多波形函数信号发生器方案

合集下载

函数信号发生器的设计

函数信号发生器的设计

函数信号发生器的设计函数信号发生器是一种电子测试仪器,用于产生各种波形信号,如正弦波、方波、三角波、锯齿波等。

它广泛应用于电子、通信、计算机、自动控制等领域的科研、教学和生产中。

本文将介绍函数信号发生器的设计原理和实现方法。

一、设计原理函数信号发生器的设计原理基于信号发生器的基本原理,即利用振荡电路产生一定频率和幅度的电信号。

振荡电路是由放大器、反馈电路和滤波电路组成的。

其中,放大器负责放大电信号,反馈电路将一部分输出信号反馈到输入端,形成正反馈,使电路产生自激振荡,滤波电路则用于滤除杂波和谐波,保证输出信号的纯度和稳定性。

函数信号发生器的特点是可以产生多种波形信号,这是通过改变振荡电路的参数来实现的。

例如,正弦波信号的频率和幅度可以通过改变电容和电阻的值来调节,方波信号的占空比可以通过改变开关电路的工作方式来实现,三角波信号和锯齿波信号则可以通过改变电容和电阻的值以及反馈电路的参数来实现。

二、实现方法函数信号发生器的实现方法有多种,其中比较常见的是基于集成电路的设计和基于模拟电路的设计。

下面分别介绍这两种方法的实现步骤和注意事项。

1. 基于集成电路的设计基于集成电路的函数信号发生器设计比较简单,只需要选用合适的集成电路,如NE555、CD4046等,然后按照电路图连接即可。

具体步骤如下:(1)选择合适的集成电路。

NE555是一种常用的定时器集成电路,可以产生正弦波、方波和三角波等信号;CD4046是一种锁相环集成电路,可以产生锯齿波信号。

(2)按照电路图连接。

根据所选集成电路的电路图,连接电容、电阻、电感等元器件,形成振荡电路。

同时,根据需要添加反馈电路和滤波电路,以保证输出信号的稳定性和纯度。

(3)调节参数。

根据需要调节电容、电阻等参数,以改变输出信号的频率和幅度。

同时,根据需要调节反馈电路和滤波电路的参数,以改变输出信号的波形和稳定性。

(4)测试验证。

连接示波器或万用表,对输出信号进行测试和验证,以确保输出信号符合要求。

多波形信号发生器设计实验报告

多波形信号发生器设计实验报告

多波形信号发生器实验报告1. 背景多波形信号发生器是一种用于产生不同形状、频率和幅度的信号的设备。

它在各种领域中都有广泛的应用,包括电子工程、通信和音频领域。

在实验室中,多波形信号发生器通常用于测试和验证电路的性能。

本实验旨在设计一个多波形信号发生器,并对其进行性能测试和分析。

通过实际搭建和测试,我们将评估所设计的信号发生器的波形质量、频率稳定性、幅度准确性等关键指标,同时寻找可能的改进方向。

2. 设计与分析2.1 设计思路我们的设计思路是基于数字信号处理技术,使用微处理器控制和生成不同波形的信号。

具体来说,我们采用以下步骤来设计多波形信号发生器:1.选择合适的数字信号处理芯片,并与微处理器进行连接。

2.在微处理器上编程,实现不同波形信号的生成算法,如正弦波、方波、三角波等。

3.通过微处理器控制模拟输出电路,将数字信号转换为模拟信号。

4.设计合适的幅度控制电路,使得可以精确控制信号的幅度。

5.设计合适的频率控制电路,使得可以通过微处理器对信号的频率进行调节。

2.2 组件选择和连接首先,我们选择了一款高性能的数字信号处理芯片,并将其与微处理器进行连接。

通过对芯片的编程,我们可以实现生成不同波形的功能。

然后,我们将芯片的数字输出连接到模拟电路的输入端,通过合适的滤波电路进行信号滤波。

同时,将微处理器的控制端与模拟电路的控制电路相连接,以实现对幅度和频率的控制。

2.3 算法设计在微处理器上编写程序,实现不同波形信号的生成算法。

以正弦波为例,我们可以使用如下的算法:#define PI 3.1415926float sin_wave(float amplitude, float frequency, float time){return amplitude * sin(2 * PI * frequency * time);}对于方波和三角波等其他波形,我们可以采用类似的算法进行设计。

