河北省秦皇岛市抚宁区第一中学2019-2020学年高二上学期期末数学试题(wd无答案)
河北省2019-2020学年高二上学期期末数学试题

绝密★启用前 河北省2019-2020学年高二上学期期末数学试题 试卷副标题 注意事项: 1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上 第I 卷(选择题) 请点击修改第I 卷的文字说明 一、单选题 1.命题“2x ∀>,240x -≥”的否定是( ) A .2x ∀≤,240x -< B .2x ∀>,240x -< C .02x ∃≤,0240x -< D .02x ∃>,0240x -< 2.双曲线22143x y -=的渐近线方程是( ) A .34y x =? B .43y x =± C .2y x =± D .3y x =± 3.()()13i i --在复平面内对应的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 4.已知椭圆22:11321x y C m m +=--的焦点在x 轴上,且焦距为则m =( )A .2B .3C .4D .5 5.将红、黑、蓝、白5张纸牌(其中白纸牌有2张)随机分发给甲、乙、丙、丁4个人,每人至少分得1张,则下列两个事件为互斥事件的是( ) A .事件“甲分得1张白牌”与事件“乙分得1张红牌” B .事件“甲分得1张红牌”与事件“乙分得1张蓝牌” C .事件“甲分得1张白牌”与事件“乙分得2张白牌”……○…………装…※※请※※不※※要※……○…………装…6.若抛物线28x y =上的点P 到焦点的距离是5,则点P 到x 轴的距离是( ) A .1 B .2 C .3 D .4 7.记一个三位数的各位数字的和为M ,则从M 不超过5的三位奇数中任取一个,M 为偶数的概率为( ) A .513 B .512 C .413 D .13 8.已知直线l :20x y -+=与双曲线C :22221x y a b -=(0a >,0b >)交于A ,B 两点,点()1,4P 是弦AB 的中点,则双曲线C 的离心率为( )A .43 B .2 C D 9.已知点P 在椭圆C :2214x y +=上,直线l :0x y m -+=,则“m =P 到直线l ”的( )A .必要不充分条件B .充分不必要条件C .充要条件D .既不充分也不必要条件10.某商场对职工开展了安全知识竞赛的活动,将竞赛成绩按照[)80, 90,[90,100),… ,[140,150]分成7组,得到下面频率分布直方图.根据频率分布直方图.下列说法正确的是( )①根据频率分布直方图估计该商场的职工的安全知识竞赛的成绩的众数估计值为110; ②根据频率分布直方图估计该商场的职工的安全知识竞赛的成绩的中位数约为113.3; ③若该商场有1000名职工,考试成绩在110分以下的被解雇,则解雇的职工有400人; ④若该商场有1000名职工,商场规定只有安全知识竞赛超过140分(包括140分)的人员才能成为安全科成员,则安全科成员有50人.A .①③B .②③C .②④D .①④11.现有下列四条曲线:…………装…学校:___________姓名:…………装…①曲线22x y e =-;②曲线2sin y x =;③曲线13y x x =+;④曲线32y x x =--. 直线2y x =与其相切的共有( ) A .1条 B .2条 C .3条 D .4条 12.已知双曲线C :22145x y -=的左、右焦点分别为1F ,2F ,点P 在双曲线C 上.若12PF F ∆为钝角三角形,则12PF PF +的取值范围是( ) A .()9,+∞ B .(()9,+∞U C .(()9,+∞U D .( 第II 卷(非选择题) 请点击修改第II 卷的文字说明 二、填空题 13.抛物线22y px =(0p >)的焦点坐标为1(,0)8,则p =__________. 14.如图,在四棱柱1111ABCD A B C D -中,底面ABCD 是平行四边形,点E 为BD 的中点,若11A E xAA yAB zAD =++u u u v u u u v u u u v u u u v ,则x y z ++=______. 15.已知函数()h x ,()g x (()0g x ≠)分别是定义在R 上的奇函数和偶函数,当0x <时,()()()()0h x g x h x g x ''-<,且()10h -=.若()()0h a g a <,则a 的取值范围为__________. 16.已知在三棱锥P ABC -中,1PA AB BC ===,AC PB ==PC =,则异面直线PC 与AB 所成角的余弦值是__________. 三、解答题………订…………○※线※※内※※答※※题※※………订…………○17.已知:p函数()()xf x a m=-在R上单调递减,:q关于x的方程22210x ax a-+-=的两根都大于1.(1)当5m=时,p是真命题,求a的取值范围;(2)若p为真命题是q为真命题的充分不必要条件,求m的取值范围.18.为了适应新高考改革,某校组织了一次新高考质量测评(总分100分),在成绩统计分析中,抽取12名学生的成绩以茎叶图形式表示如图,学校规定测试成绩低于87分的为“未达标”,分数不低于87分的为“达标”.(1)求这组数据的众数和平均数;(2)在这12名学生中从测试成绩介于80~90之间的学生中任选2人,求至少有1人“达标”的概率.19.某地区实施“光盘行动”以后,某自助啤酒吧也制定了自己的行动计划,进店的每一位客人需预交50元,啤酒根据需要自己用量杯量取,结账时,根据每桌剩余酒量,按一定倍率收费(如下表),每桌剩余酒量不足1升的,按0升计算(如剩余1.7升,记为剩余1升).例如:结账时,某桌剩余酒量恰好为2升,则该桌的每位客人还应付50 1. 25010⨯-=元.统计表明饮酒量与人数有很强的线性相关关系,下面是随机采集的5组数据(),x y(其中x表示饮酒人数,y(升)表示饮酒量):()1,0.8,()2,1.5,()3,2. 5,(4,3.2),()5,4. 5.(1)求由这5组数据得到的y关于x的回归直线方程;(2)小王约了5位朋友坐在一桌饮酒,小王及朋友用量杯共量取了8升啤酒,这时,酒吧……订…………________考号:_________……订…………服务生对小王说,根据他的经验,小王和朋友量取的啤酒可能喝不完,可以考虑再邀请1位或2位朋友一起来饮酒,会更划算.试向小王是否该接受服务生的建议? 参考数据:回归直线的方程是y bx a =+$$$,其中1122211()()()n n i i i i i i n n i i i i x y nx y x x y y b x nx x x ====---==--∑∑∑∑$,a y bx =-$$. 20.如图,在三棱柱111ABC A B C -中,底面ABC 是边长为4的等边三角形,11A AB A AC ∠=∠,D 为BC 的中点. (1)证明:BC ⊥平面1A AD . (2)若1A AD ∆是等边三角形,求二面角1D AA C --的正弦值. 21.已知函数()2ln x f x x =. (1)求()f x 的单调区间; (2)若函数()()g x f x a =-在123e ,e ⎡⎤⎢⎥⎣⎦上只有一个零点,求a 的取值范围. 22.已知椭圆2222:1x y W a b +=(0a b >>)的左、右焦点分别是1F ,2F ,点P 为W 的上顶点,点Q 在W 上,227PF F Q =u u u u v u u u u v ,且1167PF PQ ⋅=-u u u v u u u v . (1)求W 的方程; (2)已知过原点的直线1l 与椭圆W 交于C ,D 两点,垂直于1l 的直线2l 过1F 且与椭圆W 交于M ,N 两点,若26CD MN =,求2F CD S △.参考答案1.D【解析】【分析】任意改存在,x 改为0x ,否定结论即可.【详解】全称命题的否定是特称命题,且将结论否定,故其否定为:02x ∃>,0240x -<故选:D.【点睛】本题考查全称命题的否定.2.C【解析】【分析】根据双曲线的渐近线方程,即可求解.【详解】由题意可得2a =,b =x 轴上,故其渐近线方程是y x =. 故选:C.【点睛】本题考查双曲线的简单几何性质,属于基础题.3.D【解析】【分析】先对复数()()13i i --进行乘法运算,整理至z a bi =+的形式,即可得出复数在复平面内对应的象限.【详解】解:因为()()1324i i i --=-,所以()()13i i --在复平面内对应的点位于第四象限.故选:D【点睛】本题考查复数的四则运算及复平面,考查运算求解能力.4.C【解析】【分析】由方程表示焦点在x 轴上的椭圆,可得2a 和2b ,再根据焦距计算出具体值,进行取舍.【详解】因为是焦点在x 轴上的椭圆,故22132,1a m b m =-=-,又2c =故()13212m m ---=,解得4m =.故选:C.【点睛】本题考查椭圆方程,涉及22,a b 的识别,属基础题.5.C【解析】对于A ,事件“甲分得1张白牌”与事件“乙分得1张红牌”可以同时发生,不是互斥事件;对于,B 事件“甲分得1张红牌”与事件“乙分得1张蓝牌”可能同时发生,不是互斥事件;对于D ,事件“甲分得2张白牌”与事件“乙分得1张黑牌”能同时发生,不是互斥事件;但C 中的两个事件不可能发生,是互斥事件,故选C.6.C【解析】【分析】由抛物线定义,可知点到准线的距离,再进行适当变换即可求得.由题意可得4p =,因为点P 到准线2y =-的距离等于到焦点的距离5,故则点P 到x 轴的距离是523-=.故选:C .【点睛】本题考查抛物线的定义,属抛物线基础题.7.A【解析】【分析】根据题意写出满足条件的三位数,即可求得答案.【详解】Q 三位数的各位数字的和不超过5∴满足条件的三位数有:101,111,121,131,201,211,221,301,311,103,113,203,401,共13个,其中M 为偶数的三位数有101,121,211,301,103,故所求概率为513. 故选:A.【点睛】本题主要考查了古典概型问题的概率,解题关键是掌握概率求法,考查了分析能力和计算能力,属于基础题.8.D【解析】【分析】根据点()1,4P 是弦AB 的中点,AB 两点横坐标之和等于2,联立直线和双曲线的方程,求出b a的值,即可求得答案.设()()1122,,,A x y B x yQ 点()1,4P 是弦AB 的中点根据中点坐标公式可得:12122,8x x y y +=⎧⎨+=⎩ Q A ,B 两点在直线l :20x y -+=根据两点斜率公式可得:12121y y x x -=- Q ,A B 两点在双曲线C 上 ∴22112222222211x y a b x y a b ⎧-=⎪⎪⎨⎪-=⎪⎩ ∴222212122210x x y y a b ---=,即()()()()2221212122221212128142y y y y y y b a x x x x x x +--===⨯=-+- 解得:2b a=∴c e a ===故选:D.【点睛】此题考查根据直线与双曲线的交点坐标关系求解离心率,解题关键是掌握双曲线直线交点问题的解法,考查了分析能力和计算能力,属于中档题.9.B【解析】【分析】“点P 到直线l”解得:m =±.【详解】点P 在椭圆C :2214x y +=上,直线l :0x y m -+=,考虑“点P 到直线l ” 设()[)2cos ,sin ,0,2P θθθπ∈,点P 到直线l 的距离d ϕϕ===点P 到直线l ()m θϕ++的最小值()m θϕ++符号恒正或恒负, ()m m m θϕ⎡++∈+⎣当0m +<时,m =-,当0m >时,m =综上所述:m =±所以“m =P 到直线l ”的充分不必要条件. 故选:B 【点睛】此题考查充分条件与必要条件的辨析,关键在于根据题意准确求出参数的取值范围. 10.B 【解析】 【分析】根据频率分布直方图,逐项判断,即可求得答案. 【详解】对于①,由频率分布直方图知众数估计值为:1101201152+=,故①错误; 对于②,设为x ,则0.0050100.0150100.020010(110)0.0300.5x ⨯+⨯+⨯+-⨯=解得113.3x ≈,故②正确;对于③,考试成绩在110分以下的有1000(0.0050.0150.02)10400⨯++⨯=人,故③正确; 对于④,安全知识考试超过140分(包括140分)的人员有10000.00251025⨯⨯=人,则安全科成员有25人,故④错误. 故选:B.本题考查频率分布直方图的性质等基础知识,考查运算求解能力,属于基础题. 11.C 【解析】 【分析】先求出直线2y x =的斜率为2k =,然后对曲线函数求导,代入2k =求切点,如果切点在2y x =,即直线与曲线相切,即可求得直线2y x =与四条曲线相切的共有几条.