国家标准镍钴锰氢氧化物
行业标准《镍钴铝三元素复合氢氧化物》-编制说明

镍、钴、铝三元素复合氢氧化物编制说明《镍、钴、铝三元素复合氢氧化物》(讨论稿)编制说明一、工作简况1. 任务来源与协作单位根据工信厅科【2014】628号“关于印发2014年第三批行业标准制修订计划的通知”及全国有色金属标准化技术委员会下发的有色标委【2014】29号文“关于转发2014年第一批有色金属国家、行业标准制(修)订项目计划的通知”的文件精神,由深圳先进储能材料国家工程研究中心有限责任公司负责起草《镍、钴、铝三元素复合氢氧化物》行业标准,项目计划编号2014-1465T-YS,计划完成年限2016年。
2.起草单位情况、主要工作过程、标准主要起草人及其所做工作2.1 起草单位情况深圳先进储能材料国家工程研究中心有限责任公司由国家发展与改革委员会批准成立,联合国内在先进储能材料行业最优秀的企业和科研院所组建而成。
深圳先进储能材料国家工程研究中心有限责任公司汇集了同行业国内外高科技研发和运营管理的精英人才,是从事先进储能材料及应用器件工程化技术研究与开发的高新技术企业,是我国在先进储能技术及关键储能材料领域唯一的国家级工程中心,代表我国在先进储能技术及储能材料领域工程化技术的最高水平。
深圳先进储能材料国家工程研究中心有限责任公司的牵头单位为湖南科力远高技术控股有限公司,共建单位包括湖南科力远新能源股份有限公司、湖南科力远高技术控股有限公司、中南大学、金川集团有限公司、湖南瑞祥新材料股份有限公司及深圳多美瑞科技有限公司等六大高新技术企业。
深圳先进储能材料国家工程研究中心有限责任公司针对新能源汽车(PEV,HEV)、电动工具、太阳能、风能、兆瓦级蓄电站等对新型储能材料和能源转换使用的迫切要求,以先进储能材料的高能量密度和高功率密度研究、宽环境适应性研究、长使用寿命研究、高安全性研究为重点,建立新型储能材料的系统集成的研发平台、工程化验证平台和产业化平台,对涉及镍电池、锂电池、液流电池、超级电容器等领域的关键储能材料,开展生产工艺开发、关键生产设备和检测设备的开发、行业标准的制定、知识产权保护、检验检测和质量评价、对外科技交流等的关键性技术研究和工程实践研究。
氢氧化镍钴印尼质量标准

氢氧化镍钴印尼质量标准
一、成分含量
1.镍含量:≥20%
2.钴含量:≥10%
3.氢氧化物含量:≥30%
二、物理性质
1.外观:呈深蓝色或绿色粉末或颗粒。
2.粒度:粒径分布均匀,平均粒径≤5μm。
3.密度:约
4.1g/cm³。
4.吸湿性:在空气中易吸湿,但不影响其使用性能。
三、化学性质
1.稳定性:在常温下稳定,不易分解。
2.酸碱性:呈碱性,与酸反应生成相应的盐类。
3.氧化还原性:具有还原性,可用于制备电池等。
4.与其他物质的反应:与其他金属离子生成相应的沉淀物。
四、杂质含量
1.铁含量:≤0.05%
2.铜含量:≤0.01%
3.锌含量:≤0.01%
4.钙含量:≤0.01%
5.其他金属离子含量:≤0.01%
五、包装和标识
1.包装:采用防潮、防震、防尘的包装材料,确保产品在运输和储存过程中
不受损坏。
2.标识:产品标识应清晰、易读,包括产品名称、型号、规格、生产日期和
批号等信息。
镍钴锰氢氧化物un编码

镍钴锰氢氧化物un编码
镍钴锰氢氧化物的UN编号是3495。
UN编号是联合国根据危险品的性质和特征对其进行分类和编号的一种国际编号制度。
