外国语学校2012年中考二模数学试题及答案

合集下载

2012届中考模拟考试数学试题

2012届中考模拟考试数学试题
2012 届中考模拟考试
数学试卷
(满分 120 分,120 分钟完卷)
注意:不允许使用科学计算器进行运算,凡无精确度要求的题目,结果均保留 准确值,解答题应写出演算过程、推理步骤或文字说明。
A 卷(共 100 分)
第Ⅰ卷(选择题,共 36 分)
一、选择题:本大题共 12 个小题,每小题 3 分,共 36 分)
900 得到 ABO ,若 A 的坐标为(-2,4),B 点坐标为(-3,0); ① 在图中画 出 ABO 和 ABO (3 分) ②直接写出 A和A 点的坐标;(2 分) ③ ABO的顶点 A 在变换过程中所经过 的路径长为多少( 3 分)
22、如图,水坝的横断面是梯形,背水坡 AB 的坡角∠BAD=600,坡长 AB=20 3 m,为加强水坝强度,将坝底从 A 处向后水平延伸到 F 处,使新的背水 坡的坡角∠F=450,求 AF 的长度(结果精确到 1 米,参考数据, 2 1.414 , 3 1.732 )
EF⊥AE,则 CF 等于( )
(A)1
(B)2
(C) 2 3
(D) 3 2
12、如图,反比例函数
y1
k1 x
和正比例函数
y2
பைடு நூலகம்
k2x

图像交于 A(—1,—3)、B(1,3)两点,若 y1 y2 ,
则 x 的取值范围是( )
(A) 1 x 0
(B) 1 x 1
(C) x 1或0 x 1
②求 sin OEF 的值(3 分) ③若直线 EF 与线段 AD、BC 分别相交 于点 G、H,求 AB CD 的值(3 分)
GH
二、本大题一个小题共 11 分 26 、 如 图 , 在 平 面 直 角 坐 标 系 中 , 抛 物 线 y x2 mx n 经过 A(3,0),B(0,-3)两点,

2012年中考第二次模拟试卷数学试题及答案

2012年中考第二次模拟试卷数学试题及答案

11.若分式
2
| x | 1 的值为零,则 x 的值等于 x 1
.
12.方程 x =x 的解是
1 2
B.
1 2
C. 2
D.2 ( D.x≤4 ( ) )
13.甲、乙两位棉农种植的棉花,连续五年的单位面积产量(千克/亩)统计如下表,则产量 较稳定的是棉农 .(填“甲”或“乙”) 棉农甲 棉农乙 14.若 x 1 68 69 70 71 72 71 69 69 71 70
21.(本题满分 8 分) 已知:如图,在平行四边形 ABCD 中,E 是 CA 延长线上的点,F 是 AC 延长线上的点,且 AE=CF.试判断 BE 与 DF 之间有何关系,并说明理由.
E A D
24. (本题满分 10 分)如图,线段 AB 的端点在边长为 1 的 小正方形网格的格点上,现将线段 AB 绕点 A 按逆时 针方向旋转 90° 得到线段 AC. ⑴请你在所给的网格中画出线段 及点 经过的路径 ; ..AC . . ..B . ..... ⑵若将此网格放在一平面直角坐标系中,已知点 A 的坐 标为(1,3),点 B 的坐标为(-2,-1),则点 C 的坐标 为 域的面积为 ; ; .
第 24 题
⑶线段 AB 在旋转到线段 AC 的过程中,线段 AB 扫过的区 ⑷若有一张与⑶中所说的区域形状相同的纸片,将它围成一个几何体的侧面,则该几何 体底面圆的半径长为 25.(本题满分 10 分) 如图,在△ ABC 中,AB=AC,∠B=30° ,O 是 BC 上一点,以点 O 为圆心,OB 长为半径作圆,恰好经过点 A,并与 BC 交于点 D. (1)判断直线 CA 与⊙O 的位置关系,并说明理由; (2)若 AB=2 3 ,求图中阴影部分的面积(结果保留 π) . C

2012年中考模拟考试数学试卷(含答案)

2012年中考模拟考试数学试卷(含答案)

