基于matlab的二阶动态系统特性分析

合集下载

实验一基于MATLAB的二阶系统动态性能分析

实验一基于MATLAB的二阶系统动态性能分析

实验一基于MATLAB的二阶系统动态性能分析二阶系统是控制系统中常见的一类系统,在工程实践中有广泛的应用。

为了对二阶系统的动态性能进行分析,可以使用MATLAB进行模拟实验。

首先,我们需要定义一个二阶系统的数学模型。

一个典型的二阶系统可以用如下的常微分方程表示:$$m\ddot{x} + b\dot{x} + kx = u(t)$$其中,$m$是系统的质量,$b$是系统的阻尼系数,$k$是系统的刚度,$u(t)$是控制输入。

在MATLAB中,我们可以使用StateSpace模型来表示二阶系统。

具体实现时,需要指定系统的状态空间矩阵,并将其转换为StateSpace模型对象。

例如:```matlabm=1;b=0.5;k=2;A=[01;-k/m-b/m];B=[0;1/m];C=[10;01];D=[0;0];sys = ss(A, B, C, D);```接下来,我们可以利用MATLAB的Simulink工具来模拟系统的响应。

Simulink提供了一个直观的图形界面,可以快速搭建系统的模型,并进行动态模拟。

我们需要使用一个输入信号来激励系统,并观察系统的响应。

例如,我们可以设计一个阶跃输入的信号,并将其作为系统的输入,然后观察系统的输出。

在Simulink中,可以使用Step函数来生成阶跃输入。

同时,我们可以添加一个Scope模块来实时显示系统的输出信号。

以下是一个简单的Simulink模型的示例:在Simulink模拟中,可以调整系统的参数,如质量、阻尼系数和刚度,以观察它们对系统动态性能的影响。

通过修改输入信号的类型和参数,还可以研究系统在不同激励下的响应特性。

另外,MATLAB还提供了一些工具和函数来评估二阶系统的动态性能。

例如,可以使用step函数来计算系统的阶跃响应,并获取一些性能指标,如峰值时间、上升时间和超调量。

通过比较不同系统的性能指标,可以选择最优的系统配置。

此外,MATLAB还提供了频域分析工具,如Bode图和Nyquist图,用于分析系统的频率响应和稳定性。

优化-二阶系统的MATLAB仿真设计

优化-二阶系统的MATLAB仿真设计

优化-二阶系统的MATLAB仿真设计随着科技的发展和应用的需求,优化控制在控制系统设计中扮演着越来越重要的角色。

在现代控制理论中,二阶系统是常见的一种模型。

本文将介绍如何利用MATLAB进行二阶系统的仿真设计,并优化其性能。

1. 二阶系统的基本原理二阶系统是指由二阶微分方程描述的动态系统。

它通常包含一个二阶传递函数,形式为:G(s) = K / (s^2 + 2ζωn s + ωn^2)其中,K是增益,ζ是阻尼比,ωn是自然频率。

2. MATLAB仿真设计MATLAB是一种功能强大的工具,可用于系统仿真与优化。

以下是使用MATLAB进行二阶系统仿真设计的基本步骤:2.1. 创建模型首先,我们需要在MATLAB中创建二阶系统的模型。

可以使用`tf`函数或`zpk`函数来定义系统的传递函数。

s = tf('s');G = K / (s^2 + 2*zeta*wn*s + wn^2);2.2. 仿真分析通过对系统进行仿真分析,可以获得系统的时域响应和频域特性。

