固体物理试题
固体物理学-试题及答案

得
分
二、简答与作图题(每题10分,共20分)
1、在考虑晶格振动对晶体热容的贡献时,爱因斯坦模型和德拜模型分别是怎样的?并定性说明二者的结果.
2、画体心立方晶格结构的金属在(100),(110),(111)面上原子排列。
2、体心立方晶体结构中原子球的排列方式为(ABAB,ABCABC),六角密排晶体结构中原子球的排列方式为(ABAB,ABCABC)。
3、在简立方晶体结构中,与(100)、(110)、(111)晶面等效的晶面数分别为,,。
4、固体结合的类型一般有:离子键结合、、、范德瓦尔斯键结合等.
5、固体的热容量在常温附近遵守杜珑-帕蒂定律,即等于;在低温下,固体的热容量随温度降低而(升高,降低)。
3、解:,,5分;,5分。
4、解:一维晶格的能带E(k) = ε0−β − 2γcos(ka),10分;电子速度,5分;在边界,,,5分.
4、(无机非金属专业选作)解:第一能带,5分;第二能带,5分;第三能带,5分;第四能带,5分。
课程考试试题纸
课程名称:
固体物理学
考试方式:
闭卷
印刷份数:
学院:
任课教师:
专业年级:
题பைடு நூலகம்
号
一
二
三
四
五
六
七
八
总分
阅卷
教师
得
分
……………………………………………………………………………………………………
得
分
一、填空题(每小题2分,共30分)
1、对简立方晶体结构,立方体边长为a,其最近邻的原子数为,最近邻原子的间距为。次近邻的原子数为,次近邻原子的间距为。
固体物理习题及解答

完美导体不具备完全抗磁性,而超导体具有完全抗磁性,此为两者间最
E= B
根本的区别。根据法拉第电磁感应定律:
t ,若将超导体仅仅视
为电阻率为零的完美导体,内部电场强度 E 必为零,其旋度 E 必为零,
B
则磁场强度的时间变化率 t 亦必为零。因此完美导体内部的磁场强度保持 不变,根据外加磁场可为零或一定值;而对于超导体,无论外加磁场有无, 在超导态其内部磁场强度始终保持为零,具有完全抗磁性,其磁化率为-1。
表征。高于
68. 铁磁性物质高于居里温度时转变为顺磁性,并遵从 居里外斯 定律,
居里温度与 交换相互作用强度 成正比。
69. 第二类超导体的相干长度 小于 磁场侵入长度,因此超导态和正常态 的界面自由能为 负 值,可形成涡旋混合态。
70. 晶体衍射的必要条件是满足 Brag 方程,但由于系统消光,其中
-16. 布里渊(Brillouin)区 定义为倒格子空间中的维格纳-赛茨原胞;按
照衍射的劳埃条件,布里渊区边界包括了所有能发生 布拉格(Brag)反射 。
17. 根据布拉格方程,能满足衍射条件的入射 x 射线的波长不得大于 2d ;
入射 x 射线波长变大将导致衍射角
变大
。
18. 晶体结构中由原子或原子集团组成的最小重复单元称为
因此在外磁场为零时,具有 自发磁化 。
65. 根据费米分布函数
,在一定温度下,电子在费米能
级处的占据概率为
1/2
。
66. 原子磁矩在外磁场作用下的转向表现为 郎之万 顺磁性;导电电子
的自旋磁矩在外磁场作用下的转向表现为 泡利 顺磁性;
67. 一定温度下,铁磁性物质的特征物理性质由 磁滞回线 居里温度时转变为顺磁性,并遵从 居里外斯 定律。
初中固体物理试题及答案

初中固体物理试题及答案一、选择题(每题2分,共20分)1. 固体的三种基本类型是()。
A. 晶体、非晶体、准晶体B. 晶体、非晶体、多晶体C. 晶体、非晶体、单晶体D. 晶体、多晶体、准晶体答案:A2. 晶体的特点是()。
A. 无规则排列B. 规则排列C. 部分规则排列D. 完全无序排列答案:B3. 非晶体与晶体的主要区别在于()。
