行评价调查,其评价项目为主动质疑、独立思考、专注听讲、讲解题目四项.评价组随机抽取了若干名初中学生的参与情况,绘制成如图所示的频数分布直方图和扇形统计图(均不完整),请根据图中所给信息解答下列问题:(1)在这次评价中,一共抽查了名学生;(2)在扇形统计图中,项目“主动质疑”所在的扇形的圆心角的度数为度;(3)请将频数分布直方图补充完整;(4)如果全市有6000名初三学生,那么在试卷评讲课中,“独立思考”的初三学生约有多少人?22.(8分)现如今,“垃圾分类”意识已深入人心,如图是生活中的四个不同的垃圾分类投放桶.其中甲投放了一袋垃圾,乙投放了两袋垃圾.(1)直接写出甲投放的垃圾恰好是“厨余垃圾”的概率;(2)求乙投放的两袋垃圾不同类的概率.23.(10分)五月初,某地遭遇了持续强降雨的恶劣天气,造成部分地区出现严重洪涝灾害,某爱心组织紧急筹集了部分资金,计划购买甲、乙两种救灾物品共4000件送往灾区,已知每件甲种物品的价格比每件乙种物品的价格贵10元,用450元购买甲种物品的件数恰好与用400元购买乙种物品的件数相同(1)求甲、乙两种救灾物品每件的价格分别是多少元?(2)经调查,灾区对乙种物品件数需求量是甲种物品件数的3倍,若该爱心组织按照此求的比例购买这4000件物品,而筹集资金多少元?24.(10分)如图,四边形ABCD为矩形,点E是边BC的中点,AF∥ED,AE∥DF (1)求证:四边形AEDF为菱形;(2)试探究:当AB:BC=,菱形AEDF为正方形?请说明理由.25.(10分)已知:如图,△ABC内接于⊙O,AD为⊙O的弦,∠1=∠2,DE⊥AB于E,DF ⊥AC于F.求证:BE=CF.26.(10分)如图,是一座古拱桥的截面图,拱桥桥洞的上沿是抛物线形状,当水面的宽度为10m时,桥洞与水面的最大距离是5m.(1)经过讨论,同学们得出三种建立平面直角坐标系的方案(如图),你选择的方案是(填方案一,方案二,或方案三),则B点坐标是,求出你所选方案中的抛物线的表达式;(2)因为上游水库泄洪,水面宽度变为6m,求水面上涨的高度.27.(12分)已知在梯形ABCD中,AD∥BC,AC=BC=10,cos∠ACB=,点E在对角线AC 上(不与点A、C重合),∠EDC=∠ACB,DE的延长线与射线CB交于点F,设AD的长为x.(1)如图1,当DF⊥BC时,求AD的长;(2)设EC=y,求y关于x的函数解析式,并直接写出定义域;(3)当△DFC是等腰三角形时,求AD的长.28.(12分)如图,抛物线y=ax2+bx(a>0)过点E(8,0),矩形ABCD的边AB在线段OE 上(点A在点B的左侧),点C、D在抛物线上,∠BAD的平分线AM交BC于点M,点N 是CD的中点,已知OA=2,且OA:AD=1:3.(1)求抛物线的解析式;(2)F、G分别为x轴,y轴上的动点,顺次连接M、N、G、F构成四边形MNGF,求四边形MNGF周长的最小值;(3)在x轴下方且在抛物线上是否存在点P,使△ODP中OD边上的高为?若存在,求出点P的坐标;若不存在,请说明理由;(4)矩形ABCD不动,将抛物线向右平移,当平移后的抛物线与矩形的边有两个交点K、L,且直线KL平分矩形的面积时,求抛物线平移的距离.参考答案一.选择题1.解:A、0是有理数,所以A选项错误;B、π不是有理数,是无理数,所以B选项错误;C、4是有理数中的正整数,所以C选项正确;D、是一个无理数,所以选项D错误.故选:C.2.解:2.6万用科学记数法表示为:2.6×104,故选:D.3.解:A、4x3•2x2=8x5,故原题计算正确;B、a4和a3不是同类项,不能合并,故原题计算错误;C、(﹣x2)5=﹣x10,故原题计算正确;D、(a﹣b)2=a2﹣2ab+b2,故原题计算正确;故选:B.4.解:由主视图定义知,该几何体的主视图为:故选:A.5.解:A.由∠1+∠3=180°,∠1+∠2=180°,可得∠2=∠3,故能判断直线a∥b;B.由∠2=∠3,能直接判断直线a∥b;C.由∠4=∠5,不能直接判断直线a∥b;D.由∠4=∠6,能直接判断直线a∥b;故选:C.6.解:去分母得:1﹣x=﹣1﹣2(x﹣2),故选:D.7.解:利用作法可判断OC平分∠AOB,所以OP为△AOB的角平分线.故选:C.8.解:如图,连接OA,OB,将△OAB绕点A逆时针旋转90°得到△PAD,则OA=PD=4,∠OAP=90°,∴OP==4,∵四边形ABCD为正方形,∴AB=AD,∠DAB=99°,∴∠DBP=∠BAO,∴△DBP≌△ABO(SAS),∴PD=OA=4,∵OD+PD≥OP,∴OD≥OP﹣PD=4﹣4.故选:D.二.填空题(共10小题,满分30分,每小题3分)9.解:∵b=+﹣2,∴1﹣2a=0,解得:a=,则b=﹣2,故a b=()﹣2=4.故答案为:4.10.解:∵AB2=32+42=25、AC2=22+42=20、BC2=12+22=5,∴AC2+BC2=AB2,∴△ABC为直角三角形,且∠ACB=90°,则cos∠B AC==,故答案为:.11.解:原式=ab(9a2﹣1)=ab(3a+1)(3a﹣1).故答案为:ab(3a+1)(3a﹣1)12.解:∵关于x的方程(k﹣1)x2﹣2kx+k﹣3=0有两个相等的实根,∴,解得:k=.故答案为:.13.解:向左转的次数45÷5=9(次),则左转的角度是360°÷9=40°.故答案是:40°.14.解:由一次函数y=ax+b的图象经过A(2,0)、B(0,﹣1)两点,根据图象可知:x的不等式ax+b<0的解集是x<2,故答案为:x<2.15.解:底面半径是2,则底面周长=4π,圆锥的侧面积=×4π×4=8π.16.解:反比例函数y=﹣图象在二、四象限,点A在第二象限,y1>0,点B、C都在第四象限,在第四象限,y随x的增大而增大,且纵坐标为负数,所以y2<y3<0,因此,y2<y3<0<y1,即:y1>0>y3>y2.故答案为:y1>y3>y2.17.解:延长DC,CB交⊙O于M,N,则图中阴影部分的面积=×(S圆O ﹣S正方形ABCD)=×(4π﹣4)=π﹣1,故答案为:π﹣1.18.