可以使用`step`函数进行阶跃响应分析,使用`bode`函数进行频率响应分析。

step(G);bode(G);2.3. 控制器设计根据系统的性能要求,设计合适的控制器来优化系统的性能。

可以使用PID控制器等不同类型的控制器来调节系统。

2.4. 优化系统利用MATLAB提供的优化工具,对系统进行参数调节和优化。

可以使用`fmincon`函数等进行系统优化。

2.5. 仿真验证通过对优化后的系统进行仿真验证,评估其性能是否达到预期。

可以再次使用`step`函数或`bode`函数来分析系统。

3. 总结通过MATLAB进行二阶系统的仿真设计,可以帮助工程师优化系统的性能。

本文介绍了MATLAB仿真设计的基本步骤,包括模型创建、仿真分析、控制器设计、系统优化和仿真验证。

希望本文能对相关研究和工作提供一些参考和帮助。

用MATLAB进行控制系统的动态性能的分析

用MATLAB进行控制系统的动态性能的分析

用MATLAB进行控制系统的动态性能的分析MATLAB是一款功能强大的工具,可用于控制系统的动态性能分析。

本文将介绍使用MATLAB进行动态性能分析的常用方法和技巧,并提供实例来说明如何使用MATLAB来评估和改进控制系统的性能。

控制系统的动态性能是指系统对输入信号的响应速度、稳定性和精度。

评估控制系统的动态性能往往需要分析系统的阶跃响应、频率响应和稳态误差等指标。

一、阶跃响应分析在MATLAB中,可以使用step函数来绘制控制系统的阶跃响应曲线。

假设我们有一个系统的传递函数为:G(s)=(s+1)/(s^2+s+1)要绘制阶跃响应曲线,可以按照以下步骤操作:1.自动生成传递函数:num = [1 1];den = [1 1 1];G = tf(num,den);2.绘制阶跃响应曲线:step(G);二、频率响应分析频率响应分析用于研究控制系统对不同频率输入信号的响应特性。

在MATLAB中,可以使用bode函数来绘制控制系统的频率响应曲线。

假设我们有一个传递函数为:G(s)=1/(s+1)要绘制频率响应曲线,可以按照以下步骤操作:1.自动生成传递函数:num = [1];den = [1 1];G = tf(num,den);2.绘制频率响应曲线:bode(G);运行以上代码,MATLAB将生成一个包含系统幅频特性和相频特性的图形窗口。

通过观察频率响应曲线,可以评估系统的增益裕度(gain margin)和相位裕度(phase margin)等指标。

三、稳态误差分析稳态误差分析用于研究控制系统在稳态下对输入信号的误差。

在MATLAB中,可以使用step函数结合stepinfo函数来计算控制系统的稳态误差。

假设我们有一个传递函数为:G(s)=1/s要计算稳态误差,可以按照以下步骤操作:1.自动生成传递函数:num = [1];den = [1 0];G = tf(num,den);2.计算稳态误差:step(G);info = stepinfo(G);运行以上代码,MATLAB将生成一个阶跃响应曲线的图形窗口,并输出稳态误差等信息。

自控原理实验报告

自控原理实验报告

自动控制原理实验报告目录2.2典型环节模拟电路及其数学模型1. 实验目的2. 实验原理3. 实验内容4. 实验步骤5. 实验数据记录3.1典型二阶系统模拟电路及其动态性能分析1. 实验目的2. 实验原理3. 实验内容4. 实验步骤5. 实验数据纪录3.4三阶控制系统的稳定性分析1. 实验目的2. 实验原理3. 实验内容4. 实验步骤5. 实验数据记录3.5基于Matlab告诫控制系统的时域响应动态性能分析1. 实验目的2. 实验内容3. 实验数据纪录4.1基于Matlab控制系统的根轨迹及其性能分析1. 实验目的2. 实验原理3. 实验内容4. 实验步骤5. 实验数据记录5.4 基于MATLAB控制系统的博德图及其频域分析1. 实验目的2. 实验原理3. 实验内容4. 实验步骤5. 实验数据记录2.2典型环节模拟电路及其数学模型1.实验目的1)掌握典型环节模拟电路的构成,学习运用模拟电子组件构造控制系统。