【详解】解:直线2y x =的斜率为2k =,①若()22xf x e =-,则由()2e 2xf x '==,得0x =,点()0,0在直线2y x =上,则直线2y x =与曲线22xy e =-相切;②若()2sin f x x =,则由()2cos 2f x x '==,得()2x k k π=∈Z ,()20f k π=,则直线2y x =与曲线2sin y x =相切;③若()13f x x x =+,则由()2132f x x'=-=, 得1x =±,()1,4,()1,4--都不在直线2y x =上, 所以直线2y x =与曲线13y x x=+不相切; ④若()32f x x x =--,则由()2312f x x '=-=, 得1x =±,其中()1,2--在直线2y x =上,所以直线2y x =与曲线32y x x =--相切.故直线2y x =与其相切的共有3条. 故选:C 【点睛】本题考查导数的几何意义,考查逻辑推理与数学运算的核心素养. 12.C【分析】根据双曲线的几何性质124PF PF -=,结合余弦定理分别讨论当12,,P F F 为钝角时12PF PF +的取值范围,根据双曲线的对称性,可以只考虑点P 在双曲线C 上第一象限部分即可. 【详解】由题:双曲线C :22145x y -=的左、右焦点分别为1F ,2F ,点P 在双曲线C 上,必有124PF PF -=,若12PF F ∆为钝角三角形,根据双曲线的对称性不妨考虑点P 在双曲线第一象限部分:当12F PF ∠为钝角时,在12PF F ∆中,设21,1,4PF P x x F x >==+,()1245PF F P x x ⋅=+>有1222122PF F F P F +<,()122121222PF F PF F F P F P -+⋅<,即1216236PF PF +⋅<,1210PF F P ⋅<, 所以12510P PF F <⋅<(12PF PF +==;当212PF F π∠=时,2PF 所在直线方程3x =,所以53,2P ⎛⎫⎪⎝⎭,21513,22PF PF ==,129PF PF =+,根据图象可得要使212PF F π>∠,点P 向右上方移动,此时129PF PF >+,综上所述:12PF PF +的取值范围是(()9,+∞U . 故选:C 【点睛】此题考查双曲线中焦点三角形相关计算,关键在于根据几何意义结合特殊情况分类讨论,体现数形结合思想. 13.14【解析】 【分析】根据抛物线定义,即可求得答案. 【详解】Q 22y px =(0p >),焦点坐标为1(,0)8∴128p =,解得:14p =. 故答案为:14. 【点睛】本题主要考查了根据抛物线焦点求抛物线方程,解题关键是掌握抛物线定义,考查了分析能力和计算能力,属于基础题. 14.0 【解析】 【分析】根据向量的运算法则11A A A AB BE E =++u u u r u u u r u u u r u u u r依次代换成11A xAA yAB zADE =++u u u r u u u r u u u r u u u r 形式,即可得出未知数的值. 【详解】在四棱柱1111ABCD A B C D -中,底面ABCD 是平行四边形,点E 为BD 的中点,所以11A A A AB BE E =++u u u r u u u r u u u r u u u r 112A A AB BD =++u u u r u u u r u u u r()112A A AB BA AD =+++u u u r u u u r u u u r u u u r11122AA AB AD =-++u u u r u u u r u u u r由题:11A xAA yAB zADE =++u u u r u u u r u u u r u u u r 所以111,,22x y z =-== 即0x y z ++=. 故答案为:0 【点睛】此题考查空间向量的基本运算,根据线性运算关系依次表示出所求向量即可. 15.()()1,01,-⋃+∞ 【解析】 【分析】 令()()()h x F x g x =,根据当0x <时, ()()()()0h x g x h x g x ''-<可得()0F x '<,因此函数()F x 在0x <时单调递减,又()F x 为奇函数,由于()10h -=,可得(1)(1)0F F -==,即可求得答案. 【详解】 ①令()()()h x F x g x =. Q 当0x <时, ()()()()0h x g x h x g x ''-<,∴()()()()2()()0h x g x h F x g x x g x '=''-<∴函数()F x 在0x <时单调递减;()10h -=Q ,(1)(1)0F F ∴-==∴()0F a <的解集为()1,0-②Q 函数()h x ,()g x (()0g x ≠)分别是定义在R 上的奇函数和偶函数∴()()()()()()h x h x F x F x g x g x --==-=--∴()F x 是R 上的奇函数,∴当0x >时,()0F a <的解集为(1,)+∞综上所述,不等式()()0h a g a <的解集为:()()1,01,-⋃+∞. 故答案为:()()1,01,-⋃+∞. 【点睛】本题主要考查了根据函数单调性和奇偶性解不等式,解题关键是掌握根据题意构造函数的方法和由导数判断函数单调性的解题方法,考查了分析能力和计算能力,属于中档题.16【解析】 【分析】由勾股定理推导出,,AB BC PA AB PA AC ⊥⊥⊥,从而PA ⊥平面ABC .以A 为原点,在平面ABC 中,过A 作AC 的垂线为x 轴,AC 为y 轴,AP 为z 轴,建立空间直角坐标系,利用向量法求出异面直线PC 与AB 所成角的余弦值,即可求得答案. 【详解】Q在三棱锥P ABC -中,1,PA AB BC ===AC PB ==PC =.222222222,,AB BC AC PA AB PB PA AC PC ∴+=+=+=,,AB BC PA AB PA AC ∴⊥⊥⊥AB AC A ⋂=Q ∴PA ⊥平面ABC以A 为原点,在平面ABC 中,过A 作AC 的垂线为x 轴,AC 为y 轴,AP 为z 轴, 建立空间直角坐标系如图:则(0,0,0),,22A B ⎛⎫⎪ ⎪⎝⎭,(0,0,1)C P .∴,1)22AB PC ⎛⎫==-⎪ ⎪⎝⎭u u u r u u u r设异面直线PC 与AB 所成角为θ,∴cos ||||AB PC AB PC θ⋅=⨯u u u r u u u ru u ur u u u r3==∴异面直线PC 与AB故答案为【点睛】本题主要考查了由向量法求异面直线夹角的余弦值,解题关键是掌握向量法求异面直线夹角的解法和向量数量积公式,考查了分析能力和计算能力,属于中档题. 17.(1)(5,6);(2)2m ≥. 【解析】 【分析】(1)根据指数函数的单调性,要使函数()()5xf x a =-在R 上单调递减,只需051a <-<,即可求出命题p 为真时参数范围;(2)先求出命题p 为真时a 的取值范围,求出方程22210x ax a -+-=的两根分别为1a -和1a +,由命题q 为真,得出2a >,根据命题,p q 的关系,即可求解. 【详解】(1)因为5m =,所以()()5xf x a =-因为p 是真命题,所以051a <-<,所以56a <<. 故a 的取值范围是(5,6);(2)若p 是真命题,则01a m <-<,解得1m a m <<+. 关于x 的方程22210x ax a -+-=的两根分别为1a -和1a +. 若q 是真命题,则11a ->,解得2a >.因为p 为真命题是q 为真命题的充分不必要条件,所以2m ≥. 【点睛】本题考查命题为真以及命题间充分不必要条件,求参数的取值范围,属于基础题. 18.(1)86,80.5;(2)35. 【解析】 【分析】(1)找出茎叶图中出现次数最多的数为众数,根据平均数公式,即可求得平均数; (2)在被抽取的学生中,有2个“达标”学生,4个“未达标”学生,按达标和不达标两类编号,列出从6人中任取2人的所有情况,统计出满足条件的基本事件的个数,根据古典概型的概率公式,即可求解. 【详解】(1)这组数据的众数为86; 平均数为5164667885863872929880.512+++++⨯+⨯++=.(2)在被抽取的学生中,有2个“达标”学生,4个“未达标”学生, 将“达标”学生编号为A ,B ,“未达标”学生编号为a ,b ,c ,d , 则从6人中任取2人,有以下情况:(),A a ,(),A b ,(),A c ,(),A d ,(),B a ,(),B b ,(),B c ,(),B d , (),A B ,(),a b ,(),a c ,(),a d ,(),b c ,(),b d ,(),c d .共15种.其中符合条件的为(),A a ,(),A b ,(),A c ,(),A d ,(),B a ,(),B b ,(),B c ,(),B d ,(),A B ,共9种.故至少有1人“达标”的概率93155P ==. 【点睛】本题考查茎叶图数据的处理,考查古典概型的概率,属于基础题. 19.(1)$0.910.23y x =-;(2)接受 【解析】 【分析】(1)计算出x ,y ,结合所给数据,计算出b$,进而求得$a ,即可求得答案; (2)小王和5位朋友共6人大约需要饮酒0.9160.23 5.23⨯-=升,若不再邀请人,则剩余酒量8 5. 23 2.77-=升,酒吧记为剩余2升,预计需要支付506120%360⨯⨯=元,结合已知,即可求得答案. 【详解】 (1)1234535x ++++==,0.8+1.5+2.5+3.2+4.5 2.55y ==,51522146.637.50.91554555i ii i i x y x yx xb==-===---∑∑$,$ 2.50.930.23ay bx =-=-⨯=-$, ∴回归直线方程为$0.910.23y x =-.(2)小王和5位朋友共6人大约需要饮酒0.9160.23 5.23⨯-=升, 若不再邀请人,则剩余酒量8 5. 23 2.77-=升,酒吧记为剩余2升, 预计需要支付506120%360⨯⨯=元;若再邀请1人,大约需饮酒0.9170.23 6.14⨯-=升,剩余酒量8 6.14 1.86-=升, 酒吧记为剩余1升,预计支付5071350⨯⨯=元;若再邀请2人,大约需饮酒0.9180.237. 05⨯-=升,剩余酒量87. 050.95-=升, 酒吧记为剩余0升,预计支付50890%360⨯⨯=元.∴应该接受建议,且再邀请1位朋友更划算.【点睛】本题主要考查了求回归直线方程,解题关键是掌握求回归直线方程的方法,考查了分析能力和计算能力,属于基础题.20.(1)证明见解析,(2)13【解析】 【分析】(1)根据等腰三角形三线合一证明1BC A D ⊥和BC AD ⊥即可得证; (2)建立空间直角坐标系,利用向量求解二面角. 【详解】(1)证明:连接1A B .因为11A AB A AC ∠=∠,AB AC =,11AA AA =,所以11A AB A AC ∆≅∆,所以11A B A C =. 因为D 为BC 的中点,所以1BC A D ⊥.因为D 为BC 的中点,且AB AC =,所以BC AD ⊥. 因为1A D AD D =I ,所以BC ⊥平面1A AD .(2)解:取AD 的中点O ,连接1A O ,因为1A AD ∆是等边三角形,所以1A O AD ⊥. 由(1)可知BC ⊥平面1A AD ,则BC ,AD ,1A O 两两垂直,故以O 为原点,OA 所在直线为x 轴,过O 作BC 的平行线为y 轴,1OA 所在直线为z 轴建立空间直角坐标系O xyz -.因为底面ABC 是边长为4的等边三角形,所以AD =因为1A AD ∆是等边三角形,所以13A O =.所以)A ,()10,0,3A,()B,()2,0C -,则()1AA =u u u r,()2,0AC =--u u u r . 设平面1AA C 的法向量(),,n x y z =r ,则13020n AA z n AC y ⎧⋅=+=⎪⎨⋅=--=⎪⎩u u u v v u u u v v ,令1z =,得)3,1n =-r . 易知平面1A AD 的一个法向量为()0,4,0BC =-u u u r , 记二面角1D AA C --为θ,则cos n BC n BCθ⋅===r u u u r r u u u r故sin θ==【点睛】此题考查线面垂直的证明和建立空间直角坐标系利用向量求解二面角的大小.21.(1)()f x 的单调递减区间为()0,1,(,单调递增区间为)+∞(2){}243322e e e ⎛⎤⋅ ⎥⎝⎦U 【解析】【分析】(1)先求函数()f x 的定义域,然后对函数求导,令导等于0,得出x =判断导在区间内的正负,即可得出函数的单调性. (2)令()0g x =,得()f x a =.根据函数在123e ,e ⎡⎤⎢⎥⎣⎦上只有一个零点,得31233f e e ⎛⎫= ⎪⎝⎭,()422e f e =,且24332e e >,又2f e =,即可得a 的取值范围为.