2015学年浙江省杭州市西湖区七年级下学期数学期末试卷带答案
2015-2016学年浙教版第二学期七年级数学下册期末试卷(含答案)

2015-2016学年第二学期期末七年级数学试卷温馨提示:1.全卷共三大题,25小题,满分120分,考试时间90分钟。
2.请用钢笔在试卷..的密封区填上学校、班级、姓名、考号。
3.答题时,请将答案直接写在试卷..相应的位置上。
希望你认真答题,获取成功。
一、精心选一选(本题有10小题,每小题3分,共30分)【请将精心选一选的选项选入下列方框中,错选,不选,多选,皆不得分】1. 比-1小1的数是 ( )A 、-1B 、1C 、0D 、-2 )A 、4B 、±4C 、2D 、±2 3. 在 -(-2),-2-,(-2),-2这4个数中,负数的个数是( ) A 、1 B 、2 C 、3 D 、44. 数6,-1,15,-3中,任取三个不同的数相加,其中和最小的是( ) A 、-3 B 、-1C 、3D 、25、下列关于单项式3222b a π-的说法正确的是( )A 、次数是2,系数是π2-B 、次数是5,系数是32-B 、次数是4,系数是π32- D 、次数是4,系数是326.哥哥今年的年龄是弟弟的2倍,弟弟说:“六年前,我们俩的年龄和为15岁”,若用x 表示哥哥今年的年龄,则可列方程( ) A 、152=+xxB 、15)62()6(=-+-xxC 、152)6(=+-xx D 、1526)6(=-+-x x7.若|3x +y +5|+|2x -2y -2|=0,则2x 2-3xy 的值是( )A 、14B 、-4C 、-12D 、12 8.如(x +m )与(x +3)的乘积中不含x 的一次项,则m 的值为( )题号1 2 3 4 5 6 7 8 9 10 答案封线密答 题 请 不 要 超 过 此 密 封 线A 、–3B 、3C 、0D 、19.不等式组⎩⎨⎧<<+<<-5321x a x a 的解集为23+<<a x ,则a 的取值范围是( ) A 、1>a B 、3≤a C 、1<a 或3>a D 、31≤<a10.已知m m Q m P 158,11572-=-=(m 为任意实数),则P 、Q 的大小关系为( )A 、Q P >B 、Q P =C 、Q P <D 、不能确定二、耐心填一填(每小题4分,共24分) 11. 在71-,-π,0,3.14,2-,0.3,49-,313-中,是无理数的有 。
2015年浙江省杭州市初中学业水平抽测数学卷【附答案】

2015年浙江省杭州市初中学业水平抽测数学卷【附答案】2015年杭州市初中学业水平抽测卷-数学考生须知:1.本试卷分试题卷和答题卷两部分,满分100分,考试时间90分钟。
2.答题前,在答题纸上写姓名和准考证号。
3.必须在答题纸的对应答题位置上答题,写在其他地方无效。
答题方式详见答题纸上的说明。
4.考试结束后,试题卷和答题纸一并上交。
试题卷一。
选择题(本题有10个小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的,请把代表正确选项的字母涂黑。
1.-3×(-3) =。
A。
1B。
-9C。
9D。
-12.在下列各几何图形中,有对称中心但没有对称轴的是?A。
圆形B。
正方形C。
平行四边形D。
等边三角形3.下列各等式中,错误的是?A。
x + 11/x = 2B。
(x-3)² = x²-9C。
x²-x = x(x-1)D。
|x-1|² = (x-1)²4.给出下列各命题,其中不正确的是?A。