2.4 电路设计由于波形质量是信号发生器的重要性能指标之一,我们需要设计合适的模拟电路来提供稳定的、低噪声的模拟输出信号。

基于单片机的多波形信号发生器设计

基于单片机的多波形信号发生器设计

基于单片机的多波形信号发生器设计
单片机多波形信号发生器是一种可以在微控制器芯片上合成不同波形的电路。

该电路可以生成正弦波、方波、三角波等多种波形,也可以通过设置不同的频率、幅值和相位来调节波形。

单片机多波形信号发生器被广泛应用于各种实验中,如音频信号处理、电子测量和信号仿真等领域。

以下是单片机多波形信号发生器设计的步骤:
1. 确定系统主要功能要求。

2. 选择合适的单片机芯片和外围电路。

3. 根据所选芯片的不同特点编写程序,并在仿真软件中进行测试。

4. 设计输出电路,包括输出放大电路和输出滤波电路。

5. 根据实际需要设计显示电路,用于控制波形参数和频率。

6. 进行系统调试和测试,对系统进行优化和改进。

7. 构建原型并进行实验验证,进一步检验系统性能是否能够满足所需的功能要求。

总结而言,单片机多波形信号发生器设计的关键是合理选择芯片和外围电路,并编写合适的程序用于控制波形参数。

同时,开发人员需要进行充分的调试,以确保系统运行稳定、波形输出准确、频率稳定。

(毕业论文)555制作多波形发生器

(毕业论文)555制作多波形发生器

第1章引言1.1本课题的研究现状信号源作为一种基本电子设备无论是在教学、科研还是在军事技术中,都有着广泛的使用。

因此,从理论到工程对信号的发生进行深入研究,不论是从教学科研角度,还是从社会实际应用角度出发都有着积极的意义。

随着科学技术的发展和测量技术的进步,对信号源的要求越来越高,普通的信号发生器已无法满足目前日益发展的数字技术领域科研和教学的需要信号发生器既可以构成独立的信号源,也可以是高性能网络分析仪、频谱仪及其它自动测试设备的组成部分。

信号发生器的关键技术是多种高性能仪器的支撑技术,因为它能够提供高质量的精密信号源及扫频源,可使相应系统的检测过程大大简化,降低检测费用并极大地提高检测精度。

美国安捷伦生产的33250A 型函数/任意波形发生器可以产生稳定、精确和低失真的任意波形,其输出频率范围为1μHz~80MHz,而输出幅度为10mVpp~10Vpp;该公司生产的8648D射频信号发生器的频率覆盖范围更可高达9kHz~4GHz。

国产SG1060数字合成信号发生器能双通道同时输出高分辨率、高精度、高可靠性的各种波形,频率覆盖范围为1μHz~60MHz;国产S1000型数字合成扫频信号发生器通过采用新技术、新器件实现高精度、宽频带的扫频源,同时应用DDS和锁相技术,使频率范围从1MHz~1024MHz能精确地分辨到100Hz,它既是一台高精度的扫频源,同时也是一台高精度的标准信号发生器。

还有很多其它类型的信号发生器,他们各有各的优点,但是信号发生器总的趋势将向着宽频率覆盖、高频率精度、多功能、多用途、自动化和智能化方向发展。

1.2选题目的及意义信号发生器是一种经常使用的设备,由纯粹物理器件构成的传统的设计方法存在许多弊端,如:体积较大、重量较沉、移动不够方便、信号失真较大、波形种类过于单一、波形形状调节过于死板,无法满足用户对精度、便携性、稳定性等的要求,研究设计出一种具有频率稳定、准确、波形质量好、输出频率范围宽、便携性好等特点的波形发生器具有较好的市场前景,以满足军事和民用领域对信号源的要求。