【详解】解:(1)()f x 的定义域为()()0,11,+∞U ,()()22ln 1ln x x f x x-'=,令()0f x ¢=,则x =在()(0,1U 上,()0f x ¢<;在)+∞上,()0f x ¢>.所以()f x 的单调递减区间为()0,1,(,单调递增区间为)+∞. (2)由()0g x =,得()f x a =. 因为31233f e e ⎛⎫= ⎪⎝⎭,()422e f e =,且24332e e >,又2f e =,所以a 的取值范围为{}243322e e e ⎛⎤⋅ ⎥⎝⎦U . 【点睛】本题考查利用导数求函数的单调性,利用导数和函数零点求参数,属于中档题.22.(1)2214x y +=;(2. 【解析】【分析】(1)设12(,0),(,0)F c F c -,由已知227PF F Q =u u u u r u u u u r ,求得Q 的坐标为8,77c b ⎛⎫- ⎪⎝⎭,代入椭圆方程,得2234c a =;再由1167PF PQ ⋅=-u u u r u u u r ,求得222c b -=,结合222a b c =+,求出,a b 值,即可求得结论;(2)先讨论直线2l 斜率不存在和斜率为0的情况,验证不满足条件,设直线2l 的方程为(()0y k x k =≠,与椭圆方程联立,消元,由韦达定理和相交弦长公式,求出||MN ;再将直线1l 方程1=-y x k 与椭圆联立,求出2CD ,由26CD MN =求出k 的值,进而求出||CD ,再求出点2F 到直线CD 的距离,即可求解.【详解】(1)设椭圆W 的焦距为2c ,∵227PF F Q =u u u u r u u u u r ,∴Q 的坐标为8,77c b ⎛⎫- ⎪⎝⎭.∵Q 在W 上, 将8,77Q c b ⎛⎫- ⎪⎝⎭代人22221x y a b+=,得2234c a =. 又∵1167PF PQ ⋅=-u u u r u u u r ,∴()8816,777,c b c b ⎛⎫⋅-=- ⎪⎝⎭--, ∴222c b -=.又∵222a b c =+,∴24a =,21b =,W 的方程为2214x y +=. (2)当直线2l 的斜率不存在时,||2CD =,||4MN =,不符合题意;当直线2l 的斜率为0时,||4CD =,||1MN =,也不符合题意.∴可设直线2l的方程为(()0y k x k =≠,联立(22,1,4y k x x y ⎧=⎪⎨⎪+=⎩得()2222411240k x x k +++-=,则212241x x k -+=+,212212441k x x k -=+.()2241||41k MN k +==+.由221,1,4y x k x y ⎧=-⋅⎪⎪⎨⎪+=⎪⎩得x y ⎧=⎪⎪⎨⎪=⎪⎩或x y ⎧=⎪⎪⎨⎪=⎪⎩∴()222161||4k CD k +=+. 又∵26||||MN CD =,∴()()2222241161444k k k k ++=++,∴22k =,∴||CD =∵2F 到直线CD 的距离1d ==,∴2112F CD S =⨯⨯=△. 【点睛】 本题考查椭圆的标准方程,考查直线与椭圆的位置关系,设直线方程时要注意特殊情况,要熟练掌握求相交弦长的方法,考查计算能力,属于较难题.。
抚宁区高中2019-2020学年高二上学期第二次月考试卷数学

抚宁区高中2019-2020学年高二上学期第二次月考试卷数学 班级__________ 姓名__________ 分数__________一、选择题1. 如图,在长方形ABCD 中,AB=,BC=1,E 为线段DC 上一动点,现将△AED 沿AE 折起,使点D 在面ABC 上的射影K 在直线AE 上,当E 从D 运动到C ,则K 所形成轨迹的长度为( )A .B .C .D .2. 双曲线:的渐近线方程和离心率分别是( )A .B .C .D .3. 定义运算:,,a a ba b b a b ≤⎧*=⎨>⎩.例如121*=,则函数()sin cos f x x x =*的值域为( )A .22⎡-⎢⎣⎦B .[]1,1-C .2⎤⎥⎣⎦D .1,2⎡-⎢⎣⎦ 4. 在平面直角坐标系中,若不等式组(为常数)表示的区域面积等于, 则的值为( )A .B .C .D .5. 已知向量=(2,1),=10,|+|=,则||=( )A .B .C .5D .256. 如图F 1、F 2是椭圆C 1:+y 2=1与双曲线C 2的公共焦点,A 、B 分别是C 1、C 2在第二、四象限的公共点,若四边形AF 1BF 2为矩形,则C 2的离心率是( )A .B .C .D .7. 已知f (x )是R 上的偶函数,且在(﹣∞,0)上是增函数,设,b=f (log 43),c=f (0.4﹣1.2)则a ,b ,c 的大小关系为( )A .a <c <bB .b <a <cC .c <a <bD .c <b <a8. 若圆柱、圆锥的底面直径和高都等于球的直径,则圆柱、圆锥、球的体积的比为( )A .1:2:3B .2:3:4C .3:2:4D .3:1:29. 某几何体的三视图如图所示,该几何体的体积是( )A .B .C .D .10.459和357的最大公约数( ) A .3 B .9C .17D .5111.为得到函数的图象,只需将函数y=sin2x 的图象( )A .向左平移个长度单位B .向右平移个长度单位C .向左平移个长度单位D .向右平移个长度单位12.我国古代名著《九章算术》用“更相减损术”求两个正整数的最大公约数是一个伟大的创举,这个伟大创举与我国古老的算法——“辗转相除法”实质一样,如图的程序框图源于“辗转相除法”.当输入a =6 102,b =2 016时,输出的a 为( )A.6B.9C.12D.18二、填空题13.经过A(﹣3,1),且平行于y轴的直线方程为.14.设p:f(x)=e x+lnx+2x2+mx+1在(0,+∞)上单调递增,q:m≥﹣5,则p是q的条件.15.复数z=(i虚数单位)在复平面上对应的点到原点的距离为.16.将一个半径为3和两个半径为1的球完全装入底面边长为6的正四棱柱容器中,则正四棱柱容器的高的最小值为.17.i是虚数单位,化简:=.18.设α为锐角,=(cosα,sinα),=(1,﹣1)且•=,则sin(α+)=.三、解答题19.已知m∈R,函数f(x)=(x2+mx+m)e x.(1)若函数f(x)没有零点,求实数m的取值范围;(2)若函数f(x)存在极大值,并记为g(m),求g(m)的表达式;(3)当m=0时,求证:f(x)≥x2+x3.20.甲、乙两人参加普法知识竞赛,共有5道不同的题目,其中选择题3道,判断题2道,甲、乙两人各抽一道(不重复).(1)甲抽到选择题,乙抽到判断题的概率是多少?(2)甲、乙二人中至少有一人抽到选择题的概率是多少?21.某滨海旅游公司今年年初用49万元购进一艘游艇,并立即投入使用,预计每年的收入为25万元,此外每年都要花费一定的维护费用,计划第一年维护费用4万元,从第二年起,每年的维修费用比上一年多2万元,设使用x年后游艇的盈利为y万元.(1)写出y与x之间的函数关系式;(2)此游艇使用多少年,可使年平均盈利额最大?22.已知椭圆C的中心在原点,焦点在x轴上,左右焦点分别为F1,F2,且|F1F2|=2,点(1,)在椭圆C上.(Ⅰ)求椭圆C的方程;(Ⅱ)过F1的直线l与椭圆C相交于A,B两点,且△AF2B的面积为,求以F2为圆心且与直线l相切的圆的方程.23.已知函数f(x)=sin2x•sinφ+cos2x•cosφ+sin(π﹣φ)(0<φ<π),其图象过点(,.)(Ⅰ)求函数f(x)在[0,π]上的单调递减区间;(Ⅱ)若x0∈(,π),sinx0=,求f(x0)的值.24.如图,在三棱柱ABC﹣A1B1C1中,侧棱垂直于底面,AB⊥BC,,E,F分别是A1C1,AB的中点.(I)求证:平面BCE⊥平面A1ABB1;(II)求证:EF∥平面B1BCC1;(III)求四棱锥B﹣A1ACC1的体积.抚宁区高中2019-2020学年高二上学期第二次月考试卷数学(参考答案)一、选择题1.【答案】D【解析】解:由题意,将△AED沿AE折起,使平面AED⊥平面ABC,在平面AED内过点D作DK⊥AE,K 为垂足,由翻折的特征知,连接D'K,则D'KA=90°,故K点的轨迹是以AD'为直径的圆上一弧,根据长方形知圆半径是,如图当E与C重合时,AK==,取O为AD′的中点,得到△OAK是正三角形.故∠K0A=,∴∠K0D'=,其所对的弧长为=,故选:D.2.【答案】D【解析】解:双曲线:的a=1,b=2,c==∴双曲线的渐近线方程为y=±x=±2x;离心率e==故选D3.【答案】D【解析】考点:1、分段函数的解析式;2、三角函数的最值及新定义问题.4.【答案】B【解析】【知识点】线性规划【试题解析】作可行域:由题知:所以故答案为:B5.【答案】C【解析】解:∵|+|=,||=∴(+)2=2+2+2=50,得||=5故选C.【点评】本题考查平面向量数量积运算和性质,根据所给的向量表示出要求模的向量,用求模长的公式写出关于变量的方程,解方程即可,解题过程中注意对于变量的应用.6.【答案】D【解析】解:设|AF1|=x,|AF2|=y,∵点A为椭圆C1:+y2=1上的点,∴2a=4,b=1,c=;∴|AF1|+|AF2|=2a=4,即x+y=4;①又四边形AF1BF2为矩形,∴+=,即x2+y2=(2c)2==12,②由①②得:,解得x=2﹣,y=2+,设双曲线C的实轴长为2m,焦距为2n,2则2m=|AF|﹣|AF1|=y﹣x=2,2n=2c=2,2∴双曲线C2的离心率e===.故选D.【点评】本题考查椭圆与双曲线的简单性质,求得|AF1|与|AF2|是关键,考查分析与运算能力,属于中档题.7.【答案】C【解析】解:由题意f(x)=f(|x|).∵log43<1,∴|log43|<1;2>|ln|=|ln3|>1;∵|0.4﹣1.2|=| 1.2|>2∴|0.4﹣1.2|>|ln|>|log43|.又∵f(x)在(﹣∞,0]上是增函数且为偶函数,∴f(x)在[0,+∞)上是减函数.∴c<a<b.故选C8.【答案】D【解析】解:设球的半径为R,则圆柱、圆锥的底面半径也为R,高为2R,则球的体积V球=圆柱的体积V圆柱=2πR3圆锥的体积V圆锥=故圆柱、圆锥、球的体积的比为2πR3::=3:1:2故选D【点评】本题考查的知识点是旋转体,球的体积,圆柱的体积和圆锥的体积,其中设出球的半径,并根据圆柱、圆锥的底面直径和高都等于球的直径,依次求出圆柱、圆锥和球的体积是解答本题的关键.9.【答案】A【解析】解:几何体如图所示,则V=,故选:A.【点评】本题考查的知识点是由三视图求体积,正确得出直观图是解答的关键.10.【答案】D【解析】解:∵459÷357=1…102,357÷102=3…51,102÷51=2,∴459和357的最大公约数是51,故选:D.【点评】本题考查辗转相除法,这是一个算法案例,还有一个求最大公约数的方法是更相减损法,这种题目出现的比较少,但是要掌握题目的解法.本题也可以验证得到结果.11.【答案】A【解析】解:∵,只需将函数y=sin2x的图象向左平移个单位得到函数的图象.故选A.【点评】本题主要考查诱导公式和三角函数的平移.属基础题.12.【答案】【解析】选D.法一:6 102=2 016×3+54,2 016=54×37+18,54=18×3,18是54和18的最大公约数,∴输出的a=18,选D.法二:a=6 102,b=2 016,r=54,a=2 016,b=54,r=18,a=54,b=18,r=0.∴输出a=18,故选D.二、填空题13.【答案】x=﹣3.【解析】解:经过A(﹣3,1),且平行于y轴的直线方程为:x=﹣3.故答案为:x=﹣3.14.【答案】必要不充分【解析】解:由题意得f′(x)=e x++4x+m,∵f(x)=e x+lnx+2x2+mx+1在(0,+∞)内单调递增,∴f′(x)≥0,即e x++4x+m≥0在定义域内恒成立,由于+4x≥4,当且仅当=4x,即x=时等号成立,故对任意的x∈(0,+∞),必有e x++4x>5∴m≥﹣e x﹣﹣4x不能得出m≥﹣5但当m≥﹣5时,必有e x++4x+m≥0成立,即f′(x)≥0在x∈(0,+∞)上成立∴p不是q的充分条件,p是q的必要条件,即p是q的必要不充分条件故答案为:必要不充分15.【答案】.【解析】解:复数z==﹣i(1+i)=1﹣i,复数z=(i虚数单位)在复平面上对应的点(1,﹣1)到原点的距离为:.故答案为:.【点评】本题考查复数的代数形式的混合运算,复数的几何意义,考查计算能力.16.【答案】4+.【解析】解:作出正四棱柱的对角面如图,∵底面边长为6,∴BC=,球O的半径为3,球O1的半径为1,则,在Rt△OMO中,OO1=4,,1∴=,∴正四棱柱容器的高的最小值为4+.故答案为:4+.【点评】本题考查球的体积和表面积,考查空间想象能力和思维能力,是中档题.17.【答案】﹣1+2i.【解析】解:=故答案为:﹣1+2i.18.【答案】:.【解析】解:∵•=cosα﹣sinα=,∴1﹣sin2α=,得sin2α=,∵α为锐角,cosα﹣sinα=⇒α∈(0,),从而cos2α取正值,∴cos2α==,∵α为锐角,sin(α+)>0,∴sin(α+)====.