在大量的随机试验中,事件A出现的频率可作为事件A出现的概率的估计值。
B。
随机抽样就是使得总体中每一个个体都有同样的可能性被选入样本的一种抽样方法。
C。
如果两个三角形全等,那么这两个三角形的对应边成比例。
D。
如果两个三角形相似,那么这两个三角形中不可能存在相等的边。
5.如图是2015年3月份其中某连续7天气温的统计图,其中实线表示最高气温,虚线表示最低气温。
在下列结论中(某天中最高气温与最低气温的差值叫做温差):①这7天中温差最大的达13℃;②这7天中各天最高气温与最低气温成正比关系;③最高气温的中位数是17;④该7天杭城气温变化较大。
你认为正确的是?A。
①②③④B。
①②C。
①③D。
③④6.在矩形ABCD中,点A关于角B的角平分线的对称点为E,点E关于角C的角平分线的对称点为F。
若AD = 3AB= 3,则AF² =。
第6题图)A。
8-4√3B。
浙教版数学七年级下册期末考试试卷及答案

浙教版数学七年级下册期末考试试题一、选择题(每小题只有一个正确答案,每小题3分,共30分)1.下列实数中,为无理数的是()A.B.C.5 D.π2.下列采用的调查方式中,不合适的是()A.了解永安溪的水质,采用抽样调查B.检测神州十二号飞船的零部件质量,采用抽样调查C.了解我县中学生视力情况,采用抽样调查D.了解某班同学的数学成绩,采用全面调查3.﹣1介于下列哪两个整数之间()A.﹣1与0 B.0与1 C.1与2 D.2与34.已知二元一次方程4x+5y=5,用含x的代数式表示y,则可表示为()A.y=﹣x+1 B.y=﹣x﹣1 C.y=x+1 D.y=x﹣1 5.已知a>b,则下列不等式成立的是()A.a+3>b+4 B.2a<2b C.a﹣1>b﹣1 D.﹣4a>﹣4b 6.如图,直线AB,CD相交于点O,OA平分∠EOC.若∠BOD=42°,则∠EOD的度数为()A.96°B.94°C.104°D.106°7.已知x,y满足方程组,则x+3y的值为()A.3 B.C.5 D.68.小敏妈妈为小敏爸爸购买了一双运动鞋.小敏、哥哥和爸爸都想知道这双鞋的价格,妈妈让他们猜.爸爸说“至少300元.”哥哥说:“至多260元.”小敏说:“至多200元.”妈妈说:“你们三个人都说错了.”则这双鞋的价格x(元)所在的范围是()A.200<x<260 B.260<x<300 C.200≤x≤260D.260≤x≤300 9.在螳螂的示意图中,AB∥DE,∠ABC=126°,∠CDE=70°,则∠BCD=()A.14°B.16°C.18°D.20°10.计算机的某种运算程序如图:已知输入3时输出的运算结果是5,输入4时输出的运算结果是7.若输入的数是x(x≠0)时输出的运算结果为P,输入的数是3x时输出的运算结果为Q,则()A.P:Q=3 B.Q:P=3C.(Q﹣1):(P﹣1)=3 D.(Q+1):(P+1)=3二、填空题(本大题有6小题,每小题3分,共18分)11.9的平方根是.12.如图,三角形ABC中,AC⊥BC,则边AC与边AB的大小关系是,依据是.13.在平面直角坐标系中,若点A(m﹣2,m+3)在第三象限,则m的取值范围是.14.某班用700元钱购买足球和篮球共11个,其中篮球单价为50元/个,足球单价为80元/个,若设购买篮球x个,足球y个,则可列方程组为.15.关于x的不等式组的解集为﹣1<x<2,则a+b的值为.16.如图,在平面直角坐标系中,将正方形①依次平移后得到正方形②,③,④…;相应地,顶点A依次平移得到A1,A2,A3,…,其中A点坐标为(1,0),A1坐标为(0,1),则A20的坐标为.