2)观察和安装个典型环节的单位节阶跃响应曲线,掌握它们各自特性。

3)掌握各典型环节的特性参数的测量方法,并根据阶跃响应曲线建立传递函数。

2.实验原理本实验通过实验测试法建立控制系统的实验模型。

实验测试法是人为地给系统施加某种测试信号,记录基本输出响应,并用适当的数学模型区逼近。

常用的实验测试法有三种:时域测试法,频域测试法和统计相关测试法。

通过控制系统的时域测试,可以测量系统的静态特性和动态特性指标。

静态特性是指系统稳态是的输入与输出的关系,用静态特性参数来表征,如增益和稳态误差。

动态性能指标是表征系统输入一定控制信号,输出量随时间变化的响应,常用的动态性能指标有超调量、调节时间、上升时间、峰值时间和振荡次数等。

静态特性可以采用逐点测量法,及给新一个输入量,新颖测量被控对象的一个稳态输出量,利用一组数据绘出静态特性曲线求出其斜率,就可以确定被测对象的增益。

动态特性可以采用阶跃响应或脉冲响应测试法,给定被测对象施加阶跃输入信号或脉冲信号,利用示波器或记录仪测量被测对象的输出响应,如为使测量尽可能的得到理想的数学模型,应注意以下几点:1)被测对象应处于实际经常使用的负荷情况,并且在较为稳定的状态下进行测试。

自动控制原理实验二阶系统的阶跃响应

自动控制原理实验二阶系统的阶跃响应

自动控制原理实验二阶系统的阶跃响应一、实验目的通过实验观察和分析阶跃响应曲线,了解二阶系统的动态特性,掌握用MATLAB仿真二阶系统阶跃响应曲线的绘制方法,提高对二阶系统动态性能指标的计算与分析能力。

二、实验原理1.二阶系统的传递函数形式为:G(s)=K/[(s+a)(s+b)]其中,K为系统增益,a、b为系统的两个特征根。

特征根的实部决定了系统的稳定性,实部小于零时系统稳定。

2.阶跃响应的拉氏变换表达式为:Y(s)=G(s)/s3.阶跃响应的逆拉氏变换表达式为:y(t)=L^-1{Y(s)}其中,L^-1表示拉氏逆变换。

三、实验内容1.搭建二阶系统,调整增益和特征根,使系统稳定,并记录实际的参数数值。

2.使用MATLAB绘制二阶系统的阶跃响应曲线,并与实际曲线进行对比分析。

四、实验步骤1.搭建二阶系统,调整增益和特征根,使系统稳定。

根据实验要求,选择适当的数字电路元件组合,如电容、电感、电阻等,在实际电路中搭建二阶系统。

2.连接模拟输入信号。

在搭建的二阶系统的输入端接入一个阶跃信号发生器。

3.连接模拟输出信号。

在搭建的二阶系统的输出端接入一个示波器,用于实时观察系统的输出信号。

4.调整增益和特征根。

通过适当调整二阶系统的增益和特征根,使系统达到稳定状态。

记录实际调整参数的数值。

5.使用MATLAB进行仿真绘制。

根据实际搭建的二阶系统参数,利用MATLAB软件进行仿真,绘制出二阶系统的阶跃响应曲线。

6.对比分析实际曲线与仿真曲线。

通过对比分析实际曲线与仿真曲线的差异,分析二阶系统的动态特性。

五、实验结果与分析1.实际曲线的绘制结果。

根据实际参数的输入,记录实际曲线的绘制结果,并描述其特点。

2.仿真曲线的绘制结果。

利用MATLAB软件进行仿真,绘制出仿真曲线,并与实际曲线进行对比分析。

3.实际曲线与仿真曲线的对比分析。

通过对比实际曲线与仿真曲线的差异,分析二阶系统的动态特性,并讨论影响因素。

六、实验讨论与结论1.实验过程中遇到的问题。

自动控制原理实验——二阶系统的动态过程分析

自动控制原理实验——二阶系统的动态过程分析

实验二二阶系统的动态过程分析一、 实验目的1. 掌握二阶控制系统的电路模拟方法及其动态性能指标的测试技术。

2. 定量分析二阶系统的阻尼比ξ和无阻尼自然频率n ω对系统动态性能的影响。

3. 加深理解“线性系统的稳定性只与其结构和参数有关,而与外作用无关”的性质。

4. 了解和学习二阶控制系统及其阶跃响应的Matlab 仿真和Simulink 实现方法。

二、 实验内容1. 分析典型二阶系统()G s 的ξ和n ω变化时,对系统的阶跃响应的影响。

2. 用实验的方法求解以下问题:设控制系统结构图如图2.1所示,若要求系统具有性能:%20%,1,p p t s σσ===试确定系统参数K 和τ,并计算单位阶跃响应的特征量d t ,r t 和s t 。

