化学分析

合集下载

化学分析常用概念及公式

化学分析常用概念及公式

一、分类1、分析化学按照分析原理的不同:化学分析方法(依赖化学反应进行分析的分析方法)重量分析法、滴定分析法仪器分析方法(除化学分析法外的一些分析方法,以物质的物理和物理化学性质为基础,测定时往往需要借助于一些比较特殊的仪器设备,习惯上把这类分析方法称为仪器分析法)光学分析法、电化学分析法、色谱分析法2、按照分析对象不同,分析化学可分为无机分析和有机分析;按照分析时所取的试样量的不同或被测组分在试样中的含量的不同,分析化学又可分为常量分析、半微量分析、微量分析、痕量分析等。

二、分析过程及分析结果的表示1 分析的一般过程1.取样(sampling)合理的取样是分析结果是否准确可靠的基础。

2.预处理(pertreatmnt)预处理包括试样的分解和预分离富集。

定量分析一般采用湿法分析,即将试样分解后制成溶液,然后进行测定。

正确的分解方法应使试样分解完全;分解过程中待测组分不应损失;应尽量避免引入干扰组分。

分解试样的方法很多,主要有溶解法和熔融法,操作时可根据试样的性质和分析的要求选用适当的分解方法。

在定量分析中,当试样组成比较简单时,将它处理成溶液后,便可直接进行测定。

但在实际工作中,常遇到组成比较复杂的试样,测定时各组分之间往往发生相互干扰,这不仅影响分析结果的准确性,有时甚至无法进行测定。

因此,必须选择适当的方法来消除其干扰。

控制分析条件或采用适当的掩蔽剂是消除干扰简单而有效的方法,但并非任何干扰都能消除。

在许多情况下,需要选用适当的分离方法使待测组分与其他干扰组分分离。

有时,试样中待测组分含量极微,而测定方法的灵敏度不够,这时必须先将待测组分进行富集,然后进行测定。

在分析化学中,常用的分离(separation)和富集(preconcentration)方法有沉淀分离、液-液萃取分离、离子交换分离、色谱分离、蒸馏和挥发分离、超滤、浮选吸附等。

如何选用分离方法?有一定的经验性和灵活性。

要在工作经验积累和宽厚的知识基础上,综合考虑以下因素:①测定的目的是定性还是定量?是成分分析还是结构分析?是全分析还是主成分分析?②样品的数量、来源难易及某些组分的大致含量。