解:由题可得,∠APD=60°,∠ABC=∠C=60°,∴∠BAP=∠CPD,∴△ABP∽△PCD,∴,设AB=a,则,∴y=,当x=时,y取得最大值2,即P为BC中点时,CD的最大值为2,∴此时∠APB=∠PDC=90°,∠CPD=30°,∴PC=BP=4,∴等边三角形的边长为8,∴根据等边三角形的性质,可得S=×82=16.故答案为:16.三.解答题(共10小题,满分96分)19.解:(1)原式=2×﹣1﹣2﹣9=1﹣1﹣2﹣9=﹣11;(2)解不等式①得:x≥﹣2,解不等式②得:x<5,∴不等式组的解集为:﹣2≤x<5,∴不等式组的整数解为﹣2,﹣1,0,1,2,3,4.20.解:()•(x 2﹣1) ==2x +2+x ﹣1 =3x +1,由x 2﹣4x +3=0得x 1=1,x 2=3,当x =1时,原分式中的分母等于0,使得原分式无意义, 当x =3时,原式=3×3+1=10.21.解:(1)调查的总人数是:224÷40%=560(人),故答案是:560; (2)“主动质疑”所在的扇形的圆心角的度数是:360×=54°,故答案是:54;(3)“讲解题目”的人数是:560﹣84﹣168﹣224=84(人).;(4)在试卷评讲课中,“独立思考”的初三学生约有:6000×=1800(人).22.解:(1)∵垃圾要按A ,B ,C 、D 类分别装袋,甲投放了一袋垃圾, ∴甲投放的垃圾恰好是A 类:厨余垃圾的概率为:;(2)记这四类垃圾分别为A 、B 、C 、D , 画树状图如下:由树状图知,乙投放的垃圾共有16种等可能结果,其中乙投放的两袋垃圾不同类的有12种结果,所以乙投放的两袋垃圾不同类的概率为=.23.解:(1)设甲种救灾物品每件的价格x元/件,则乙种救灾物品每件的价格为(x﹣10)元/件,可得:,解得:x=90,经检验x=90是原方程的解,答:甲单价 90 元/件、乙 80 元/件.(2)设甲种物品件数y件,可得:y+3y=4000,解得:y=1000,所以筹集资金=90×1000+80×3000=330000 元,答:筹集资金330000 元.24.(1)证明:∵AF∥ED,AE∥DF,∴四边形AEDF为平行四边形,∵四边形ABCD为矩形,∴AB=CD,∠B=∠C=90°,∵点E是边BC的中点,∴BE=CE,在△ABE和△DCE中,∴△ABE≌△DCE,∴EA=ED,∴四边形AEDF为菱形;(2)解:当AB:BC=1:2,菱形AEDF为正方形.理由如下:∵AB:BC=1:2,而点E是边BC的中点,∴AB=EA,∴△ABE为等腰直角三角形,∴∠AEB=45°,∵△ABE≌△DCE,∴∠DEC=45°,∴∠AED=90°,∵四边形AEDF为菱形,∴菱形AEDF为正方形.故答案为1:2.25.证明:连接DB、DF,∵∠A的平分线AD交圆于D,DE⊥AB于E,DF⊥AC于F,∴DE=DF,∠DFB=∠DFC=90°,∠BAD=∠CAD,∴DB=DC,∴在Rt△BED和Rt△CFD中,∴Rt△BED≌Rt△CFD(HL),∴BE=CF.26.解:(1)选择方案二,根据题意知点B的坐标为(10,0),由题意知,抛物线的顶点坐标为(5,5),且经过点O(0,0),B(10,0),设抛物线解析式为y=a(x﹣5)2+5,把点(0,0)代入得:0=a(0﹣5)2+5,即a=﹣,∴抛物线解析式为y=﹣(x﹣5)2+5,故答案为:方案二,(10,0);(2)由题意知,当x=5﹣3=2时,﹣(x﹣5)2+5=,所以水面上涨的高度为米.27.解:(1)设:∠ACB=∠EDC=∠α=∠CAD,∵cosα=,∴sinα=,过点A作AH⊥BC交于点H,AH=AC•sinα=6=DF,BH=2,如图1,设:FC=4a,∴cos∠ACB=,则EF=3a,EC=5a,∵∠EDC=∠α=∠CAD,∠ACD=∠ACD,∴△ADC∽△DCE,∴AC•CE=CD2=DF2+FC2=36+16a2=10•5a,解得:a=2或(舍去a=2),AD=HF=10﹣2﹣4a=;(2)过点C作CH⊥AD交AD的延长线于点H,CD2=CH2+DH2=(AC sinα)2+(AC cosα﹣x)2,即:CD2=36+(8﹣x)2,由(1)得:AC•CE=CD2,即:y=x2﹣x+10(0<x<16且x≠10)…①,(3)①当DF=DC时,∵∠ECF=∠FDC=α,∠DFC=∠DFC,∴△DFC∽△CFE,∵DF=DC,∴FC=EC=y,∴x+y=10,即:10=x2﹣x+10+x,解得:x=6;②当FC=DC,则∠DFC=∠FDC=α,则:EF=EC=y,DE=AE=10﹣y,在等腰△ADE中,cos∠DAE=cosα===,即:5x+8y=80,将上式代入①式并解得:x=;③当FC=FD,则∠FCD=∠FDC=α,而∠ECF=α≠∠FCD,不成立,故:该情况不存在;故:AD的长为6和.28.解:(1)∵点A在线段OE上,E(8,0),OA=2 ∴A(2,0)∵OA:AD=1:3∴AD=3OA=6∵四边形ABCD是矩形∴AD⊥AB∴D(2,﹣6)∵抛物线y=ax2+bx经过点D、E∴解得:∴抛物线的解析式为y=x2﹣4x(2)如图1,作点M关于x轴的对称点点M',作点N关于y轴的对称点点N',连接FM'、GN'、M'N'∵y=x2﹣4x=(x﹣4)2﹣8∴抛物线对称轴为直线x=4∵点C、D在抛物线上,且CD∥x轴,D(2,﹣6)∴y C=y D=﹣6,即点C、D关于直线x=4对称∴x C=4+(4﹣x D)=4+4﹣2=6,即C(6,﹣6)∴AB=CD=4,B(6,0)∵AM平分∠BAD,∠BAD=∠ABM=90°∴∠BAM=45°∴BM=AB=4∴M(6,﹣4)∵点M、M'关于x轴对称,点F在x轴上∴M'(6,4),FM=FM'∵N为CD中点∴N(4,﹣6)∵点N、N'关于y轴对称,点G在y轴上∴N'(﹣4,﹣6),GN=GN'=MN+NG+GF+FM=MN+N'G+GF+FM'∴C四边形MNGF∵当M'、F、G、N'在同一直线上时,N'G+GF+FM'=M'N'最小=MN+M'N'==2+10=12∴C四边形MNGF∴四边形MNGF周长最小值为12.(3)存在点P,使△ODP中OD边上的高为.