流量传感器及其应用
传感器在流量监测中的应用

传感器在流量监测中的应用一、引言随着科技的发展和社会的进步,流量监测已成为现代社会中不可或缺的一部分。
在各行各业中,对于流量的准确监测和控制对于运营和管理至关重要。
而传感器作为一种关键技术,被广泛应用于流量监测中。
本文将重点探讨传感器在流量监测中的应用。
二、传感器的原理和类型传感器是一种能够将物理量转化为电信号的装置。
它通过接收来自外界的信号并将其转化为可读取的数据。
在流量监测中,传感器起到了关键作用,可以准确地测量流体通过常规管道或管线的速度和压力等信息。
根据测量原理的不同,流量监测中常用的传感器类型包括:1.1 压力传感器:采用压阻效应或电容效应等原理,测量流体通过管道时产生的压力变化,推导出流量信息。
1.2 涡轮传感器:通过涡轮转速的变化,测量流体通过管道时产生的涡轮力矩,进而计算出流量。
1.3 超声波传感器:利用超声波的反射原理,测量流体在管道中的速度,进而计算出流量。
1.4 热式流量传感器:基于热传导原理,通过测量流体通过管道前后的温度差异,计算出流量。
三、传感器在流量监测中的应用在不同领域和行业中,流量监测都扮演着重要的角色。
以下是传感器在流量监测中的常见应用。
3.1 工业制造在生产过程中,流量监测对于产品的质量和运营效率至关重要。
传感器广泛应用于工业自动化中,例如汽车制造、化工生产等领域。
通过在生产线上设置传感器,可以实时监测原材料的流动情况,提高产品的制造效率和防止生产中的故障。
3.2 城市供水城市供水是现代社会的基础设施之一。
通过在供水管道上安装传感器,可以精确地监测水流的速度和流量,预测供水需求,提高供水系统的稳定性和可靠性。
此外,传感器还能够检测水质,并及时发出警报,确保供水的安全和卫生。
3.3 环境监测流量监测在环境监测中也扮演着重要角色。
例如,在污水处理中,传感器可以测量废水的流量和质量,用于控制和改善处理过程。
在气象观测中,传感器可以测量大气中的风速和风向,用于绘制天气图和预测自然灾害。
呼吸机流量传感器的原理和应用

Prncpl n i i e a d App ia i n o o Se o n Ve ia o lc to fFl w ns r i ntl t r
W ANG Yih iHE Jn h a — u. i— u n
( q ime t p rme t S uh etHoptl f h hr l ay Me ia iest, o g ig4 0 3 , hn ) E up n at n, o tw s s i eT i Mitr dc l v ri Ch n qn 0 0 8 C ia De aot d i Un y
图 1 热 丝 式 流 量 传 感 器 原 理 图
人 和 呼 出气 体 流 量 :安 装 在 吸气 系 统 前 端 的 空 气 和 氧 气 流 量 传感 器生成 的信 号能 帮助微 处理 器对 阀 门进行 控制 , 以 提 供 患 者 所 需 要 的 氧 浓 度 ;流 速 和 流 量 的 检 测 值 还 直 接 影 响 到 呼 气 与 吸气 时 相 的 切 换 、 钟 通 气 量 上 下 限 的报 警 、 分 流
流量 传 感 器 在 呼 吸机 中 的应 用 已有 近 3 O年 的历 史 , 中 在
高 档 呼 吸机 中被 普 遍 使用 。它 作 为 呼 吸 机 气 路 系 统 的重 要 部 件 , 责 将 吸入 和 呼 出 的气 体 流 量 转换 成 电信 号 , 给信 号 处 负 送 理 电路 完 成 对 吸 入 和 呼 出潮 气 量 、 分钟 通 气 量 、 流速 的检 测 和
的具 体 应 用 , 为 工 程技 术和 临床 应 用 人 员在使 用 、 护 维修 、 洁 消毒 等方 面提 供 一 些 帮 助 。 可 维 清
【 词 ] 流 量传 感 器 ; 关键 呼吸 机 ; 理 ; 声 波传 感 器 原 超