A. 原子排列方式B. 原子大小C. 原子种类D. 原子数量答案:A4. 晶体的熔点通常比非晶体的熔点()。
A. 低B. 高C. 相同D. 不可比较答案:B5. 准晶体是一种介于晶体和非晶体之间的固体,其特点是()。
A. 完全无序排列B. 长程有序但不具备周期性C. 规则排列D. 完全有序排列答案:B6. 晶体的X射线衍射图样是()。
A. 无规则的斑点B. 规则的点状图案C. 连续的曲线D. 无规则的条纹答案:B7. 固体的热膨胀系数是指()。
A. 固体在加热时体积不变B. 固体在加热时体积变化的比率C. 固体在冷却时体积变化的比率D. 固体在加热时质量变化的比率答案:B8. 固体的导电性主要取决于()。
A. 原子的质量B. 原子的排列方式C. 原子的体积D. 原子的数量答案:B9. 金属导电的原因是()。
A. 金属内部有自由移动的电子B. 金属内部有自由移动的原子C. 金属内部有自由移动的离子D. 金属内部有自由移动的分子答案:A10. 半导体的导电性介于()之间。
A. 金属和绝缘体B. 金属和非金属C. 非金属和绝缘体D. 金属和晶体答案:A二、填空题(每题2分,共20分)1. 晶体的三种基本类型是单晶体、多晶体和________。
答案:准晶体2. 晶体的原子排列具有________性。
答案:长程有序3. 非晶体的原子排列具有________性。
答案:短程有序4. 晶体的熔点较高是因为其内部________。
答案:原子排列紧密5. 准晶体的原子排列具有________性。
初中固体物理试题及答案

初中固体物理试题及答案一、选择题(每题2分,共20分)1. 固体物质的分子排列特点是:A. 无规则排列B. 规则排列C. 部分规则排列D. 完全无序排列答案:B2. 固体物质的分子间作用力是:A. 引力B. 斥力C. 引力和斥力D. 无作用力答案:C3. 下列物质中,属于晶体的是:A. 玻璃B. 橡胶C. 食盐D. 沥青答案:C4. 晶体与非晶体的主要区别在于:A. 颜色B. 形状C. 熔点D. 分子排列答案:D5. 固体物质的熔化过程需要:A. 吸收热量B. 放出热量C. 保持热量不变D. 无法判断答案:A6. 固体物质的硬度与下列哪项因素有关:A. 分子间作用力B. 分子质量C. 分子体积D. 分子形状答案:A7. 固体物质的导电性与下列哪项因素有关:A. 分子间作用力B. 分子运动速度C. 电子的自由移动D. 分子的排列方式答案:C8. 晶体的熔点与下列哪项因素有关:A. 晶体的纯度B. 晶体的颜色C. 晶体的形状D. 晶体的密度答案:A9. 固体物质的热膨胀现象说明:A. 分子间距离不变B. 分子间距离减小C. 分子间距离增大D. 分子间距离先增大后减小答案:C10. 固体物质的热传导性与下列哪项因素有关:A. 分子间作用力B. 分子运动速度C. 电子的自由移动D. 分子的排列方式答案:A二、填空题(每空1分,共20分)1. 固体物质的分子排列特点是________,而非晶体物质的分子排列特点是________。
答案:规则排列;无规则排列2. 固体物质的熔化过程中,分子间________,分子间距离________。
答案:作用力减弱;增大3. 晶体的熔点与________有关,而非晶体没有固定的熔点。
答案:晶体的纯度4. 固体物质的硬度与分子间________有关,分子间作用力越强,硬度越大。
答案:作用力5. 固体物质的热膨胀现象是由于温度升高,分子间距离________。
答案:增大三、简答题(每题10分,共30分)1. 简述晶体与非晶体的区别。
(完整word版)固体物理考试