过点P作PE∥y轴交直线OD于点E∵D(2,﹣6)∴OD=,直线OD解析式为y=﹣3x设点P坐标为(t, t2﹣4t)(0<t<8),则点E(t,﹣3t)①如图2,当0<t<2时,点P在点D左侧∴PE=y E﹣y P=﹣3t﹣(t2﹣4t)=﹣t2+t∴S△ODP =S△OPE+S△DPE=PE•x P+PE•(x D﹣x P)=PE(x P+x D﹣x P)=PE•x D=PE=﹣t2+t∵△ODP中OD边上的高h=,∴S△ODP=OD•h∴﹣t2+t=×2×方程无解②如图3,当2<t<8时,点P在点D右侧∴PE=y P﹣y E=t2﹣4t﹣(﹣3t)=t2﹣t∴S△ODP =S△OPE﹣S△DPE=PE•x P﹣PE•(x P﹣x D)=PE(x P﹣x P+x D)=PE•x D=PE=t2﹣t∴t2﹣t=×2×解得:t1=﹣4(舍去),t2=6∴P(6,﹣6)综上所述,点P坐标为(6,﹣6)满足使△ODP中OD边上的高为.(4)设抛物线向右平移m个单位长度后与矩形ABCD有交点K、L∵KL平分矩形ABCD的面积∴K在线段AB上,L在线段CD上,如图4∴K(m,0),L(2+m,0)连接AC,交KL于点H∵S△ACD =S四边形ADLK=S矩形ABCD∴S△AHK =S△CHL∵AK∥LC∴△AHK∽△CHL∴∴AH=CH,即点H为AC中点∴H(4,﹣3)也是KL中点∴∴m=3∴抛物线平移的距离为3个单位长度.中学数学二模模拟试卷一、选择题(每小题3分,共30分) 1.实数2019的相反数是( ) A .2019B .-2019C .12019D .−120192.下面几个平面图形中为左侧给出圆锥俯视图的是( )A.B.C.D.3.将6120 000用科学记数法表示应为()A.0.612×107 B.6.12×106 C.61.2×105 D.612×1044.函数中,自变量x的取值范围是()A.x>5 B.x<5 C.x≥5D.x≤55.下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.6.下列运算正确的是()A.a2+a3=a5 B.(2a3)2=2a6 C.a3•a4=a12D.a5÷a3=a27.有一组数据:1,2,3,6,这组数据的方差是()A.2.5 B.3 C.3.5 D.48.两个相似多边形的周长比是2:3,其中较小多边形的面积为4cm2,则较大多边形的面积为()A.9cm2 B.16cm2 C.56cm2 D.24cm29.某件商品原价为1000元,连续两次都降价x%后该件商品售价为640元,则下列所列方程正确的是()A.1000(1-x%)2=640 B.1000(1-x%)2=360C.1000(1-2x%)=640 D.1000(1-2x%)=36010.下列关于二次函数y=2(x-3)2-1的说法,正确的是()A.对称轴是直线x=-3B.当x=3时,y有最小值是-1C.顶点坐标是(3,1)D.当x>3时,y随x的增大而减小二、填空题(每小题4分,共16分)11.一元二次方程x2+3x=0的解是12.如图,AB∥CD,射线CF交AB于E,∠C=50°,则∠AEF的度数为130°.13.一次函数y=kx+b 的图象如图所示,若y >0,则x 的取值范围是14.如图,在矩形ABCD 中,按以下步骤作图:①分别以点A 和点C 为圆心,大于12AC 的长为半径作弧,两弧相交于点M 和N ;②作直线MN 交CD 于点E .若DE=3,CE=5,则该矩形的周长为 .三、解答题(共54分)15.(1)计算:1120192|3tan 3022018π-︒⎛⎫⎛⎫--++ ⎪⎪⎝⎭⎝⎭; (2)解不等式组:3122(1)5x x x ->⎧⎨+<+⎩16.解方程:22111xx x +=-- 17.某商场为了方便顾客使用购物车,将自动扶梯由坡角30°的坡面改为坡度为1:3的坡面.如图,BD 表示水平面,AD 表示电梯的铅直高度,如果改动后电梯的坡面AC 长为米,求改动后电梯水平宽度增加部分BC 的长.(结果保留整数,≈1.4≈1.7)18.某校为了解全校2400名学生到校上学的方式,在全校随机抽取了若干名学生进行问卷调査.问卷给出了五种上学方式供学生选择,每人只能选一项,且不能不选.将调査得到的结果绘制成如图所示的条形统计图和扇形统计图(均不完整)(1)这次调查中,样本容量为 80 ,请补全条形统计图;(2)小明在上学的路上要经过2个路口,每个路口都设有红、黄、绿三种信号灯,假设在各路口遇到三种信号灯的可能性相同,求小明在两个路口都遇到绿灯的概率.(请用“画树状图”或“列表”的方法写出分析过程)19.如图,一次函数y=k1x+b (k1≠0)与反比例函数y=kx (k2≠0)的图象交于A (-1,-4)和点B (4,m )(1)求这两个函数的解析式;(2)已知直线AB 交y 轴于点C ,点P (n ,0)在x 轴的负半轴上,若△BCP 为等腰三角形,求n 的值.20.如图1,以Rt △ABC 的直角边BC 为直径作⊙O ,交斜边AB 于点D ,作弦DF 交BC于点E.(1)求证:∠A=∠F;(2)如图2,连接CF,若∠FCB=2∠CBA,求证:DF=DB;(3)如图3,在(2)的条件下,H为线段CF上一点,且12FHHC=,连接BH,恰有BH⊥DF,若AD=1,求△BFE的面积.一、填空题(每小题4分,共20分)21.已知,则x2+2x=22.点P(2,17)为二次函数y=ax2+4ax+5图象上一点,其对称轴为l,则点P关于l的对称点的坐标为23.如图所示的图案(阴影部分)是这样设计的:在△ABC中,AB=AC=2cm,∠ABC=30°,以A为圆心,以AB为半径作弧BEC,以BC为直径作半圆BFC,则图案(阴影部分)的面积是.(结果保留π)24.将背面完全相同,正面分别写有1、2、3、4、5的五张卡片背面朝上混合后,从中随机抽取一张,将其正面数字记为m,使关于x的方程3111mxx x-=--有正整数解的概率为.25.如图,点P在第一象限,点A、C分别为函数y=kx(x>0)图象上两点,射线PA交x轴的负半轴于点B,且P0过点C,12PAAB=,PC=CO,若△PAC的面积为2534,则k=.。