压力、流量和物位传感器及应用

式
式(垂链
膜片)
非粘 贴式
张丝式
霍尔式
气隙式 电 感 式 差动变压器式
精确 度等
级 1.5 0.2
0.3
1.0
0.5 1.5 0.5
1.0
测量范 围
输出信 号
温度影 响
抗振动冲 击性能
体积
安装维护
低 中 压 电阻
小
中 压 20mV
大
差
大
好
小
方便 方便
负压及 中压
24mV
小
差
较大
方便
中 高 压 12mV 小
Nova Sensor 公司NPI 系列,将固态集成工艺与隔离膜片技术 相结合,扩散硅芯片被封装在充油腔体内,并通过不锈钢膜片 和外壳将其与测量介质隔离开来,向用户提供性价比良好的产 品。。 标准产品提供了多种压力接口,可满足焊接密封和侧密 封设计要求正如Nova Senso
NPC/410/1210/1220系列
1—磁铁 2—霍尔器件 3—波纹膜盒 4—杠杆 5—外壳
6.1.3 集成压力传感器的应用电路
图5-13 压力测量电路
图5-14 压力/频率变换电路
德国
NPH系列 用于非腐蚀性气体兼容介质; 量程范围:2.5KPa~700KPa , 具有绝压表压和差压测量形式; 标准TO-8封装,可用于印 刷电路板(PCB)安装; 恒流1.5mA (标称)供电; 0~70℃温 度补偿,温度系数±0.75%FSO(最大值)
流量传感器

流量传感器1. 简介流量传感器是一种用于测量流体流动速度的装置。
它广泛应用于工业控制、环境监测、智能家居等领域。
流量传感器通过测量流体通过的体积或质量,并转化为电信号,从而实现对流量的监测和控制。
2. 工作原理流量传感器的工作原理主要分为以下几种:2.1 堵塞型流量传感器堵塞型流量传感器通过测量流体通过的压差来确定流速。
它由一个管道和一个压差传感器组成。
当流体通过管道时,会产生一定的压差。
压差传感器测量这个压差,并将其转化为与流速成比例的电信号。
2.2 旋转翅片流量传感器旋转翅片流量传感器是一种机械式流量传感器。
它由一个转子和一个磁感应器组成。
当流体通过转子时,转子会旋转,磁感应器检测转子的旋转速度,并将其转化为与流速成比例的电信号。
2.3 电磁式流量传感器电磁式流量传感器利用法拉第电磁感应定律测量流体的速度。
它由一个电磁流体管和一个电磁感应器组成。
当流体通过电磁流体管时,会产生一个交变的电磁场。
电磁感应器测量这个电磁场的强度,并将其转化为与流速成比例的电信号。
3. 应用领域流量传感器广泛应用于以下领域:•工业控制:流量传感器用于监测和控制工业生产中的液体或气体流量,确保生产过程的稳定性和安全性。
•环境监测:流量传感器可以用于监测废水、气体排放等环境参数,帮助保护环境和预防环境污染。
•智能家居:流量传感器可以应用于智能家居系统中,用于监测和控制自来水、煤气等资源的使用,实现节能和智能化管理。
•汽车工业:流量传感器在汽车领域可以用于测量燃油、空气等的流量,帮助优化汽车引擎的性能和燃油经济性。
4. 优点和缺点4.1 优点•准确性高:流量传感器可以实时监测流体的流动速度,并提供准确的测量值。
•可靠性强:流量传感器采用先进的技术和材料制造,具有较高的可靠性和耐用性。
•安装方便:流量传感器通常可以直接安装在管道上,安装简单方便。
•高度可定制:流量传感器可以根据不同的应用需求进行定制,灵活性强。
4.2 缺点•价格较高:流量传感器的制造成本较高,价格相对较贵。
水流传感器

水流传感器简介水流传感器(Flow Sensor)是一种用于检测液体流动速度的设备。
它通常由流量计和传感器两个部分组成。
流量计负责测量液体流过的量,传感器用于感知液体的流动速度。
水流传感器在工业、农业、医疗和家庭等领域都有广泛的应用。
比如在工业生产中,水流传感器被用于监测流水线上的液体以确保生产质量。
在农业领域,水流传感器则被应用在灌溉系统中以确保农作物得到足够的水分。
在医疗领域,水流传感器可以帮助医生监测注射流量。