化学实验中的分析

化学实验中的分析

化学实验中的分析化学实验是化学学习中的重要环节,其中的分析实验更是一种常见的实验方法。

分析实验通过对物质的成分、性质及浓度等进行分析和测试,以获取相关信息并做出判断。

本文将探讨化学实验中的分析方法和应用。

一、定性分析定性分析是通过化学反应或物质性质的变化来确定物质的种类或成分。

常用的定性分析方法包括简单离子反应、酸碱中和反应、气体生成反应等。

1. 简单离子反应通过与已知物质进行反应,观察生成物的颜色、沉淀等性质变化,来判断原物质的存在。

例如,利用铁离子与硫化钠反应生成的黑色沉淀来判断铁离子的存在。

2. 酸碱中和反应通过酸碱中和反应可以定性分析出待测溶液中的酸、碱含量。

常用的酸碱指示剂如酚酞、溴酚蓝等可以通过颜色的变化来判断溶液的酸碱性。

3. 气体生成反应某些物质在反应时会生成气体,通过观察气泡的产生情况和气味等可以推测原物质的存在。

例如,利用氢氧化钠与盐酸反应生成气泡来判断盐酸的存在。

二、定量分析定量分析是确定物质的数量或浓度。

常见的定量分析方法包括容量分析、滴定分析、光度法等。

1. 容量分析容量分析通过制备已知浓度的试剂与待测物质反应,测定反应终点来确定待测物质的浓度。

常见的容量分析方法有酸碱滴定法、氧化还原滴定法等。

2. 滴定分析滴定分析是一种基于等值点的定量分析方法,常用于确定溶液中酸、碱、氧化剂或还原剂的浓度。

滴定分析需要准确控制滴定试剂的滴入量,并利用滴定指示剂的颜色变化来确定滴定终点。

3. 光度法光度法利用溶液对特定波长的光的吸收来确定溶液中某种物质的浓度。

通过测量溶液吸收光强度的变化,利用比尔定律可以计算出物质的浓度。

光度法在水质监测及药物分析等领域有广泛应用。

三、质谱分析质谱分析是一种利用质谱仪对物质进行分析的方法。

质谱仪通过将待测物质进行电离、分子碎裂,然后根据碎片的质量和电荷比对其进行检测和测量,从而得到物质的结构和组成信息。

质谱分析在有机化学、药物研发、环境监测等领域有重要应用。

常见化学分析方法

常见化学分析方法

常见化学分析方法化学分析是指对某种物质或物质组成进行测定或确定的过程,是化学实验中最基本的一种实验技术,也是化学研究的重要工具。

其目的是为了研究实验材料的化学组成和性质。

化学分析能够发现有关物质的新现象和规律,从而发现新物质,确定其组成元素及它们之间的化学结构以及各种成分、属性及其变化规律。

化学分析主要有以下几种:一、光谱法。

光谱分析是利用各种物质在光谱上表现出的特征来分析其组成,以及与相关分子、原子间的相互作用,表现出的特征现象。

通常有原子光谱法、分子光谱法和原子分子光谱法。

根据测定的物质的不同,又可大致分为紫外光谱、可见光谱、红外光谱、四极杆光谱和核磁共振光谱等。

二、色谱法。

色谱分析是利用物质的不同溶解性和吸收性,将其在某特定介质上的分离,使某特定物质在某特定介质上,按一定条件线性渐变地分离出来,然后检测在介质中各个物质的分布情况,以确定物质的组成。

一般有层析色谱、极化色谱和电色谱等。

三、电感耦合等离子体质谱仪(ICP-MS)分析法。

它是近几十年来发展起来的一种分析方法,它利用等离子体释放的能量,将分析物质分解为离子,通过电离,将其离子的质量分解出来。

该方法能够分析微量元素,因此在分析比较混乱的样品时,是一种很有效的方法。

四、气相色谱法(GC)。

气相色谱是以气体为介质,根据物质在气体相中的溶解度把物质分离的一种分析方法,也可以根据物质的热解溶解度来进行分离。

一般分为简单的柱层析和复杂的高效液相色谱(HPLC)。

五、元素分析。

这是一种利用物质中原子或分子的元素组成结构,分析其中所含的元素的量的方法,其中包括原子吸收光谱法和X射线衍射法等。

以上是笔者介绍的一些常见的化学分析方法,但并不局限于此,今天研究者仍在研究新的分析方法,希望能够更好地探究物质存在的规律,探索物质的组成和性质,为社会发展做出贡献。

常见化学分析方法

常见化学分析方法

常见化学分析方法化学分析是一个广泛的话题,它对于物质的定量或定性测试,物质组成等有着巨大的意义。

它的研究内容涉及到许多不同的领域,例如物理、化学、生物学等,它能够帮助我们搞清楚材料的性质和特征,具有重要的科学价值和应用价值。

前,在化学分析领域发展迅速,并且新技术也不断涌现出来,不过,常见的分析方法仍然主导着市场。

那么,当前的常见化学分析方法有哪些呢?1.原子吸收分光光度法:原子吸收分光光度法是一种常用的化学分析方法,它是利用原子吸收光谱分析和测定被分析物质的浓度。

简而言之,这一方法可以检测物质的元素成分,如氮、氧、硫、磷和其他重要的元素组成等,是对物质组成的一种精确分析。

2.电感耦合等离子体质谱法:电感耦合等离子体质谱法(ICP-MS)是检测和测定物质中金属元素及其他元素浓度的一种分析方法,它是通过电感耦合等离子体的质谱谱线分析的。