对于镍钴锰氢氧化物这种化学品,UN编号3495表明它是一种危险品,需要在运输和储存过程中特别注意安全。
这个UN编号有助于相关部门和机构在处理和运输镍钴锰氢氧化物时采取相应的安全措施,以保障人员和环境的安全。
除了UN编号外,还有其他一些国际标识符号和标签,用于指示镍钴锰氢氧化物的危险性质和特征,以便进行正确的处理和管理。
因此,了解和正确使用UN编号对于保障化学品安全至关重要。
氢氧化镍钴锰原料

氢氧化镍钴锰原料全文共四篇示例,供读者参考第一篇示例:氢氧化镍钴锰是一种重要的原料,广泛应用于各种领域。
它是一种合金材料,由氢氧化镍、氢氧化钴和氢氧化锰组成。
氢氧化镍钴锰具有很高的性能,包括良好的导电性、耐腐蚀性和热稳定性。
它在电池、催化剂、磁性材料等领域有着重要的应用价值。
氢氧化镍钴锰在电池领域有着广泛的应用。
它是锂离子电池的重要组成部分,可以提高电池的性能,延长电池的使用寿命。
氢氧化镍钴锰在电池的正极材料中起到了储存和释放锂离子的作用,是电池高效运行的关键。
目前,随着电动汽车和可再生能源的快速发展,对氢氧化镍钴锰的需求量也在不断增加。
氢氧化镍钴锰在催化剂领域也有着重要的应用。
它可以作为催化剂用于各种催化反应中,如氢氧化镍可用于水电解制氢气、氧化还原反应;氢氧化钴可用于氨合成和甲醇合成反应;氢氧化锰可用于氧化剂和还原剂的生产等。
氢氧化镍钴锰作为催化剂具有很高的活性和选择性,可以促进反应的进行,提高反应的效率。
氢氧化镍钴锰在磁性材料领域也有着重要的应用。
由于其特殊的结构和性能,氢氧化镍钴锰可以制备成各种磁性材料,如软磁材料、硬磁材料和磁性存储材料等。
这些磁性材料在电子、通信、医疗、汽车等领域都有广泛的应用,可以促进技术的发展和进步。
氢氧化镍钴锰是一种重要的原料,具有广泛的应用价值。
它在电池、催化剂、磁性材料等领域都发挥着重要作用,为现代工业和科技的发展提供了重要支撑。
随着社会的进步和科技的发展,对氢氧化镍钴锰的需求量将会不断增加,未来有着广阔的发展前景。
希望相关行业能够加强技术研发和生产制造,推动氢氧化镍钴锰的应用和发展,为人类社会的可持续发展做出贡献。
第二篇示例:氢氧化镍钴锰是一种重要的原料,在工业上应用广泛。
它是由氢氧化镍、氢氧化钴和氢氧化锰三种物质混合而成,具有很高的化学稳定性和热稳定性,因此在各种领域都有着重要的应用价值。
氢氧化镍钴锰在电池行业中有着重要的作用。
随着电动汽车的普及,对于高性能的电池材料的需求也越来越大。
三元素氢氧化物中镍钴锰含量的测定

三元素氢氧化物中镍钴锰含量的测定蒋国芬【摘要】采用仪器分析方法和化学分析方法相结合测定三元前驱体Ni0.33Co0.33Mn0.33(OH)2中镍、钴、锰主含量,分别采用电感耦合等离子体原子发射光谱(ICP-AES)内标法测定镍、钴、锰的摩尔比例,ED-TA滴定法测定镍、钴、锰的摩尔总量,计算得到各元素的含量.通过优化实验条件,进行了准确度和精密度实验,加标回收率为99.2%~101%,相对标准偏差小于0.65%.方法准确、快速,已用于实际的检测工作中.【期刊名称】《中国无机分析化学》【年(卷),期】2017(007)003【总页数】4页(P42-45)【关键词】三元前驱体;ICP-AES;EDTA滴定法;镍;钴;锰【作者】蒋国芬【作者单位】浙江华友钴业股份有限公司,浙江桐乡314500【正文语种】中文【中图分类】O657.31;TH744.11随着锂电新能源行业的快速发展,锂电池的应用越来越广泛。