工作原理水流传感器的工作原理基于磁滞现象和霍尔效应。
当液体流过磁环时,液体的流动会影响磁场的强度和方向,导致磁场发生变化。
处于磁场中的霍尔元件会受到这些变化的影响,输出一个电信号。
该电信号就是检测到数量的基础。
具体来说,当液体流过流量计时,流量计会记录流过的水量,并将结果传递给传感器。
传感器会检测液体流动的速度并输出一个电信号,电信号大小与液体流动速度成正比。
应用场景工业生产在工业生产中,水流传感器被用于监测生产流水线上的液体流动速度。
在制造食品和药品时,流速监测器可确保所有流过它的物料质量一致。
农业灌溉在农业领域,农民使用水流传感器来监测灌溉系统的水流速度和浓度。
这种传感器能够确保灌溉系统能够按照计划等量地灌溉作物。
饮水设备在饮水设备中,水流传感器可以帮助监测流量并控制水源的流量和压力。
这可以起到避免浪费的作用。
医疗在医疗领域,水流传感器可帮助医生检测给药流量和监测输液速度。
使用水流传感器可以确保给药或输液按照计划进行,且量准确。
结论水流传感器是一种非常有用的设备,在不同的领域都能起到关键的作用。
通过灌溉作物、监测食品和药品制造,智能饮水设备、医疗和工业生产等应用领域,水流传感器为公司和公共事业提供了极大的便利。
《传感器与检测技术》课件——第10章 流量传感器及其应用

2.流量检测中常用的物理量 (1)密度 :表示单位体积中物质的量,其数学表达式为 对于液体,在常温常压下,压力变化对其容积影响甚微,所以工程上通常将液体视为不可压缩流体,即可不考虑压力变化对液体密度的影响,而只考虑温度对其密度的影响。对于气体,温度、压力对单位质量气体的体积影响很大,因此在表示气体密度时,必须指明气体的工作状态(温度和压力)。 (2)黏度:是表征流体流动时内摩擦黏滞力大小的物理量,有动力黏度和运动黏度。 二者之间的关系为:v =h/r。 (3)雷诺数Re:是表征流体情况的特征数。其计算公式为 式中, 为管径; 为流速;r为流体密度;h为动力黏度; 为运动黏度。
(2)管道条件。 ① 安装节流装置的管道应该是直的圆形管道,管道直度用目测法测量。上下游直管段的圆度按流量测量节流装置的国家标准规定进行检验,管道的圆度要求是在节流件上游至少2D(实际测量)长度范围内,管道应是圆的。在离节流件上游端面至少2D 范围内的下游直管段上,管道内径与节流件上游的管道平均直径D 相比,其偏差应在±3%之内。 ② 管道内表面上不能有凸出物和明显的粗糙不平现象,至少在节流件上游10D 和下游4D 的范围内应清洁、无积垢和其他杂质,并满足有关粗糙度的规定。 ③ 节流件前后应有足够长的直管段,在不同局部阻力情况下所需要的最小直管段长度。
10.2 容积式流量传感器
《流量传感器》课件

未来发展的挑战与机遇
随着工业4.0、智能制造等新兴技术的发展,流量传感器面 临着技术更新换代、性能提升、智能化等挑战,需要不断 进行技术创新和产品升级。
环保意识的提高和能源消耗的日益增长,为流量传感器的 发展提供了广阔的市场空间和机遇,需要加大研发力度, 推出更加高效、节能、环保的产品。
技术创新与升级
微型化技术
随着微电子和纳米技术的发展, 流量传感器的体积不断缩小,性 能得到提升,便于集成和安装。
智能化技术
通过引入人工智能和机器学习算法 ,流量传感器能够实现自适应和自 校准功能,提高测量精度和稳定性 。
多功能化技术
开发出能够同时测量多种参数的流 量传感器,如温度、压力、流速等 ,满足复杂应用场景的需求。
精度等级
精度等级
是指流量传感器测量结果的准确度,通常以百分比或者绝对 误差表示。
精度等级的选择
需要根据实际应用需求,选择合适的精度等级。精度等级越 高,测量结果越准确,但价格也相对较高。
响应时间
响应时间
是指流量传感器对流体流量变化的反应速度,通常以时间常数或者上升时间表示 。
响应时间的选择