江苏省南京市2020年九年级中考数学模拟试卷(含答案)

江苏省南京市2020年九年级中考数学模拟试卷(含答案)

南京市联合体2020年初中毕业生二模考试卷数学注意事项:1.本试卷共6页.全卷满分120分.考试时间为120分钟.考生答题全部答在答题卡上,答在本试卷上无效.2.请认真核对监考教师在答题卡上所粘贴条形码的姓名、考试证号是否与本人相符合,再将自己的姓名、准考证号用0.5毫米黑色墨水签字笔填写在答题卡及本试卷上.3.答选择题必须用2B 铅笔将答题卡上对应的答案标号涂黑.如需改动,请用橡皮擦干净后,再选涂其他答案.答非选择题必须用0.5毫米黑色墨水签字笔写在答题卡上的指定位置,在其他位置答题一律无效.4.作图必须用2B 铅笔作答,并请加黑加粗,描写清楚.一、选择题(本大题共6小题,每小题2分,共12分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡...相应位置....上) 1.下列计算中,结果是a 5的是A .a 2+a 3B .a 2·a 3C .a 10÷a 2D .(a 2)32.面积为4的正方形的边长是A .2的平方根B .4的平方根C .2的算术平方根D .4的算术平方根3.若1<a <2,则a 可以是A .1B .3C .5D .74.已知一组数据5,6,7,8,9,5,9,若增加一个数7,则新的这组数据与原来相比A .平均数变大,方差变大 C .平均数不变,方差变大 C .平均数不变,方差变小D .平均数不变,方差不变5.如图,PQ 、PB 、QC 是⊙O 的切线,切点分别为A 、B 、C ,点D 在⌒BC 上,若∠D =100°,则∠P 与∠Q 的度数之和是 A .160°B .140°C .120°D .100°6. 如图,在△ABC 中,∠ACB =90°,BC =2,∠A =30°,将△ABC 绕点C 顺时针旋转120°, 若P 为AB 上一动点,旋转后点P 的对应点为点P ',则线段PP '长度的最小值是二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在答题卡相应位置.......上) A .3B .2C .3D .23(第5题)A C B'B (第6题)7.计算:||-3=▲;(-3)2=▲.8.若式子xx -1在实数范围内有意义,则x 的取值范围是 ▲ .9.某病毒的直径约为0.000 000 1米,用科学记数法表示0.000 000 1是 ▲ . 10.设x 1、x 2是方程x 2+mx +3=0的两个根,且x 1+x 2-x 1x 2=1,则m = ▲ . 11.已知圆锥的底面半径为3cm ,高为4cm ,则其侧面积是 ▲ cm 2.(结果保留π) 12.计算(8-3)8+(8-3)3的结果是 ▲ .13.如图,在矩形ABCD 中,AB =6,对角线AC 与BD 相交于点O ,AE ⊥BD ,垂足为E ,若BE =EO ,则AD 的长是 ▲ .14.用举反例的方法说明命题“若a <b ,则ab <b 2”是假命题,这个反例可以是a = ▲ ,b = ▲ .15.已知一次函数y 1=x +2与y 2=-x +b (b 为常数),当x <1时,y 1<y 2.则b 的取值范围是 ▲ . 16. 如图,⊙O 是△ABC 的外接圆,BC =10,∠B =45°,tan C =32,则⊙O 的半径是 ▲ .三、解答题(本大题共11小题,共88分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤)17.(6分)计算(a 2-4a 2-4a +4)-2a -2)÷a +2a a -2.18.(6分)解不等式组⎩⎪⎨⎪⎧-1-x ≤0,x +12-1<x 3,并写出它的正整数解.ABCDEO (第13题)19.(8分)为了解九年级女生体质健康变化的情况,体育李老师本学期从九年级全体240名女生中随机抽取20名女生进行体质测试,并调取这20名女生上学期的体质测试成绩进行对比,李老师对两次数据(成绩)进行整理、描述和分析.下面给出了部分信息.a . 两次测试成绩(百分制)的频数分布直方图如下(数据分组:60≤x <70,70≤x <80,80≤x <90,90≤x ≤100):b .成绩在80≤x <90的是:上学期:80 81 85 85 85 86 88 本学期:80 82 83 86 86 86 88 89c . 两个学期样本测试成绩的平均数、中位数、众数如下:根据以上信息,回答下列问题: (1)表中a 的值是 ▲ ;(2)下列关于本学期样本测试成绩的结论:①c =86;②d =86;③成绩的极差可能为41;④b 有可能等于80.其中所有正确结论的序号是 ▲ ;(3)从两个不同角度分析这20名女生从上学期到本学期体质健康变化情况.频数/分(学生人数)上学期测试成绩频数分布直方图频数 (学生人数)分本学期测试成绩频数分布直方图20.(8分)经过某路口的汽车,可能直行,也可能向左转或向右转.如果这三种可能性大小相同,现有甲、乙、丙三辆汽车经过这个路口. (1)求甲、乙两辆汽车向同一方向行驶的概率;(2)甲、乙、丙三辆汽车向同一方向行驶的概率是▲.21.(8分)如图,在 ABCD 中,AC 的垂直平分线分别交BC 、AD 于点E 、F ,垂足为O ,连接AE 、CF . (1)求证:四边形AECF 为菱形;(2)若AB =5,BC =7,则AC =▲时,四边形AECF 为正方形.22.(7分)某超市一种品牌的洗手液一月份的销售总额为8 000元,受2019-nCoV 疫情影响,二月份该超市对此品牌洗手液进行调价,每瓶单价是原来的1.5倍,但销售量仍比一月份增加了1000瓶,二月份的销售额达到了36 000元.该超市这种品牌的洗手液一月份的销售单价是多少元?23.(8分)如图,为了测量建筑物CD 、EF 的高度,在直线CE 上选取观测点A 、B ,AC 的距离为40米.从A 、B 测得建筑物的顶部D 的仰角分别为51.34°、68.20°,从B 、D 测得建筑物的顶部F 的仰角分别为64.43°、26.57°. (1)求建筑物CD 的高度;(2)求建筑物EF 的高度.(参考数据:tan 51.34°≈1.25,tan 68.20°≈2.5,tan64.43°≈2,tan26.57°≈0.5)FCDEBA(第21题)O24.(9分)某观光湖风景区,一观光轮与一巡逻艇同时从甲码头出发驶往乙码头,巡逻艇匀速往返于甲、乙两个码头之间,当观光轮到达乙码头时,巡逻艇也同时到达乙码头.设出发x h 后,观光轮、巡逻艇离甲码头的距离分别为y 1 km 、y 2 km .图中的线段OG 、折线OABCDEFG 分别表示y 1、y 2 与x 之间的函数关系. (1)观光轮的速度是▲km/h ,巡逻艇的速度是▲km/h ; (2)求整个过程中观光轮与巡逻艇的最大距离;(3)求整个过程中观光轮与巡逻艇相遇的最短时间间隔.25.(9分)在正方形ABCD 中,点E 是BC 边上一动点,连接AE ,沿AE 将△ABE 翻折得 △AGE ,连接DG ,作△AGD 的外接⊙O ,⊙O 交AE 于点F ,连接FG 、FD . (1)求证∠AGD =∠EFG ; (2)求证△ADF ∽△EGF ;(3)若AB =3,BE =1,求⊙O 的半径.BD F y /km O x /h32ACEG226.(9分) 【概念认识】若以圆的直径的两个端点和圆外一点为顶点的三角形是等腰三角形,则圆外这一点称为这个圆的径等点. 【数学理解】(1)如图①,AB 是⊙O 的直径,点P 为⊙O 外一点,连接AP 交⊙O 于点C ,PC =AC .求证:点P 为⊙O 的径等点.(2)已知AB 是⊙O 的直径,点P 为⊙O 的径等点,连接AP 交⊙O 于点C ,若PC =2AC .求ACAB的值. 【问题解决】(3)如图②,已知AB 是⊙O 的直径.若点P 为⊙O 的径等点,连接AP 交⊙O 于点C ,PC =3AC .利用直尺和圆规作出所有满足条件的点P .(保留作图痕迹,不写作法)27.(10分)已知二次函数y =m (x -1)(x -m -3)(m 为常数,且m ≠0). (1)求证:不论m 为何值,该函数的图像与x 轴总有公共点;(2)设该函数的图像与y 轴交于点A ,若点A 在x 轴上方,求m 的取值范围;(3)该函数图像所过的象限随m 的值变化而变化,直接写出函数图像所经过的象限及对应的m 的取值范围.①②(备用)(备用)南京市2020年初中毕业生二模考试卷数学试卷参考答案及评分标准说明:本评分标准每题给出了一种或几种解法供参考.如果考生的解法与本解答不同,参照本评分标准的精神给分.一、选择题(本大题共6小题,每小题2分,共12分)二、填空题(本大题共10小题,每小题2分,共20分)7.3,3. 8.x ≠1. 9.1×10-7 10.-4. 11.15π. 12.5. 13.63. 14.-1,0(答案不唯一). 15.b ≥4. 16.26. 三、解答题(本大题共11小题,共88分) 17.(本题6分)解:原式=((a +2)(a -2)(a -2)2-)· ···································································· 4分=aa -2·(a -2) a (a +2)· ·············································································· 5分=1 a +2 ···························································································· 6分 18.(本题6分)解:解不等式①,得x ≥-1, ······································································ 2分解不等式②,得x <3. ········································································· 4分∴原不等式组的解集为-1≤x <3, ···························································· 5分正整数解有:1,2. ············································································· 6分19.(本题8分)解:(1)80.5; ··················································································· 2分 (2)①; ··························································································· 4分 (3)答案不唯一.