函数信号发生器设计方案

函数信号发生器设计方案

函数信号发生器设计方案设计一个函数信号发生器需要考虑的主要方面包括信号的类型、频率范围、精度、输出接口等等。

下面是一个关于函数信号发生器的设计方案,包括硬件和软件两个方面的考虑。

硬件设计方案:1.信号类型:确定需要的信号类型,如正弦波、方波、三角波、锯齿波等等。

可以根据需求选择合适的集成电路或FPGA来实现不同类型的信号生成。

2.频率范围:确定信号的频率范围,例如从几Hz到几十MHz不等。

根据频率范围选择合适的振荡器、计数器等电路元件。

3.精度:考虑信号的精度要求,如频率精度、相位精度等。

可以通过使用高精度的时钟源和自动频率校准电路来提高精度。

4.波形质量:确定信号的波形质量要求,如波形畸变、谐波失真等。

可以使用滤波电路、反馈电路等技术来改善波形质量。

5.输出接口:确定信号的输出接口,如BNC接口、USB接口等,并考虑电平范围和阻抗匹配等因素。

软件设计方案:1.控制界面:设计一个易于操作的控制界面,可以使用按钮、旋钮、触摸屏等各种方式来实现用户与信号发生器的交互。

2.参数设置:提供参数设置功能,用户可以设置信号的频率、幅度、相位等参数。

可以通过编程方式实现参数设置,并通过显示屏或LED等方式来显示当前参数值。

3.波形生成算法:根据用户设置的参数,设计相应的波形生成算法。

对于简单的波形如正弦波可以使用数学函数来计算,对于复杂的波形如任意波形可以使用插值算法生成。

4.存储功能:可以提供存储和读取波形的功能,这样用户可以保存和加载自定义的波形。

存储可以通过内置存储器或外部存储设备实现,如SD卡、U盘等。

5.触发功能:提供触发功能,可以触发信号的起始和停止,以实现更精确的信号控制。

总结:函数信号发生器是现代电子测量和实验中常用的仪器,可以产生各种不同的信号类型,提供灵活的信号控制和生成能力。

在设计过程中,需要综合考虑信号类型、频率范围、精度、波形质量、输出接口等硬件方面的因素,以及控制界面、参数设置、波形生成、存储和触发等软件方面的功能。

课程设计函数发生器

课程设计函数发生器

1.引言1.1函数信号发生器的应用意义函数发生器一般是指能自动产生正弦波、三角波、方波及锯齿波、阶梯波等电压波形的电路或仪器。

根据用途不同,有产生三种或多种波形的函数发生器,使用的器件可以是分立器件也可以是集成电路。

为进一步掌握电路的基本理论及实验调试技术,本课题采用有集成运算放大器与晶体差分放大器共同组成的方波—三角波—正弦波函数发生器的设计方法。

具体方法是由比较器和积分器组成方波—三角波产生电路,比较器输出的方波经积分器得到三角波,三角波到正弦波的变换电路主要由差分放大器来完成。

差分放大器具有工作点稳定,输入阻抗高,抗干扰能力较强等优点。

特别是作为直流放大器时,可以有效地抑制零点漂移,因此可将频率很低的三角波变换成正弦波。

波形变换的原理是利用差分放大器传输特性曲线的非线性。

通过此次设计,我们能将理论知识很好的应用于实践,不仅巩固了书本上的理论知识,而且锻炼了我们独立查阅资料、设计电路、独立思考的能力1.2设计目的(1)能够根据功能要求查找相关的元器件的说明书。