故答案为:.三、解答题19.【答案】【解析】解:(1)令f(x)=0,得(x2+mx+m)e x=0,所以x2+mx+m=0.因为函数f(x)没有零点,所以△=m2﹣4m<0,所以0<m<4.(2)f'(x)=(2x+m)e x+(x2+mx+m)e x=(x+2)(x+m)e x,令f'(x)=0,得x=﹣2,或x=﹣m,当m>2时,﹣m<﹣2.列出下表:x (﹣∞,﹣m)﹣m (﹣m,﹣2)﹣2 (﹣2,+∞)f'(x)+0 ﹣0 +f(x)↗me﹣m↘(4﹣m)e﹣2↗当x=﹣m时,f(x)取得极大值me﹣m.当m=2时,f'(x)=(x+2)2e x≥0,f(x)在R上为增函数,所以f(x)无极大值.当m<2时,﹣m>﹣2.列出下表:x (﹣∞,﹣2)﹣2 (﹣2,﹣m)﹣m (﹣m,+∞)f'(x)+0 ﹣0 +f(x)↗(4﹣m)e﹣2↘me﹣m↗当x=﹣2时,f(x)取得极大值(4﹣m)e﹣2,所以(3)当m=0时,f(x)=x2e x,令ϕ(x)=e x﹣1﹣x,则ϕ'(x)=e x﹣1,当x>0时,φ'(x)>0,φ(x)为增函数;当x<0时,φ'(x)<0,φ(x)为减函数,所以当x=0时,φ(x)取得最小值0.所以φ(x)≥φ(0)=0,e x﹣1﹣x≥0,所以e x≥1+x,因此x2e x≥x2+x3,即f(x)≥x2+x3.【点评】本题考查的知识点是利用导数研究函数的单调性,利用函数研究函数的极值,其中根据已知函数的解析式,求出函数的导函数是解答此类问题的关键.20.【答案】【解析】(本小题满分12分)解:(1)甲、乙两人从5道题中不重复各抽一道,共有5×4=20种抽法记“甲抽到选择题,乙抽到判断题”为事件A,则事件A含有的基本事件数为3×2=6…(4分)∴,∴甲抽到选择题,乙抽到判断题的概率是…(6分)(2)记“甲、乙二人中至少有一人抽到选择题”为事件B,其对立事件为“甲、乙二人都抽到判断题”,记为事件C,则事件C含有的基本事件数为2×1=2…(8分)∴,∴,…(11分)∴甲、乙二人中至少有一人抽到选择题的概率是.…(12分)【点评】本题考查概率的求法,是基础题,解题时要认真审题,注意等可能事件、对立事件概率计算公式的合理运用.21.【答案】【解析】解:(1)(x∈N*) (6)(2)盈利额为…当且仅当即x=7时,上式取到等号 (11)答:使用游艇平均7年的盈利额最大. (12)【点评】本题考查函数模型的构建,考查利用基本不等式求函数的最值,属于中档题.22.【答案】【解析】解:(Ⅰ)设椭圆的方程为,由题意可得:椭圆C两焦点坐标分别为F1(﹣1,0),F2(1,0).∴.∴a=2,又c=1,b2=4﹣1=3,故椭圆的方程为.(Ⅱ)当直线l⊥x轴,计算得到:,,不符合题意.当直线l与x轴不垂直时,设直线l的方程为:y=k(x+1),由,消去y得(3+4k2)x2+8k2x+4k2﹣12=0显然△>0成立,设A(x1,y1),B(x2,y2),则,又即,又圆F2的半径,所以,化简,得17k4+k2﹣18=0,即(k2﹣1)(17k2+18)=0,解得k=±1所以,,故圆F2的方程为:(x﹣1)2+y2=2.【点评】本题主要考查了椭圆的标准方程和椭圆与直线,椭圆与圆的关系.考查了学生综合运用所学知识,创造性地解决问题的能力.23.【答案】【解析】(本小题满分12分)φ解:(Ⅰ)f(x)=+﹣=+=)由f(x)图象过点()知:所以:φ=所以f(x)=令(k∈Z)即:所以:函数f(x)在[0,π]上的单调区间为:(Ⅱ)因为x0∈(π,2π),则:2x0∈(π,2π)则:=sin所以=)=【点评】本题考查的知识要点:三角函数关系式的恒等变换,正弦型函数单调区间的确定,三角函数的求值问题,属于基础题型.24.【答案】【解析】(I)证明:在三棱柱ABC﹣A1B1C1中,BB1⊥底面ABC,所以,BB1⊥BC.又因为AB⊥BC且AB∩BB1=B,所以,BC⊥平面A1ABB1.因为BC⊂平面BCE,所以,平面BCE⊥平面A1ABB1.(II)证明:取BC的中点D,连接C1D,FD.因为E,F分别是A1C1,AB的中点,所以,FD∥AC且.因为AC∥A1C1且AC=A1C1,所以,FD∥EC1且FD=EC1.所以,四边形FDC1E是平行四边形.所以,EF∥C1D.又因为C1D⊂平面B1BCC1,EF⊄平面B1BCC1,所以,EF∥平面B1BCC1.(III)解:因为,AB⊥BC所以,.过点B作BG⊥AC于点G,则.因为,在三棱柱ABC﹣A1B1C1中,AA1⊥底面ABC,AA1⊂平面A1ACC1所以,平面A1ACC1⊥底面ABC.所以,BG⊥平面A1ACC1.所以,四棱锥B﹣A1ACC1的体积.【点评】本题考查了线面平行,面面垂直的判定,线面垂直的性质,棱锥的体积计算,属于中档题.。
抚宁区高中2019-2020学年高二上学期第一次月考试卷数学

抚宁区高中2019-2020学年高二上学期第一次月考试卷数学 班级__________ 姓名__________ 分数__________一、选择题1. 已知函数[)[)1(1)sin 2,2,212()(1)sin 22,21,222nn x n x n n f x x n x n n ππ+⎧-+∈+⎪⎪=⎨⎪-++∈++⎪⎩(n N ∈),若数列{}m a 满足*()()m a f m m N =∈,数列{}m a 的前m 项和为m S ,则10596S S -=( ) A.909 B.910 C.911 D.912【命题意图】本题考查数列求和等基础知识,意在考查分类讨论的数学思想与运算求解能力. 2. 函数y=的图象大致为( )A. B. C. D.3. 设公差不为零的等差数列{}n a 的前n 项和为n S ,若4232()a a a =+,则74S a =( ) A .74 B .145C .7D .14 【命题意图】本题考查等差数列的通项公式及其前n 项和,意在考查运算求解能力.4. 已知两条直线ax+y ﹣2=0和3x+(a+2)y+1=0互相平行,则实数a 等于( ) A .1或﹣3 B .﹣1或3 C .1或3 D .﹣1或﹣35. 在平面直角坐标系中,直线y=x 与圆x 2+y 2﹣8x+4=0交于A 、B 两点,则线段AB 的长为( )A .4 B .4 C .2 D .26. 有下列四个命题:①“若a 2+b 2=0,则a ,b 全为0”的逆否命题; ②“全等三角形的面积相等”的否命题; ③“若“q ≤1”,则x 2+2x+q=0有实根”的逆否命题;④“矩形的对角线相等”的逆命题. 其中真命题为( )A .①②B .①③C .②③D .③④7. 定义:数列{a n }前n 项的乘积T n =a 1•a 2•…•a n ,数列a n =29﹣n ,则下面的等式中正确的是( )A.T1=T19B.T3=T17C.T5=T12D.T8=T118.i是虚数单位,计算i+i2+i3=()A.﹣1 B.1 C.﹣i D.i9.一个几何体的三视图如图所示,正视图与侧视图为全等的矩形,俯视图为正方形,则该几何体的体积为()(A)8(B )4(C)83(D)4310.如图,一个底面半径为R的圆柱被与其底面所成角是30°的平面所截,截面是一个椭圆,则该椭圆的离心率是()A.B.C.D.11.某企业为了监控产品质量,从产品流转均匀的生产线上每间隔10分钟抽取一个样本进行检测,这种抽样方法是()A.抽签法B.随机数表法C.系统抽样法D.分层抽样法12.已知||=3,||=1,与的夹角为,那么|﹣4|等于()A.2 B.C.D.13二、填空题13.命题p:∀x∈R,函数的否定为.14.等比数列{a n}的前n项和S n=k1+k2·2n(k1,k2为常数),且a2,a3,a4-2成等差数列,则a n=________.15.i是虚数单位,若复数(1﹣2i)(a+i)是纯虚数,则实数a的值为.16.过点(0,1)的直线与x2+y2=4相交于A、B两点,则|AB|的最小值为.17.如图是甲、乙两位射击运动员的5次训练成绩(单位:环)的茎叶图,则成绩较为稳定(方差较小)的运动员是.18.已知A(1,0),P,Q是单位圆上的两动点且满足,则+的最大值为.三、解答题19.已知函数f(x)=.(1)求f(x)的定义域;(2)判断并证明f(x)的奇偶性;(3)求证:f()=﹣f(x).20.已知,数列{a n}的首项(1)求数列{a n}的通项公式;(2)设,数列{b n }的前n 项和为S n ,求使S n >2012的最小正整数n .21.(本小题满分12分)一直线被两直线12:460,:3560l x y l x y ++=--=截得线段的中点是P 点, 当P 点为()0,0时, 求此直线方程.22.已知集合A={x|>1,x ∈R},B={x|x 2﹣2x ﹣m <0}.(Ⅰ)当m=3时,求;A ∩(∁R B );(Ⅱ)若A ∩B={x|﹣1<x <4},求实数m 的值.23.△ABC 中,角A ,B ,C 所对的边之长依次为a ,b ,c ,且cosA=,5(a 2+b 2﹣c 2)=3ab .(Ⅰ)求cos2C 和角B 的值; (Ⅱ)若a ﹣c=﹣1,求△ABC 的面积.24.已知函数f(x)=x|x﹣m|,x∈R.且f(4)=0(1)求实数m的值.(2)作出函数f(x)的图象,并根据图象写出f(x)的单调区间(3)若方程f(x)=k有三个实数解,求实数k的取值范围.抚宁区高中2019-2020学年高二上学期第一次月考试卷数学(参考答案)一、选择题1.【答案】A.【解析】2.【答案】D【解析】解:令y=f(x)=,∵f(﹣x)==﹣=﹣f(x),∴函数y=为奇函数,∴其图象关于原点对称,可排除A;又当x→0+,y→+∞,故可排除B;当x→+∞,y→0,故可排除C;而D均满足以上分析.故选D.3.【答案】C.【解析】根据等差数列的性质,4231112()32(2)a a a a d a d a d =+⇒+=+++,化简得1a d =-,∴1741767142732a dS d a a d d⋅+===+,故选C.4. 【答案】A【解析】解:两条直线ax+y ﹣2=0和3x+(a+2)y+1=0互相平行,所以=≠,解得 a=﹣3,或a=1. 故选:A .5. 【答案】A【解析】解:圆x 2+y 2﹣8x+4=0,即圆(x ﹣4)2+y 2=12,圆心(4,0)、半径等于2. 由于弦心距d==2,∴弦长为2=4,故选:A .【点评】本题主要考查求圆的标准方程的方法,直线和圆相交的性质,点到直线的距离公式,弦长公式的应用,属于基础题.6. 【答案】B【解析】解:①由于“若a 2+b 2=0,则a ,b 全为0”是真命题,因此其逆否命题是真命题;②“全等三角形的面积相等”的否命题为“不全等的三角形的面积不相等”,不正确;③若x 2+2x+q=0有实根,则△=4﹣4q ≥0,解得q ≤1,因此“若“q ≤1”,则x 2+2x+q=0有实根”的逆否命题是真命题;④“矩形的对角线相等”的逆命题为“对角线相等的四边形是矩形”,是假命题.综上可得:真命题为:①③.故选:B .【点评】本题考查了命题之间的关系及其真假判定方法,考查了推理能力,属于基础题.7. 【答案】C【解析】解:∵a n =29﹣n, ∴T n =a 1•a 2•…•a n =28+7+…+9﹣n=∴T 1=28,T 19=2﹣19,故A 不正确T3=221,T17=20,故B不正确T5=230,T12=230,故C正确T8=236,T11=233,故D不正确故选C8.【答案】A【解析】解:由复数性质知:i2=﹣1故i+i2+i3=i+(﹣1)+(﹣i)=﹣1故选A【点评】本题考查复数幂的运算,是基础题.9.【答案】A【解析】根据三视图可知,该几何体是长方体中挖去一个正四棱锥,故该几何体的体积等于1⨯⨯-⨯⨯⨯=2232238310.【答案】A【解析】解:因为底面半径为R的圆柱被与底面成30°的平面所截,其截口是一个椭圆,则这个椭圆的短半轴为:R,长半轴为:=,∵a2=b2+c2,∴c=,∴椭圆的离心率为:e==.故选:A.【点评】本题考查椭圆离心率的求法,注意椭圆的几何量关系的正确应用,考查计算能力.11.【答案】C【解析】解:由题意知,这个抽样是在传送带上每隔10分钟抽取一产品,是一个具有相同间隔的抽样,并且总体的个数比较多,∴是系统抽样法,故选:C.【点评】本题考查了系统抽样.抽样方法有简单随机抽样、系统抽样、分层抽样,抽样选用哪一种抽样形式,要根据题目所给的总体情况来决定,若总体个数较少,可采用抽签法,若总体个数较多且个体各部分差异不大,可采用系统抽样,若总体的个体差异较大,可采用分层抽样.属于基础题.12.【答案】C【解析】解:||=3,||=1,与的夹角为,可得=||||cos<,>=3×1×=,即有|﹣4|===.故选:C.【点评】本题考查向量的数量积的定义和性质,考查向量的平方即为模的平方,考查运算能力,属于基础题.二、填空题13.【答案】∃x0∈R,函数f(x0)=2cos2x0+sin2x0>3.【解析】解:全称命题的否定是特称命题,即为∃x∈R,函数f(x0)=2cos2x0+sin2x0>3,故答案为:∃x∈R,函数f(x0)=2cos2x0+sin2x0>3,14.