如:从中位数上看,由上学期的80.5分到本学期的86分,一半以上的女生体质情况有较大提升;从成绩达到80分的女生数上看,本学期比上学期增加3人,且90分以上多2人,体质训练有效果. ······································ 8分20.(本题8分)解:(1)所有可能出现的结果有:(直行,直行)、(直行,左转)、(直行,右转)、(左转,直行)、(左转,左转)、(左转,右转)、(右转,直行)、(右转,左转)、(右转,右转)共9种,它们出现的可能性相同.所有的结果中,满足“同一方向行驶”(记为事件A )的结果有3种,所以P (A )=39=13. ············································ 6分(2)19. ······························································································· 8分.21.(本题8分)(1)证明:∵四边形ABCD 是平行四边形, ∴AD ∥BC , ∴∠1=∠2,∵EF 垂直平分AC , ∴AF =CF ,AE =CE ,FCDEBA(第21题)O 1 23∴∠2=∠3, ∴∠1=∠3, ∴AE =AF ,∴AE =AF =CE =CF , ∴四边形AECF 是菱形. ················································································ 6分 (2)32或42. ··························································································· 8分 22.(本题7分)解:设一月份的销售单价为x 元. ······························································· 1分 根据题意,得:8 000x +1 000=36 0001.5 x . ························································ 5分解得x =16. ··························································································· 6分经检验,x =16是所列方程的解. 答:一月份的销售单价为16元. ································································ 7分 23.(本题8分)解:(1)在Rt △ACD 中,∠ACD =90°,∵tan ∠DAC =CDAC ,∴CD =AC ·tan51.34°≈40×1.25=50. ························································· 3分 (2)过点D 作DG ⊥EF 于点G . 在Rt △BCD 中,∠BCD =90°,∵tan ∠DBC =CDBC ,∴BC =CD tan68.20°≈502.5=20. ········································································ 4分易证矩形DCEG ,∴CD =EG =50,DG =CE . 设EF =x 米.在Rt △DFG 中,∠DGF =90°,∵tan ∠FDG =FGDG ,∴DG =x -50tan26.57°, ···················································································· 5分在Rt △FBE 中,∠BEF =90°,∵tan ∠FBE =EFBE ,∴BE =xtan64.43°, ···················································································· 6分∴x -50tan26.57°=20+xtan64.43°, ······································································ 7分∴x ≈80. ······························································································· 8分 答:建筑物CD 的高度为50米,建筑物EF 的高度为80米.24.(本题9分)解:(1)观光轮16 km/h ,巡逻艇112 km/h ; ··············································· 2分 (2)最大距离:32-16×32112=1927km ; ························································ 5分(3)由题意可得:16x +112x =32×2,解得x =12;·········································· 7分线段BC 所表示的函数表达式为y BC =112(x -47)=112x -64,y 1=16x ,当y 1=y BC 时,112x -64=16x ,解得x =23,23-12=16. ······························· 9分答:最短时间间隔为 16h ;25.(本题9分)(1)证明:∵四边形AFGD 是⊙O 的内接四边形, ∴∠ADG +∠AFG =180°, ∵∠AFG +∠EFG =180°, ∴∠ADG =∠EFG ,由正方形ABCD 及翻折可得AB =AG =AD , ∴∠ADG =∠AGD , ∴∠AGD =∠EFG . ················································· 3分 (2)∵∠AGD =∠AFD ,∠AGD =∠EFG , ∴∠AFD =∠EFG , ∵四边形ABCD 是正方形,∴AD ∥BC . ∴∠DAF =∠AEB .由翻折得∠AEB =∠GEF ,∴∠DAF =∠GEF , ∴△ADF ∽△EGF . ··················································································· 6分 (3)解:设⊙O 与CD 交于点H ,连接AH 、GH , ∵∠ADH =90°,∴AH 是⊙O 的直径, ∴∠AGH =90°,由翻折得∠AGE =90°,则∠AGE +∠AGH =180°, ∴E 、G 、H 三点在一条直线上. ································································· 7分 ∵AH =AH ,AD =AG ,∴Rt △ADH ≌Rt △AGH ,∴GH =DH ,设GH =DH =x ,则在Rt △ECH 中,CH =3-x ,EH =1+x ,EC =3-1=2,由CH 2+EC 2=EH 2,即(3-x )2+22=(1+x )2,解得x =32, ································ 8分在Rt △ADH 中,AD 2+DH 2=AH 2,即32+(32)2=AH 2,解得AH =325,∴⊙O 的半径为345. ··············································································· 9分26.(本题9分) (1)证明:如图①,连接BC , ∵AB 是⊙O 的直径, ∴∠ACB =90°, ∵AC =PC ,∴BC 垂直平分AP ,∴AB =PB ,即△APB 为等腰三角形,∴点P 为⊙O 的径等点. ·························· 3分 (2)①如图②-1,当AB =AP 时,若PC =2AC ,则AC AP =13,∴AC AB =13; ····················· 4分②如图②-2,当P A =PB 时,易证△ABC ∽△APO ,∴AC AO =ABAP, ① (第25题)∵2AC =PC ,设AC =k ,则PC =2k ,∴k 12AB =AB 3k ,AB =6k ,∴AC AB =16=66. ··· 6分(3)如图③④,满足条件的点P 共有4个. ·················································· ····· 9分27.(本题10分) (1)证明:当y =0时,m (x -1)(x -m -3)=0, 解得x 1=1,x 2=m +3, 当m +3=1,即m =-2时,方程有两个相等的实数根; 当m +3≠1,即m ≠-2时,方程有两个不相等的实数根, ∴不论m 为何值,该函数的图像与x 轴总有公共点; ········································ 3分 (2)当x =0时,y =m 2+3m , ····································································· 4分∴点A 的纵坐标为m 2+3m ,∵该函数的图像与y 轴交于点A ,点A 在x 轴上方, ∴m 2+3m >0.设z =m 2+3m ,即z 是m 的二次函数,当m =0或-3时,z =0. ∵抛物线开口向上,∴当m >0或m <-3时,z >0.∴m 的取值范围是m >0或m <-3.……………………………………………………6分 (3)①当m >0时,图像经过一、二、四象限; ·············································· 7分②当-2<m <0或-3≤m <-2时,图像经过一、三、四象限; 也可写成:当-3<m <0(m ≠-2)时,图像经过一、三、四象限; ·············· 8分 ③当m =-2时,图像经过三、四象限;··················································· 9分 ④当m <-3时,图像经过一、二、三、四象限. ···································· 10分②-1②-23。