2012年中考模拟试卷数 学 试 题注意事项:1.本试卷共6页.全卷满分150分.考试时间为120分钟.考生答题全部答在答题卡上,答在本试卷上无效.2.请认真核对监考教师在答题卡上所粘贴条形码的姓名、考试证号是否与本人相符合,再将自己的姓名、准考证号用0.5毫米黑色墨水签字笔填写在答题卡及本试卷上.3.答选择题必须用2B 铅笔将答题卡上对应的答案标号涂黑.如需改动,请用橡皮擦干净后,再选涂其他答案.答非选择题必须用0.5毫米黑色墨水签字笔写在答题卡上的指定位置,在其他位置答题一律无效.4.作图必须用2B 铅笔作答,并请加黑加粗,描写清楚.一、选择题(下列各题给出的四个选项中,只有一个是正确的.每小题3分,满分24分) 1. 21-是A .2的相反数B .21 的相反数 C .2-的相反数 D .21-的相反数2.花果山风景区一年接待旅游者约876000人,这个数可以用科学记数法表示为A .0.876×106 B. 876×103 C. 8.76×106 D. 8.76×105 3.下列运算中,计算正确的是A .3x 2+2x 2=5x 4B .(-x 2)3=-x 6C .(2x 2y )2=2x 4y 2D .(x +y 2)2=x 2+y44.体育课上,体育委员记录了6位同学在25秒内连续垫排球的情况,6位同学连续垫球的个数分别为30、27、32、30、28、34,则这组数据的众数和极差分别是 A .33,7B .32,4C .30,4D .30,75.如右图所示的几何体是由一些小立方块搭成的,则这个几何体的左视图是6.已知23x =,那么在数轴上与实数x 对应的点可能是A .1PB .4PC .2P 或3PD . 1P 或4P7.如图,已知□ABCD ,∠A =45°,AD =4,以AD 为直径的半圆O 与BC 相切于点B ,则图中第5题ABDC阴影部分的面积为A .42B .π+2C .4D .228.如图,在55⨯的正方形网格中,以AB 为边画直角△ABC ,使点C 在格点上,满足这样条件的点C 的个数A .6B .7C .8D .9二、填空(每小题3分,共24分)9.写出一个小于0的无理数______▲_______. 10.函数y =-1-x x 中自变量x 的取值范围_______▲________.11.分解因式:2441a a -+= _______▲______.12.已知等腰梯形的面积为24cm 2,中位线长为6cm ,则等腰梯形的高为____▲_____cm . 13.如图,把一块直角三角板的直角顶点放在直尺的一边上,如果∠1=35°,那么∠2是 ▲ °.14. 已知实数m 是关于x 的方程2x 2-3x -1=0的一根,则代数式4m 2-6m -2值为___▲__. 15.如图,△ABC 的三个顶点都在5×5的网格(每个小正方形的边长均为1个单位长度)的格点上,将△ABC 绕点B 顺时针旋转到△A ’BC ’的位置,则点A 经过的路径长为 ▲ .(结果保留π).16.某中学在校内安放了几个圆柱形饮水桶的木制支架(如图①),若不计木条的厚度,其俯视图如图②所示,已知AD 垂直平分BC ,AD=BC=40cm ,则圆柱形饮水桶的底面半径的最大值是 ▲ cm .第8题第13题第16题CA第7题三、解答题:(本大题共有12小题,共102分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤) 17.(本题满分6分)计算:121(2)3-⎛⎫-- ⎪⎝⎭-0(2-18.(本题满分6分)先化简211()111a a a a -÷-+-,再选取一个使原式有意义的a 的值代入求值.19.(本题满分6分)解方程:2250x x +-= 20.(本题满分6分)如图,四边形ABCD 是正方形,点E 在BC 上,DF ⊥AE ,垂足为F ,请你在AE 上确定一点G ,使△ABG ≌△DAF ,请你写出两种确定点G 的方案,并就其中一种方案的具体作法证明△ABG ≌△DAF .方案一:作法: ; 方案二:(1)作法: .(2) 证明:21.(本题满分6分)某手机专营店代理销售A 、B 两种型号手机.手机的进价、售价如下表:用36000元购进 A 、B 两种型号的手机,全部售完后获利6300元,求购进A 、B 两种 型号手机的数量。

2012年中考数学模拟试卷(2)及答案.doc

2012年中考数学模拟试卷(2)及答案.doc

OABC112题图2012年中考数学模拟试卷二一、选择题(本题有10小题,每小题3分,共30分)1. 3的倒数是( )A .13B .— 13C .3D .—32.如图所示的物体的主视图是( )3.下列计算正确的是( )A .2a +3b =5abB .x 2·x 3=x 6C .123=-a aD .()632a a=4.浙江在线杭州2012年1月8日讯:预计今年整个春运期间铁路杭州站将发送旅客342.78万人,与2011年春运同比增长4.7%。