三、解答题(本大题有8小题,17题4分,18~21题每题6分,22~24题每题8分,共52分)17.计算:|﹣|﹣+.18.解不等式<,并把它的解集在数轴上表示出来.19.小明同学解方程组的过程如下:解:①×2,得2x﹣6y=2③③﹣②,得﹣6y﹣y=2﹣7﹣7y=﹣5,y=;把y=代入①,得x﹣3×=1,x=所以这个方程组的解是你认为他的解法是否正确?若正确,请写出每一步的依据;若错误,请写出正确的解题过程.20.如图,在方格纸中,三角形ABC的三个顶点均为格点,当三角形ABC平移后,得到三角形A1B1C1,其中点A与A1(2,﹣2),点B与B1,点C与C1对应.(1)画出三角形A1B1C1,并写出点B1,C1的坐标;(2)F(a,b)是边BC上一点,请写出点F的对应点F1的坐标.21.已知:如图,三角形ABC中,AC⊥BC.F是边AC上的点,连接BF,作EF∥BC且交AB于点E.过点E作DE⊥EF,交BF于点D.求证:∠1+∠2=180°.下面是证明过程,请在横线上填上适当的推理结论或推理依据.证明:∵AC⊥BC(已知),∴∠ACB=90°(垂直的定义).∵EF∥BC(已知),∴∠AFE==90°().∵DE⊥EF(已知),∴∠DEF=90°(垂直的定义).∴∠AFE=∠DEF(等量代换),∴∥().∴∠2=∠EDF().又∵∠EDF+∠1=180°(邻补角互补),∴∠1+∠2=180°(等量代换).22.近年来,随着人们健康睡眠的意识不断提高,社会各界对于初中生的睡眠时间是否充足越发关注,近日某学校从全校1600人中随机抽取了部分同学,调查他们平均每日睡眠时间,将得到的数据整理后绘制了如图所示的不完整的扇形统计图和频数分布直方图:(1)本次接受调查的人数为;(2)补全直方图;(3)教育部《关于进一步加强中小学生睡眠管理工作的通知》文件指出,初中生睡眠时间应达到9小时,试估计该校学生睡眠时间达标人数,并评价该校初中生睡眠时间情况.23.已知:在三角形ABC和三角形DEF中,AB∥DE.(1)如图1,若三角形DEF的顶点F在三角形ABC的边AB上,且DF∥AC.求证:∠A=∠D;(2)如图2,若三角形DEF的顶点F在三角形ABC的内部,∠A=∠D,则DF与AC 有怎样的位置关系?请说明理由.24.某杨梅经销商以每千克40元的价格分三批向果农购进杨梅,均分拣成“特优”和“普通”两类销售,分拣和包装费用为每千克6元.每批杨梅中最差的10%不能销售,为损耗,其余杨梅均能售完.“特优”杨梅售价是每千克110元,“普通”杨梅售价为每千克30元.(1)该经销商购进的第一批杨梅为500千克,分拣出“特优”杨梅150千克,则他获得的利润是元;(2)该经销商购进的第二批杨梅为800千克,获利4800元,求其中售出“特优”和“普通”杨梅各多少千克?(3)该经销商希望自己第三批杨梅的销售的利润率不少于35%,他收购杨梅时要确保能分拣出“特优”杨梅占收购总量的百分比至少要达到多少(精确到1%)?(利润=销售收入﹣总成本,利润率=×100%)参考答案一、选择题(本大题有10小题,每小题3分,共30分,请选出各题中一个符合题意的正确选项)1.下列实数中,为无理数的是()A.B.C.5 D.π解:A.是有理数,不是无理数,故本选项不符合题意;B.=3,是有理数,不是无理数,故本选项不符合题意;C.5是有理数,不是无理数,故本选项不符合题意;D.π是无理数,故本选项符合题意;故选:D.2.下列采用的调查方式中,不合适的是()A.了解永安溪的水质,采用抽样调查B.检测神州十二号飞船的零部件质量,采用抽样调查C.