【答案】【解析】当n=1时,a1=S1=k1+2k2,当n≥2时,a n=S n-S n-1=(k1+k2·2n)-(k1+k2·2n-1)=k2·2n-1,∴k1+2k2=k2·20,即k1+k2=0,①又a2,a3,a4-2成等差数列.∴2a3=a2+a4-2,即8k2=2k2+8k2-2.②由①②联立得k1=-1,k2=1,∴a n=2n-1.答案:2n-115.【答案】﹣2.【解析】解:由(1﹣2i)(a+i)=(a+2)+(1﹣2a)i为纯虚数,得,解得:a=﹣2.故答案为:﹣2.16.【答案】2【解析】解:∵x2+y2=4的圆心O(0,0),半径r=2,∴点(0,1)到圆心O(0,0)的距离d=1,∴点(0,1)在圆内.如图,|AB|最小时,弦心距最大为1,∴|AB|min=2=2.故答案为:2.17.【答案】甲.【解析】解:【解法一】甲的平均数是=(87+89+90+91+93)=90,方差是=[(87﹣90)2+(89﹣90)2+(90﹣90)2+(91﹣90)2+(93﹣90)2]=4;乙的平均数是=(78+88+89+96+99)=90,方差是=[(78﹣90)2+(88﹣90)2+(89﹣90)2+(96﹣90)2+(99﹣90)2]=53.2;∵<,∴成绩较为稳定的是甲.【解法二】根据茎叶图中的数据知,甲的5个数据分布在87~93之间,分布相对集中些,方差小些;乙的5个数据分布在78~99之间,分布相对分散些,方差大些;所以甲的成绩相对稳定些.故答案为:甲.【点评】本题考查了平均数与方差的计算与应用问题,是基础题目.18.【答案】.【解析】解:设=,则==,的方向任意.∴+==1××≤,因此最大值为.故答案为:.【点评】本题考查了数量积运算性质,考查了推理能力与计算能力,属于中档题.三、解答题19.【答案】【解析】解:(1)∵1+x2≥1恒成立,∴f(x)的定义域为(﹣∞,+∞);(2)∵f(﹣x)===f(x),∴f(x)为偶函数;(3)∵f(x)=.∴f()===﹣=﹣f(x).即f()=﹣f(x)成立.【点评】本题主要考查函数定义域以及函数奇偶性的判断,比较基础.20.【答案】【解析】解:(Ⅰ),,.数列是以1为首项,4为公差的等差数列.…,则数列{a n}的通项公式为.…(Ⅱ).…①.…②②﹣①并化简得.…易见S n为n的增函数,S n>2012,即(4n﹣7)•2n+1>1998.满足此式的最小正整数n=6.…【点评】本题考查数列与函数的综合运用,解题时要认真审题,仔细解答,注意错位相减求和法的合理运用.21.【答案】16y x =-. 【解析】试题分析:设所求直线与两直线12,l l 分别交于()()1122,,,A x y B x y ,根据因为()()1122,,,A x y B x y 分别在直线12,l l 上,列出方程组,求解11,x y 的值,即可求解直线的方程. 1考点:直线方程的求解. 22.【答案】【解析】解:(1)当m=3时,由x 2﹣2x ﹣3<0⇒﹣1<x <3,由>1⇒﹣1<x <5,∴A ∩B={x|﹣1<x <3}; (2)若A ∩B={x|﹣1<x <4}, ∵A=(﹣1,5),∴4是方程x 2﹣2x ﹣m=0的一个根,∴m=8,此时B=(﹣2,4),满足A ∩B=(﹣1,4). ∴m=8.23.【答案】【解析】解:(I )由∵cosA=,0<A <π,∴sinA==,∵5(a2+b2﹣c2)=3ab,∴cosC==,∵0<C<π,∴sinC==,∴cos2C=2cos2C﹣1=,∴cosB=﹣cos(A+C)=﹣cosAcosC+sinAsinC=﹣×+×=﹣∵0<B<π,∴B=.(II)∵=,∴a==c,∵a﹣c=﹣1,∴a=,c=1,∴S=acsinB=××1×=.【点评】本题主要考查了正弦定理和余弦定理的综合运用,两角和与差的正弦公式等知识.考查学生对基础知识的综合运用.24.【答案】【解析】解:(1)∵f(4)=0,∴4|4﹣m|=0∴m=4,(2)f(x)=x|x﹣4|=图象如图所示:由图象可知,函数在(﹣∞,2),(4,+∞)上单调递增,在(2,4)上单调递减.(3)方程f(x)=k的解的个数等价于函数y=f(x)与函数y=k的图象交点的个数,由图可知k∈(0,4).。
河北省秦皇岛市抚宁县高二数学上学期期末考试 理 新人教A版

一、选择题(每小题5分,共60分)1. 原点到直线052=-+y x 的距离为( ) A .1B .3C .2D .52.若命题“q p ∧”为假,且“p ⌝”为假,则( ) . A .p 或q 为假 B .q 假C .q 真D .不能判断q 的真假3.设b //a 1,2),-(6,2b ),1,0,2(μλλ=+=a ,则λ与μ的值分别( )A .5,2B .11,52C .―5,―2D .11,52--4.下列命题中,真命题是( ) A. 0,00≤∈∃x eR x B. 22,x R x x >∈∀C.a+b=0的充要条件是ab=-1 D.a>1,b>1是ab>1的充分条件 5. 设动点P 到直线3x =的距离与它到点(1,0)A 的距离之比为3,则点P 的轨迹方程是( )A.22132x y +=B.22132x y -=C.22(1)132x y ++=D.22123x y += 6.设函数()xf x xe =,则( )A. 1x =为()f x 的极大值点B.1x =为()f x 的极小值点C. 1x =-为()f x 的极大值点D. 1x =-为()f x 的极小值点7. 双曲线22221x y a b-=的渐近线与圆22(2)1x y +-=相切,则其离心率为( )A. 2B. 3C. 2D. 38. 已知平行六面体''''ABCD A BC D -中,AB=4,AD=3,'5AA =,090BAD ∠=,''060BAA DAA ∠=∠=,则'AC 等于( )A .85B .85C .52D .509. 点P 是抛物线x y 42=上一动点,则点P 到点(0,1)A -的距离 与到直线1-=x 的距离和的最小值是( ). 2 D. 210. 如图,点P 在正方形ABCD 所在平面外,PA ⊥平面ABCD , PA =AB ,则PB 与AC 所成的角是( )A .90°B .60°C .45°D .30°11.椭圆141622=+y x 上的点到直线022=-+y x 的最大距离是( ) A .22 B. 3 C.10 D.11 12. 已知点P 在曲线12xy e =上,点Q 在曲线ln(2)y x =上,则PQ 最小值为( ) A .1ln2-ln 2)- C.1ln2+ln 2)+ 二、填空题(每小题5分,共20分)13.若)1,3,2(-=,)3,1,2(-=,则以,为邻边的平行四边形面积为 . 14. 如图,四棱锥PABCD 的底面是正方形,PD ⊥底面ABCD , 且PD =2AB ,点E 为PB 的中点,则AE 与平面PDB 所成的 角的大小为 。
河北省秦皇岛市抚宁区第一中学2020-2021学年高二上学期期末数学试题

河北省秦皇岛市抚宁区第一中学2020-2021学年高二上学期期末数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题120y ++=的倾斜角为( ) A .30︒B .60︒C .120︒D .150︒2.已知命题:0,p x ∃>20x ≥,则p ⌝为( )A .00,x ∃>200x < B .0,x 20x < C .00,x ∃≤200x < D .0,x ∀≤20x < 3.抛物线22y x =的焦点到其准线的距离为( ) A .14B .12C .1D .24.已知m ,n 是两条不同直线,,αβ是两个不同平面,则下列命题正确的是( )A .若//,m n //,αβ//m α,则//n βB .若//,m n //,m α//n β,则//αβC .若,m n ⊥,αβ⊥m α⊥,则n β⊥D .若//,m n //,αβm α⊥,则n β⊥5.点(2,0)P 到双曲线22221x y a b-=(0,0)a b >>的一条渐近线的距离为1,则双曲线的离心率为( )A B .2C D 6.某几何体的三视图如图所示,则该几何体的体积为( )A .1B .13C .2D .237.已知圆221:()4C x a y -+=与圆222:()1C x y b +-=外切,则点(,)M a b 与圆22:9C x y +=的位置关系是( )A .在圆外B .在圆上C .在圆内D .不能确定8.已知长方体1111ABCD A B C D -中,AB AD ==,12AA =,则直线1AA 和1BC 所成角的大小为( ) A .15︒ B .30︒C .45︒D .60︒9.“k =是“直线(2)y k x =+与曲线y =”的( ) A .必要不充分条件 B .充分不必要条件 C .充要条件D .既不充分也不必要条件10.四棱锥P-ABCD 的五个顶点都在同一球面上,平面PAB ⊥平面ABCD ,PA PB ⊥,22PA PB ,四边形ABCD 为正方形,则该球的表面积为( )A .32πB .16πC .8πD .64π11.已知F 为椭圆22:162x y C +=的右焦点,过F 的直线l 交椭圆C 于A ,B 两点,M为AB 的中点,则M 到x 轴的最大距离为( )A .13B .12C D .212.正方体1111ABCD A B C D -中,P 是侧面11BCC B 内一动点,若P 到点C 的距离与P 到直线11A B 的距离之比为(0)λλ>,则点P 轨迹所在的曲线可以是( ) A .直线或圆 B .椭圆或双曲线 C .椭圆或抛物线 D .直线或抛物线二、填空题13.若直线(1)10a x y -++=和直线4(2)10x a y ++-=平行,则a =________.14.己知抛物线2:4C y x =的焦点为F ,抛物线上的两点A ,B 满足||2AF =,||6BF =,则弦AB 的中点到y 轴距离为________.15.如图,在多面体ABCDEF 中,平面ADF ⊥平面ABCD ,ADF 是正三角形,四边形ABCD 是正方形,AB EF ,22AB EF ==,则多面体ABCDEF 的体积为________.三、双空题16.设1,F 2F 为椭圆2222:1x y C a b+=(0)a b >>的两个焦点,点P 在C 上,e 为C 的离心率.若12PF F △是等腰直角三角形,则e =________;若12PF F △是等腰钝角三角形,则e 的取值范围是________.四、解答题17.已知语句p :方程2222420x y mx y m +--+-=表示圆心在第一象限的圆;语句q :方程221121x y m m +=+-表示双曲线.若p q ∧为真命题,求实数m 的取值范围.18.已知圆C 以点(2,0)为圆心,且被直线20x -+=截得的弦长为(1)求圆C 的标准方程;(2)若直线l 经过点(5,5)M ,且与圆C 相切,求直线l 的方程.19.如图,四棱锥P-ABCD 的底面ABCD 为正方形,PA PB PC PD ===,E ,F 分别是棱PC ,AB 的中点.(1)求证://EF 平面P AD ;(2)若4PA AB ==,求直线EF 与平面P AB 所成角的正弦值.20.已知抛物线2:2E x py =(0)p >,直线1y kx =+与E 交于A ,B 两点,且OA OB ⊥,其中O 为坐标原点. (1)求抛物线E 的方程;(2)设点(0,1)C -,直线CA ,CB 的斜率分别为1,k 2k ,试写出1,k 2k 的一个关系式;并加以证明.21.在三棱柱111ABC A B C -中,ABC 与1A BC 均为等边三角形,1A A =2AB =,O 为BC 的中点.(1)证明:平面1A BC ⊥平面ABC ;(2)在棱1B B 上确定一点M ,使得二面角1A AO M --的大小为23π.22.焦点在x 轴上的椭圆C :22221x y a b +=经过点(,椭圆C 的离心率为2.1F,2F 是椭圆的左、右焦点,P 为椭圆上任意点.(1)求椭圆的标准方程;(2)若点M 为2OF 的中点(O 为坐标原点),过M 且平行于OP 的直线l 交椭圆C 于A ,B 两点,是否存在实数λ,使得2||||||OP MA MB λ=⋅;若存在,请求出λ的值,若不存在,请说明理由.参考答案1.C 【解析】 【分析】由直线方程求出斜率,即可求出倾斜角. 【详解】由题可知k =tan α=120α=. 故选:C . 【点睛】本题主要考查由直线方程求直线的倾斜角,属于基础题. 2.B 【分析】根据特称命题的否定为全称命题,即可求出. 【详解】p ⌝:0,x 20x <.故选:B . 【点睛】本题主要考查写出特称命题的否定,属于基础题. 3.C 【分析】根据题意可知,即求p ,因为22p =,即可求出1p =. 【详解】根据p 的几何意义可知,抛物线的焦点到其准线的距离为p .因为22p =,所以 1p =. 故选:C . 【点睛】本题主要考查抛物线标准方程中p 的几何意义应用,属于基础题. 4.D 【分析】根据线面平行,面面平行,线面垂直的判定定理或者有关性质,即可判断各命题的真假.