用科学记数法表示342.78万正确的是( ) A .3.4278×107 B .3.4278×106 C .3.4278×105 D .3.4278×104 5.已知两圆的半径分别为3和4,圆心距为1,则两圆的位置关系是 ( ) A.相交B.内切C.外切D.内含6.如图,直线l 1//l 2,则α为( )A .150°B .140°C .130°D .120° 7.九年级一班5名女生进行体育测试,她们的成绩分别为70,80,85,75,85(单位:分),这次测试成绩的众数和中位数分别是( )A .79,85B .80,79C .85,80D .85,858.浙江省庆元县与著名的武夷山风景区之间的直线距离约为105公里,在一张比例尺为1:2000000的旅游图上,它们之间的距离大约相当于( )A .一根火柴的长度B .一支钢笔的长度C .一支铅笔的长度D .一根筷子的长度 9.抛物线)2(--=x x y 的顶点坐标是 ( )A .(-1,-1)B .(-1,1)C .(1,1)D .(1,-1) 10.如图,过x 轴正半轴任意一点P 作x 轴的垂线,分别与反比例函数y 1=2x 和y 2=4x的图像交于点A 和点B.若点C 是y 轴上任意一点,连结AC 、BC ,则△ABC 的面积为( )A .1B .2C .3D .4二、填空题(本题有6小题,每小题4分,共24分) 11.因式分解:ma+mb = . 12.如图,O 为直线AB 上一点,∠COB=30°,则∠1= . 13.如图,AB 为⊙O 直径,点C 、D 在⊙O 上,已知∠AOD =50°,AD ∥OC ,则∠BOC = 度.14.三张完全相同的卡片上分别写有函数x y 2=、xy 3=、2x y =,从中随机抽取一张,则所得卡片上函数的图象在第一象限内y 随x 的增大而增大的概率是 .15.如图,已知梯形ABCD 中,AD ∥BC ,BD 是对角线.添加下列条件之一:①AB =DC ;②BD 平分∠ABC ;③∠ABC =∠C ;④∠A +∠C =180°,能推得梯形ABCD 是等腰梯形的是 (填编号).16.图1是一个八角星形纸板,图中有八个直角,八个相等的钝角,每条边都相等.如图2将纸板沿虚线进行切割,无缝隙无重叠的拼成图3所示的大正方形,其面积为8+42,则图3中线段AB 的长为 .BA图1 图2 图3三、解答题(本题有8小题,共66分,各小题都必须写出解答过程) 17.(本题8分)(1)计算:()0|tan 45|122012π+-+o(2)当2x =-时,求22111x x x x ++++的值.18.(本题6分)如图,放置在水平桌面上的台灯的灯臂AB 长为40cm ,灯罩BC 长为30cm ,底座厚度为2cm ,灯臂与底座构成的∠BAD =60°.使用发现,光线最佳时灯罩BC 与水平线所成的角为30°,此时灯罩顶端C 到桌面的高度CE 是多少cm ?(结果精确到0.1cm ,参考数据:3≈1.732)l 1l 2 50° 70° α 24y x = 12y x= ACD(第15题)19.(本题6分)已知二次函数y=x2+2x+m的图象C1与x轴有且只有一个公共点.(1)求C1的顶点坐标;(2)将C1向下平移若干个单位后,得抛物线C2,如果C2与x轴的一个交点为A(﹣3,0),求C2的函数关系式,并求C2与x轴的另一个交点坐标;20.(本题6分)如图,已知AB是⊙O的直径,PB为⊙O的切线,B为切点,OP⊥弦BC于点D且交⊙O于点E.(1)求证:∠OPB=∠AEC;(2)若点C为半圆¼ACB的三等分点,请你判断四边形AOEC为哪种特殊四边形?并说明理由.21.(本题8分)实施新课程改革后,学生的自主学习、合作交流能力有很大提高,张老师为了了解所教班级学生自主学习、合作交流的具体情况,对本班部分学生进行了为期半个月的跟踪调查,并将调查结果分成四类,A:特别好;B:好;C:一般;D:较差;并将调查结果绘制成以下两幅不完整的统计图,请你根据统计图解答下列问题:(1)本次调查中,张老师一共调查了名同学,其中C类女生有名,D类男生有名;(2)将上面的条形统计图补充完整;(3)为了共同进步,张老师想从被调查的A类和D类学生中分别选取一位同学进行“一帮一”互助学习,请用列表法或画树形图的方法求出所选两位同学恰好是一位男同学和一位女同学的概率.22.(本题10分)产自庆元县百山祖山麓一带的“沁园春”茶叶是丽水市知名品牌.现该品牌旗下一茶厂有采茶工人30人,每人每天采鲜茶叶“炒青”20千克或鲜茶叶“毛尖”5千克.已知生产每千克成品茶叶所需鲜茶叶和销类别生产1千克成品茶叶所需鲜茶叶(千克)销售1千克成品茶叶所获利润(元)炒青 4 40毛尖 5 120(1)若安排x人采“炒青”,则可采鲜茶叶“炒青”千克,采鲜茶叶“毛尖”千克.(2)若某天该茶厂工生产出成品茶叶102千克,则安排采鲜茶叶“炒青”与“毛尖”各几人?(3)根据市场销售行情,该茶厂的生产能力是每天生产成品茶叶不少于100千克且不超过110千克,如果每天生产的茶叶全部销售,如何分配采茶工人能使获利最大?最大利润是多少?23.(本题10分)定义:若某个图形可分割为若干个都与他相似的图形,则称这个图形是自相似图形.探究:(1)如图甲,已知△ABC中∠C=90°,你能把△ABC分割成2个与它自己相似的小直角三角形吗?若能,请在图甲中画出分割线,并说明理由.(2)一般地,“任意三角形都是自相似图形”,只要顺次连结三角形各边中点,则可将原三分割为四个都与它自己相似的小三角形.我们把△DEF(图乙)第一次顺次连结各边中点所进行的分割,称为1阶分割(如图1);把1阶分割得出的4个三角形再分别顺次连结它的各边中点所进行的分割,称为2阶分割(如图2)……依次规则操作下去.n阶分割后得到的每一个小三角形都是全等三角形(n为正整数),设此时小三角形的面积为S n.①若△DEF的面积为1000,当n为何值时,3<S n<4?(请用计算器进行探索,要求至少写出二次的尝试估算过程)②当n>1时,请写出一个反映S n-1,S n,S n+1之间关系的等式(不必证明)BC A图甲24.(本题12分)已知:在矩形A0BC 中,分别以OB ,OA 所在直线为x 轴和y 轴,建立如图所示的平面直角坐标系.E 是边AC 上的一个动点(不与A ,C 重合),过E 点的反比例函数(0)ky k x=>的图象与BC 边交于点F .