(2)能够对元器件的说明书进行学习并掌握元器件的控制方法和时序要求。

(3)能够利用Multisim、protel仿真软件对电路进行仿真调试。

(4)能够按着规范的课程设计的格式完成课程设计报告。

1.3设计内容和要求设计一个函数发生器,能产生方波、三角波、正弦波信号。

用LED显示其频率和波形参数,播报其频率和波形参数。

信号频率可通过键盘输入并显示。

基本要求:1、输出频率范围:100HZ—1KHZ和1KHZ—10000HZ两档2、输出电压幅值可设,方波:VP-P=12V3、三角波:VP-P=1V4、正弦波:VP-P>1V整个控制电路在Multisim、Protel仿真软件中连接调示。

2.函数发生器的总方案及原理框图2.1 原理框图2.2 函数发生器的总方案函数发生器一般是指能自动产生正弦波、三角波、方波及锯齿波、阶梯波等电压波形的电路或仪器。

8038信号发生器

8038信号发生器

用8038制作多波形信号发生器信号发生器在电子产品研发过程中使用广泛,但对于电子爱好者来说,个人购买一台信号发生器来使用又显得不太合适,本文提供一个可产生多种波形的信号发生器电路,有兴趣的电子爱好者可以自制一个,作为信号发生器来使用。

电路原理图如下图所示。

图中的8038 为函数发生器专用IC,它具有3 种波形输出,分别正弦波、方波和三角波,8038的第10脚外接定时电容,该电容的容值决定了输出波形的频率,电路中的定时电容从C1至C8决定了信号频率的十个倍频程,从500μF开始,依次减小十倍,直到5500pF,频率范围相应地从0.05Hz~0.5 Hz~5Hz~50Hz~500Hz~5kHz~50kHz~500kHz,如果C8取250pF,频率可达1MHz。

图中的V1、R7、R8构成缓冲放大器,R9 为电位器,用于改变输出波形的幅值。

整个电路的频率范围为0.05Hz~1MHz,占空比可以从2%至98%调整,失真不大于1%,线性好,误差不大于0.1%,因此电路很有实用价值。

函数信号发生器的设计与制作系别:电子工程系专业:应用电子技术届:07届姓名:李贤春摘要本系统以ICL8038集成块为核心器件,制作一种函数信号发生器,制作成本较低。

适合学生学习电子技术测量使用。

ICL8038是一种具有多种波形输出的精密振荡集成电路,只需要个别的外部元件就能产生从0.001Hz~30KHz的低失真正弦波、三角波、矩形波等脉冲信号。

输出波形的频率和占空比还可以由电流或电阻控制。

另外由于该芯片具有调制信号输入端,所以可以用来对低频信号进行频率调制。

关键词ICL8038,波形,原理图,常用接法一、概述在电子工程、通信工程、自动控制、遥测控制、测量仪器、仪表和计算机等技术领域,经常需要用到各种各样的信号波形发生器。