(江苏卷) 2020年中考数学第二次模拟考试(参考答案)

(江苏卷) 2020年中考数学第二次模拟考试(参考答案)
2020 年中考数学第二次模拟考试【江苏卷】
数学·参考答案
1
2
3
4
5
6
AABDAC
7.–1 8.1.1×103 9. x 1 10.1 11.﹣15
13.17
14. 8 15
15.60
17.【解析】
1
1 x
x2 1 x
16. 9 或 5 52
12. 2 5
= x 1 x2 1 xx x+1
= x2 1 x+1
x y 9000, 则 1.1x 0.9 y 9000,
x 4500,
解得
y
4500,
数学 第 3页(共 9页) 3
答:原计划拆建各 4500 平方米.
(2)计划资金 y1=4500×80+4500×800=3960000(元),
实用资金 y2=1.1×4500×80+0.9×4500×800=4950×80+4050×800=396000+324000=3636000(元),
AD
在 Rt△ADB 中,tan∠ABD= ,
BD
∴BD=
AD tan ABD
x tan 180

AD
在 Rt△ACD 中,tan∠ACD= ,
CD
∴CD=
AD tan ACD
x tan 140

∵BC=CD﹣BD,
x
x
∴ tan140 ﹣ tan180 =6,
40
∴4x﹣ x=6.
13
解这个方程,得 x=6.5.
=
( x+1)( x-1)
1 = x 1 .
3(x 2) 2x 5①
18.【解析】
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

江苏省南京市江宁区中考数学二模试卷、选择题:下列计算结果为负数的是(| -3|B. ( - 3) 0C.3a 2- a 2=3 B. (a 2) 3=a 5 C. a 3?a 6=a 9 D. a 6+ a 3=a2状态稳定的人去参赛,那么应选(4. 一个几何体的三视图如图所示,则这个几何体是(的实验中,统计了某种结果出现的频率,绘制了如图的折线图,那么符合子中有1个红球和2个黄球,它们只有颜色上的区别,从中随机地取出一个球是黄球掷一个质地均匀的正六面体骰子,落地时面朝上的点数是直线11// 12// 13,且11与12的距离为1, 12与13的距离为3.把一块含有45°角的直角三角板如图放置, 顶点A 、B C 恰好分别落在三条直线上,则^ ABC 的面积为(2. 卜列运算正确的是(3. 四名运动员参加了射击预选赛,他们成绩的平均环数 2 一工及其方差s 如表所示.如果选出一个成绩较好且A. , 一 _, 一、 2—(+3) D. (—3) A. XS 2甲乙丙78 8 1 1 1.2 B,乙 C.丙D.1.8A. 的游戏中,小明随机出的是 “剪刀”B.C. 掷一枚质地均匀的硬币,落地时结果是“正面向上”D.6. A.甲5.某小组在“用频率估计概率 这一结果的实验最有可能的是(在“石头、剪刀、布25 25A.二-B. -C. 12D. 25 42、填空题(本大题共 10小题,每小题2分,共20分)7 .人的眼睛可以看见的红光的波长是 0.000077cm,将0.000077用科学记数法表为8 .分解因式:x3-x=.9 .函数产二一中,自变量x 的取值范围是黑+510 .如图,已知 D 为4ABC 边 AB 上一点,AD=2BD DE// BC 交 AC 于 E, AE=G 则 EC=11 .如图,在。