需要根据实际应用需求,选择合适的响应时间。如果响应时间过慢,可能无法及 时反映流量的变化;如果响应时间过快,则可能增加传感器的功耗和成本。
流量传感器的工作原理
总结词
理解流量传感器的工作原理有助于深入了解其性能特点和应用限制。
详细描述
不同类型的流量传感器具有不同的工作原理。例如,差压式流量传感器利用流体流经节 流元件时产生的压力差来测量流量;涡轮式流量传感器利用流体驱动涡轮的转速来测量 流量;超声波流量传感器利用声波在流体中的传播速度来测量流量。了解传感器的工作
流量传感器的原理和应用

流量传感器的原理和应用概述流量传感器是一种用于测量流体(液体或气体)流动速度和流量的设备。
它使用各种原理和技术来进行测量,可以应用于多种行业和领域。
本文将介绍流量传感器的原理和应用,并提供一些常见的流量传感器类型和其优缺点。
原理流量传感器的测量原理根据其类型和技术而有所不同。
以下是几种常见的流量传感器原理:1.机械流量计:机械流量计基于测量液体或气体通过管道或管道截面积的变化来计算流速和流量。
常见的机械流量计包括涡轮流量计、涡街流量计和节流装置。
机械流量计适用于粘稠流体和高温环境。
2.电磁流量计:电磁流量计利用法拉第电磁感应原理来测量液体的流量。
它通过在流体中产生一个垂直于流动方向的磁场,并测量液体中感应电动势的大小来计算流速和流量。
电磁流量计适用于导电液体,如水和液体金属。
3.超声波流量计:超声波流量计利用超声波的传播速度与流速的关系来测量液体或气体的流量。
它通过发送和接收超声波脉冲来计算流速和流量。
超声波流量计适用于广泛的液体和气体。
4.热式流量计:热式流量计利用测量流体散热量的变化来计算流速和流量。
它通过在流体中加热一个细丝,并测量细丝的温度变化来计算流速和流量。
热式流量计适用于低流速和低温流体。
应用流量传感器在许多行业和领域中都有广泛的应用。
以下是一些常见的应用领域:1.工业过程控制:流量传感器可用于监测和控制工业流程中的流速和流量,例如化工厂中的原料供应和产品流动。
2.供水和排水系统:流量传感器可用于监测供水和排水系统中的水流量,帮助水务部门管理供水和排水质量和流量。
3.能源管理:流量传感器可用于测量供暖、制冷和通风系统中的液体和气体流量,以帮助优化能源管理和减少能源消耗。
4.医疗设备:流量传感器可用于医疗设备中,如呼吸机、输液器和洗肾机,以监测和控制气体和液体的流量。
5.环境监测:流量传感器可用于监测大气和水体中的气体和液体流量,以帮助环境保护和监测。
流量传感器类型和优缺点下面是几种常见的流量传感器类型和它们的优缺点:1.涡轮流量计:–优点:高精度、线性性好、适用于高温和高粘稠度流体。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
qv还可以用下
qv vA
使用体积流量时,必须同时给出流体的压力和温度。
累计流量是指一段时间内流体的总流量,即瞬时流量对时间的累积。 总流量的单位常用m3或kg表示。
第10章 流量传感器及其应用
2.流量检测中常用的物理量
(1)密度 :表示单位体积中物质的量,其数学表达式为
M
V 对于液体,在常温常压下,压力变化对其容积影响甚微,所以工程 上通常将液体视为不可压缩流体,即可不考虑压力变化对液体密度的影 响,而只考虑温度对其密度的影响。对于气体,温度、压力对单位质量 气体的体积影响很大,因此在表示气体密度时,必须指明气体的工作状 态(温度和压力)。 (2)黏度:是表征流体流动时内摩擦黏滞力大小的物理量,有动力 黏度和运动黏度。
第10章 流量传感器及其应用
10.4.2 涡轮流量传感器
涡轮流量传感器是以动量矩守恒原理为基础,利用置于流体中的涡 轮的旋转速度与流体速度成比例的关系来反映通过管道的体积流量的。 1.测量原理与结构
(1)测量原理。 在一定的流体介质黏度和一定的流量范围内,涡轮的旋转角速度与
通过涡轮的流体流量成正比,通过测量涡轮的旋转角速度可以确定流体 的体积流量。