随着集成电路的迅速发展,用集成电路可很方便地构成各种信号波形发生器。

用集成电路实现的信号波形发生器与其它信号波形发生器相比,其波形质量、幅度和频率稳定性等性能指标,都有了很大的提高。

555多波形信号发生器

555多波形信号发生器

555 多波形信号发生器成都立新编译众所周知,555 集成定时器用途十分广泛,要想把它们的应用实例全部罗列出来,并非易事。

这里介绍一种以555 定时器为核心制作的方波、钟形波、三角波和正弦波的信号发生器,波形的频率为1kHz、输出电压为0~200mVpp ,电路如附图所示。

附图电路中,IC1 为555 集成电路,其外围元件R1、R7、C3 及其相关元件产生的方波由③脚输出。

R8 和R2 组成分压器,其分压器的输出接到B 点。

R4、C5 和R5、C6 分别是积分电路。

R11、C2 和T1 组成正弦波形成电路。

积分电路和正弦波的输出,分别接到C、D 和E点。

T2 管和R3、R10 组成波形信号的射极输出器,其输出电压经C8 耦合到电位器RV1 ,由RV1 输出上述的四种波形。

图中的A 点与B、C、D 和 E 点构成线桥,J1、J2、J3 和J4 为跳线。

这些跳线是为波形切换用的。

以上所述已较清楚555 多波形发生器的电路结构。

IC1 的③脚跨接的分压器R8、R2 ,其输出波形至B 点,通过切换跳线J1 短接时,由T2 发射极经耦合电容C2 到RV1 ,在输出的F 点即可获得方波信号。

IC1 ③脚输出的方波信号,经RC积分电路R4、C5 积分成钟形波,其输出到C 点,再经切换跳线J2 的短接后,送到T2 的基极,同前一样由 F 点输出钟形脉冲。

若适当调整IC1 方波发生器的电阻参数R1、R7 ,使其③脚输出的方波尽可能对称,则跳转J2短接后,其F 点的输出会形成准正弦被。

同理,C 点信号再经R5、C6 的积分电路,此时由于RC对C点信号的过渡历程较长,由R6、C6 形成三角形波,再由跳线J3 短接后,经射极T2 输出到 F 点,即可输出三角形波。

最后D 点的三角形波,经R6、C2 和T1 放大处理后,由T1 的集电极形成正弦波,再由跳线J4 短接经T2 射极输出到F点,即可输出正弦波。

由于T2 组成的射极输出器是低阻抗的,所以该信号也是低阻抗的多波形发生器。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

个人资料整理仅限学习使用中文摘要英文摘要目录1 引言.......................................................... - 1 - 2函数信号发生器设计要求及过程.................................. - 2 - 2.1函数信号发生器设计要求 (2)2.2函数信号发生器电路设计的基本原理 (2)2.3运算放大器的介绍 (3)2.3.1迟滞电压比较器......................................... - 3 -2.3.2 积分电路.............................................. - 5 - 2.4差分放大器的介绍 (6)3总体电路设计 (7)3.1方波—三角波产生电路的设计 (7)3.2三角波—正弦波变换电路的设计 (11)4.1EWB软件的简介 (15)4.1.1 EWB软件的概述........................................ - 15 -4.1.2 EWB软件的基本操作方法................................ - 15 - 4.2函数信号发生器的仿真过程及结果 (16)4.2.1使用EWB对电路进行设计和实验仿真的基本步骤............. -16 -4.2.2方波—三角波信号发生器电路的装调及仿真结果............ - 16 -4.2.3三角波—正弦波变换电路的装调和仿真.................... - 17 - 结论........................................................... - 20 - 参考文献<REFERENCES).......................................... - 21 - 致谢........................................................... - 22 -多波形函数信号发生器的设计1 引言信号发生器是一种最悠久的测量仪器,早在20年代电子设备刚出现时它就产生了。

随着通信和雷达技术的发展,40年代出现了主要用于测试各种接收机的标准信号发生器,使信号发生器从定性分析的测试仪器发展成定量分析的测量仪器。

同时还出现了可用来测量脉冲电路或用作脉冲调制器的脉冲信号发生器。

由于早期的信号发生器机械结构比较复杂,功率比较大,电路比较简单,因此发展速度比较慢。

直到1964年才出现第一台全晶体管的信号发生器。

自60年代以来信号发生器有了迅速的发展,出现了函数发生器,这个时期的信号发生器多采用模拟电子技术,由分立元件或模拟集成电路构成,能产生正弦波、方波、锯齿波和三角波等几种简单波形。