中,弦 AB// CD 若/ ABC=40 ,则/ BOD=「f 式=2 口 ,、… (iox+ny=2 ,,―12 .已知T 是二元一次方程组T 的解,则m+3n 的值为(y=l[门冥FV =1Vs- Va13 .直接写出计算结果:甘-=—.2一一. 一14 .右一个圆锥底面圆的半径为3cm,图为4cm,则这个圆锥的侧面积为 cm.(结果保留16 .如图,AC=4,点B 是线段AC 的中点,直线l 过点C 且与AC 的夹角为60° ,则直线l 上有点 巳 使得 / APB=30 ,则PC 的长为15. 一次函数y=kx+b 与反比例函数 yJ ■中,若x 与y 的部分对应值如表:x…—2y=kx+b…5 4坨…13y=y x2x k -12 313 1 0 - 13- 33_ - 1"2)的解集是三、解答题(本大题共11小题,共88分)仔@41)〉4H217.解不等式组耳K—1 ,并写出不等式组的整数解.18.化简分式:( 含7一;土)+ ;],再从-2v XV3的范围内选取一个你最喜欢的值代入求值.19.已知关于x的方程X2- mx- 3x+m- 4=0 (m为常数).(1)求证:方程有两个不相等的实数根;(2)设X1, X2是方程的两个实数根,求(X1-1) (X2-1)的值.20.如图,将^ ABC在网格中(网格中每个小正方形的边长均为1)依次进行位似变换、轴对称变换和平移变换后得到△(1)4ABC与4人回。

的位似比等于 ;(2)在网格中画出△A1B1。

关于y轴的轴对称图形4 &BC2;(3)请写出△A3B6是由△A2B2Q怎样平移得到的?(4)设点P (X, y)为乙ABC内一点,依次经过上述三次变换后,点P的对应点的坐标为21.如图,在平行四边形ABCM,点E为AD的中点,延长CE交BA的延长线于点F.(1)求证:AB=AF⑵若BC=2AB / BCD=110 ,求/ ABE的度数.22.为增强学生的身体素质,教育行政部门规定学生每天参加户外活动的平均时间不少于1小时.为了解学生参加户外活动的情况,对部分学生参加户外活动的时间进行抽样调查,并将调查结果绘制作成如下两幅不完整的统计图,请你根据图中提供的信息解答下列问题r网A20-------------- 1一~U12 -4- ■C上信」向:小春L办时;小而*时间(1)求户外活动时间为1.5小时的人数,并补充频数分布直方图;(2)表示户外活动时间1小时的扇形圆心角的度数为 ° ;(3)本次调查中学生参加户外活动的平均时间是否符合要求?户外活动时间的众数和中位数是多少?23.江苏卫视《最强大脑》曾播出一期“辨脸识人”节目,参赛选手以家庭为单位,每组家庭由爸爸妈妈和宝宝3人组成,爸爸、妈妈和宝宝分散在三块区域,选手需在宝宝中选一个宝宝,然后分别在爸爸区域和妈妈区域中正确找出这个宝宝的父母,不考虑其他因素,仅从数学角度思考,已知在某分期比赛中有 A 日C三组家庭进行比赛:(1)选手选择A组家庭的宝宝,在妈妈区域中正确找出其妈妈的概率;(2)如果任选一个宝宝(假如选A组家庭),通过列表或树状图的方法,求选手至少正确找对宝宝父母其中一人的概率.24.小明想利用所学数学知识测量学校旗杆高度,如图,旗杆的顶端垂下一绳子,将绳子拉直钉在地上,末端恰好在C处且与地面成60。

角,小明拿起绳子末端,后退至E处,并拉直绳子,此时绳子末端D距离地面1.6m且绳子与水平方向成45。

角.求旗杆AB的高度和小明后退的距离EC.(参考数据:%" ~ 1.41 ,25. (9分)如图,正方形ABCD勺边长为2cm,以边BC为直径作半圆。

,点E在AB上,且AE=1.5cm,连接DE(1)DE与半圆。

相切吗?若相切,请给出证明;若不相切,请说明情况;(2)求阴影部分的面积.26. “双十一”淘宝网销售一款工艺品,每件的成本是50元.销售期间发现,销售单价是100元时,每天的销售量是50件,而销售单价每降低1元,每天就可多售出5件,但要求销售单价不得低于成本.(1)当降价了6元时,每天的销售利润是元(直接写出结果);(2)当降价了多少元时,每天的销售利润最大?最大利润是多少?(3)如果每天的销售利润不低于4000元,那么每天的总成本至少需要多少元?如图,在直线AD上放置一个等腰直角三角形AO街口一个正方形BODC / AOB=90 ,等腰直角三角形的直角边和正方形的边长均为2, 。