该方法的关键原理是:在内部离子束被注入,被质谱仪电场剪切,穿越等离子体筒,形成气相质谱束,最终分解,形成原子质量谱图,通过计算可以获得物质中各种元素的含量。

3.X射线衍射法:X射线衍射法也叫X射线结构分析法或X射线晶体学分析法,是利用X射线对晶体结构进行分析的方法,可以用于纯化物质成分的分析,以及结构和成分的研究。

该方法的原理是,当X射线照射到晶体中时,其中的原子会钟形暗作用,而晶体中的元素会分别发出不同的X射线,通过测量X射线的衍射角度及强度,就可以分析出X射线的晶体结构,从而推断出晶体的成分和组成。

4.紫外光谱法:紫外光谱法是一种以紫外光作为分析介质,利用化合物本身发出的紫外光来进行分析的方法。

紫外光谱法用于分析有机化合物、无机化合物和物质的各种组成,而且要求样品大量及稳定。

5.气相色谱法:气相色谱法是一种利用气相流体分离和分析物质的分析方法。

该方法是在高压下,将分析物质溶解到一定的溶剂中,然后将其喷雾溶解为精细的微小颗粒,再通过色谱仪的介质将物质加热,产生气流,使物质随气流在色谱管中进行分离,最终根据检测物质组成的变化,采用计算机或其他技术手段,得到分析结果。