图2.1 控制系统的结构图3. 用实验的方法求解以下问题:设控制系统结构图如图2.2所示。

图中,输入信号()r t t θ=,放大器增益AK 分别取13.5,200和1500。

试分别写出系统的误差响应表达式,并估算其性能指标。

图2.2 控制系统的结构图三、实验原理任何一个给定的线性控制系统,都可以分解为若干个典型环节的组合。

将每个典型环节的模拟电路按系统的方块图连接起来,就得到控制系统的模拟电路图。

通常,二阶控制系统222()2nn nG ssωξωω=++可以分解为一个比例环节、一个惯性环节和一个积分环节,其结构原理如图 2.3所示,对应的模拟电路图如图2.4所示。

图2.3 二阶系统的结构原理图图2.4 二阶系统的模拟电路原理图图2.4中:()(),()()r cu t r t u t c t==-。

比例常数(增益系数)21RKR=,惯性时间常数131T R C=,积分时间常数242T R C=。

其闭环传递函数为:12221112()1()(1)crKU s TTKKU s T s T s K s sT TT==++++(0.1) 又:二阶控制系统的特性由两个参数来描述,即系统的阻尼比ξ和无阻尼自然频率n ω。

自控实验—二三阶系统动态分析

自控实验—二三阶系统动态分析

自控实验—二三阶系统动态分析在自控实验中,二、三阶系统动态分析是非常重要的一部分。

通过对系统的动态性能进行分析,可以评估系统的稳定性、响应速度和稳态误差等方面的性能。

本次实验将使用PID控制器对二、三阶系统进行实时控制,并通过实验数据对系统进行动态分析。

首先,我们先了解什么是二、三阶系统。

在控制系统中,系统的阶数表示系统传递函数的阶数,也可以理解为系统动态特性的复杂程度。

二阶系统由两个极点和一个零点组成,三阶系统由三个极点和一个零点组成。

二、三阶系统的动态响应特性与极点位置有关,不同的极点位置对系统的稳定性、响应速度和稳态误差等性能有着不同的影响。

在实验中,我们将使用PID控制器对二、三阶系统进行控制。

PID控制器是一种经典的比例-积分-微分控制器,可以根据误差信号进行调节,通过调整比例系数、积分时间和微分时间来控制系统的响应特性。

实验中,我们将根据二、三阶系统的实时数据进行PID参数调整,以达到控制系统的稳定和快速响应的目的。

在进行实验前,我们首先需要对二、三阶系统进行建模。

二、三阶系统的传递函数通常表示为:二阶系统:G(s) = K / (s^2 + 2ξω_ns + ω_n^2)三阶系统:G(s) = K / (s^3 + 3ξω_ns^2 + 3ω_n^2s + ω_n^3)其中,K表示系统的增益,ξ表示系统的阻尼比,ω_n表示系统的自然频率。