(1)若△OAE 、△OBF 的面积分别为S 1、S 2且S 1+S 2=2,求k 的值;(2)若OB=4,OA=3,记OEF ECF S S S =-△△问当点E 运动到什么位置时,S 有最大值,其最大值为多少?(3)请探索:是否存在这样的点E ,使得将△CEF 沿EF 对折后,C 点恰好落在OB 上?若存在,求出点E 的坐标;若不存在,请说明理由.2012年中考数学模拟试卷二参考答案题次 12345678 9 10 答案A C DB B DCACA二、填空题(本题有6小题,每小题4分,共24分) 11. m(a+b);12. 150°;13. 65;14.23;15. ①③④;16. 1+2 三、解答题(本题有8小题,共66分,各小题都必须写出解答过程) 17.(本题8分)(1)原式=1+23-1=23(2)解:原式=2221(1)111x x x x x x +++==+++ 当2x =-时,原式1211x =+=-+=- (说明:直接代入求得正确结果的给满分) 18.(本题6分)解:∵灯罩BC 长为30cm ,光线最佳时灯罩BC 与水平线所成的角为30°, ∴sin30°=30CM BC CM =,∴CM=15cm .∵sin60°=BA BF ,∴23=40BF,解得BF=203,∴CE =2+15+203≈51.6cm .答:此时灯罩顶端C 到桌面的高度CE 是51.6cm .19.(本题6分)解:(1)y =x 2+2x +m=(x +1)2+m ﹣1,对称轴为x =﹣1,∵与x 轴有且只有一个公共点,∴顶点的纵坐标为0,∴C 1的顶点坐标为(﹣1,0);(2)设C2的函数关系式为y=(x+1)2+k,把A(﹣3,0)代入上式得(﹣3+1)2+k=0,得k=﹣4,∴C2的函数关系式为y=(x+1)2﹣4.∵抛物线的对称轴为x=﹣1,与x轴的一个交点为A(﹣3,0),由对称性可知,它与x轴的另一个交点坐标为(1,0);20.(本题6分)(1)证明:∵AB是⊙O的直径,PB为⊙O的切线,∴PB⊥AB.∴∠OPB+∠POB=90°.∵OP⊥BC,∴∠ABC+∠POB=90°.∴∠ABC=∠OPB.又∠AEC=∠ABC,∴∠OPB=∠AEC.(2)解:四边形AOEC是菱形.∵OP⊥弦BC于点D且交⊙O于点E,∴»CE=»BE.∵C为半圆ACB¯的三等分点,∴»AC=»CE=»BE.∴∠ABC=∠ECB.∴AB∥CE.∵AB是⊙O的直径,∴AC⊥BC.又OP⊥弦BC于点D且交⊙O于点E,∴AC∥OE.∴四边形AOEC是平行四边形.又OA=OE,∴四边形AOEC是菱形.21.(本题8分)解:(1)20, 2 ,1;(2)如图(3)选取情况如下:∴所选两位同学恰好是一位男同学和一位女同学的概率2163==P22.(本题10分)解:(1)设安排x人采“炒青”,20x;5(30-x).(2)设安排x人采“炒青”,y人采“毛尖”则30205(30)10245x yx x+=⎧⎪-⎨+=⎪⎩,解得:1812xy=⎧⎨=⎩,即安排18人采“炒青”,12人采“毛尖”.(3)设安排x人采“炒青”,205(30)11045205(30)10045x xx x-⎧+≤⎪⎪⎨-⎪+≥⎪⎩解得:17.5≤x≤20①18人采“炒青”,12人采“毛尖”.②19采“炒青”,11人采“毛尖”.③20采“炒青”,10人采“毛尖”.所以有3种方案.计算可得第(1)种方案获得最大利润.18×204×40+12×55×120=5040元最大利润是5040元.23.(本题10分)解:(1)正确画出分割线CD(如图,过点C作CD⊥AB,垂足为D,CD即是满足要求的分割线,若画成直线不扣分)理由:∵∠B = ∠B,∠CDB=∠ACB=90°∴△BCD ∽△ACB(2)①△DEF 经N阶分割所得的小三角形的个数为n41∴S =n41000,当n =3时,S3 =31000S≈15.62当n = 4时,S4 =41000S≈3.91 ∴当n= 4时,3 <S4<4②S 2 = S 1-n × S 1+n ,S 1-n = 4 S, S= 4 S 1+n 24.(本题12分)解:(1)∵点E 、F 在函数ky x=(k >0)的图象上, ∴设E (x 1,1k x ),F (x 2,2kx ),x 1>0,x 2>0, ∴111122k K S x x ==,S 2= 22122k K x x = , ∵S 1+S 2=2,∴22K K+=2,∴k =2; (2)由题意知:E F ,两点坐标分别为33kE ⎛⎫ ⎪⎝⎭,,44k F ⎛⎫ ⎪⎝⎭,, ∴1111432234ECF S EC CF k k ⎛⎫⎛⎫==-- ⎪⎪⎝⎭⎝⎭g △, ∴11121222EOF AOE BOF ECF ECF ECF AOBC S S S S S k k S k S =---=---=--△△△△△△矩形 ∴11112212243234OEF ECF ECF S S S k S k k k ⎛⎫⎛⎫=-=--=--⨯-- ⎪⎪⎝⎭⎝⎭△△△ ∴2112S k k =-+.当161212k =-=⎛⎫⨯- ⎪⎝⎭时,S 有最大值.131412S -==⎛⎫⨯- ⎪⎝⎭最大值.此时,点E 坐标为(2,3),即点E 运动到AC 中点.(3)解:设存在这样的点E ,将CEF △沿EF 对折后,C 点恰好落在OB 边上的M 点,过点E 作EN OB ⊥,垂足为N .由题意得:3EN AO ==,143EM EC k ==-,134MF CF k ==-, 90EMN FMB FMB MFB ∠+∠=∠+∠=o Q ,∴EMN MFB ∠=∠.又90ENM MBF ∠=∠=oQ ,∴ENM MBF △∽△.∴EN EM MB MF=,∴11414312311331412k k MB k k ⎛⎫-- ⎪⎝⎭==⎛⎫-- ⎪⎝⎭, ∴94MB =. 222MB BF MF +=Q ,∴222913444k k ⎛⎫⎛⎫⎛⎫+=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,解得218k =.∴25438k EM EC ==-=,故AE=78. ∴存在符合条件的点E ,它的坐标为(78,3).。