了解我县中学生视力情况,采用抽样调查D.了解某班同学的数学成绩,采用全面调查解:A.了解永安溪的水质,无法普查,适合采用抽样调查,此选项不符合题意;B.检测神州十二号飞船的零部件质量,事关安全,需要普查,此选项符合题意;C.了解我县中学生视力情况,工作量大,适合采用抽样调查,此选项不符合题意;D.了解某班同学的数学成绩,工作量不大,而且普查能得到准确数据,适合采用全面调查,此选项不符合题意;故选:B.3.﹣1介于下列哪两个整数之间()A.﹣1与0 B.0与1 C.1与2 D.2与3解:∵4<5<9,∴,∴2<<3,∴1<﹣1<2,故选:C.4.已知二元一次方程4x+5y=5,用含x的代数式表示y,则可表示为()A.y=﹣x+1 B.y=﹣x﹣1 C.y=x+1 D.y=x﹣1 解:∵4x+5y=5,∴5y=5﹣4x.∴y=.∴y=1﹣.即y=.故选:A.5.已知a>b,则下列不等式成立的是()A.a+3>b+4 B.2a<2b C.a﹣1>b﹣1 D.﹣4a>﹣4b 解:A、根据不等式的两边都加上(或减去)同一个数或整式,不等号的方向不变,故本选项不成立;B、∵a>b,∴2a>2b,故本选项不成立;C、∵a>b,∴a﹣1>b﹣1,故本选项成立;D、∵a>b,∴﹣4a<﹣4b,故本选项不成立.故选:C.6.如图,直线AB,CD相交于点O,OA平分∠EOC.若∠BOD=42°,则∠EOD的度数为()A.96°B.94°C.104°D.106°解:∵∠AOC=∠BOD,∠BOD=42°,∴∠AOC=42°,∵OA平分∠EOC,∴∠AOE=∠AOC=42°,∴∠EOD=180°﹣(∠AOE+∠BOD)=180°﹣(42°+42°)=96°.故选:A.7.已知x,y满足方程组,则x+3y的值为()A.3 B.C.5 D.6解:,①﹣②,得x+3y=3.故选:A.8.小敏妈妈为小敏爸爸购买了一双运动鞋.小敏、哥哥和爸爸都想知道这双鞋的价格,妈妈让他们猜.爸爸说“至少300元.”哥哥说:“至多260元.”小敏说:“至多200元.”妈妈说:“你们三个人都说错了.”则这双鞋的价格x(元)所在的范围是()A.200<x<260 B.260<x<300 C.200≤x≤260D.260≤x≤300解:依题意得:,∴260<x<300.故选:B.9.在螳螂的示意图中,AB∥DE,∠ABC=126°,∠CDE=70°,则∠BCD=()A.14°B.16°C.18°D.20°解:如图,延长CD交AB于点M.∵∠CDE+∠EDM=180°,∠CDE=70°,∴∠EDM=180°﹣∠CDE=110°.∵AB∥DE,∴∠AMD=∠EDM=110°.又∵∠ABC=∠BMC+∠BCD,∴∠BCD=∠ABC﹣∠BMC=126°﹣110°=16°.故选:B.10.计算机的某种运算程序如图:已知输入3时输出的运算结果是5,输入4时输出的运算结果是7.若输入的数是x(x≠0)时输出的运算结果为P,输入的数是3x时输出的运算结果为Q,则()A.P:Q=3 B.Q:P=3C.(Q﹣1):(P﹣1)=3 D.(Q+1):(P+1)=3解:∵输入3时输出的运算结果是5,输入4时输出的运算结果是7.∴3a+b=5,4a+b=7,∴a=2,b=﹣1,∴P=2x﹣1,Q=6x﹣1,∴(Q+1):(P+1)=(6x):(2x)=3,故选:D.二、填空题(本大题有6小题,每小题3分,共18分)11.9的平方根是±3.解:∵±3的平方是9,∴9的平方根是±3.故答案为:±3.12.如图,三角形ABC中,AC⊥BC,则边AC与边AB的大小关系是AC<AB,依据是垂线段最短.