括两个波纹管、量程弹簧、扭力管及外壳等部分。
1-节流装置;2、4-导压管;3-阀;5-扭管;6-中心基座;7-量程弹 簧;8-低压波纹管;9-低压外壳; 10-填充液;11-摆杆;12-推板
;13-阻尼阀;14-高压波纹管;15-高压外壳;16-连接轴
图10.9 双波纹管差压计结构原理图
第10章 流量传感器及其应用
单独钻孔取压是在孔板的夹紧环上打孔,流体上下游压力分别从前后 两个夹紧环取出。
②法兰取压。标准孔板被夹持在两块特制的法兰中间,其间加两片垫 片,上、下游侧取压孔的轴线距孔板前、后端面分别为(25.4±0.8)mm。 (2)标准喷嘴的取压方式。标准喷嘴仅采用角接取压方式。
3.标准节流装置的使用条件与管道条件 (1)使用条件。
1—节流装置;2—导压阀;3—排污阀; 4—差压计;5—三阀组;6—排气阀
图10.12 测量液体时差压流量传感器安装示意图
第10章 流量传感器及其应用
(2)气体流量的测量。
1—节流装置;2—导压阀; 3—三阀组;4—差压计
1—导压阀;2—节流装置;3—三阀组; 4—差压计;5—排放阀
图10.13 测量气体时差压流量传感器安装示意图
② 管道内表面上不能有凸出物和明显的粗糙不平现象,至少在节流件 上游10D 和下游4D 的范围内应清洁、无积垢和其他杂质,并满足有关粗 糙度的规定。
③ 节流件前后应有足够长的直管段,在不同局部阻力情况下所需要的 最小直管段长度。
第10章 流量传感器及其应用
10.3.3 差压计
1.双波纹管差压计 双波纹管差压计是由测量部分和显示部分构成的基地式仪表,主要包
2.涡轮流量传感器的特点 3.涡轮流量传感器的安装
第10章 流量传感器及其应用
10.4.3 超声波流量传感器
超声波流量传感器是一种非接触式流量测量仪表,它是利用超声波 在流体顺流方向与逆流方向中传播速度的差异来测量流量的。按照测量 原理的不同,超声波流量测量可分为传播时间法、多普勒效应法、声束 偏移法等。下面以应用较多的传播时间法为例加以介绍。
1.工作原理 转子流量传感器又称浮子流
量传感器或变面积流量传感器。 它由两个部分组成:一个是由下 往上逐渐扩大的锥形圆管;另一 个是放置在锥形管内随被测介质 流量大小变化而上下自由浮动的 转子(又称浮子)。
(5)压缩系数:当作用在流体上的压力增加时,流体所占有的体积将 会缩小。压缩系数是指当流体温度不变,所受压力变化时其体积的变化率。
10.1.2 流量测量方法
1.容积法 2.节流差压法 3.速度法 4.流体阻力法 5.流体振动法 6.质量流量测量法
第10章 流量传感器及其应用
10.2 容积式流量传感器
速度式流量传感器是通过测量管道截面流体的平均流速来进行流量 测量的。
10.4.1 电磁流量传感器
电磁流量传感器是根据法拉第电磁感应定律工作的,主要用于测量 导电液体的体积流量,应用领域涉及工业、农业、医学等多个领域,在 市场上的占有率仅次于差压式流量传感器。
1.测量原理与结构
电磁流量传感器由变送器和转换器两部分组成,被测流体的流量经 变送器后变换成相应的感应电动势,再由转换器将感应电动势转换成标 准的直流电信号,送至调节器或指示器进行控制或显示。
第10章 流量传感器及其应用
10.3 差压式流量传感器
差压式流量传感器又叫节流式流量传感器,它是利用流体流经节流 装置时产生压力差的原理来实现流量测量的,它的使用量大概占全部流 量仪表的60%~70%。
差压式流量传感器主要由节流装置和差压计(或差压变送器)组成。
10.3.1 测量原理与流量方程
1.测量原理 当连续流动的流体遇到安装在管道中的节流装置时,由于流体流通
1-导流体;2-轴承;3-涡轮;4-壳体;5-信号放大器
图10.18 涡轮流量传感器
第10章 流量传感器及其应用
2rA f
qv
ztg
f
K
式中,K 为涡轮流量传感器的仪表系数,与传感器的结构有关。在涡 轮流量传感器的使用范围内,仪表系数K 应为一常数,其数值由实验标