通过实验数据的统计和分析,我们可以估计出系统的K、ξ和ω_n的值,并据此进行PID参数的调整。

接下来,我们进行实验。

我们首先将PID控制器的参数设为初始值,然后对系统进行实时控制,并记录系统输出的数据。

通过对这些数据进行分析,我们可以得到系统的稳态误差、响应时间和超调量等性能指标。

对于二阶系统,我们将分析以下几个方面的性能:1.稳态误差:通过比较实际输出值与目标值之间的差异,可以得到系统的稳态误差。

常见的稳态误差有零稳态误差、常数稳态误差和比例稳态误差等。

MATLAB在求二阶系统中阶跃响应的分析及应用

MATLAB在求二阶系统中阶跃响应的分析及应用

MATLAB在求⼆阶系统中阶跃响应的分析及应⽤摘要⼆阶系统控制系统按数学模型分类时的⼀种形式,是⽤数学模型可表⽰为⼆阶线性常微分⽅程的系统。

⼆阶系统的解的形式,可由对应传递函数W(s)的分母多项式P(s)来判别和划分,P(s)的⼀般形式为变换算⼦s的⼆次三项代数式。

代数⽅程P(s)=0的根,可能出现四种情况。

1.两个实根的情况,对应于两个串联的⼀阶系统。

如果两个根都是负值,就为⾮周期性收敛的稳定情况。

2.当a1=0,a2>0,即⼀对共轭虚根的情况,将引起频率固定的等幅振荡,是系统不稳定的⼀种表现。

3.当a1<0,a1-4a2<0,即共轭复根有正实部的情况,对应于系统中发⽣发散型的振荡,也是不稳定的⼀种表现。

4.当a1>0,a1-4a2<0,即共轭复根有负实部的情况,对应于收敛型振荡,且实部和虚部的数值⽐例对输出过程有很⼤的影响。

⼀般以阻尼系数ζ来表征,取在0.4~0.8之间为宜。

当ζ>0.8后,振荡的作⽤就不显著,输出的速度也⽐较慢。

⽽ζ<0.4时,输出量就带有明显的振荡和较⼤的超调量,衰减也较慢,这也是控制系统中所不希望的。

当激励为单位阶跃函数时,电路的零状态响应称为单位阶跃响应,简称阶跃响应。

阶跃响应g(t)定义为:系统在单位阶跃信号u(t)的激励下产⽣的零状态响应。

关键词:⼆阶系统阶跃响应 MA TL AB/S im uli nkMATLAB 在求⼆阶系统中阶跃响应的分析及应⽤1 训练⽬的和要求通过对MATLAB 仿真软件的语⾔的学习,学会在MATLAB 中解决《电路原理》、《模拟电⼦技术基础》、《数字电⼦技术基础》等所学课本上的问题,进⼀步熟悉并掌握MATLAB 在电路、信号与系统、⾃动控制原理、数字信号处理等中的应⽤。