【详解】对A ,若//,m n //,αβ//m α,则//n β或n β⊂,错误; 对B ,若//,m n //,m α//n β,则//αβ或,αβ相交,错误; 对C ,若,m n ⊥,αβ⊥m α⊥,则n 不一定垂直于面β,错误; 对D ,因为//,αβm α⊥,所以m β⊥,而//,m n 所以n β⊥,正确. 故选:D . 【点睛】本题主要考查利用线面平行,面面平行,线面垂直的判定定理或者有关性质判断命题的真假,属于基础题. 5.A 【分析】根据双曲线方程求出一条渐近线方程,再根据点到直线的距离公式列出等式,即可求出,a b 的关系,然后再利用222c a b =+,即可求出. 【详解】因为双曲线22221x y a b-=(0,0)a b >>的一条渐近线方程为b y x a =,即0bx ay -=.1=,解得223a b ,又22224c a b b =+=,所以3c e a ===. 故选:A . 【点睛】本题主要考查双曲线的简单性质应用,属于基础题. 6.B 【分析】根据三视图还原几何体可知,该几何体为底面长为2,底面高为1,棱锥高为1的三棱锥,即可根据棱锥的体积公式求出. 【详解】由图可知,该几何体为底面长为2,底面高为1,棱锥高为1的三棱锥,所以11112113323V Sh ==⨯⨯⨯⨯=.故选:B . 【点睛】本题主要考查由三视图还原几何体,并求该几何体的体积,涉及棱锥的体积公式的应用,意在考查学生的直观想象能力,属于基础题. 7.B 【分析】根据两圆的位置关系可求出,a b 的关系,再根据点与圆的位置关系判断条件,即可得出. 【详解】213=+=,即229a b +=,显然可知,点(,)M a b 在圆22:9C x y +=上. 故选:B . 【点睛】本题主要考查圆与圆的位置关系应用,以及点与圆的位置关系判断,属于基础题. 8.D 【分析】根据异面直线所成角的定义可知,将直线1AA 平移至1BB ,所以11B BC ∠即为异面直线1AA 和1BC 所成角,解三角形,即可求出. 【详解】如图所示,将直线1AA 平移至1BB ,所以11B BC ∠即为异面直线1AA 和1BC 所成角.在直角11BB C 中,112A B A B ==,11BC AD ==11tan 2B BC ∠== 所以1160B BC ∠=. 故选:D .【点睛】本题主要考查异面直线所成角的求法,属于基础题. 9.C 【分析】先求出“直线(2)y k x =+与曲线y =”对应的k 的条件,再根据充分条件,必要条件的定义即可判断. 【详解】若“直线(2)y k x =+与曲线y =”,则由图可知,当直线(2)y k x =+与圆221x y +=相切时,只有一个交点,计算可得3k =.所以“3k =”是“直线(2)y k x =+与曲线y =”的充要条件. 故选:C . 【点睛】本题主要考查充分条件,必要条件定义的应用,以及数形结合思想的应用,属于中档题. 10.A 【分析】如图所示,根据球的几何性质可知,球心O 与四边形ABCD 的中心连线OG ⊥面ABCD ,过O 作PAB △的中线PF 的垂线交PF 于E ,所以四边形OEFG 为矩形,设球的半径为R ,由EF OG ==2PF =,2OE FG ==,所以(22222R =+解出R ,即求出该球的表面积. 【详解】如图所示,过点P 作PF AB ⊥,因为22PAPB ,PA PB ⊥,所以F 为AB 的中点,且4AB =,2PF =.由平面PAB ⊥平面ABCD ,所以PF ⊥平面ABCD .由球的几何性质可知,球心O 与四边形ABCD 的中心连线OG ⊥面ABCD ,所以//OG PF .过O 作PAB △的中线PF 的垂线OE 交PF 于E ,所以四边形OEFG 为矩形.设球的半径为R ,由EF OG ==2PF =,2OE FG ==,而222PO PE OE =+,即有(22222R =+,解得28R=.所以该球的表面积为2432S R ππ==. 故选:A .【点睛】本题主要考查四棱锥的外接球的表面积的计算,意在考查学生的直观想象能力,逻辑推理能力和数学运算能力,属于中档题. 11.C 【分析】先求出椭圆的右焦点坐标为()2,0,设直线l :x =2ty +,与椭圆方程联立,利用韦达定理即可求出12y y +的表达式,即得到弦AB 的中点纵坐标122223y y tt +=-+,所以M 到x 轴的距离为223tt +,根据基本不等式即可求出. 【详解】因为226,2a b ==,所以椭圆的右焦点坐标为()2,0.设()()1122,,,A x y B x y ,直线l :x =2ty +,(显然当直线斜率为0时,不可能最大),与椭圆方程联立得,()223420ty ty ++-=,所以12243ty y t +=-+, 即弦AB 的中点M 纵坐标为122223y y tt +=-+,所以M 到x 轴的距离为223t t +. 当0t ≠时,222333t t t t=≤=++,故M 到x故选:C . 【点睛】本题主要考查直线与椭圆的位置关系的应用,韦达定理以及基本不等式的应用,属于中档题. 12.A 【分析】根据几何知识可知,11A B ⊥面11BCC B ,所以11A B ⊥1B P 始终成立,因此P 到直线11A B 的距离为P 到点1B 的距离.在平面11BCC B 内建系,由平面解析几何求出轨迹方程,即可判断出点P 轨迹所在的曲线. 【详解】因为11A B ⊥面11BCC B ,所以11A B ⊥1B P 始终成立,因此P 到直线11A B 的距离为P 到点1B 的距离.在平面11BCC B 内建系,如图所示,设()0,0C ,()1,1D ,(),P x y ,=化简整理得,()()2222222112220x y x y λλλλλ-+---+=. 故当1λ=时,轨迹为直线; 当1λ≠时,轨迹为圆.故选:A .【点睛】本题主要考查立体几何和平面解析几何的综合,以及轨迹的求法,属于中档题. 13.2【分析】根据直线平行可知,()()1240a a -+-=,解出a 的值,再检验即可得出.【详解】由题可知,()()1240a a -+-=,解得2a =或3a =-.当2a =时,两直线方程分别为:10x y ++=,4410x y +-=,符合题意;当3a =-,两直线方程分别为:410x y --=,410x y --=,两直线重合,不符合题意舍去.故答案为:2.【点睛】本题主要考查利用两直线平行,求参数的值,属于基础题.14.3【分析】根据抛物线的焦半径公式分别求出点,A B 的坐标,再根据中点公式求出弦AB 的中点横坐标,即求出答案.【详解】设点()11,A x y ,()22,B x y ,焦点()1,0F .由题可得,1212,16x x +=+=,解得121,5x x ==.所以弦AB 的中点横坐标为1215322x x ++==,故弦AB 的中点到y 轴距离为3. 故答案为:3.【点睛】本题主要考查抛物线的简单性质的应用,属于基础题.15 【分析】如图所示,分别过E 作//EG FD 交DC 于G ,作//EH AF 交AB 于H ,于是将多面体ABCDEF 分为一个棱柱和一个棱锥,分别求出其体积,即可求出.【详解】如图所示,分别过E 作//EG FD 交DC 于G ,作//EH AF 交AB 于H ,连接GH . 因为平面ADF ⊥平面ABCD ,ADF 是边长为2的正三角形,所以E 到平面ABCD 的距122ADF S =⨯=,故11213ABCDEF ADF HGE E BCGH V V V --=+=+⨯=故答案为:3.【点睛】本题主要考查简单几何体的体积求法,涉及棱锥和棱柱的体积公式应用,意在考查学生的转化能力和直观想象能力,属于中档题.161 121,13⎛⎫⎛⎫ ⎪ ⎪ ⎪⎝⎭⎝⎭【分析】根据12PF F △直角所在位置进行讨论,再结合椭圆定义即可求出e ;根据12PF F △钝角所在位置进行讨论,再结合椭圆定义即可求出e 的取值范围.【详解】(1)当112PF F F ⊥或212PF F F ⊥时,两条直角边长为2c ,斜边长为,由椭圆定义可得,22c a +=,所以1c e a ===;当12PF PF ⊥时,斜边长为2c ,由椭圆定义可得,2a =,所以2c e a ==.故e =21. (2)当12PF F ∠为钝角时,1122PF F F c ==,由椭圆定义可得,222PF a c =-,再根据形成三角形的条件以及余弦定理可得,2222a c c c -<+,()2222244a c c c ->+,解得113e <<;当21PF F ∠为钝角时,同上可得,113e <<;当12F PF ∠为钝角时,12PF PF a ==,122F F c =,所以2224a a c +<,1e <<.故113e <<-或12e <<.故答案为: 21;121,132⎛⎫⎛⎫ ⎪ ⎪ ⎪⎝⎭⎝⎭. 【点睛】 本题主要考查椭圆的定义,离心率的求法,以及余弦定理的应用,意在考查分类讨论思想的应用,属于中档题.17.10,2⎛⎫ ⎪⎝⎭【分析】因为p q ∧为真命题,所以p ,q 均为真命题,再分别求出p ,q 为真时,对应的m 的取值范围,取交集即可求出.【详解】因为p q ∧为真命题,所以p ,q 均为真命题.方程222()(1)43x m y m m -+-=-+表示圆心在第一象限的圆, 则有20,430,m m m >⎧⎨-+>⎩解得01m <<,或3m >. ① 因为方程221121x y m m +=+-表示双曲线,所以(1)(21)0m m +-<, 解得112m -<<. ② 由①②可得,实数m 的取值范围为10,2⎛⎫ ⎪⎝⎭.【点睛】本题主要考查了复合命题的真假判断,以及圆的标准方程和双曲线方程的应用,属于基础题.18.(1)22(2)9x y -+=(2)5x =或815350x y -+=.【分析】(1)设出圆的半径,根据圆的弦长公式可求出半径,即可写出圆C 的标准方程;(2)当斜率不存在时,检验是符合;当斜率存在时,由点斜式设出直线方程,根据直线与圆相切,即可求出斜率,得到直线方程.【详解】(1)根据题意,设圆C 的方程为222(2)x y r -+=,因为圆C 被直线20x -+=截得的弦长为()2,0到直线20x -+=的距离为2d ==,则=29r =. 则圆C 的标准方程为22(2)9x y -+=.(2)当斜率不存在时,直线l 的方程为5x =,显然圆心(2,0)到5x =的距离为3,正好等于半径,符合题意;当斜率存在时,设斜率为k ,则过M 点的直线方程为:5(5)y k x -=-,即550kx y k -+-=,圆心到直线的距离等于半径3,3d ==,解得815k =, 所以直线l 的方程为815350x y -+=.综上,所求的直线方程为5x =或815350x y -+=.【点睛】本题主要考查圆的方程求法以及直线与圆的位置关系的应用,注意分类讨论思想的应用,属于基础题.19.(1)见解析(2)3 【解析】【分析】(1)取PD 中点M ,连接AM ,ME ,可证明出//AF ME ,即有//EF AM ,根据线面平行的判定定理,即可证出//EF 平面P AD ;(2)连接AC ,BD 交于点O ,以OA ,OB ,OP 所在直线分别为x 轴,y 轴,z 轴,建立如图所示的空间直角坐标系O-xyz ,由线面角的向量公式即可求出.【详解】(1)取PD 中点M ,连接AM ,ME ,因为E ,M 分别是棱PC ,PD 的中点, 所以12ME DC =,//ME DC , 因为F 是AB 的中点,且,AB CD =//AB CD ,所以//AF DC ,且12AF DC =,即//AF ME . 故四边形AFEM 是平行四边形,从而有//EF AM .又因为EF ⊄平面PAD ,AM ⊂平面PAD ,所以//EF 平面PAD.(2)连接AC ,BD 交于点O ,连接OP ,由题意得PO ⊥平面ABCD ,AC BD ⊥,以OA ,OB ,OP 所在直线分别为x 轴,y 轴,z 轴建立如图所示的空间直角坐标系O-xyz ,则A (0,B (C -(0,0,P ,(E F ,(AP =-(AB =-(22,EF =,设平面PAB 的法向量为(,,)n x y z =.由0,0,AP n AB n ⎧⋅=⎨⋅=⎩得0,0,x z x y -+=⎧⎨-+=⎩ 可取1x =,得(1,1,1)n =.设EF 与平面PAB 所成的角为θ, 所以||2sin |cos ,|3||EF n EF n EF n θ⋅=〈〉==‖,即直线EF 与平面PAB 所成角的正弦值为3. 【点睛】 本题主要考查线面平行的判定定理的应用以及利用向量求直线与平面所成角,意在考查学生的直观想象能力,逻辑推理能力和数学运算能力,属于中档题.20.(1)2x y =(2)120k k +=,见解析【解析】【分析】(1)将直线与抛物线方程联立,根据韦达定理以及12120OA OB x x y y ⋅=+=,列式即可求出抛物线E 的方程;(2)先用点,A B 的坐标表示出1,k 2k ,再结合韦达定理,即可找到1,k 2k 的一个关系式.【详解】(1)将1y kx =+代入22x py =,得2220x pkx p --=.