2012年九年级模拟考试(二)

2012年九年级模拟考试(二)

2012年九年级模拟考试(二) 数学参考答案及评分标准一、选择题:题号12 3 4 5 6 7 8 9 10 11 12 13 14 15 答案 CBBDCCBBCBAACCB二、填空题:16.-1 17.-3 18.1 19.2 5 20.(121n --, 12n -)三、解答题 21.(1)原式1351622=++-= …………………………………………4分 (2)解 化简:0762=+-x x ………………………………………………2分得:231+=x ,232-=x ………………………………………4分22.作图题答案:23.猜想:BE=EC ,BE ⊥EC 2分 证明: ∵AC=2AB ,点D 是AC 的中点∴AB=AD=CD∵∠EAD=∠EDA=45° ∴∠EAB=∠EDC=135° ∵EA=ED∴△EAB ≌△EDC 5分 ∴∠AEB=∠DEC ,EB=EC ∴∠BEC=∠AED=90°∴BE=EC ,BE ⊥EC 8分24.(本题8分)解: ⑴ 2 ┄┄1分⑵ 64 ┄┄2分⑶依题得第四组的频数是2,第五组的频数也是2,设第四的2名学生分别为1A 、2A 第五组的2名学生为1B 、2B ,列表(或画树状图)如下,A1 A2 B1B2A1--A1、A2 A1、B1 A1、B2A2 A2、A1--A2、B1 A2、B2 B1 B1、A1 B1、A2--B1、B2┄┄6分由上表可知共有12种结果,其中两个都是90分以上的有两种结果,所以恰好都是在90分以上的概率为61┄┄8分 25.解:(1)设二次函数的解析式为y =ax 2+bx +c ∵二次函数的图象经过点(0,3),(-3,0),(2, -5) c =3∴ 9a —3b +c =0…………………………………………………2分4a +2b +c =-5解得a =-1,b =-2,c =3,y =-x 2-2x +3 …………………………………………………4分(2)∵-(-2)2-2×(-2)+3=-4+4+3=3∴点P (-2,3)在这个二次函数的图象上…………………………6分 ∵-x 2-2x +3=0∴x 1=-3,x 2=1 ∴与轴的交点为:(-3,0),(1,0)…………7分 S △P AB =12 ×4×3=6 …………………………………………………8分26.(本题满分9分)(1)解:(1)△P 1OA 1的面积将逐渐减小. …………………………………2分 (2)作P 1C⊥OA 1,垂足为C ,因为△P 1O A 1为等边三角形,所以OC=1,P 1C=3,所以P 1)3,1(. ……………………………………3分代入xky =,得k=3,所以反比例函数的解析式为x y 3=. ……………4分作P 2D ⊥A 1 A 2,垂足为D 、设A 1D=a ,则OD=2+a ,P 2D=3a ,所以P 2)3,2(a a +.……………………………………………………………6分代入xy 3=,得33)2(=⋅+a a ,化简得0122=-+a a 解的:a= -1±2 ……………………………………………7分B2 B2、A1 B2、A2 B2、B1 --∵a >0 ∴21+-=a ………………………………8分所以点A 2的坐标为﹙22,0﹚ ………………………………………………9分27.(本题满分10分)证明:(1)连接OD . ························ 1分D Q 是劣弧»AB 的中点,120AOB ∠=° 60AOD DOB ∴∠=∠=° ···················· 2分 又∵OA=OD ,OD=OB∴△AOD 和△DOB 都是等边三角形 ········ 4分 ∴AD=AO=OB=BD ∴四边形AOBD 是菱形 ························· 5分 (2)连接AC . ∵BP =3OB ,OA=OC=OB ∴PC=OC=OA ··················································································· 6分12060AOB AOC ∠=∴∠=Q °°OAC ∴△为等边三角形∴PC=AC=OC ··················································································· 7分 ∴∠CAP =∠CP A又∠ACO =∠CP A +∠CAP 30CAP ∴∠=°90PAO OAC CAP ∴∠=∠+∠=° ······················································· 9分 又OA Q 是半径AP ∴是O ⊙的切线··········································································· 10分28.(1)2;4; 2分 (2) 当0<t ≤611时(如图),求S 与t 的函数关系式是:S=EFGH S 矩形=(2t )2=4t 2; 4分 AB CH GP E F当611<t ≤65时(如图),求S 与t 的函数关系式是: S=EFGH S 矩形-S △HMN =4t 2-12×43×[2t-34(2-t )] 2=2524-t 2+112t -32; 6分当65<t ≤2时(如图),求S 与t 的函数关系式是: S= S △ARF -S △AQE =12×34(2+t ) 2 - 12×34(2-t ) 2=3t . 8分第27题图题(3)由(2)知:若0<t≤611,则当t=611时S最大,其最大值S=144121;9分若611<t≤65,则当t=65时S最大,其最大值S=185;10分若65<t≤2,则当t=2时S最大,其最大值S=6.11分综上所述,当t=2时S最大,最大面积是6.12分。

2012年中考数学二模25题

2012年中考数学二模25题

25.(本题满分14分,第(1)、(2)小题各3分,第(3)、(4)小题各4分) 已知:正方形ABCD 的边长为1,射线AE 与射线BC 交于点E ,射线AF 与射线CD 交于点F ,∠EAF=45°.(1)如图1,当点E 在线段BC 上时,试猜想线段EF 、BE 、DF 有怎样的数量关系?并证明你的猜想.(延长线呢)(2)设BE=x ,DF=y ,当点E 在线段BC 上运动时(不包括点B 、C ),如图1,求y 关于x 的函数解析式,并指出x 的取值范围.(3)当点E 在BC 延长线上时,设AE 与CD 交于点G ,如图2.问⊿EGF 与⊿EF A 能否相似,若能相似,求出BE 的值,若不可能相似,请说明理由.图2图1GFE D C B A 45°45°F E D C B A25.(本题满分14分,第(1)小题4分,第(2)小题5分,第(3)小题5分)如图,△ABC 中,∠ABC =90°,AB =BC =4,点O 为AB 边的中点,点M 是BC 边上一动点(不与点B 、C 重合),AD ⊥AB ,垂足为点A .联结MO ,将△BOM 沿直线MO 翻折,点B 落在点B 1处,直线M B 1与AC 、AD 分别交于点F 、N ..(1)当∠CMF =120°时,求BM 的长;(2)设BM x =,CMF y ANF ∆=∆的周长的周长,求y 关于x 的函数关系式,并写出自变量x 的取 值范围;(3)联结NO ,与AC 边交于点E ,当△FMC ∽△AEO 时,求BM 的长.O ABCMDN B 1F第25题图25.(本题满分14分,第(1) 、(2)小题满分各5分,第(3)小题满分4分)已知△ABC 中,︒=∠90ACB (如图8),点P 到ACB ∠两边的距离相等,且PA =PB . (1)先用尺规作出符合要求的点P (保留作图痕迹,不需要写作法),然后判断△ABP 的形状,并说明理由;(2)设m PA =,n PC =,试用m 、n 的代数式表示ABC ∆的周长和面积;(3)设CP 与AB 交于点D ,试探索当边AC 、BC 的长度变化时,BCCDAC CD +的值是否发生变化,若不变,试求出这个不变的值,若变化,试说明理由.ABC (图 )8 A BC (备用图)25.(本题满分14分,第(1)小题满分4分,第(2)、(3)小题满分各5分)如图,ABC ∆中,5==BC AB ,6=AC ,过点A 作AD ∥BC ,点P 、Q 分别是射线AD 、线段BA 上的动点,且BQ AP =,过点P 作PE ∥AC 交线段AQ 于点O ,联接PQ ,设POQ ∆面积为y ,x AP =.(1)用x 的代数式表示PO ;(2)求y 与x 的函数关系式,并写出定义域;(3)联接QE ,若PQE ∆与POQ ∆相似,求AP 的长.BPDQ CAO E已知,90ACB ∠=,CD 是ACB ∠的平分线,点P 在CD 上,2CP =.将三角板的直角顶点放置在点P 处,绕着点P 旋转,三角板的一条直角边与射线CB 交于点E ,另一条直角边与直线CA 、直线CB 分别交于点F 、点G . (1)如图9,当点F 在射线CA 上时, ①求证: PF = PE .②设CF = x ,EG =y ,求y 与x 的函数解析式并写出函数的定义域. (2)联结EF ,当△CEF 与△EGP 相似时,求EG 的长.备用图ABCPD图9ABCEGPDF如图,在△ABC 中,10==AC AB ,53cos =B ,点D 在AB 边上(点D 与点A ,B 不重合),DE ∥BC 交AC 边于点E ,点F 在线段EC 上,且AE EF 41=,以DE 、EF 为邻边作平行四边形DEFG ,联结BG . (1)当EF =FC 时,求△ADE 的面积;(2)设AE =x ,△DBG 的面积为y ,求y 与x 的函数关系式,并写出x 的取值范围; (3)如果△DBG 是以DB 为腰的等腰三角形,求AD 的值.GE D CBAF(第25题图)24.在ABC Rt △中,4==BC AB ,90=∠B ,将一直角三角板的直角顶点放在斜边AC 的中点P 处,将三角板绕点P 旋转,三角板的两直角边分别与边BC AB ,或其延长线上交于E D ,两点(假设三角板的两直角边足够长),如图1,图2,表示三角板旋转过程中的两种情形.(1)直角三角板绕点P 旋转过程中,当=BE 时,△PEC 是等腰三角形; (2)直角三角板绕点P 旋转到图1的情形时,求证:PE PD =;(3)如图3,若将直角三角板的直角顶点放在斜边AC 的点M 处,设n m MC AM ::=(n m ,为正数),试判断ME MD ,的数量关系。