镍钴锰酸锂具有循环性能好、电压平台高、热稳定性好、循环寿命长、自放电小、无记忆效应等突出优点,市场应用广泛。
因此,镍钴锰酸锂及其前驱体中Ni、Co、Mn含量的准确测定尤为重要[1-2]。
目前,国内外多数采用电感耦合等离子体原子发射光谱法(ICP-AES)测定三元材料的镍钴锰含量[3-5]。
但ICP-AES更适合微量元素的分析,而三元材料中的镍钴锰元素含量需要稀释数千倍才能达到仪器的测定要求,这样引起的稀释误差较大。
也有报道采用化学分析法测定镍、钴、锰的含量,但存在操作繁琐、耗时较长、元素间相互干扰等问题。
本文探讨了用盐酸溶解试样,ICP-AES内标法[6]测定三元前驱体NCM333中的镍、钴、锰的摩尔比例,即使样品稀释了几千倍,但三种元素的稀释误差成正比,准确度较高;同时,EDTA滴定法是比较成熟的化学滴定法,结果准确、快速。
1.1 主要仪器Optima8000电感耦合等离子体原子发射光谱仪(铂金埃尔默公司)。
镍钴锰氢氧化物

镍钴锰氢氧化物
镍钴锰氢氧化物可能是你在日常生活中并不常见的一种物质,但它是一种常见的化合物。
它是由镍、钴和锰组成,以氢氧化物形式存在。
其主要用途是作为电池和各种金属表面处理剂使用。
在普通电池中,如乾电池、蓄电池等,镍钴锰氢氧化物作为电解液,它能够帮助所有元素之间的发生变化,当充电时会将正负电流分别传送到正负端,最终产生能量。
此外,这种物料可以以很少的成本生产出来,并且具有很好的对异物的耐侯性。
还有就是它作为金属表面处理剂而闻名。
例如工厂制造出来的金属零部件大多数都会使用这种材料作为表面修复剂,因为它能够对金属表面进行加固和保护。
在一些工厂中使用了该材料将关闭喷淋圈试样(CASS)测试所得到的总体耐腐蚀能力大大增强。
另外在CASS测试时更好地评估金属耐腐蚀性能的方法之一就是使用Nickel-Copper-Manganese Hydroxide作为半成品衬底即进行测试。
相对于无任何修复剂情况下使对样本衬底上留存凝固后的盐得出相应结果而言此方法也不易出差错情况也不易出差。
总之,尽管我们平时在生活中很难看到这种材料,但它却广泛应用于工厂内郭、实验室内、日常相关工作中郭、乃至零折件检修中郭(如手机零部件检测) ;因此我们可以看出其应用很广泛但受人尊重老惜惜对它意义。
22种重金属的标准

22种重金属的标准22种重金属的标准是涉及环境保护、食品卫生和工业安全等方面的重要指标。
这些重金属包括铅、汞、镉、六价铬、铜、镍、砷等,对人体健康和生态环境具有一定的危害性。
因此,对22种重金属的排放和含量进行严格控制和监测是非常必要的。
1.铅(Pb):不得超过0.2mg/L2.汞(Hg):不得超过0.01mg/L3.镉(Cd):不得超过0.005mg/L4.六价铬(CrVI):不得超过0.1mg/L5.铜(Cu):不得超过5mg/L6.镍(Ni):不得超过1mg/L7.砷(As):不得超过0.01mg/L8.钡(Ba):不得超过1mg/L9.钴(Co):不得超过0.05mg/L10.钒(V):不得超过0.01mg/L11.锑(Sb):不得超过0.005mg/L12.锰(Mn):不得超过2mg/L13.锡(Sn):不得超过0.02mg/L14.锶(Sr):不得超过0.05mg/L15.铊(Tl):不得超过0.002mg/L16.钡(Be):不得超过0.007mg/L17.硼(B):不得超过0.7mg/L18.钼(Mo):不得超过0.004mg/L19.铅(Pb):不得超过0.2mg/L20.汞(Hg):不得超过0.01mg/L21.镉(Cd):不得超过0.005mg/L22.六价铬CrVI:不得超过0.1mg/L这些标准主要适用于水质、土壤、大气等环境监测,以及食品、化妆品、电子产品等领域。