为正方形BODC勺外接圆,动点P从点A出发以每秒/个单位长度的速度沿A- B- A运动后停止;动点Q从点A出发以每秒2个单位长度的速度沿A-O-DfC-B运动,AO交BO于E点,P、Q运动的时间为t (秒).(1)直接写出:O O的半径长为 ,字ABE=;(2)试探究点P、Q从开始运动到停止,直线PQ与OO有哪几种位置关系?并直接写出对应的运动时间t 的范围;(3)当Q点在折线AADC上运动时,是否存在某一时刻t使得S;AAPQ:S AABE=3: 4?若存在,请求出t的值;若不存在,说明理由.江苏省南京市江宁区中考数学二模试卷参考答案与试题解析一、选择题:1.下列计算结果为负数的是( )A. | - 3|B. ( - 3) 0C. - ( +3)D. ( - 3) 2【考点】零指数哥;相反数;绝对值;有理数的乘方. 【分析】分别根据绝对值的性质:当a 是负有理数时,a 的绝对值是它的相反数- a;零次哥:a °=1(aw0);相反数的概念:只有符号不同的两个数叫做互为相反数;乘方的意义进行计算,进而可得答案. 【解答】解:A 、| - 3|=3 ,故此选项错误; 日(-3) 0=1,故此选项错误;C - ( +3) =- 3,故此选项正确;2D (-3) =9,故此选项错误;故选:B 、【点评】此题主要考查了零次哥、绝对值、相反数、乘方,关键是熟练掌握课本基础知识.2.下列运算正确的是()A. 3a 2- a 2=3B. ( a 2) 3=a 5C. a 3? a 6=a 9D. a 6+a 3=a 2【考点】同底数哥的除法;合并同类项;同底数哥的乘法;哥的乘方与积的乘方.【分析】根据合并同类项法则、积的乘方、同底数哥的乘法和除法,对各项计算后即可判断. 【解答】解:A 3a 2 - a 2=2a 2,错误;B> ( a 2) 3=a 6,错误;C a 2 3? a 6=a 9,正确;DK a 6+a 3=a1 错误;故选C.【点评】本题考查包括合并同类项、积的乘方、同底数哥的乘法和除法,需熟练掌握且区分清楚,才不容 易出错.2 .工及其方差s 如表所示.如果选出一个成绩较好且3.四名运动员参加了射击预选赛,他们成绩的平均环数甲 乙丙X 788 2S1 1 1.2 A.甲B,乙C.丙D.1.8状态稳定的人去参赛,那么应选(【考点】方差.【分析】此题有两个要求:①成绩较好,②状态稳定.于是应选平均数大、方差小的运动员参赛. 【解答】解:由于乙的方差较小、平均数较大,故选乙. 故选B.【点评】本题考查平均数和方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数 据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据 偏离平均数越小,即波动越小,数据越稳定.4 . 一个几何体的三视图如图所示,则这个几何体是(【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.结合图形,使用排 除法来解答. 【解答】解:如图,俯视图为三角形,故可排除 A B.主视图以及左视图都是矩形,可排除C,故选:D.【点评】本题考查了由三视图判断几何体的知识,难度一般,考生做此类题时可利用排除法解答.5 .某小组在“用频率估计概率”的实验中,统计了某种结果出现的频率,绘制了如图的折线图,那么符合这一结果的实验最有可能的是( )觑些r I◎25,0.1 D- -------------------------------------- 0.03: -------------------------------------U 100 200 500 400 500A.在“石头、剪刀、布”的游戏中,小明随机出的是“剪刀”B.袋子中有1个红球和2个黄球,它们只有颜色上的区别,从中随机地取出一个球是黄球C.掷一枚质地均匀的硬币,落地时结果是“正面向上”D.掷一个质地均匀的正六面体骰子,落地时面朝上的点数是6【考点】模拟实验.【分析】根据统计图可知,试验结果在0.16附近波动,即其概率P- 0.16 ,计算四个选项的概率, 约为0.16 者即为正确答案.的游戏中,小明随机出的是 “剪刀”的概率为,,故本选项错误;【解答】解:A 在“石头、剪刀、布A.【考点】由三视图判断几何体.日袋子中有1个红球和2个黄球,它们只有颜色上的区别,从中随机地取出一个球是黄球的概率为本选项错误;C掷一枚质地均匀的硬币,落地时结果是“正面向上”的概率是二,故本选项错误;DX掷一个质地均匀的正六面体骰子,落地时面朝上的点数是6的概率为' = 0.17,故本选项正确.6故选D.【点评】本题考查了利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:频率=所求情况数与总情况数之比.同时此题在解答中要用到概率公式.6.直线11// 12// 13,且11与12的距离为1, 12与13的距离为3.把一块含有45°角的直角三角板如图放置, 顶点A、B C恰好分别落在三条直线上,则^ ABC的面积为()A =--B - C. 12 D. 254 2【考点】全等三角形的判定与性质;平行线之间的距离;等腰直角三角形.【分析】作BU 13于E,作AF,13于F,得出BE=3, AF=3+1=4再证明^ BE%△ CFA得出CE=AF根据勾股定理求出BC,即可得出结果.【解答】解:作BE11 3于D,彳AFL于F,如图所示:则 / BECW CFA=90° , BE=3 AF=3+1=4,••• / ECB+Z EBC=90 ,.「△ABC是等腰直角三角形,/ ACB=90 , AC=BC••• / ECB+Z FCA=90° ,/ EBC=/ FCA在△BEC和△CFA中,r ZBEC=ZCFA ZEBC=ZFCA ,. .△BEe ACFA (AAS ,CE=AF=4• .BC=3「=5,AC=BC=5_ 1 ______ 1 25•••小AB T H AC? BCqX 5X 5=-^-2 2 2故选:B.【点评】本题考查了全等三角形的判定与性质、平行线之间的距离、勾股定理以及等腰直角三角形的性质;通过作辅助线证明三角形全等得出对应边相等是解决问题的关键.二、填空题(本大题共10小题,每小题2分,共20分) ............ ….. ............................... -57.人的眼睛可以看见的红光的波长是0.000077cm,将0.000077用科学记数法表为7.7 X 10 .【考点】科学记数法一表示较小的数.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为ax10「n,与较大数的科学记数法不同的是其所使用的是负指数哥,指数由原数左边起第一个不为零的数字前面的0的个数所决定.-5【解答】解:0.000077=7.7 X 10 .故答案为:7.7 X10」5.【点评】本题考查用科学记数法表示较小的数,一般形式为aX10-n,其中1W|a| <10, n为由原数左边起第一个不为零的数字前面的0的个数所决定.8.分解因式:x3 — x= x (x+1) ( x T) .【考点】提公因式法与公式法的综合运用.【专题】因式分解.【分析】本题可先提公因式x,分解成x (x2 - 1),而x2- 1可利用平方差公式分解.【解答】解:x3- x,=x (x2- 1 ),=x (x+1) ( x T).故答案为:x (x+1) (x-1).【点评】本题考查了提公因式法,公式法分解因式,先提取公因式后再利用平方差公式继续进行因式分解, 分解因式一定要彻底.9.函数产二f1中,自变量x的取值范围是xw - 5 .【考点】函数自变量的取值范围.【分析】根据分式的意义,分母不等于0,可以求出x的范围.【解答】解:根据题意得:x+5w0,故答案为xw - 5.【点评】本题考查了函数自变量的取值范围问题,函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.10.如图,已知D为4ABC边AB上一点,AD=2BD DE// BC交AC于E, AE=G 贝U EC= 3/ _____ Y区/ ------------------------【考点】平行线分线段成比例.【分析】由平行线分线段成比例定理得出比例式,即可得出结果.【解答】解:DE// BC, AD=2BD.M.AD=2CE "ED 2CE=-AE=3,故答案为:3.【点评】本题考查了平行线分线段成比例定理;由平行线分线段成比例定理得出比例式是解决问题的关键.11.如图,在。

相关文档
最新文档