函数信号发生器是一种常用信号源,它广泛地应用在电子技术实验、自动控制系统和其他科研领域。

它能够产生正弦波、方波、三角波、锯齿波等多种波形,因其时间波形可用某种时间函数来描述而得名。

函数信号发生器在电路实验和设备检测中具有十分广泛的应用。

例如在通信、广播、电视系统中,都需要射频<高频)发射,这里的射频波就是载波,把音频<低频)、视频信号或脉冲信号运载出去,就需要能够产生高频的振荡器。

在工业、农业、生物医学等领域内,如高频感应加热、熔炼、超声诊断、核磁共振成像等,都需要功率或大或小、频率或高或低的振荡器。

信号发生器的应用非常广泛,种类繁多。

首先,信号发生器可以分通用和专用两大类,专用信号发生器主要为了某种特殊的测量目的而研制的,如电视信号发生器、脉冲编码信号发生器等。

这种发生器的特性是受测量对象的要求所制约的。

其次,信号发生器按输出波形又可分为正弦波信号发生器、脉冲波信号发生器、函数发生器和任意波发生器等。

再次,按其产生频率的方法又可分为谐振法和合成法两种。

一般传统的信号发生器都采用谐振法,即用具有频率选择性的回路来产生正弦振荡,获得所需频率。

但也可以通过频率合成技术来获得所需频率。

利用频率合成技术制成的信号发生器,通常被称为合成信号发生器。

根据用途不同,有产生三种或多种波形的函数信号发生器,使用的器件可以是分立器件<如低频信号函数发生器S101全部采用晶体管),也可以是集成电路<如单片集成电路函数信号发生器ICL8038)。

本课题主要介绍由集成运算放大器与晶体差分放大器组成的方波—三角波—正弦波函数信号发生器的设计方法。

2函数信号发生器设计要求及过程2.1 函数信号发生器设计要求1. 频率调节部分技术要求:<1)输出信号频率1Hz到100Hz可调。

实现<1Hz-10Hz,10Hz-100Hz)频段连续可调。

<2)频率稳定度不劣于10-42. 输出波形部分技术要求<1)方波输出信号的峰峰值;(2>三角波输出信号幅度峰峰值;(3>正弦波输出信号的峰峰值。

2.2 函数信号发生器电路设计的基本原理产生正弦波、方波和三角波的方案有很多种,比如先产生正弦波,然后通过整形电路的正弦波变换成方波,再由积分电路将方波转换成三角波;也可以先产生三角波—方波,再将三角波变换成正弦波或将方波变换成正弦波等等。

本课题研究先产生方波—三角波,再将三角波变换成正弦波的电路设计方法,其电路组成如图1所示:图1函数信号发生器组成框图2.3 运算放大器的介绍集成运算放大器是一种十分理想的增益器件,常简称为运放,是具有很高放大倍数的电路单元,在实际电路中,通常结合反馈网络共同组成某种功能模块,运放是一个从功能的角度命名的电路单元,可以由分立的器件实现,也可以实现在半导体芯片当中。

随着半导体技术的发展,如今绝大部分的运放是以单片的形式存在。

现今运放的种类繁多,广泛应用于几乎所有的行业当中。

尤其在模拟集成电路中,它的应用最广,几乎涉及模拟信号处理的各个领域。

本设计中应用到的集成运算放大器是迟滞电压比较器和积分电路,下面将它们一一介绍:2.3.1迟滞电压比较器电压比较器<Voltage Comparator)的作用是对两个输入电压进行比较,并根据比较结果输出高、低两个电平的电压,以满足后面连接的数字电路对1和0两个逻辑电平的要求。

电压比较器广泛应用于信号处理和检测电路、波形产生电路、A/D和D/A转换电路等。

将比较器的输出电压通过反馈网络加到同相输入端,形成正反馈,如图2<a)所示,待比较电压加在反相输入端。

通常将这种电路称为迟滞比较器<Hysteresis Comparator),又称施密特触发器<Schmitt Trigger)。

在理想情况下,它的比较特性如图2<b)所示。

由图可见,它有两个门限电压,分别称为上门限电压和下门限,两者的差值称为门限宽度或迟滞宽度<Hysteresis Voltage),即:假设比较器输出高电平,则和共同加到同相输入端的合成电压为当由小增大地通过时,输出电压由下跃到。