这些重金属的含量超标会对人体健康和生态环境造成严重的危害,因此需要对其进行严格的控制和监测。
在工业生产中,应采取有效的措施来减少重金属的排放,例如采用低毒或无毒的替代品、改进工艺流程、加强废水处理等。
在日常生活中,我们也要注意避免接触这些重金属,例如不要使用劣质化妆品、注意饮食卫生等。
行业标准《镍 钴 铝三元素复合氢氧化物》-中国有色金属标准质量信息网.doc

镍、钴、铝三元素复合氢氧化物(讨论稿)编制说明《镍、钴、铝三元素复合氢氧化物》(讨论稿)编制说明一、工作简况1. 任务来源与协作单位根据工信厅科【2014】114号“关于印发2014年第二批行业标准制(修)订计划的通知”及全国有色金属标准化技术委员会下发的有色标委【2014】29号文“关于转发2014年第一批有色金属国家、行业标准制(修)订项目计划的通知”的文件精神,由深圳先进储能材料国家工程研究中心有限责任公司负责起草《镍、钴、铝三元素复合氢氧化物》行业标准,项目计划编号2014-1465T-YS,计划完成年限2016年。
2.起草单位情况、主要工作过程、标准主要起草人及其所做工作2.1 起草单位情况深圳先进储能材料国家工程研究中心有限责任公司由国家发展与改革委员会批准成立,联合国内在先进储能材料行业最优秀的企业和科研院所组建而成。
深圳先进储能材料国家工程研究中心有限责任公司汇集了同行业国内外高科技研发和运营管理的精英人才,是从事先进储能材料及应用器件工程化技术研究与开发的高新技术企业,是我国在先进储能技术及关键储能材料领域唯一的国家级工程中心,代表我国在先进储能技术及储能材料领域工程化技术的最高水平。
深圳先进储能材料国家工程研究中心有限责任公司的牵头单位为湖南科力远高技术控股有限公司,共建单位包括湖南科力远新能源股份有限公司、湖南科力远高技术控股有限公司、中南大学、金川集团有限公司、湖南瑞祥新材料股份有限公司及深圳多美瑞科技有限公司等六大高新技术企业。
深圳先进储能材料国家工程研究中心有限责任公司针对新能源汽车(PEV,HEV)、电动工具、太阳能、风能、兆瓦级蓄电站等对新型储能材料和能源转换使用的迫切要求,以先进储能材料的高能量密度和高功率密度研究、宽环境适应性研究、长使用寿命研究、高安全性研究为重点,建立新型储能材料的系统集成的研发平台、工程化验证平台和产业化平台,对涉及镍电池、锂电池、液流电池、超级电容器等领域的关键储能材料,开展生产工艺开发、关键生产设备和检测设备的开发、行业标准的制定、知识产权保护、检验检测和质量评价、对外科技交流等的关键性技术研究和工程实践研究。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
如有你有帮助,请购买下载,谢谢!国家标准《镍钴锰氢氧化物》编制说明(讨论稿)《镍钴锰氢氧化物》编制组编写单位:金川集团股份有限公司2018年6月11日国家标准《镍钴锰氢氧化物》编制说明一、工作简况1. 任务来源及计划要求根据国家标准化管理委员会于2017年12月28日下达的2017年第四批国家标准制修订计划(见国标委综合〔2017〕128号),国家标准《镍钴锰三元素复合氢氧化物》(GB/T 26300-2010)的修订工作由金川集团股份有限公司主持修订,项目计划编号为-T-610,项目完成时间为2019年12月。