其中22480p k p ∆=+>,设()11,,A x y ()22,B x y ,则122,x x pk +=122x x p =-.1212OA OB x x y y ⋅=+22121222x x x x p p=+⋅21p =-+0=, 解得12p =. 所以抛物线E 的方程为2x y =.(2)1,k 2k 的关系式为120k k +=.证明:由(1)知,122,x x pk k +==1221x x p =-=-.21111111y x k x x ++==,同理22221x k x += 则2212121211x x k k x x +++=+ 2221121212x x x x x x x x +++= 121212x x x x x x +=++ 把122,x x pk k +==1221x x p =-=-,代入得12()0k k k k +=+-=即:120k k +=.【点睛】本题主要考查抛物线方程的求法,直线与抛物线的位置关系以及韦达定理的应用,意在考查学生的数学运算和创新应用能力,属于中档题.21.(1)见解析(2)113BM BB = 【解析】【分析】(1)要证明平面1A BC ⊥平面ABC ,只需证明1A O ⊥平面ABC 即可.因为1A BC 为等边三角形,所以1,A O BC ⊥再根据勾股定理证明1A O AO ⊥,即可证出1A O ⊥平面ABC ; (2)以OA ,OB ,1OA 所在直线分别为x 轴,y 轴,z 轴,建立如图所示的空间直角坐标系O-xyz ,根据向量共线定理用参数λ表示出点M 的坐标,分别求出平面1AOM 和平面1AOA 的法向量,由二面角的向量公式列式,即可求出参数λ,确定M 的位置.【详解】(1)因为ABC 与1A BC 均为等边三角形,2AB =,O 为BC 的中点,所以1,A O BC ⊥AO BC ⊥.在1AOA中,1AO AO =1A A , 从而有22211AO A O AA +=,所以1A O AO ⊥,又因为AO BC O =,所以1A O ⊥平面ABC ,又因为1AO ⊂平面1A BC ,所以平面1A BC ⊥平面ABC . (2)以OA ,OB ,1OA 所在直线分别为x 轴,y 轴,z 轴建立如图所示的空间直角坐标系O-xyz ,则(0,0,0),O A (0,1,0),B 1A ,1(AA =-,由(1)可知,BC ⊥平面1AOA ,(0,1,0)OB =是平面1AOA 的一个法向量,设1BM BB λ=,其中01λ≤≤.所以1OM OB BM OB BB λ=+=+1OB AA λ=+()=,1OA =,设平面1AOM 的法向量为(,,)n x y z =,则130,30,OM n x y z OA n z λ⎧⋅=-++=⎪⎨⋅==⎪⎩ 取1x =,则(1,3,0)n λ=,所以||cos ,||||OB n OB n OB n ⋅〈〉==12=, 解得13λ=. 即存在一点M ,且113BM BB =时,二面角1A AO M --的大小为23π. 【点睛】本题主要考查线面垂直,面面垂直的判定定理的应用,以及利用向量法解决和二面角有关的问题,意在考查学生的直观想象能力,逻辑推理能力和数学运算能力,属于中档题.22.(1)22184x y +=(2)存在78λ=满足条件,详见解析 【分析】(1)根据所给条件列出方程组,求解即可.(2)对直线的斜率存在与否分类讨论,当斜率存在时,设直线l 的方程为(1)y k x =-,()11,A x y ,()22,B x y ,联立直线与椭圆方程,利用韦达定理,即可表示出||OP 、||MA 、||MB ,则λ可求.【详解】解:(1)由已知可得22222421a b c e a a b c ⎧+=⎪⎪⎪==⎨⎪=+⎪⎪⎩,解得a =2b c ==, 所以椭圆C 的标准方程为22184x y +=. (2)若直线的斜率不存在时,||2OP =,||||2MA MB ==, 所以77||||428MA MB λλ==⇒=; 当斜率存在时,设直线l 的方程为(1)y k x =-,()11,A x y ,()22,B x y .联立直线l 与椭圆方程22(1)184y k x x y =-⎧⎪⎨+=⎪⎩,消去y ,得()2222214280k x k x k +-+-=, 所以212221224212821k x x k k x x k ⎧+=⎪⎪+⎨-⎪=⎪+⎩. 因为//OP l ,设直线OP 的方程为y kx =,联立直线OP 与椭圆方程22184y kx x y =⎧⎪⎨+=⎪⎩,消去y ,得()22218k x +=,解得22821x k =+. ()222228||121OP x y k k ∴=+=++,1||1|MA x ∴==-,同理2||1|MB x =-,()()()212||||111MA MB k x x ∴⋅=+--, 因为()()()1212122711121x x x x x x k -⋅-=--++=⎡⎤⎣⎦+,()227||||121MA MB k k ∴⋅=++,故27||||||8OP MA MB =⋅,存在78λ=满足条件, 综上可得,存在78λ=满足条件. 【点睛】 本题考查求椭圆的标准方程,以及直线与椭圆综合问题,属于中档题.。
抚宁区第一中学2018-2019学年高二上学期数学期末模拟试卷含解析

抚宁区第一中学2018-2019学年高二上学期数学期末模拟试卷含解析班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 已知在△ABC 中,a=,b=,B=60°,那么角C 等于( )A .135°B .90°C .45°D .75°2. 若抛物线y 2=2px 的焦点与双曲线﹣=1的右焦点重合,则p 的值为( )A .﹣2B .2C .﹣4D .4 3. 已知向量,,若,则实数( )(,1)a t = (2,1)b t =+ ||||a b a b +=- t =A. B. C. D. 2-1-12【命题意图】本题考查向量的概念,向量垂直的充要条件,简单的基本运算能力.4. 如图,空间四边形OABC 中,,,,点M 在OA 上,且,点N 为BC 中点,则等于( )A .B .C .D .5. 已知命题p :∀x ∈R ,32x+1>0,有命题q :0<x <2是log 2x <1的充分不必要条件,则下列命题为真命题的是( )A .¬pB .p ∧qC .p ∧¬qD .¬p ∨q6. 设曲线在点处的切线的斜率为,则函数的部分图象2()1f x x =+(,())x f x ()g x ()cos y g x x =可以为( )A .B . C. D .7. 直线l 过点P (2,﹣2),且与直线x+2y ﹣3=0垂直,则直线l 的方程为( )A .2x+y ﹣2=0B .2x ﹣y ﹣6=0C .x ﹣2y ﹣6=0D .x ﹣2y+5=08. 已知是球的球面上两点,,为该球面上的动点,若三棱锥体积的最大,A B O 60AOB ∠=︒C O ABC -值为,则球的体积为( )O A . B . C . D .81π128π144π288π【命题意图】本题考查棱锥、球的体积、球的性质,意在考查空间想象能力、逻辑推理能力、方程思想、运算求解能力.9. 我国古代名著《九章算术》用“更相减损术”求两个正整数的最大公约数是一个伟大的创举,这个伟大创举与我国古老的算法——“辗转相除法”实质一样,如图的程序框图源于“辗转相除法”.当输入a =6 102,b =2 016时,输出的a 为( )A .6B .9C .12D .1810.下列命题中正确的是()A .复数a+bi 与c+di 相等的充要条件是a=c 且b=dB .任何复数都不能比较大小C .若=,则z 1=z 2D .若|z 1|=|z 2|,则z 1=z 2或z 1=11.若函数y=f (x )是y=3x 的反函数,则f (3)的值是()A .0B .1C .D .312.已知x ,y 满足,且目标函数z=2x+y 的最小值为1,则实数a 的值是( )A .1B .C .D .13.“”是“A=30°”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也必要条件14.阅读右图所示的程序框图,若,则输出的的值等于( )8,10m n ==S A .28 B .36 C .45 D .12015.已知{}n a 是等比数列,25124a a ==,,则公比q =( )A .12- B .-2 C .2D .12二、填空题16.设全集______.17.观察下列等式1=12+3+4=93+4+5+6+7=254+5+6+7+8+9+10=49…照此规律,第n 个等式为 .18.已知函数()()31,ln 4f x x mx g x x =++=-.{}min ,a b 表示,a b 中的最小值,若函数()()(){}()min ,0h x f x g x x =>恰有三个零点,则实数m 的取值范围是 ▲ .19.方程(x+y ﹣1)=0所表示的曲线是 .三、解答题20.(本小题满分12分)111]在如图所示的几何体中,是的中点,.D AC DB EF //(1)已知,,求证:平面;BC AB =CF AF =⊥AC BEF (2)已知分别是和的中点,求证: 平面.H G 、EC FB //GH ABC21.如图,在平面直角坐标系xOy中,已知曲线C由圆弧C1和圆弧C2相接而成,两相接点M,N均在直线x=5上,圆弧C1的圆心是坐标原点O,半径为13;圆弧C2过点A(29,0).(1)求圆弧C2的方程;(2)曲线C上是否存在点P,满足?若存在,指出有几个这样的点;若不存在,请说明理由.22.某农户建造一座占地面积为36m 2的背面靠墙的矩形简易鸡舍,由于地理位置的限制,鸡舍侧面的长度x 不得超过7m ,墙高为2m ,鸡舍正面的造价为40元/m 2,鸡舍侧面的造价为20元/m 2,地面及其他费用合计为1800元.(1)把鸡舍总造价y 表示成x 的函数,并写出该函数的定义域.(2)当侧面的长度为多少时,总造价最低?最低总造价是多少?23.(本小题满分12分)1111]已知函数()()1ln 0f x a x a a x=+≠∈R ,.(1)若1a =,求函数()f x 的极值和单调区间;(2)若在区间(0]e ,上至少存在一点0x ,使得()00f x <成立,求实数的取值范围.24.(本小题满分12分)已知函数().2()(21)ln f x x a x a x =-++a R ∈ (I )若,求的单调区间;12a >)(x f y = (II )函数,若使得成立,求实数的取值范围.()(1)g x a x =-0[1,]x e ∃∈00()()f x g x ≥a25.如图,菱形ABCD的边长为2,现将△ACD沿对角线AC折起至△ACP位置,并使平面PAC⊥平面ABC.(Ⅰ)求证:AC⊥PB;(Ⅱ)在菱形ABCD中,若∠ABC=60°,求直线AB与平面PBC所成角的正弦值;(Ⅲ)求四面体PABC体积的最大值.抚宁区第一中学2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案)一、选择题1. 【答案】D【解析】解:由正弦定理知=,∴sinA==×=,∵a <b ,∴A <B ,∴A=45°,∴C=180°﹣A ﹣B=75°,故选:D .2. 【答案】D【解析】解:双曲线﹣=1的右焦点为(2,0),即抛物线y 2=2px 的焦点为(2,0),∴=2,∴p=4.故选D .【点评】本题考查双曲线、抛物线的性质,考查学生的计算能力,属于基础题.3. 【答案】B【解析】由知,,∴,解得,故选B.||||a b a b +=- a b ⊥ (2)110a b t t ⋅=++⨯= 1t =-4. 【答案】B【解析】解:===;又,,,∴.故选B .【点评】本题考查了向量加法的几何意义,是基础题.5. 【答案】C【解析】解:∵命题p :∀x ∈R ,32x+1>0,∴命题p 为真,由log 2x <1,解得:0<x <2,∴0<x <2是log 2x <1的充分必要条件,∴命题q 为假,故选:C .【点评】本题考查了充分必要条件,考查了对数,指数函数的性质,是一道基础题.6. 【答案】A【解析】试题分析:,为奇函()()()()()2,cos 2cos ,,cos cos g x x g x x x x g x g x x x ==-=--=AA ()cos y g x x ∴=数,排除B ,D ,令时,故选A. 10.1x =0y >考点:1、函数的图象及性质;2、选择题“特殊值”法.7. 【答案】B【解析】解:∵直线x+2y ﹣3=0的斜率为﹣,∴与直线x+2y ﹣3=0垂直的直线斜率为2,故直线l 的方程为y ﹣(﹣2)=2(x ﹣2),化为一般式可得2x ﹣y ﹣6=0故选:B【点评】本题考查直线的一般式方程和垂直关系,属基础题.8. 【答案】D【解析】当平面平面时,三棱锥的体积最大,且此时为球的半径.设球的半径为OC ⊥AOB O ABC -OC,则由题意,得,解得,所以球的体积为,故选D .R 211sin 6032R R ⨯⨯︒⋅=6R =342883R π=π9. 