化学分析常用概念及公式

化学分析常用概念及公式

化学分析常用概念及公式化学分析是一门通过对样品的化学组成、结构和性质进行测定和分析的科学方法。

在化学分析中,常用的概念和公式包括质量分数、摩尔分数、体积分数、质量浓度、摩尔浓度、溶液的稀释、氧化还原反应计算和酸碱滴定等。

下面将对这些概念和公式进行详细介绍。

1. 质量分数(Mass Fraction):质量分数表示溶液中溶质的质量与溶液总质量之间的比值。

计算公式为质量分数 = (溶质的质量)/(溶液的总质量)× 100%。

2. 摩尔分数(Mole Fraction):摩尔分数表示溶液中各组分摩尔数与总摩尔数之间的比例关系。

计算公式为摩尔分数 = (组分的摩尔数)/(总摩尔数)。

3. 体积分数(Volume Fraction):体积分数表示溶液中溶质的体积与溶液总体积之间的比值。

计算公式为体积分数 = (溶质的体积)/(溶液的总体积)× 100%。

4. 质量浓度(Mass Concentration):质量浓度表示单位体积溶液中溶质的质量。

计算公式为质量浓度 = (溶质的质量)/(溶液的体积)。

5. 摩尔浓度(Molar Concentration):摩尔浓度表示单位体积溶液中溶质的摩尔数。

计算公式为摩尔浓度 = (溶质的摩尔数)/(溶液的体积)。

6.溶液的稀释:当知道初始溶液的浓度和体积时,计算经过稀释后的溶液浓度和体积的关系。

公式为初始溶液的浓度×初始溶液的体积=稀释后溶液的浓度×稀释后溶液的体积。

7.氧化还原反应计算:在氧化还原反应中,可以根据氧化还原物质的摩尔与电子的当量关系进行计算。

公式为m1v1/n1=m2v2/n2,其中m1、v1分别是氧化物质的摩尔和电子数,m2、v2分别是还原物质的摩尔和电子数。

8.酸碱滴定:根据酸碱滴定的等当关系,可以计算待测物质的浓度。

公式为M1V1=M2V2,其中M1、V1是滴定溶液的浓度和体积,M2、V2是待测物质的浓度和体积。

化学分析与定性定量分析方法

化学分析与定性定量分析方法

化学分析与定性定量分析方法化学分析是指通过各种化学方法和手段,对物质进行分析和鉴定的过程。

化学分析方法广泛应用于科学研究、工业生产以及环境保护等领域。

它可以通过定性和定量两种方式来分析物质的组成、性质以及含量等信息。

本文将介绍化学分析的基本概念、定性分析方法和定量分析方法。

一、化学分析的基本概念化学分析是一种实验室技术,旨在确定或鉴定物质的各种组成、结构以及特征等信息。

它是化学研究的重要手段之一,可以帮助科学家探索物质的性质和行为。

化学分析主要分为定性分析和定量分析两种方法。

二、定性分析方法1. 颜色反应法:该方法是一种非常直观的定性分析方法,通过观察物质在加入特定试剂后所产生的颜色变化来确定物质的成分。

例如,溴水滴入无机盐溶液中,如果产生橙红色物质,则可以确认该无机盐中含有溴离子。

2. 沉淀法:沉淀法是基于生成沉淀物的定性分析方法。

根据不同物质在特定试剂中产生的沉淀形态、颜色等特征来确定物质的成分。

例如,向无机盐溶液中加入氢氧化钠,如果观察到白色沉淀物生成,则可以确认该溶液中含有钙离子。

3. 质谱法:质谱法是一种高分辨率的定性分析方法,通过测定物质的质量-电荷比来确定其分子结构和组成。

质谱法常用于有机化学分析,可以帮助确定化合物的结构和分子式等信息。

三、定量分析方法1. 滴定法:滴定法是一种常用的定量分析方法,利用化学反应的滴定过程来测定待测物质的含量。

根据滴定液的浓度、滴定体系的pH值以及化学反应的反应条件等参数,可以准确测定物质的浓度。

2. 分光光度法:分光光度法是使用可见光或紫外光对物质进行吸收或发射光谱的定量分析方法。

通过测定物质对特定波长的光的吸收程度或发射光的强度,可以间接测定物质的含量。

3. 电化学分析法:电化学分析法是利用电化学原理进行定量分析的方法。

例如,电位滴定法可以通过测定待测物质在特定电极上的电位变化来确定其浓度。

四、发展趋势和应用前景随着科学技术的不断发展,化学分析方法也在不断创新和改进。

《化学分析》课件

实验结果报告
整理数据,撰写报告,提供结论和建 议。
05
化学分析在环境监测中的应用
水质监测
总结词
化学分析在水质监测中发挥着重要作用,通过对水样中的各 种化学成分进行定性和定量分析,可以了解水质状况并评估 其对环境和生态的影响。
详细描述
水质监测是环境监测的重要组成部分,通过化学分析可以测 定水体中的溶解氧、酸碱度、重金属离子、有机污染物等关 键参数,从而判断水质是否符合相关标准,预防水体污染和 生态破坏。
、准确地完成分析任务。
分析仪器的智能化与自动化
总结词
智能化和自动化是化学分析仪器的重要发展方向,能够提高分析的效率和精度。
详细描述
随着计算机技术和人工智能的不断发展,化学分析仪器正朝着智能化和自动化的方向发 展。智能化仪器能够自动完成样品处理、数据分析等环节,减少人为误差和操作时间。 自动化仪器则可以通过机器人技术实现样品自动进样、自动清洗等功能,大大提高了分
《化学分析》PPT课件
目录
• 化学分析简介 • 化学分析的基本原理 • 化学分析实验技术 • 化学分析中的误差与质量控制 • 化学分析在环境监测中的应用 • 化学分析的未来发展与挑战
01
化学分析简介
化学分析的定义
总结词
化学分析是一种通过化学实验手段对物质进行定性和定量分析的方法。
详细描述
化学分析是对物质进行研究的科学方法,它通过化学实验手段,利用物质的化 学性质和反应,对物质进行定性和定量分析,以确定物质的组成、结构和性质 等。
04
化学分析中的误差与质量控制
误差的来源与控制
误差的来源
设备误差、操作误差、环境误差 等。
误差的控制
定期校准设备、规范操作流程、 控制实验环境等。