2012二模数学试卷

2012二模数学试卷

BCAD 银川外国语实验学校2012届初三年级第二次模拟考试数 学 试 卷考试时间:120分钟 总分:120分 命题教师:沈春灵一、选择题(每题3分,共24分) 1. 下列运算正确的是( )A. 1331=÷-B. a a =2C. ππ-=-14.3|14.3|D. 26234121b a b a =⎪⎭⎫⎝⎛2. 下列说法正确的是( )A. 抽样调查选取样本时,所选样本可按自己爱好抽取B. 某工厂质检员检测某批次灯泡的使用寿命采用普查法C. 想准确了解某班学生某次数学测验成绩,采用抽样调查,但需抽取的样本容量较大D. 检测某城市的空气质量,采用抽样调查 3. 如图,图中圆与圆之间不同的位置关系有( )A. 2种B. 3种C. 4种D. 5种4. 如图所示,正方形ABCD 的边长为2,动点P 从C 出发,在正方形的 边上沿着C →B →A 的方向运动(点P 与A 不重合)。

设点P 的运动路程为x , 则下列图象中表示△ADP 的面积y 关于x 的函数关系的是( )A B C D5. 如图,直线l 和双曲线)0(>=k xky 交于A 、B 两点,P 是线段AB 上的点(不与A 、B 重合),过点A 、B 、P 分别向x 轴作垂线,垂足分别为C 、D 、E ,连接OA 、OB 、OP ,设△AOC 的面积为S 1,△BOD 的面积为S 2,△POE 的面积为S 3,则( )A. S 1<S 2<S 3,B. S 1>S 2>S 3,C. S 1=S 2>S 3D. S 1=S 2<S 36. 如图,CD 是Rt △ABC 斜边AB 上的高,将△BCD 沿CD 折叠, B 点恰好落在AB 的中点E 处,则∠A 等于( )A. 25°B. 30°C. 45°D. 60°7. 如图,⊙O 是△ABC 的外接圆,已知∠ABO=50°,则∠ACB 的大小为( ) A. 40°B. 30°C. 45°D. 50°8. 如图,在平面直角坐标系中,Rt △ABO 的顶点A 的坐标是(3,1)。