解:∵AC⊥BC,∴边AC与边AB的大小关系是AC<AB,依据为垂线段最短.故答案为:AC<AB,垂线段最短.13.在平面直角坐标系中,若点A(m﹣2,m+3)在第三象限,则m的取值范围是m<﹣3.解:∵A(m﹣2,m+3)在第三象限,∴,解得m<﹣3.故答案为:m<﹣3.14.某班用700元钱购买足球和篮球共11个,其中篮球单价为50元/个,足球单价为80元/个,若设购买篮球x个,足球y个,则可列方程组为.解:设购买篮球x个,购买足球y个,根据题意可列方程组:,故答案为:.15.关于x的不等式组的解集为﹣1<x<2,则a+b的值为5.解:解不等式3x﹣a<2,得:x<,解不等式x+2b>1,得:x>1﹣2b,∵不等式组的解集为﹣1<x<2,∴1﹣2b=﹣1,=2,解得a=4,b=1,∴a+b=5,故答案为:5.16.如图,在平面直角坐标系中,将正方形①依次平移后得到正方形②,③,④…;相应地,顶点A依次平移得到A1,A2,A3,…,其中A点坐标为(1,0),A1坐标为(0,1),则A20的坐标为(﹣19,8).解:观察图形可知:A3(﹣2,1),A6(﹣5.2),A9(﹣8,3),•••,∵﹣5=﹣2﹣3,﹣8=﹣2+2×(﹣3),∴﹣2+6×(﹣3)=﹣19,∴A18(﹣17,6),把A18向左平移2个单位,再向上平移2个单位得到A20,∴A20(﹣19,8).故答案为:(﹣19,8)三、解答题(本大题有8小题,17题4分,18~21题每题6分,22~24题每题8分,共52分)17.计算:|﹣|﹣+.解:原式=﹣3+2=﹣1.18.解不等式<,并把它的解集在数轴上表示出来.解:去分母得:2(x﹣1)<3x+1,去括号得:2x﹣2<3x+1,移项得:2x﹣3x<1+2,合并得:﹣x<3,解得:x>﹣3.19.小明同学解方程组的过程如下:③﹣②,得﹣6y﹣y=2﹣7﹣7y=﹣5,y=;把y=代入①,得x﹣3×=1,x=所以这个方程组的解是你认为他的解法是否正确?若正确,请写出每一步的依据;若错误,请写出正确的解题过程.解:错误;理由如下:①×2,得2x﹣6y=2③,③﹣②,得﹣6y+y=2﹣7,∴﹣5y=﹣5,∴y=1,把y=1代入①得x﹣3×1=1,x=4,∴这个方程组的解为.20.如图,在方格纸中,三角形ABC的三个顶点均为格点,当三角形ABC平移后,得到三角形A1B1C1,其中点A与A1(2,﹣2),点B与B1,点C与C1对应.(1)画出三角形A1B1C1,并写出点B1,C1的坐标;(2)F(a,b)是边BC上一点,请写出点F的对应点F1的坐标.解:(1)如图所示,三角形A1B1C1即为所求;点B1、C1的坐标分别为(3,1),(1,﹣1).(2)点F的对应点F1的坐标为(a+6,b﹣3).21.已知:如图,三角形ABC中,AC⊥BC.F是边AC上的点,连接BF,作EF∥BC且交AB于点E.过点E作DE⊥EF,交BF于点D.求证:∠1+∠2=180°.下面是证明过程,请在横线上填上适当的推理结论或推理依据.证明:∵AC⊥BC(已知),∴∠ACB=90°(垂直的定义).∵EF∥BC(已知),∴∠AFE=∠ACB=90°(两直线平行,同位角相等).∵DE⊥EF(已知),∴∠DEF=90°(垂直的定义).∴∠AFE=∠DEF(等量代换),∴DE∥AC(内错角相等,两直线平行).∴∠2=∠EDF(两直线平行,内错角相等).又∵∠EDF+∠1=180°(邻补角互补),∴∠1+∠2=180°(等量代换).【解答】证明:∵AC⊥BC(已知),∴∠ACB=90°(垂线的定义).