)2(sin 422aq m βω=24aq m sin βω=m β42271()(cos cos 2)88E k ka ka ma =-+k a π=ma a E 22)( =π晶态, 非晶态, 准晶态在原子排列上各有什么特点? 答: 晶体是原子排列上长程有序)、非晶体(微米量级内不具有长程有序)、准晶体(有长程取向性, 而没有长程的平移对称性) 晶体:长程有序, 有固定的熔点 单晶体: 分子在整个固体中排列有序。
多晶体: 分子在微米量级内排列有序 非晶体:多晶体:分子在微米量级内排列有序, 整个晶体是由这些排列有序的晶粒堆砌而成的。
准晶体:有长程取向性, 而没有长程的平移对称性。
长程有序:至少在微米量级以上原子、分子排列具有周期性。
晶体结构周期性, 晶体: 基元+布拉维格子 实际的晶体结构与空间点阵之间有何关系? 晶体结构=空间点阵+基元。
原胞和晶胞的区别? 原胞是晶体的最小重复单元, 它反映的是晶格的周期性, 原胞的选取不是唯一的, 但是它们的体积都是相等的, 结点在原胞的顶角上, 原胞只包含1个格点;为了同时反映晶体的对称性, 结晶学上所取的重复单元, 体积不一定最小, 结点不仅可以在顶角上, 还可以在体心或者面心上, 这种重复单元称为晶胞。
掌握立方晶系3个布拉维格子的原胞、晶胞基失导法。
简单立方晶胞基失: 二者一样, 因为格点均在立方体顶角上。
原胞基失: a1=ai a2=bj=aj a3=ck=ak 体心立方除顶角格点外, 还有一个格点在位于立方体的中心。
晶胞基失a=a b=aj c=ak 原胞基失: a1=a/2(-i+j+k ) a 2=a/2(i-j+k ) a 3=a/2(i+j-k) 面心立方除顶角格点外: B 面的中心还有6个格点, (每个格点为相邻晶胞所共有) 原胞基失: a=ai b=aj c=ak 晶胞基失 a 1=a/2(j+k )a 2=a/2(k+i) a 3=a/2(i+j) 常见实际晶体的结构 ①氯化钠的结构: 由Na+和Cl-相间排列组成。
固体物理期末考试题及答案

固体物理期末考试题及答案一、选择题(每题2分,共20分)1. 晶体中原子排列的周期性结构被称为:A. 晶格B. 晶胞C. 晶面D. 晶向答案:A2. 描述固体中电子行为的基本理论是:A. 经典力学B. 量子力学C. 相对论D. 电磁学答案:B3. 以下哪项不是固体物理中的晶体缺陷:A. 点缺陷B. 线缺陷C. 面缺陷D. 体缺陷答案:D4. 固体物理中,晶格振动的量子称为:A. 声子B. 光子C. 电子D. 空穴答案:A5. 以下哪个不是固体的电子能带结构:A. 价带B. 导带C. 禁带D. 散射带答案:D二、简答题(每题10分,共30分)6. 解释什么是晶格常数,并举例说明。
晶格常数是晶体中最小重复单元的尺寸,通常用来描述晶体的周期性结构。
例如,立方晶系的晶格常数a是指立方体的边长。
7. 简述能带理论的基本概念。
能带理论是量子力学在固体物理中的应用,它描述了固体中电子的能量分布。
在固体中,电子的能量不是连续的,而是分成一系列的能带。
价带是电子能量较低的区域,导带是电子能量较高的区域,而禁带是两带之间的能量区域,电子不能存在。
8. 什么是费米能级,它在固体物理中有什么意义?费米能级是固体中电子的最高占据能级,它与温度有关,但与电子的化学势相等。
在绝对零度时,费米能级位于导带的底部,它决定了固体的导电性质。
三、计算题(每题15分,共30分)9. 假设一个一维单原子链的原子质量为m,相邻原子之间的弹簧常数为k。
求该链的声子频率。
解:一维单原子链的声子频率可以通过下面的公式计算:\[ \omega = 2 \sqrt{\frac{k}{m}} \]10. 给定一个半导体的电子亲和能为Ea,工作温度为T,求该半导体在该温度下的费米-狄拉克分布函数。
解:费米-狄拉克分布函数定义为:\[ f(E) = \frac{1}{e^{\frac{E-E_F}{kT}} + 1} \] 其中,E是电子的能量,E_F是费米能级,k是玻尔兹曼常数,T 是温度。