2012年中考数学模拟试卷(二)及答案

2012年中考数学模拟试卷(二)及答案

2012年中考数学模拟试卷二态度决定一切,细节决定成败!一、选择题(本题共10小题,每小题3分,共30分) 1.-3的相反数是( ▲ )A .3B . -3C .31D .31-2.如图,直线AB ∥CD ,∠A =70︒,∠C =40︒,则∠E 等于( ▲ )A.30°B. 40°C. 60°D. 70°3.由两块大小不同的正方体搭成如图所示的几何体,它的主视图是( ▲ )4.若反比例函数ky x=的图象经过点(1,3),则此反比例函数的图象在( ▲ ) A .第一、二象限B .第一、三象限C .第二、四象限D .第三、四象限5.计算2(2)3a a -⋅的结果是( ▲ )A. 26a - B. 36a - C. 312a D. 36a6.为了解某班学生每天使用零花钱的情况,小红随机调查了该班15名同学,结果如下表:每天使用零花钱(单位:元)1 2 3 5 6 人 数25431则这15名同学每天使用零花钱的众数和中位数分别是( ▲ )元A .3,3B .2,3C .2,2D .3,5 7.一把大遮阳伞,伞面撑开时可近似地看成是圆锥形,如图,它的母线长是2. 5米,底面半径为2米,则做这把遮阳伞需用布料的面积是( ▲ )平方米(接缝不计) A . π3 B .π4 C .π5 D .π4258.把抛物线2y x =向右平移1个单位,所得抛物线的函数表达式为( ▲ )A .2(1)y x =- B . 2(1)y x =+ C .21y x =- D .21y x =+ 9.如图,把一个长方形的纸片对折两次,然后剪下一个角,为了得到一个锐角为60︒ 的菱形,剪口与折痕所成的角α 的度数应为( ▲ )A .15︒或30︒B .30︒或45︒C .45︒或60︒D .30︒或60︒AC BD E(第2题图)(第9题图)10.如图,在直角梯形ABCD中,AD∥BC,90C∠= ,cmBC10=,6cmCD=,2cmAD=,动点P、Q同时从点B出发,点P沿BA、AD、DC运动到点C停止,点Q沿BC运动到C点停止,两点运动时的速度都是1cm/s,而当点P到达点A时,点Q正好到达点C.设P点运动的时间为(s)t,BPQ△的面积为y2(cm).下图中能正确表示整个运动中y关于t的函数关系的大致图象是(▲)A. B. C. D.二、填空题(本题共6小题,每小题4分,共24分)11.比较大小:1-▲31(填“>”、“=”或“<”).12.若二次根式12-x有意义,则x的取值范围是▲.13.一元二次方程(3)0x x+=的解为▲.14.已知CBA,,是⊙O上不同的三个点,︒=∠60AOB,则=∠ACB▲15.已知双曲线2yx=,kyx=的部分图象如图所示,P是y轴正半轴上过点P作AB∥x轴,分别交两个图象于点,A B.若2PB PA=,则=k▲.16.如图,在平面直角坐标系上有个点P(1,0),点P第1次向上跳动1个单位至点P1(1,1),紧接着第2次向左跳动2个单位至点P2(-1,1),第3次向上跳动1个单位,第4次向右跳动3个单位,第5次又向上跳动1个单位,第6次向左跳动4个单位,……,依此规律跳动下去,点P第100次跳动至点P100的坐标是▲。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

外国语学校2012年中考二模数学试题及答案班级____________姓名_____________成绩___________一. 选择题。

(每小题2分,共20分)1.点P (-1,4)关于x 轴对称的点P′的坐标是( ) (A )(-1,-4) (B )(—1,4) (C )(1,-4) (D )(1,4)2.方程0442=++x x 的根的情况是( )(A )有两个不相等的实数根 (B )有两个相等的实数根 (C )有一个实数根 (D )没有实数根3. 某蓄水池的横断面示意图如下图,分深水区和浅水区,如果这个蓄水池以固定的流量注水,下面的图象能大致表示水的最大深度h 和时间t 之间的关系的是( )4. 下列结论正确的个数是( )(1)一个多边形的内角和是外角和的3倍,则这个多边形是六边形(2)如果一个三角形的三边长分别为6、8、10,则最长边上的中线长为5 ()若,相似比为:,则3ABC DEF 14∆∆∆∆~:S S ABC DEF ==14 (4)若等腰三角形有一个角为80°,则底角为80°或50°A. 1B. 2C. 3D. 4 5. 如图,若弦BC 经过圆O 的半径OA 的中点P ,且PB=3,PC=4,则圆O 的直径为( ) (A )7 (B )8 (C )9 (D )10 6. 某市2002年国内生产总值达1493亿元,比2001年增长11.8%, 下列说法:(1)2001年国内生产总值为1493(1-11.8%)亿元;()年国内生产总值为亿元;2200114931118%-. ()年国内生产总值为亿元;3200114931118%+.(4)若按11.8%的年增长率计算,2004年的国内生产总值预计为1493(1+11.8%)2亿元。

其中正确的是( ) A. (3)(4) B. (2)(4) C. (1)(4) D. (1)(2)(3) AB PC O7. 如下图,在⊙O 中,A 、B 、C 、D 是⊙O 上的点,图中有( )对相似三角形。

A. 1对B. 2对C. 3对D. 4对 (第8题图)8、二次函数c bx ax y ++=2图象如图所示,则下列a 、b 、c 关系判断正确的是( ) (A )ab<0 (B) bc<0 (C) a+b+c>0 (D) a -b+c<0 9、如图,A、B是⊙O1和⊙O2的公共点,AC 是⊙O2切线,AD 是⊙O1的切线,若BC=4,AB=6,则BD 的长为()(A )8 (B )9 (C )10 (D )1210、如图,A 、B 是反比例函数x ky =(k>0)上的两个点,A C ⊥x轴于点C ,BD ⊥y 轴于点D ,连结AD 、BC ,则△ADB 与△ACB 的面积 (第9题图) 大小关系是( ) (A ) S △ADB >S △ACB (B )S △ADB <S △ACB(C )S △ADB =S △ACB (D )不能确定 二. 填空题。

(每小题3分,共18分)11. 观察下列一组图形,根据其变化规律求得第10个图形中三角形的个数为__________,第n 个图形中三角形的个数是___________。

12. A 、B 两点被池塘隔开(如下图),在AB 外选一点C ,连结AC 和BC 并分别找出其中点M 、N ,若测得MN =20m ,则A 、B 两点的距离为___________。

13. 高6m 的旗杆在水平地面上的影长为9m ,此时测得附近一个建筑物的影长为30m ,则该建筑物的高度为___________。

x·O 1 ·O 1A CB D14. 在一块空旷的草地上有一根柱子,柱子上拴着一条长3m 的绳子,绳子的另一端拴着一只狗,这只狗的最大活动区域为___________。

15. 如下图,某同学从A 点出发前进10米,向右转18°,再前进10米,又向右转18°,这样下去,他第一次回到出发点A 时,一共走了___________米。

16. 下面是某班学生(20人)一次外语测验受污染的成绩分配表:若成绩平均分为73分,则70分有___________人,80分有___________人。

三. 作图题。

(5分)17. 一辆汽车在直线型的公路AB 上由A 向B 行驶M 、N 分别是位于公路AB 两侧的村庄,汽车行驶到哪一点时,与村庄M 、N 的距离相等?请在图上找到这一点。