化学分析的方法

化学分析的方法化学分析是一种重要的科学方法,通过使用不同的技术手段,可以对物质的组成、结构和性质进行研究和分析。

在化学研究、工业生产和环境监测等领域,化学分析的方法被广泛应用。

本文将介绍几种常见的化学分析方法。

一、定性分析定性分析是确定样品中有哪些成分的方法。

定性分析的关键在于根据不同的现象或变化来判断物质的成分。

以下为几种常见的定性分析方法:1.观察法:通过观察样品的颜色、形状、溶解性等特征来判断其成分。

2.沉淀法:根据添加特定试剂后是否生成沉淀来确定样品中的物质。

3.气体演化法:观察样品在加热或与酸碱等反应时是否产生气体,来推测物质的性质。

二、定量分析定量分析是确定样品中各组分含量的方法。

常见的定量分析方法有以下几种:1.滴定法:利用一种化学试剂与待测样品反应,在滴定过程中测定试剂用量,从而计算出待测物质的含量。

2.比色法:通过样品溶液的吸光度与标准溶液浓度之间的关系,来确定待测物质的含量。

3.电化学分析法:利用电化学方法来测定待测物质的含量,如电解法、电位滴定法等。

三、仪器分析随着科学技术的发展,各种先进的仪器和设备被应用于化学分析中。

以下是几种常见的仪器分析方法:1.质谱法:通过将样品中的成分离子化,并通过质谱仪对离子进行检测,从而确定样品中的组成。

2.核磁共振法:通过核磁共振现象的测定,来分析并确定样品中的成分。

3.红外光谱法:利用物质对红外光的吸收特性来分析样品中的成分和结构。

四、表面分析表面分析是研究材料表面成分和结构的方法,常用于材料科学和薄膜技术等领域。

以下为两种常见的表面分析方法:1.扫描电子显微镜(SEM):通过静电镜或磁透镜将电子聚焦到样品表面,形成显微图像,从而观察样品的表面形貌和成分。

2.原子力显微镜(AFM):通过探针对样品表面进行扫描,测量表面的高度差异,以获得样品结构和形貌的信息。

总结:化学分析的方法众多,常见的有定性分析、定量分析、仪器分析和表面分析等。

这些方法在各个领域中被广泛应用,为我们提供了解物质性质和结构的重要手段。

化学分析方法

化学分析方法
化学分析是利用化学原理和方法对物质进行定性和定量分析的过程。

本文将介绍几种常用的化学分析方法。

一、滴定法
滴定法是一种常用的定量分析方法,它以标准溶液与待测溶液发生化学反应为基础,通过滴定仪器逐滴加入标准溶液,直至反应达到终点,从而确定待测溶液中所含物质的浓度。