2. 标准修订的目的及意义受益于新能源汽车产业政策的推动,中国已是全球最大的电动汽车市场。
三元材料因为其优异的综合性能,已成为车载锂离子动力电池的主流产品。
作为三元正极材料最关键的原材料,镍钴锰氢氧化物在过去十年里也得到了快速发展。
为了满足下游客户的各种不同需求,镍钴锰氢氧化物呈现多元化发展的趋势,相应的指标要求也发生了变化。
2010年发布的国家标准《镍钴锰三元素复合氢氧化物》(GB/T 26300-2010)中的部分内容已经无法适用于现在的产品。
为了跟上产业发展的步伐,提高镍钴锰氢氧化物生产企业的开发和生产能力,敦促各企业按更先进的标准进行生产,需要及时对国家标准进行修订。
3. 产品简介3.1 性质镍钴锰氢氧化物是深棕色或黑色粉末,流动性好,不溶于水,能溶于酸。
3.2 用途车载锂离子动力电池市场正在走出导入期,开始跨入快速成长期。
未来几年,锂离子电池市场规模增长的最大动力确定无疑将来自电动汽车市场。
全球锂离子动力电池及其材料的生产主要集中在中国、日本和韩国,主要正极材料包括改性锰酸锂、镍钴锰酸锂或镍钴铝酸锂。
高能量密度锂离子动力电池的需求带动了高比容量的高镍三元材料的应用和发展。
三元材料单体能量可达到180Wh/kg,高镍三元材料极限密度可达250-260 Wh/kg。
三元材料因具有综合性能和成本的双重优势日益被行业所关注和认同,已经超越磷酸铁锂和锰酸锂,成为车载动力电池主流的技术路线。
镍钴锰氢氧化物又被称为三元前驱体,主要用于合成锂离子电池正极材料镍钴锰酸锂(三元正极材料),是三元正极材料最为关键的原材料。
3.3 生产工艺镍钴锰氢氧化物采用共沉淀法进行生产。
将镍盐、钴盐、锰盐按一定的比例配制成一定浓度的混合溶液,该混合溶液与一定浓度的氢氧化钠溶液和络合剂按一定流速持续加入反应器中,在适当的工艺条件下进行沉淀反应,生成镍钴锰氢氧化物沉淀。
反应过程中需要控制的工艺参数有:原料浓度、投料速度、PH值、温度、搅拌转速、固含量等。
通过控制反应工艺参数来控制产品的粒度及粒度分布、形貌、振实密度等指标。
反应完成后将浆料进行固液分离,对产品进行洗涤除杂后干燥包装。
4. 起草单位情况金川集团股份有限公司(以下简称金川集团)是大型国有企业,拥有自有镍、钴矿山和丰富的全球性金属资源,具备年产镍15万吨、铜80万吨、钴1.2万吨等产品的综合生产能力,是世界第四、亚洲第一的镍企业,中国第二、世界第三大的钴类产品专业生产商。
兰州金川新材料科技股份有限公司(以下简称金川科技)是金川集团下属子公司,是中国第二、世界第三大的钴类产品专业生产商,拥有丰富的钴资源,钴的综合产能达到1.2万吨,同时也是国内锂电池正极材料领域最主要的原料供应商之一。
湖南瑞翔新材料股份有限公司(以下简称湖南瑞翔)是行业市场知名的锂电池正极材料企业,在国内外锂电池制造领域拥有稳定、优质的客户,处于行业领先地位。
湖南瑞翔目前是大中华区唯一一家取得美国3M公司三元材料产品专利授权的企业,同时通过锰酸锂和三元材料全球汽车合格零配件供应商认证体系TS16949的企业,是目前国内唯一一家同时有锰酸锂、钴酸锂、三元材料出口销售的企业。