固体物理40题

1. 设晶体中的每个振子的零点振动能.试用德拜模型求晶体的零点振动能.证明:根据量子力学零点能是谐振子所固有的,与温度无关,故T=0K 时振动能0E 就是各振动模零点能之和。
()()()000012mE E g d E ωωωωωω==⎰将和()22332s V g v ωωπ=代入积分有402339168m m s V E N v ωωπ==,由于098m B D B D k E Nk ωθθ==得 一股晶体德拜温度为~210K ,可见零点振动能是相当大的,其量值可与温升数百度所需热能相比拟.2. 试画出二维长方格子的第一、第二布里渊区.3. 证明:在磁场中运动的布洛赫电子,在K 空间中,轨迹面积A n 和在r 空间的轨迹面积S n之间的关系A n= (qB hc)2S n()d k d rc qv B q B dt dt⋅=-⨯=--⋅解: dk qB dr dt c dt∴=⋅ t k qBr c两边对积分,即 =22()()n n A r c S k qB∴== 4. 证明:面心立方晶格的倒格子为体心立方. 解:面心立方晶格的基矢为()()()a a aa j ,b ,c 222k i k i j =+=+=+ 则面心立方原胞体积3V []4a abc ⋅⨯==a 2bc V π*⨯=面心立方倒格矢 ()()2384a i k i j a π=⋅+⨯+()ai j k π-++2=()b a i j k π*=-+2同理: ,()ac i j k π*=+-2 a b c ***显然,,为体心立方原胞基矢,因此面心立方晶格倒格子为体心立方 5. 证明:根据倒格子的定义证明简单立方格子体积与其倒格子体积成反比解:设简单立方晶格常数为a ,则基矢为a ,b ,c ,V a ai a j ak ===3体积=其倒格矢2312b 2a a i V aππ⨯==,3122b 2a a j V a ππ⨯==,1232b 2a a k V a ππ⨯== 则倒格子体积()31232[]V b b b Vπ*=⋅⨯=6. 是否存在与库伦力无关的晶型,为什么?答:不存在与库仑力无关的晶型,因为①共价结合中电子虽不能脱离电负性 的原子,但靠近的两个原子各给出一个电子,形成电子共有的形状,位于两原子之间通过库仑力把两个原子结合起来。
固体物理考试试题

1、解理面:矿物晶体在外力作用下严格沿着一定结晶方向破裂,并且能裂出光滑平面的性质称为解理,这些平面称为解理面。
性质:解理面一般光滑平整,一般平行于面间距最大,面网密度最大的晶面,因为面间距大,面间的引力小,这样就造成解理面一般的晶面指数较低,如Si的解理面为(111)。
晶体中原子的排列是长程有序的,这种现象称为晶体内部结构的周期性。
晶体内部结构的周期性可以用晶格来形象地描绘。
晶格是由无数个相同单元周期性地重复排列组成的。
2、晶格场中电子运动状态:在周期性势场中,属于某个原子的电子既可以在该原子附近运动,也可以在其它的原子附近运动,即可以在整个晶体中运动。
即局域化运动、共有化运动。
晶体中(也就是周期性势场中)的电子的运动是既有局域化的特征又有共有化特征。
3、固体热容组成:固体的热容是原子振动在宏观性质上的一个最直接的表现。
杜隆·伯替定律------在室温和更高的温度,几乎全部单原子固体的热容接近3NkB。
在低温热容与T3成正比。
(晶格热振动)晶格热容固体的热容(电子的热运动)电子热容每一个简谐振动的平均能量是kBT ,若固体中有N个原子,则有3N个简谐振动模,总的平均能量: E=3NkBT热容: Cv = 3NkB热容的本质:反映晶体受热后激发出的晶格波与温度的关系;对于N个原子构成的晶体,在热振动时形成3N个振子,各个振子的频率不同,激发出的声子能量也不同;温度升高,原子振动的振幅增大,该频率的声子数目也随着增大;温度升高,在宏观上表现为吸热或放热,实质上是各个频率声子数发生变化。