二、色谱法
色谱法是一种分离和定量分析方法,它利用样品在固体或液体的固定相上的吸附、分配或化学反应的性质,将混合物中的组分逐个分离,再通过检测器进行定量分析。

三、原子吸收光谱法
原子吸收光谱法是一种常用的定量分析方法,它利用原子对特定波长的光的吸收特性,测定物质中某种特定元素的浓度。

通过测量被吸收的光的强度,可以计算出样品中所含元素的浓度。

四、荧光光谱法
荧光光谱法是一种常用的分析方法,它利用物质在受到光的激发后发射特定波长的荧光进行定量分析。

荧光光谱法广泛应用于生物分析、环境监测和药物研究等领域。

五、电化学分析法
电化学分析法是一种将电化学原理应用于化学分析的方法,它包括电位法、电流法和电导法等。

电化学分析法可用于测定溶
液中的离子浓度、氧化还原反应的速率和反应机理等。

总之,化学分析方法包括滴定法、色谱法、原子吸收光谱法、荧光光谱法和电化学分析法等。

这些方法在定性和定量分析中发挥着重要作用,为我们认识物质的组成和性质提供了有力的手段。

化学分析方法介绍

化学分析方法介绍化学分析是一种重要的实验室技术,通过对物质进行定性和定量分析,揭示其化学组成和性质。

本文将介绍几种常见的化学分析方法,包括火焰原子吸收光谱法、红外光谱法和质谱法。

1. 火焰原子吸收光谱法火焰原子吸收光谱法是一种常用的元素分析方法。

它基于原子在火焰中的吸收特性,通过测量特定波长的吸收光强来确定样品中目标元素的浓度。

该方法适用于金属元素的分析,如钠、钾、钙等。

实验时,样品溶解后喷入火焰,然后使用光谱仪测量样品吸收光线的强度。

根据吸收强度与浓度之间的关系,可以计算出目标元素在样品中的浓度。

2. 红外光谱法红外光谱法基于分子对特定波长的红外光的吸收特性。

它可以用于分析有机物和无机物中的化学键和官能团。

红外光谱法通过测量样品对红外辐射的吸收来分析样品的结构和组成。

实验时,样品经过制备后放入红外光谱仪中,仪器会通过发射红外光进行扫描。

根据样品对红外光的吸收情况,可以得到样品的红外光谱图,并进一步分析它们之间的峰值和波数,从而得出样品的化学组成和结构。

3. 质谱法质谱法是一种用于分析样品中化合物的结构和组成的分析技术。

它基于样品中化合物分子的离子化,然后通过质谱仪测量这些离子在不同质量比例下的相对丰度,从而确定样品的组成和分子结构。

质谱法广泛应用于有机化学、生物化学和环境科学等领域。

实验时,样品被气相或液相化学方法离子化,然后离子被导入质谱仪进行分析。

质谱仪会根据离子量对离子进行筛选和分析,最终得出样品的质谱图。

综上所述,火焰原子吸收光谱法、红外光谱法和质谱法是三种常见的化学分析方法。

它们分别适用于元素分析、有机物与无机物的结构分析和化合物组成分析。

这些分析方法在科学研究、医药行业和环境监测等领域起着重要作用,为我们提供了解物质性质和组成的重要手段。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、分类1、分析化学按照分析原理的不同:化学分析方法(依赖化学反应进行分析的分析方法)重量分析法、滴定分析法仪器分析方法(除化学分析法外的一些分析方法,以物质的物理和物理化学性质为基础,测定时往往需要借助于一些比较特殊的仪器设备,习惯上把这类分析方法称为仪器分析法)光学分析法、电化学分析法、色谱分析法2、按照分析对象不同,分析化学可分为无机分析和有机分析;按照分析时所取的试样量的不同或被测组分在试样中的含量的不同,分析化学又可分为常量分析、半微量分析、微量分析、痕量分析等。

二、分析过程及分析结果的表示1 分析的一般过程1.取样(sampling)合理的取样是分析结果是否准确可靠的基础。

2.预处理(pertreatmnt)预处理包括试样的分解和预分离富集。

定量分析一般采用湿法分析,即将试样分解后制成溶液,然后进行测定。

正确的分解方法应使试样分解完全;分解过程中待测组分不应损失;应尽量避免引入干扰组分。

分解试样的方法很多,主要有溶解法和熔融法,操作时可根据试样的性质和分析的要求选用适当的分解方法。

在定量分析中,当试样组成比较简单时,将它处理成溶液后,便可直接进行测定。

但在实际工作中,常遇到组成比较复杂的试样,测定时各组分之间往往发生相互干扰,这不仅影响分析结果的准确性,有时甚至无法进行测定。

因此,必须选择适当的方法来消除其干扰。

控制分析条件或采用适当的掩蔽剂是消除干扰简单而有效的方法,但并非任何干扰都能消除。

在许多情况下,需要选用适当的分离方法使待测组分与其他干扰组分分离。

有时,试样中待测组分含量极微,而测定方法的灵敏度不够,这时必须先将待测组分进行富集,然后进行测定。

在分析化学中,常用的分离(separation)和富集(preconcentration)方法有沉淀分离、液-液萃取分离、离子交换分离、色谱分离、蒸馏和挥发分离、超滤、浮选吸附等。

如何选用分离方法?有一定的经验性和灵活性。

要在工作经验积累和宽厚的知识基础上,综合考虑以下因素:①测定的目的是定性还是定量?是成分分析还是结构分析?是全分析还是主成分分析?②样品的数量、来源难易及某些组分的大致含量。