定得到。
(2)结构。涡轮流量传感器主要由涡轮及轴承、导流体、磁电转换装 置、外壳和信号放大器等部分组成。
(1)测量原理。
E BDv
D2 D
qv v
4
E KE 4B
第10章 流量传感器及其应用
图10.15 电磁流量传感器测量原理
图10.16电磁流量传感器结构示意图
(2)结构。电磁流量传感器主要由测量管、励磁系统、电极、衬里、 外壳及转换器等组成。
2.电磁流量传感器的特点 3.电磁流量传感器的选用与安装
10.2.1 椭圆齿轮流量传感器
传感器的活动壁是一对互相啮合的椭圆齿轮,它们在被测流体压差 的推动下产生旋转运动。
两个齿轮交替或同时受差压作用并保持不断地旋转,被测介质以初 月形空腔为单位一次又一次地经过椭圆齿轮被排至出口。显然,椭圆齿
轮每转动一周,排出4个初月形体积的流量,所以体积流qv量 为 qv 4nV0
第10章 流量传感器及其应用
图10.4流体流经孔板时压力和流速变化情况
2.流量方程 体积流量基本方程式
qv aF0
2
p
aF0
2
(
p1
p2
)
第10章 流量传感器及其应用
质量流量基本方程式
qm aF0 2p aF0 2( p1 p2 )
两式中各参数的意义和单位规定如下:
qv 为体积流量,m3/s;qm 为质量流量,kg/s。
第10章 流量传感器及其应用
(2)管道条件。 ① 安装节流装置的管道应该是直的圆形管道,管道直度用目测法测量。
上下游直管段的圆度按流量测量节流装置的国家标准规定进行检验,管 道的圆度要求是在节流件上游至少2D(实际测量)长度范围内,管道应 是圆的。在离节流件上游端面至少2D 范围内的下游直管段上,管道内径 与节流件上游的管道平均直径D 相比,其偏差应在±3%之内。
① 角接取压。孔板上、下游侧取压孔位于上、下游孔板前后端面处, 取压口轴线与孔板各相应端面之间的间距等于取压口直径的一半或取压 口环隙宽度的一半。
角接取压又分为环室取压和夹紧环(单独钻孔)取压两种。
第10章 流量传感器及其应用
环室取压的前后两个环室在节流件两边,环室夹在法兰之间,法兰和 环室、环室与节流件之间放有垫片并夹紧。
二者之间的关系为:v =h/。 (3)雷诺数Re:是表征流体情况的特征数。其计算公式为
Re D D hv
式中,D 为管径;v 为流速;为流体密度;h为动力黏度;u 为运动
黏度。
第10章 流量传感器及其应用
(4)温度体积膨胀系数:当流体的温度升高时,流体所占有的体积将 会增加。温度体积膨胀系数是指流体温度每变化1℃时其体积的相对变化 率。
11-非磁性材料的密封套管;12-保护用挡板阀;13-保护用密封环
图10.10 膜片式差压计结构原理图
第10章 流量传感器及其应用
10.3.4 差压式流量传感器的安装
1.节流装置的安装 2.引压导管的安装 3.差压计的安装 4.安装示例 (1)液体流量的测量。
1—节流装置;2—导压阀;3—三阀组; 4—差压计;5—排放阀
第10章 流量传感器及其应用
10.1 概述
10.1.1 基本概念
1.流量
流量是指单位时间内流过管道横截面的流体的数量,也称为瞬时流 量。流量又有体积流量和质量流量之分。
设流体的密度为 ,质量流量与体积流量之间的关系为:
qm qv 或
qv
qm
当流体通过管道横截面各处的流速相等时,体积流量 式计算:
2.膜片式差压计 膜片式差压计由差压变送器和显示仪表两部分组成,如图10.10所示。
差压变送器主要由差压测量室(高压和低压室)、三通阀和差动变压器构 成;显示仪表可装在远离生产现场的控制室内,进行流量的指示和记录等。高压室;5-低压室; 6-膜片; 7-非磁性杆;8铁芯; 9、10-差动变压器的初级和次级线圈;
第10章 流量传感器及其应用
(3)蒸气流量的测量。
1—节流装置;2—导压阀;3—冷凝器; 4—三阀组;5—差压计;6—排放阀