影响热容的因素:1. 温度对热容的影响高于德拜温度时,热容趋于常数,低于德拜温度时,与(T / D)3成正比。
2. 键强、弹性模量、熔点的影响德拜温度约为熔点的0.2—0.5倍。
3. 无机材料的热容对材料的结构不敏感混合物与同组成单一化合物的热容基本相同。
4. 相变时,由于热量不连续变化,热容出现突变。
5. 高温下,化合物的摩尔热容等于构成该化合物的各元素原子热容的总和(c=niCi)ni :化合物中i元素原子数;Ci:i元素的摩尔热容。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中科院考研固体物理试题(1997~2012)一九九七年研究生入学考试固体物理试题一 很多元素晶体具有面心立方结构,试:1 绘出其晶胞形状,指出它所具有的对称元素2 说明它的倒易点阵类型及第一布里渊区形状3 面心立方的Cu 单晶(晶格常熟a=Å)的x 射线衍射图(x 射线波长λ=Å)中,为什么不出现(100),(422),(511)衍射线?4它们的晶格振动色散曲线有什么特点?二 已知原子间相互作用势n m r rr U βα+-=)(,其中α,β,m,n 均为>0的常数,试证明此系统可以处于稳定平衡态的条件是n>m 。
三 已知由N 个质量为m ,间距为的相同原子组成的一维单原子链的色散关系为2sin 421qa m ⎪⎭⎫ ⎝⎛=βω 1 试给出它的格波态密度()ωg ,并作图表示2 试绘出其色散曲线形状,并说明存在截止频率max ω的意义四 半导体材料的价带基本上填满了电子(近满带),价带中电子能量表示式())(10016.1234J k k E ⨯-=,其中能量零点取在价带顶。
这时若cm k 6101⨯=处电子被激发到更高的能带(导带)而在该处产生一个空穴,试求此空穴的有效质量,波矢,准动量,共有化运动速度和能量。
(已知s J ⋅⨯=-3410054.1 ,23350101095.9cm sw m ⋅⨯=-)五金属锂是体心立方晶格,晶格常数为5.3aÅ,假设每一个锂原子贡献一个=传导电子而构成金属自由电子气,试推导K=时,金属自由电子气费米能表T0示式,并计算出金属锂费米能。
(已知J⨯=)1-.110602eV19六 二维自由电子气的电子能量表达式是()m k m k E y x 222222 += 当z k 方向有磁场入射时,电子能量本征值将为一系列Landau 能级。
Landau 能级是高简并度分立能级,试导出其简并度。
一九九八年研究生入学考试固体物理试题一 简要回答以下问题(20分)1 试绘图表示NaCl 晶体的结晶学原胞、布拉菲原胞、基元和固体物理学原胞。
2 已知三维晶体原胞的体积为Ω,试推导给出倒格子原胞的体积Ω*。
3假设CsCl 晶体的Cs 及Cl 原子的散射因子分别是Cs f 和Cl f 试求其结构因子()hkl F4 试以立方晶体为例列出黄昆方程,并做定性解释。
二试求一维双原子链复式格子晶格振动的色散关系,并绘图表示之。
三试列举晶体中的各种缺陷,并做简要说明。
四试求三维晶体量子热容表达式。
五试根据近满带情况下电子在电磁场中的运动规律,给出“空穴”的完整定义。
E的表达式。
六试推导0K极限情况下金属中电子费米能量0F七试推导给出金属中电子的量子统计速度分布公式。
一九九九年研究生入学考试固体物理试题一试对晶体进行分类:1 从晶体几何对称性出发分类2 从晶体结合出发分类二简要回答如下问题1 试绘图表示二维正方格子的第一、第二、第三布里渊区,并做解释。
2 简述晶格中电子散射的微观过程。