大批样品中痕量成分的分离,首先要进行萃取、吸附等富集方法,再行分离。

③分离后得到产品的数量、纯化是否满足测定的需要。

④分离对象和性质,是亲水还是疏水?是离子型还是非离子型?挥发性和热稳定性如何?对亲水的和极性大的离子型化合物,一般可选择萃取分离、离子交换、电泳以及薄层色谱等。

对于复杂体系,色谱方法当是首选。

对挥发性、热稳定性好的,可选择蒸馏或气相色谱法。

沉淀分离法(precipitation)是利用沉淀反应进行分离的方法。

在试液中加入适当的沉淀剂,使待测组分沉淀出来,或将干扰组分沉淀除去,从而达到分离的目的。

沉淀分离法的主要依据是溶度积原理。

液-液萃取(liquid-liquid extraction)分离法又称溶剂萃取(solvent extraction)分离法,是应用广泛的分离方法之一。

这种方法是利用与水不相溶的有机溶剂,与试液一起振荡,放置分层,这时,一些组分进入有机相,另一些组分仍留在水相中,从而达到分离富集的目的。

3.测定(determination)4.分析结果的处理与表达2 分析结果表示通常情况下,为方便比对质量分数常以百分数的形式表示。

对于液体试样,除了可以用质量分数表示以外,还可以用“体积分数”、“质量体积分数”、“质量浓度”等形式表示,也可以直接用物质的量的浓度(简称浓度)c B表示。

对于气体试样中的常量和微量组分,通常以“质量分数”和“质量浓度”表示。

三、滴定分析法概论1 滴定分析基本概念滴定分析法(titration analysis)也称容量分析法(volumetric analysis),是最常用的定量化学分析法。

在滴定分析时,一般先将试样配成溶液并置于一定的容器中(通常为锥形瓶),用一种已知准确浓度的溶液即标准溶液(也称滴定剂)通过滴定管逐滴地滴加到被测物质的溶液中,直至所加溶液物质的量与被测物质的量按化学计量关系恰好反应完全,然后根据所加标准溶液的浓度和所消耗的体积,计算出被测物质含量。

通过滴定管滴加滴定剂的操作过程称为滴定(titration)。

所加标准溶液与被测物质恰好完全反应的这一点称为化学计量点(stoichiometric point, sp)。

在滴定分析中,化学计量点时往往没有什么明显的外部特征,因此,一般是通过加入指示剂,利用指示剂(indicator)的颜色变化来判断,指示剂颜色突变时停止滴定,因此,这一点称为滴定终点(end point of the titration, ep)。

滴定终点与化学计量点不一定恰好一致,往往存在一定的差别,这一差别称为滴定误差(titration error)或称终点误差。

2 溶液浓度表示方法最常见的有物质的量浓度、质量摩尔浓度、摩尔分数和质量分数等。

1. B 的物质的量浓度B 的物质的量浓度是指B 物质的量除以混合物(溶液)的体积。

在不可能混淆时,可简称为浓度。

用符号c B 表示,即Vn c B B = (2-1) 式中,n B 为物质B 的物质的量,SI 单位为摩尔(mol )。

V 为混合物的体积,SI 单位为m 3。

体积常用的非SI 单位为升(L ),故浓度的常用单位为mol·L -1。

根据SI 规定,使用物质的量的单位“mol”时,要指明物质的基本单元。

由于而物质的量浓度的单位是由基本单位mol 推导得到的,所以在使用物质的量浓度时也必须注明物质的基本单元。

基本单元是指分子、原子、离子、电子等粒子的特定组合,常根据需要进行确定。

氧化还原反应常根据电子转移数确定基本单元。

如KMnO 4在酸性介质下还原为Mn 2+,采用1/5KMnO 4作为基本单元计算更为方便。

同一KMnO 4溶液以KMnO 4为基本单元时浓度为0.10mol·L -1时,其以1/5KMnO 4为基本单元时浓度为0.50mol·L -1。

而c (KMnO 4)=0.10mol·L -1 与c (1/5KMnO 4)=0.10mol·L -1的两个溶液,它们浓度数值虽然相同,但是,它们所表示1L 溶液中所含KMnO 4的质量是不同的,分别为15.8克与3.16克。

2. 溶质B 的质量摩尔浓度溶液中溶质B 的物质的量除以溶剂的质量,称为溶质B 的质量摩尔浓度。

其数学表达式为:AB B m n b = (2-2) 式中,b B 为溶质B 的质量摩尔浓度,其SI 单位为mol·kg -1n B 是溶质B 的物质的量,SI 单位为mol ,m A 是溶剂的质量,SI 单位为kg 。