(不写作法,保留作图痕迹)四. 解答题。

(6分)18. 阅读下列计算过程:()()x x x x x x x A ----=-+---3131311312()()()()()()=-+--++-x x x x x x B 3113111()()=--+x x C 331()=--26x D ()(1) 上述计算过程从哪步开始出现错误。

(2)写出正确的计算过程。

19. 甲、乙两个商厦搞有奖酬宾活动,购物满200元可以掷两次骰子,根据两次骰子的总点数决定送礼券多少。

如果让你去购物,你选择去哪一个商厦?说明理由。

20. 根据下列表格回答问题。

沿海主要港口货物吞吐量(1)我国沿海主要港口货物吞吐总量的发展趋势如何?近年来在秦皇岛、青岛、上海、广州、海口这几个城市中哪个城市吞吐量增长最为迅速?你是怎样知道的?你能用一个图来说明自己的观点吗?(2)哪个城市吞吐总量出现负增长?你能尝试解释其中的原因吗?21. 公路MN和公路PQ在点P处交汇,且∠QPN=30°,点A处有一所中学,AP=160m,假设拖拉机行驶时,周围100m以内会受到噪声的影响,那么拖拉机在公路MN上沿PN方向行驶时,学校是否会受到噪声影响?请说明理由。

22. 现计划把甲种货物1240吨和乙种货物880吨用一列货车运往某地,已知这列货车挂有A、B两种不同规格的车厢共40节,如果每节A型车厢最多可以装甲种货物35吨和乙种货物15吨,每节B型车厢最多可装甲种货物25吨和乙种货物35吨,装货时按此要求安排A、B两节车厢的节数,那么共有几种安排车厢的方案?23. 如图O是菱形ABCD对角线的交点,作DE∥AC,CE∥BD,DE、CE交于点E,四边形OCED是矩形吗?证明你的结论。

24. 某批发市场欲将一批海产品由A地运往B地,汽车货运公司和铁路货运公司均开办海产品运输业务,已知运输路程为120千米,汽车和火车的速度分别是60千米/时、100千米/时,两货运公司的收费项目及收费标准如下表所示:(注:元/吨·千米表示每吨货物每千米的运费;元/吨·小时表示每吨货物每小时冷藏费)(1)设批发商待运的海产品有x(吨),汽车货运公司和铁路货运公司所要收取的费用分别为y1(元)和y2(元),分别写出y1、y2与x的关系式。

(3)若该批发商待运的海产品不少于30吨,为节省运费,他应选哪个货运公司承担运输业务?25. 如下图,等边△ABC以2m/s的速度沿直线l向菱形DCEF移动,直到AB与CD重合,其中∠DCF=60°,设x s时,三角形与菱形重叠部分的面积为y m2。

(1)写出y与x的关系表达式。

(2)当x=0.5,1时,y分别是多少。

(3)当重叠部分的面积是菱形面积一半时,三角形移动了多长时间?A D F10 10l26. 如下图,在直径为AB的半圆内,划出一块三角形区域使三角形的一边为AB,顶点C在半圆上,其他两边分别为6和8。

现在建造一个内接于△ABC的矩形水池DEFN,其中DE在AB上,如图的设计方案是使AC=8,BC=6。

(1)求△ABC中AB边上的高h。

(2)设DN=x,当x为何值时,水池DEFN的面积最大?(3)实施施工时,发现在AB上距B点1.85的M处有一棵大树,这棵大树是否位于最大矩形水池的边上?如果在,为保护大树,请设计出另外的方案,使内接于满足条件的三角形中欲建的最大矩形水池能避开这棵大树。

【试题答案】一. 选择题。

1. C 2. B 3. A 4. B5.B6. A7. B 8.D 9.B 10.C二. 填空题。

11. 37,43n - 12. 40m 13. 20m14. 92πm 15. 20016. 5,8三. 作图题。

17. 连结MN ,作MN 的垂直平分线与AB 的交点即为所求。

四. 解答题。

18. (1)A 步()()()2x x x x x x x ----=-+-+-3131311312()()()()()()()()()=-+-+++-=++++-=++-x x x x x x x x x x x x x 311311133311461119. 选择去乙商厦因为在甲商厦获得元礼券的概率为,而在乙商厦获得元礼券的概120136120率为。

1620. (1)上海,可用折线统计图说明 (2)三亚 湛江 理由合理即可。

21. 作AB ⊥MN在Rt △ABP 中∵∠ABP =90°,∠APB =30°,AP =160∴==AB AP 1280∵点A 到MN 的距离小于100m ∴这所中学将受到噪音的影响22. 设安排A 型车厢x 节,则B 型车厢(40-x )节()()3525401240153540880x x x x +-≥+-≥⎧⎨⎪⎩⎪解得:2426≤≤x方案1:A 型车厢24节,B 型车厢16节 方案2:A 型车厢25节,B 型车厢15节 方案3:A 型车厢26节,B 型车厢14节 23. 是 提示:∵DE ∥AC ,CE ∥BD ∴四边形OCED 是平行四边形 ∵∠ODE =90°∴平行四边形OCED 是矩形24.()1y x x x 12002120512060150200=+⨯+⨯=+y x x x 216001812051201002221600=+⨯+⨯=+.(2)当x >50时,y 1>y 2; 当x =50时,y 1=y 2; 当x <50时,y 1<y 2。

∴所运海产品不少于30吨且不足50吨,应选汽车货运公司。

所运海产品刚好50吨;可选任意一家。

所运海产品多于50吨,应选铁路货运公司。

25. ()1y x =32()当时,;当时,2x y x y ====053413.()菱形3S =503 (4)5S26. (1)作CH ⊥AB 于H 交NF 于G ,则CH =h∵∠ACB =90°∴=⨯⨯=⨯S h ABC ∆12681210∴=h 48.(2)设矩形面积为S ∵△CNF ∽△CAB ∴=NF AB CG CH。

相关文档
最新文档