三试绘图表示金刚石晶体的结晶学原胞,布拉菲原胞,基元和固体物理学原胞。
四试求一维单原子链线形晶格振动的色散关系,并绘图表示之。
五简述德拜模型,并推导出三维晶体晶格振动频谱密度()ωf的表达式。
六试对晶体中的位错及其性质进行简单描述。
七试从波恩—卡曼边界条件出发,求出三维k→空间电子状态分布密度。
八试推导近自由电子近似金属电子的能态密度()EN,并绘图表示其变化趋势。
九试从能带理论出发解释导体,绝缘体和半导体的区别与联系。
十试给出长光学横波与电磁波耦合模的色散关系,并进行初步解。
二零零零年研究生入学考试固体物理试题一填空1 晶体中原子排列的最大特点是______________________________________。
非晶体中原子排列的最大特点是____________________________________。
准晶结构的最大特点是___________________________________________。
2 晶体中可以独立存在的8种对称元素是__________________________。
3 半导体材料Si 和Ge 单晶的晶体点阵类型为_________________,倒易点阵类型为__________________,第一布里渊区的形状为_______________,每个原子的最近邻原子数为__________。
4 某晶体中两原子间的相互作用势()126rB r A r u +-=,其中A 和B 是经验参数,都为正值,r 为原子间距,试指出____________项为引力势,______________项为斥力势,平衡时最近邻两原子间距0r =_______________,含有N 个原子的这种晶体的总结合能表达式为:____________________________________。
5 研究固体晶格振动的实验技术有:_____________________,____________________,_____________________,____________________等。
二 已知N 个质量为m 间距为a 的相同原子组成的一维原子链,其原子在偏离平衡位置δ时受到近邻原子的恢复力βδ-=F (β为恢复力系数)。
1 试证明其色散关系2sin 2qa m βω=(q 为波矢) 2 试绘出它在整个布里渊区的色散关系,并说明截止频率的意义。
3 试求出它的格波态密度函数()ωg ,并作图表示。
三 1 假设某二价元素晶体的结构是简立方点阵。
试证明第一布里渊区角偶点⎪⎭⎫ ⎝⎛a a a πππ,,的自由电子动能为区边中心点⎪⎭⎫ ⎝⎛0,0,a π的三倍。
2 若二价元素晶体的能隙很小,试说明它不会是绝缘体。
四 用紧束缚方法处理晶体s 态电子,得到其能量表达式为()()∑⋅+=ll R R ik l s e R J E k E 0其中0E 为常数,()l R J 称重叠积分(小于零)。
1 在最近邻近似下,求出x 方向格常数为a ,y 方向格常数为b (b a ≠)的二维矩形晶体s 态电子能量表达式。
2 求出s 态晶体电子能带宽度。
3 分别求出能带底电子与能带顶空穴有效质量张量。
五 N 个原子组成二维正方格子,每个原子贡献一个电子构成二维自由电子气,电子能量表达式是()mk h m k h k E y x 222222+= 1 推导二维自由气的能态密度公式。
2 此时在垂直于正方格子方向射入一磁场B ,自由电子气能级将凝聚成Landau 能级,问该能级的简并度是多少?二零零一年研究生入学考试固体物理试题一 简要回答以下问题:1 某种元素晶体具有六角密堆结构,试指出该晶体的布拉菲格子类型和倒格子类型2 某元素晶体的结构为体心立方布拉菲格子,试指出其格点面密度最大的晶面系的密勒指数,并求出该晶面系相邻晶面的面间距。