由于物质的质量不受温度的影响,所以溶液的质量摩尔浓度是一个与温度无关的物理量。

3. B 的物质的量分数B 的物质的量与混合物的物质的量之比,称为B 的物质的量分数,又称摩尔分数(mole fraction),其数学表达式为:nn B B =χ (2-3) 式中, n B 为B 的物质的量,SI 单位为mol ;n 为混合物总的物质的量,SI 单位为mol ;所以Bχ的SI 单位为1①。

B 的物质的量分数的量纲为“1”。

对于一个两组分的溶液系统来说,溶质的物质的量分数与溶剂的量分数分别为:B A B B n n n +=χ ; BA A A n n n +=χ 所以 1B A =+χχ若将这个关系推广到任何一个多组分系统中,则1=∑i χ4. B 的质量分数组分B 的质量分数w B 1定义是:组分B 的质量与混合物的质量之比,其数学表达为:w B =S Bm m (2-4)式中,m B 为B 的质量, m S 为化合物的质量。

w B 为B 的质量分数,质量分数的量纲为“1”。

5.几种溶液浓度之间的关系a.物质的量浓度与质量分数如果已知溶液的密度ρ,同时已知溶液中溶质B 的质量分数B ω,则该溶液的浓度可表示为:BB B B B B B B B B /M m M m m M m V M m V n c ρωρρ===== (2-5) 式中,M B 为溶质B 的摩尔质量。

b .物质的量浓度与质量摩尔浓度如果已知溶液的密度ρ和溶液的质量m ,则有mn m n V n c ρρB B B B === 若该系统是—个两组分系统,且B 组分的含量较少,则m 近似等于溶剂的质量m A ,上式可近似成为:ρρρB AB B B b m n m n c === (2-6) 若该溶液是稀的水溶液,则: B B b c ≈ (2-7)6.标准溶液浓度的表示方法∙ 物质的量的浓度 这是最常用的表示方法,单位mol·L -1,这也是我国法定的浓度单①以前称为无量纲,现在把它们的SI 单位规定为“1”。

1 根据法定计量单位的有关规定,质量分数的单位为1,也可以百分数给出,但不再用百分含量一词。

位。

∙ 滴定度 在生产单位的例行分析中,为了简化计算,通常用滴定度表示标准溶液的浓度。

滴定度(T )是指每毫升标准溶液相当于被测物质的质量,常用T 待测物/滴定剂表示,单位为g ⋅mL -1。

如T Fe/722O Cr K =0.005000 g ⋅mL -1,表示1 mL K 2Cr 2O 7标准溶液相当于0.005000 g Fe ,也就是说1 mL K 2Cr 2O 7标准溶液恰好能与0.005000 g Fe 2+反应:6Fe 2+ + Cr2O 72- + 14H + 6Fe 3+ + 2Cr 3+ + 7H 2O如果在滴定中消耗该K 2Cr 2O 7标准溶液21.50 mL ,则被滴定溶液中含铁的质量为: m (Fe )=0.005000⨯21.50=0.1075 g滴定度与物质的量浓度之间可以换算。

基于K 2Cr 2O 7与Fe 2+的反应,上例中物质的量浓度为:1301492.0610722-⋅=⨯⨯=L mol M T c Fe O Cr K 滴定度的优点是,只要将滴定时所消耗的标准溶液的体积乘以滴定度,就可以直接得到被测物质的质量。

这在生产单位的例行分析中很方便。

2.4.3 滴定分析法分类滴定分析是以化学反应为基础的,根据滴定反应的类型不同,滴定分析法一般可分为下列四种:1.酸碱滴定法 以酸碱反应为基础的滴定分析法,称为酸碱滴定法,也称中和滴定法。

2.配位滴定法 以配位反应为基础的滴定分析法称为配位滴定法。

如用EDTA 作为滴定剂,与金属离子的配位反应可表示为:M n++Y 4-=MY n-43.沉淀滴定法 以沉淀反应为基础的滴定分析法称为沉淀滴定法。

如银量法,其反应可表示为:Ag ++X -=AgX ↓ (X :Cl -、Br -、I -、CN -、SCN -等)4.氧化还原滴定法 以氧化还原反应为基础的滴定分析发法称为氧化还原滴定法。

相关文档
最新文档