本标准起草单位为兰州金通储能动力新材料有限公司(以下简称兰州金通)。
兰州金通股东为金川科技(股份占比63.25%)和湖南瑞翔(股份占比36.75%)。
兰州金通主要从事三元前驱体镍钴锰氢氧化物的研发、生产及销售,在技术、客户、资源等方面具有显著优势。
在技术方面,具有多年的研发和生产积累,可生产从111到高镍多种规格、粒度从1μm到20μm各种粒径的镍钴锰氢氧化物。
在客户方面,与日本、韩国和我国多家国际领先的正极材料厂商、电池厂商有长期合作。
在资源方面,母公司控制了全国大部分的镍钴资源。
二、主要工作过程1. 市场调研2017年全球新能源汽车销量达到142万辆,其中中国销量77.7万辆;到2020年全球新能源汽车销量有望达到350万辆,其中中国销量约200万辆。
2017年全球锂电正极材料需求约28.3万吨,其中LCO 6.9万吨,占比约24%;NCM+NCA 多元材料15.4万吨,占比约54%;LMO 1.4万吨,占比约5%;LFP 4.7万吨,占比约16%。
到2020年全球锂电正极材料需求约48万吨,其中LCO 7.6万吨,占比约16%;NCA+NCM 多元材料34万吨,占比约71%,LMO 1.1万吨,占比约2%;LFP 5.2万吨,占比约11%。
2017年中国锂电正极材料产量约21万吨。
其中三元材料产量8.6万吨,三元材料产量占比40.95%,同比增加了58.38%,需求强劲,增长迅速。
预计到2020年中国锂电正极材料需求约40.36万吨,三元材料需求量为22.5万吨,占正极材料比例将达到55.75%。
目前,国际知名的镍钴锰氢氧化物生产厂家主要有优美科、田中化学、日亚化学、SDI、LGC、ECOPRO等。
我国主要的生产商有金川集团、华友、科隆、邦普、中伟、格林美、容白、金驰等公司。
2. 编制标准草案接受GB/T 26300-201X《镍钴锰氢氧化物》标准的修订任务后,金川集团股份有限公司成立了标准编制小组,组织专门人员对标准的相关资料进行查询和收集。
我们收集、整理了国内研究院及生产厂家多年科研、生产、试验过程中积累的有关技术资料、科研试验总结、鉴定材料以及国内外标准,收集、整理了电池材料应用行业对镍钴锰氢氧化物的质量技术指标的需求情况。
对镍钴锰氢氧化物国内标准、国内外客户对产品的质量要求及国内主要生产厂家的产品质量现状进行了分析,遵照镍钴锰氢氧化物产品的性质、特点及用途,广泛吸收了工艺、生产、试验、检验等有关方面技术专家的意见,参考国内外先进的镍钴锰氢氧化物标准。
根据市场调研结果对标准进行修订,于2018年5月形成了国家标准《镍钴锰氢氧化物》的修订草案稿。
具体修改意见如下:(1)将产品名称镍、钴、锰三元素复合氢氧化物修改为镍钴锰氢氧化物,简化产品名称。
原来的名称太过冗长,在行业内基本很少被采用,该产品一般被称为三元氢氧化物、三元前驱体、镍钴锰氢氧化物等,英文名一般翻译为nickel cobalt manganese hydroxide。
使用镍钴锰氢氧化物这个名称,简单明了,既与原名称较为相似,有继承性,又与英文名吻合,更容易被业内人士接纳并采用。
(2)牌号修改:将牌号前面的H删除,增加采用六位数字表示牌号的方法,前两位代表镍,中间两位代表钴,最后两位代表锰,可以包括所有比例的镍钴锰氢氧化物。
按照此规则,供需双方可根据实际情况定义各种牌号。