(设其晶胞参数为a)3具有面心立方结构的某元素晶体,它的多晶样品x射线衍射谱中,散射角最小的三个衍射峰相应的面指数是什么?4何谓费米能级和费米温度?试举出一种测量金属费米面的实验方法5 试用能带论简述导体、绝缘体、半导体中电子在能带中填充的特点二 回答以下问题:1 阐述晶格中不同简正模式的格波之间达到热平衡的物理原因。
2 晶格比热理论中德拜近似在低温下与实验符合的很好,物理原因是什么?3 晶体由N 个原子组成,试求出德拜模型下的态密度、德拜频率的表达式,并说明德拜频率的物理意义。
三 设有一维双原子链,两种原子的质量分别为M 和m ,且m M >,相邻原子间的平衡间距为a ,只考虑最近邻原子间的相互作用,作用力常数为β,在简谐近似下,考虑原子沿链的一维振动:1 求格波简正模的频率与波矢间的关系()q ω2 证明波矢q 和m a q π+(其中m 为整数)描述的格波是全同的3 在m M >>的极限情形,求色散关系()q ω的渐进表达式。
四 推导简立方晶格中由原子S 态()r s ϕ形成的能带: 1 写出描述S 态晶体电子波函数的Bloch 表达式2 写出在最近邻作用近似下,由紧束缚法得到的晶体S 态电子能量表达式()k E3 计算如图Γ,X ,R 点晶体电子能量4 指出能带底与能带顶晶体电子能量,其能带宽度等于多少?简单布里渊区5 画出原子能级分裂成能带示意图。
五金属钠是体心立方晶格,晶格常数a=Å,假如每一个锂原子贡献一个传导电子而构成金属自由电子气,试推导T=0K时金属自由电子气费米能表示式,并计算出金属锂费米能。
(ħ=×10-34J·s,m=×10-35W·s3/cm2,1eV=×10-19J)二零零二年研究生入学考试固体物理试题一某元素晶体具有面心立方结构,其晶胞参数为a1 在直角坐标系中写出其相应布拉菲格子一组形式较对称的基矢,由此求出其倒格子的基矢,并指出倒格子是什么类型的布拉菲格子。
2 对该晶体的粉末样品,用波长为λ的单色X射线照射时,观察到一系列衍射峰,分别对下面两种情况,求散射角小的二个衍射峰的布拉格角θ(用λ和a的公式表示):1)该晶体每个基元只含有一个原子2)该晶体具有金刚石结构。
3 什么叫能带论?说明晶体大小的差别并不影响能带的基本情况。
4 为什么说晶体原胞中电子数目若为奇数,相应的晶体具有金属导电性?5 当磁场方向沿[1,1,1]方向时,银的de Hass-Van Alphen 效应中磁化率振荡出现两个周期,其原因是什么?二 对惰性元素晶体,原子间的相互作用常采用勒纳-琼斯势()⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=6124r r r u σσε 其中σ和ε为待定常数,r 为两原子间的距离1 试说明式中两项的物理意义以及物理来源2 证明平衡时的最近邻原子间距0r 与σ之比为一与晶体结构有关的常数三 1 有一维双原子链,两种原子的质量分别为M 和m ,且m M >,相邻原子间的平衡间距为a ,作用力常数为β。
考虑原子沿链的一维振动:1)求格波简正模的频率与波矢间的关系()q ω2)证明波矢q 和m a q π+(其中m 为整数)描述的格波是全同的2 常用热中子与晶格振动的非弹性相互作用来研究晶格振动的色散关系()q ω,请简要叙述其基本原理。
并明确说明实验中测量哪些量,以及如何由此得出色散关系()q ω四 半金属交叠的能带为()()m m m k E k E 18.0,20112211=-= ()()()m m k k m k E k E 06.0,222012022=-+= 其中()01E 为带1的带顶,()02k E 为带2的带底。
交叠部分()()eV k E E 1.00021=-。