【答案】【解析】选D.法一:6 102=2 016×3+54,2 016=54×37+18,54=18×3,18是54和18的最大公约数,∴输出的a =18,选D.法二:a =6 102,b =2 016,r =54,a =2 016,b =54,r =18,a =54,b =18,r =0.∴输出a =18,故选D.10.【答案】C【解析】解:A .未注明a ,b ,c ,d ∈R .B .实数是复数,实数能比较大小.C .∵ =,则z 1=z 2,正确;D .z 1与z 2的模相等,符合条件的z 1,z 2有无数多个,如单位圆上的点对应的复数的模都是1,因此不正确.故选:C.11.【答案】B【解析】解:∵指数函数的反函数是对数函数,∴函数y=3x的反函数为y=f(x)=log3x,所以f(9)=log33=1.故选:B.【点评】本题给出f(x)是函数y=3x(x∈R)的反函数,求f(3)的值,着重考查了反函数的定义及其性质,属于基础题.12.【答案】B【解析】解:由约束条件作出可行域如图,由图可知A(a,a),化目标函数z=2x+y为y=﹣2x+z,由图可知,当直线y=﹣2x+z过A(a,a)时直线在y轴上的截距最小,z最小,z的最小值为2a+a=3a=1,解得:a=.故选:B.【点评】本题考查了简单的线性规划,考查了数形结合的解题思想方法,是中档题.13.【答案】B【解析】解:“A=30°”⇒“”,反之不成立.故选B【点评】本题考查充要条件的判断和三角函数求值问题,属基本题.14.【答案】C【解析】解析:本题考查程序框图中的循环结构.,当121123m n n n n n m S C m ---+=⋅⋅⋅⋅= 8,10m n ==时,,选C .82101045m n C C C ===15.【答案】D【解析】试题分析:∵在等比数列}{a n 中,41,2a 52==a ,21,81q 253=∴==∴q a a .考点:等比数列的性质.二、填空题16.【答案】{7,9}【解析】∵全集U={n ∈N|1≤n ≤10},A={1,2,3,5,8},B={1,3,5,7,9},∴(∁U A )={4,6,7,9 },∴(∁U A )∩B={7,9},故答案为:{7,9}。
抚宁区一中2018-2019学年高二上学期数学期末模拟试卷含解析

抚宁区一中2018-2019学年高二上学期数学期末模拟试卷含解析 班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 已知集合A={x|﹣1≤x ≤1},B={x|x 2﹣2x ≤0},则A ∪B=( ) A .{x|﹣1≤x ≤2} B .{x|﹣1≤x ≤0} C .{x|1≤x ≤2} D .{x|0≤x ≤1}2. 已知函数,,若,则( )A1 B2 C3 D-13. 若圆心坐标为()2,1-的圆在直线10x y --=上截得的弦长为 ) A .()()22210x y -++= B .()()22214x y -++= C .()()22218x y -++= D .()()222116x y -++= 4. 如图所示的程序框图输出的结果是S=14,则判断框内应填的条件是( )A .i ≥7?B .i >15?C .i ≥15?D .i >31?5. 已知a 为常数,则使得成立的一个充分而不必要条件是( )A .a >0B .a <0C .a >eD .a <e6. 已知函数⎩⎨⎧≤>=)0(||)0(log )(2x x x x x f ,函数)(x g 满足以下三点条件:①定义域为R ;②对任意R x ∈,有1()(2)2g x g x =+;③当]1,1[-∈x 时,()g x 则函数)()(x g x f y -=在区间]4,4[-上零点的个数为( )A .7B .6C .5D .4【命题意图】本题考查利用函数图象来解决零点问题,突出了对分段函数的转化及数形结合思想的考查,本题综合性强,难度大. 7. 在复平面内,复数1zi+所对应的点为(2,1)-,i 是虚数单位,则z =( ) A .3i --B .3i -+C .3i -D .3i +8. △ABC 的三内角A ,B ,C 所对边长分别是a ,b ,c ,设向量,,若,则角B 的大小为( )A .B .C .D .9. 过抛物线22(0)y px p =>焦点F 的直线与双曲线2218-=y x 的一条渐近线平行,并交其抛物线于A 、 B 两点,若>AF BF ,且||3AF =,则抛物线方程为( )A .2y x =B .22y x =C .24y x =D .23y x =【命题意图】本题考查抛物线方程、抛物线定义、双曲线标准方程和简单几何性质等基础知识,意在考查方程思想和运算能力.10.已知函数()cos (0)f x x x ωωω+>,()y f x =的图象与直线2y =的两个相邻交点的距离等于π,则()f x 的一条对称轴是( )A .12x π=-B .12x π=C .6x π=-D .6x π=11.函数f (x )=lnx ﹣+1的图象大致为( )A .B .C .D .12.已知函数22()32f x x ax a =+-,其中(0,3]a ∈,()0f x ≤对任意的[]1,1x ∈-都成立,在1和两数间插入2015个数,使之与1,构成等比数列,设插入的这2015个数的成绩为T ,则T =( ) A .20152B .20153C .201523D .20152213.如图,空间四边形OABC 中,,,,点M 在OA 上,且,点N 为BC 中点,则等于( )A .B .C .D .14.某校新校区建设在市二环路主干道旁,因安全需要,挖掘建设了一条人行地下通道,地下通道设计三视图中的主(正)视力(其中上部分曲线近似为抛物)和侧(左)视图如图(单位:m ),则该工程需挖掘的总土方数为( )A .560m 3B .540m 3C .520m 3D .500m 315.满足下列条件的函数)(x f 中,)(x f 为偶函数的是( )A.()||x f e x =B.2()x x f e e =C.2(ln )ln f x x = D.1(ln )f x x x=+【命题意图】本题考查函数的解析式与奇偶性等基础知识,意在考查分析求解能力.二、填空题16.某公司租赁甲、乙两种设备生产A B ,两类产品,甲种设备每天能生产A 类产品5件和B 类产品10件,乙种设备每天能生产A 类产品6件和B 类产品20件.已知设备甲每天的租赁费为200元,设备乙每天的租赁费用为300元,现该公司至少要生产A 类产品50件,B 类产品140件,所需租赁费最少为__________元. 17.已知正整数m 的3次幂有如下分解规律:113=;5323+=;119733++=;1917151343+++=;…若)(3+∈N m m 的分解中最小的数为91,则m 的值为 .【命题意图】本题考查了归纳、数列等知识,问题的给出比较新颖,对逻辑推理及化归能力有较高要求,难度中等.18.= .19.已知向量(1,),(1,1),a x b x ==- 若(2)a b a -⊥ ,则|2|a b -=( )A .2B .3C .2 D【命题意图】本题考查平面向量的坐标运算、数量积与模等基础知识,意在考查转化思想、方程思想、逻辑思维能力与计算能力.三、解答题20.已知梯形ABCD 中,AB ∥CD ,∠B=,DC=2AB=2BC=2,以直线AD 为旋转轴旋转一周的都如图所示的几何体(Ⅰ)求几何体的表面积(Ⅱ)判断在圆A 上是否存在点M ,使二面角M ﹣BC ﹣D 的大小为45°,且∠CAM 为锐角若存在,请求出CM 的弦长,若不存在,请说明理由.21.【无锡市2018届高三上期中基础性检测】已知函数()()2ln 1.f x x mx m R =--∈ (1)当1m =时,求()f x 的单调区间;(2)令()()g x xf x =,区间1522,D e e -⎛⎫= ⎪⎝⎭,e 为自然对数的底数。
2019-2020学年河北省高二年级上学期期末考试数学答案

)"且当&(&%时1&)"所以&7#!
161"不等式
1&&61"的解集中恰有两个整数&#&!故6的最小值是&7#! !
#/!解#因为 #(0所以1&(%&0&…………………………………………………………………… #分 因为( 是真命题所以"(%&0(#所以0(%(2! ……………………………………………………… +分 故%的取值范围是02!…………………………………………………………………………………… %分
!"#$!"!"学年度河北省期末考试
高二数学试题参考答案
#!'!"(#!&&))( !#& &) ) ##* *) ) (
+ !
*
#!)则"的虚部为
# !
!
!!,!全称命题的否定是特称命题!
+!-!由题意可得样本数据落在区间."#""内的频数为#/*.(!0则所求频率为#!"0"("!!0! %!1!由题意可得#+&!#&#&#(!解得 #(%!
&%或&)&#令1'&("得&%(&(&#!1&在&8&%&#*8上单调递增在&%&#上
单调递减!当&(&%时1&取极大值1&%(70% )"当&(&#时1&取极小值!因为1"(#
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
河北省秦皇岛市抚宁区第一中学2019-2020学年高二上学期期末数
学试题
一、单选题
(★) 1. 直线的倾斜角为()
A.B.C.D.
(★) 2. 已知命题,则为()
A.B.C.D.
(★★) 3. 抛物线的焦点到其准线的距离为()
A.B.C.1D.2
(★★★) 4. 已知 m , n是两条不同直线,是两个不同平面,则下列命题正确的是()A.若,则
B.若,则
C.若,则
D.若,则
(★★) 5. 点到双曲线的一条渐近线的距离为1,则双曲线的离心率为()
A.B.2C.D.
(★★) 6. 某几何体的三视图如图所示,则该几何体的体积为()
A .1
B .
C .2
D .
(★★) 7. 已知圆
与圆
外切,则点
与圆
的位置关系是()
A .在圆外
B .在圆上
C .在圆内
D .不能确定
(★★) 8. 已知长方体 中,
,
,则直线
和
所成
角的大小为() A . B .
C .
D .
(★★★) 9. “ ”是“直线
与曲线 有且只有一个公共点”的()
A .必要不充分条件
B .充分不必要条件
C .充要条件
D .既不充分也不必要条件
(★★★) 10. 四棱锥 P-ABCD 的五个顶点都在同一球面上,平面
平面 ABCD ,
,
,四边形 ABCD 为正方形,则该球的表面积为()
A .
B .
C .
D .
(★★★) 11. 已知 F 为椭圆 的右焦点,过 F 的直线 l 交椭圆 C 于 A , B 两点, M
为 AB 的中点,则 M 到 x 轴的最大距离为()
A .
B .
C .
D .
(★★★) 12. 正方体 中, P 是侧面 内一动点,若 P 到点 C 的距离与
P
到直线的距离之比为,则点 P轨迹所在的曲线可以是()
A.直线或圆B.椭圆或双曲线C.椭圆或抛物线D.直线或抛物线
二、填空题
(★★) 13. 若直线和直线平行,则________.
(★★) 14. 己知抛物线的焦点为 F,抛物线上的两点 A , B满足,,则弦 AB的中点到 y轴距离为________.
(★★★) 15. 如图,在多面体 ABCDEF中,平面平面 ABCD,是正三角形,四边
形 ABCD是正方形,,,则多面体 ABCDEF的体积为 ________ .
三、双空题
(★★★) 16. 设为椭圆的两个焦点,点 P在 C上, e为 C的离
心率.若是等腰直角三角形,则 ________ ;若是等腰钝角三角形,则 e的
取值范围是 ________ .
四、解答题
(★★★) 17. 已知语句 p :方程表示圆心在第一象限的圆;语句 q :方程表示双曲线.若为真命题,求实数 m的取值范围.
(★★★) 18. 已知圆 C以点为圆心,且被直线截得的弦长为.
(1)求圆 C的标准方程;
(2)若直线 l经过点,且与圆 C相切,求直线 l的方程.
(★★★) 19. 如图,四棱锥 P-ABCD的底面 ABCD为正方形,, E , F分别是棱 PC , AB的中点.
(1)求证:平面 PAD;
(2)若,求直线 EF与平面 PAB所成角的正弦值.
(★★★) 20. 已知抛物线,直线与 E交于 A , B两点,且,其中 O为坐标原点.
(1)求抛物线 E的方程;
(2)设点,直线 CA , CB的斜率分别为,试写出的一个关系式;并加以
证明.
(★★★)21. 在三棱柱中,与均为等边三角形,,O为 BC的中点.
(1)证明:平面平面 ABC;
(2)在棱上确定一点 M,使得二面角的大小为.
(★★★★) 22. 焦点在 x轴上的椭圆 C:经过点,椭圆 C的离心率为.,是椭圆的左、右焦点, P为椭圆上任意点.
(1)求椭圆的标准方程;
(2)若点 M为的中点( O为坐标原点),过 M且平行于 OP的直线 l交椭圆 C于 A, B
两点,是否存在实数,使得;若存在,请求出的值,若不存在,请说
明理由.。