通过对软件的应⽤,巩固已学知识。

以求达到通过训练能熟练掌握MATLAB 的应⽤,能够深⼊到实际问题中。

要求通过理论分析所要求题⽬并通过MATLAB 仿真⽐较实验结果。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
上升时间 :当系统的阶跃响应第一次达到稳态值的时间。上升时间是系统响应速度的一种度量。上升时间越短,响应速度越快。
峰值时间 :系统阶跃响应达到最大值的时间。最大值一般都发生在阶跃响应的第一个峰值时间,所以又称为峰值时间。
调节时间 :当系统的阶跃响应衰减到给定的误差带内,并且以后不再超出给定的误差带的时间。
yss=y(length(t));%响应的终值
pos=100*(maxy-yss)/yss;%求超调量
fori=1:2001
ify(i)==maxy
n=i;end
end
tp=(n-1)*0.01;%求峰值时间
y1=1.05*yss;
y2=0.95*yss;
i=2001;
whilei>0
i=i-1;
ify(i)>=y1
最大超调量 :相应曲线的最大峰值与稳态值的差称为最大超调量 ,即
或者不以百分数表示,则记为
最大超调量 反映了系统输出量在调节过程中与稳态值的最大偏差,是衡量系统性能的一个重要的指标。
在实际应用中,常用的动态性能指标多为上升时间、调节时间和超调量。通常,用 或 评价系统的响应速度;用 评价系统的阻尼程度;而 是同时反映响应速度和阻尼程度的综合性能指标。
调节时间为: = 6.6100
2.2.
2.2.1.二阶系统的单位阶跃响应与参数 的关系.
已知二阶系统传递函数为
设定 时,试计算当阻尼比从0.1到1时二阶系统的阶跃响应,编写matlab程序,如下所示:
clc,clear
num=1;y=zeros(200,1);i=0;
forbc=0.1:0.1:1
den=[1,2*bc,1];
2.
2.1.
已知二阶系统的传递函数为:
编写matlab程序求此系统的性能指标
clc,clear
num=[2.7];
den=[1,0.8,0.64];
t=0:0.01:20;
step(num,den,t);
[y,x,t]=step(num,den,t) ;%求单位阶跃响应
maxy=max(y);%响应的最大偏移量
测控技术基础课程设计
设计题目:基于matlab的二阶动态系统特性分析
姓 名:
学 号:
专 业:机械电子
班 级:
指导教师:
2014年6月26日---年6月26日
第1章
1.1 一般系统的描述
1.2 二阶系统的性能指标
第2章二阶系统基于matlab的时域分析
2.1 用matlab求二阶系统的动态性能指标
2.2 二阶系Байду номын сангаас的动态响应分析
图2-5 时对应的阶跃响应曲线:
3.设计体会
经过为期两周的机械测试课程设计,我从中学会了很多。在课堂上学到的知识和理论很抽象,很多时候都不能够真正了解,经过这次的课程设计,通过自己动手,用matlab仿真,探索和体会课堂上学到的知识,对二阶系统以及一般系统的特性有了更深的了解。
2.2.1二阶系统的单位阶跃响应与参数 的关系
2.2.2二阶系统的单位阶跃响应与参数 的关系.
第三章设计体会
参考文献
1.
1.1.
凡是能够用二阶微分方程描述的系统称为二阶系统。从物理上讲,二阶系统包含两个独立的储能元件,能量在两个元件之间交换,是系统具有往复震荡的趋势。当阻尼比不够充分大时,系统呈现出震荡的特性,所以,二阶系统也称为二阶震荡环节。很多实际工程系统都是二阶系统,而且许多高阶系统在一定条件下也可以简化成为二阶系统近似求解。因此,分析二阶系统的时间相应具有重要的实际意义。
传递函数可以反映系统的结构参数,二阶系统的典型传递函数是:
其中, 为二阶系统的无阻尼固有频率, 称为二阶系统的阻尼比。
1.2.
系统的基本要求一般有稳定性、准确性和快速性这三个指标。系统分析及时对这三个指标进行分析。建立系统的数学模型后,就可以用不同的方法来分析和研究系统,以便于找出工程中需要的系统。在时域内,这三个方面的性能都可以通过求解描述系统的微分方程来获得,而微分方程的解则由系统的结构参数、初始条件以及输入信号所决定。
2.2.2.二阶系统的单位阶跃响应与参数 的关系.
已知二阶系统传递函数为
设定 时,分别分析无阻尼固有频率为1、3、5时二阶系统的阶跃响应,编写matlab程序,如下所示:
clc,clear
xi=0.3;
holdon
forw=1: 2: 5
num=w^2;
den=[1 2*xi*w w^2];
step(num, den)
t=[0:0.1:19.9]';
sys=tf(num,den);
i=i+1;
y(:,i)=step(sys,t);
end
mesh(flipud(y),[-100,20])
运行该程序,绘制一簇阶跃响应三维图,如图所示
图2-2阶跃响应三维图
由图可知,系统阻尼比的减小,直接影响到系统的稳定性,阻尼比越小系统的稳定性越差。 越接近于1时,系统越接近于临界稳定
end
legend('无阻尼固有频率为1','无阻尼固有频率为3','无阻尼固有频率为5')
gridon
运行程序,得到无阻尼固有频率 为1、3、5时二阶系统的阶跃响应曲线:
图2-4 为1、3、5时二阶系统的阶跃响应曲线
可以看出,当 时,随着 的增大,系统单位响应的振荡周期变短,其调整时间也相应地缩短;当 1时,系统变成临界阻尼或欠阻尼系统,这时也有类似的结论,。下图即为 时对应的阶跃响应曲线:
grid
holdon
end
legend('阻尼比为-0.05','阻尼比为0.1','阻尼比为1.2')
图2-3阻尼比 =-0.05、0.1、1.2时的响应曲线
由图可知,阻尼比 =-0.05时,即小于0时,系统不稳定;0< <1时,系统虽稳定,但在过渡过程特性曲线的初始阶段也有振荡,这是因为阻尼比越小,靠近虚轴附近极点的影响所致。 >1时,系统接近于一阶系统的特性曲线。
y(i)<=y2;
m=i;
break
end
end
ts=(m-1)*0.01;%求调节时间
title('单位阶跃响应')
Grid
运行程序后,得到此二阶系统的单位跃阶响应曲线
图2-1二阶系统的单位跃阶响应曲线
通过matlab求得的性能指标为:
最大超调量为: =16.3357%
峰值时间为: =4.5300
当阻尼比 =-0.05、0.1、1.2时的时域特性仿真程序为:
clc,clear
num=1;y=zeros(200,1);j=0;
bc=[0.045 0.056 0.1];
fori=1:3
den=[1,2*bc(i),1];
t=[0:0.1:19.9]';
sys=tf(num,den);
step(sys,t);
相关文档
最新文档