可见,上式所示的就是比较器的上门限电压,即。

当比较器输出为低电平时,按同样的分析求得加到同相输入端合成电压为若由大减小地通过,则输出电压由上跃到。

可见,上式所示的就是比较器的下门限电压,既。

相应的门限宽度为调节和312图2<a )迟滞电压比较器图2<b)迟滞电压比较器比较特性2.3.2 积分电路积分电路主要用于波形变换、放大电路失调电压的消除及反馈控制中的积分补偿等场合。

它可以使输入方波转换成三角波或者斜波,也可将矩形脉冲波转换为锯齿波或三角波,还可将锯齿波转换为抛物波。

积分电路被广泛的用于自控系统中的调节环节中,此外还广泛应用于波形的产生和变换以及仪表之中。

图3为有源积分电路。

由图可见,输入信号电压在中产生的电流。

这个电流全部转移到反馈支路,向充电,形成相应的输出电压。

若上的起始电压为零,则实现理想的积分运算。

21543C R R L +-U s U 0+-i1图3积分电路2.4 差分放大器的介绍差分放大器<Differential Amplifier ),又称差动放大器,它是另一类基本放大器,它是一种零点漂移很小的直接耦合放大器,常用于直流放大。

它可以是平衡输入和输出,也可以是单端<非平衡)输入和输出,常用来实现平衡与不平衡电路的相互转换,是各种集成电路的一种基本单元。

广泛应用于集成电路中。

差分放大器的基本电路如图4所示。

它是由两个对称的共发放大器通过发射极电阻相耦合而成的。

一般采用正、负两个极性的电源供电,且。

它有两个输入端,分别作用着输入信号电压和;有两个输出端。

输出信号或从其中任一个集电极取出,称为单端输出,或从两个集电极之间取出,称为双端输出或浮动输出.图4差分放大器电路3 总体电路设计3.1方波—三角波产生电路的设计图5所示的电路是能自动产生方波—三角波信号。

电路工作原理如下:运算放大器与、及、组成迟滞电压比较器,称为加速电容,可加速比较器的翻转。

运放的反相端接基准电压,即,即,同相端接输入电压,称为平衡电阻。

迟滞电压比较器的输出的高电平等于正电源电压,低电平等于负电源电压。

当时,输出从高电平翻转到低电平;当时,输出从低电平跳到高电平。

4图5方波——三角波产生电路若,根据电路叠加原理可得=0将上式整理,得比较器翻转的下门限电位_为若,根据电路叠加原理可得将上式整理,得比较器翻转的上门限电位为比较器的门限宽度由以上式子可得比较器的电压传输特性如图6所示。

图6比较器传输特性运放与、、及组成反相积分器。

其输入是前级输出的方波信号,从而可得积分器的输出为当时,电容被充电,电容电压上升即线性下降。

当下降到时,比较器A1的输出状态发生翻转,即由高电平变为低电平,于是电容放电,电容电压下降,而即线性上升。

当上升到时,比较器A1的输出状态又发生翻转,即由低电平变为高电平,电容又被充电,周而复始,振荡不停。

可见积分器的输入为方波时,输出是一个上升速率与下降速率相等的三角波,其波形关系如图7所示。

图7三角波和方波的关系 比较器和积分器首尾相连,形成闭合回路,则自动产生方波--三角波。

三角波幅度为的下降时间为,而把和的值代入,的三角波的周期<方波的周期与其相同)为从而可知方波—三角波的频率为由和的表达式可以得出以下结论:(1>使用电位器调整方波—三角波的输出频率时,不会影响输出波形的幅度。

若要求输出信号频率范围较宽,可用改变频率的范围,用实现频率微调。

(2>方波的输出幅度应等于电源电压,三角波的输出幅度不超过电源电压。

电位器可实现幅度微调,但会影响方波—三角波的频率。

实际设计中,和可选择双运算放大集成电路LM747<也可以选其他合适的运放),采用双电源供电,,。

相关文档
最新文档