(3)增加按粒度分类:镍钴锰氢氧化物产品根据粒度大小分为小颗粒、中等颗粒和大颗粒三种产品类型,其中D50在1~5μm的为小颗粒产品,D50在5~15μm的为中等颗粒产品,D50在15~25μm的为大颗粒产品。
(4)化学成分中主含量的规定由质量百分比更改为物质的量百分比,且仅对镍钴锰物质的量百分比的公差进行规定:主元素以镍钴锰的物质的量百分比计,根据需求方对产品镍钴锰比例的具体要求,物质的量百分比公差为1%。
(5)化学成分中杂质含量:A)增加Cr杂质指标,删除Al、Si、Cl杂质指标。
B)将Na不大于0.015%改为Na不大于0.03%,将Zn不大于0.01%改为Zn不大于0.002%,将Fe不大于0.01%改为Fe不大于0.005%,将SO42-不大于0.5%改为S不大于0.2%。
(6)物理性能A)删除松装密度。
B)激光粒度(D50)范围由5~18μm改为1~25μm,且将1~5μm的定义为小颗粒产品,5~15μm的定义为中等颗粒产品,15~25μm的定义为大颗粒产品。
C)振实密度根据大小颗粒进行分类:小颗粒产品的振实密度≥1.0 g/cm3,中等颗粒产品的振实密度≥1.6 g/cm3,大颗粒产品的振实密度≥2.1 g/cm3。
D)比表面积≤15 m2/g改为2~30 m2/g。
(7)增加对磁性异物含量的规定:小颗粒产品中磁性异物含量不大于100ppb,中等颗粒和大颗粒产品中磁性异物含量不大于60ppb。
(8)水分含量由不大于1.5%改为不大于1.0%。
(9)外观质量增加对产品颜色的描述:产品外观为黑色或深棕色粉末。
(10)检验方法A)产品化学成分(镍钴锰及其它杂质元素)的测定方法修改为按YS/T 928的规定进行,相应的规范性引用文件也增加。
B)删除松装密度的检验方法。
C)激光粒度(D50)的测定依据由GB/T 19077.1更改为GB/T 19077,相应的规范性引用文件也进行了更改。
D)增加磁性异物含量的测定按GB/T 24533-2009中附录K的规定进行,相应的规范性引用文件也增加。
E)将水分从化学成分中独立出来。
(11)检验规则A)组批:将每批应由同一生产周期产出同一牌号的镍、钴、锰氢氧化物组成更改为每批应由同一混合料组成。
B)取样与制样方法说明删除,更改为产品的取样按照GB/T 5314 的规定进行,每批取样总量不得少于1kg。
相应的规范性引用文件中也增加该国标。
C)检验结果判定中增加:①8170规定的修约值比较法判定检验结果是否符合标准。
相应的规范性引用文件中也增加该国标。
②(12)包装A)包装桶改为产品采用内衬铝塑袋或PE袋的纸桶或塑料桶包装,热塑密封。
B)增加吨袋包装的相关内容:产品采用内衬铝塑袋或PE袋的编织袋包装,热塑密封,每袋净重500~1000kg。
(13)外包装标签中增加出厂日期、本标准编号、防潮字样或标志等。
(14)运输和贮存中增加产品自生产之日起,保质期为1年。
三、标准的修订原则、标准的主要内容与论据3.1修订原则(1)确立国家标准镍钴锰氢氧化物修订应遵守的基本原则:a.标准编写格式按GB/T 1.1-2009标准要求编写;b.具有可操作性和先进性;c.国家标准《镍钴锰氢氧化物》的修订充分考虑了国内生产商的工艺技术状况、国家资源开发的政策要求、关注顾客的需求意见和建议;d.有利于促进公平竞争和保护供需双方的合法权益。
(2)对国内生产商、用户进行调研取样、收集资料。
(3)确定产品主要技术内容。
(4)确定建立仲裁分析方法。