∵EF∥BC(已知),∴∠AFE=∠ACB=90°(两直线平行,同位角相等).∵DE⊥EF(已知),∴∠DEF=90°(垂线的定义).∴∠AFE=∠DEF(等量代换).∴DE∥AC(内错角相等,两直线平行).∴∠2=∠EDF(两直线平行,内错角相等).∵∠EDF+∠1=180°(邻补角互补),∴∠1+∠2=180°(等量代换).故答案为:∠ACB;两直线平行,同位角相等;DE;AC;内错角相等,两直线平行;两直线平行,内错角相等,22.近年来,随着人们健康睡眠的意识不断提高,社会各界对于初中生的睡眠时间是否充足越发关注,近日某学校从全校1600人中随机抽取了部分同学,调查他们平均每日睡眠时间,将得到的数据整理后绘制了如图所示的不完整的扇形统计图和频数分布直方图:(1)本次接受调查的人数为100;(2)补全直方图;(3)教育部《关于进一步加强中小学生睡眠管理工作的通知》文件指出,初中生睡眠时间应达到9小时,试估计该校学生睡眠时间达标人数,并评价该校初中生睡眠时间情况.解:(1)27÷27%=100(人);故答案为:100;(2)100﹣27﹣8﹣30=35(人),补全频数分布直方图如下:(3)1600×=480(人),答:估计该校1600名学生中睡眠时间达标人数约为480人,睡眠达标人数占总人数的30%,该校学生睡眠时间不足.23.已知:在三角形ABC和三角形DEF中,AB∥DE.(1)如图1,若三角形DEF的顶点F在三角形ABC的边AB上,且DF∥AC.求证:∠A=∠D;(2)如图2,若三角形DEF的顶点F在三角形ABC的内部,∠A=∠D,则DF与AC 有怎样的位置关系?请说明理由.【解答】证明:(1)如图1,∵AB∥DE,∴∠D=∠BFO.∵DF∥AC,∴∠FOB=∠ACB.又∵∠A+∠B+∠ACB=180°,∠BFO+∠B+∠FOB=180°,∴∠BFO=∠A.∴∠A=∠D.(2)DF∥AC,理由如下:如图2,延长AC交DE于点M.∵AB∥DE,∴∠A=∠AMD.又∵∠A=∠D,∴∠AMD=∠D.∴AM∥DF,即AC∥DF.24.某杨梅经销商以每千克40元的价格分三批向果农购进杨梅,均分拣成“特优”和“普通”两类销售,分拣和包装费用为每千克6元.每批杨梅中最差的10%不能销售,为损耗,其余杨梅均能售完.“特优”杨梅售价是每千克110元,“普通”杨梅售价为每千克30元.(1)该经销商购进的第一批杨梅为500千克,分拣出“特优”杨梅150千克,则他获得的利润是2500元;(2)该经销商购进的第二批杨梅为800千克,获利4800元,求其中售出“特优”和“普通”杨梅各多少千克?(3)该经销商希望自己第三批杨梅的销售的利润率不少于35%,他收购杨梅时要确保能分拣出“特优”杨梅占收购总量的百分比至少要达到多少(精确到1%)?(利润=销售收入﹣总成本,利润率=×100%)解:(1)110×150+(500﹣150﹣500×10%)×30﹣6×500﹣40×500=2500;(2)设售出“特优”杨梅x千克,“普通”杨梅y千克,则解得;答:售出“特优”杨梅250千克,“普通”杨梅470千克.(3)设收购总量为m千克,“特优”杨梅占收购总量的百分比为a,则≥35%,解得a≥43.875%,即a≥44%.答:他收购杨梅时要确保能分拣出“特优”杨梅占收购总量的百分比至少要达到44%.。
2015年浙江省杭州市下城区七年级下学期数学期末试卷及解析答案

2014-2015学年浙江省杭州市下城区七年级(下)期末数学试卷一、仔细选一选(每小题3分,共30分)1.(3分)图中的小船通过平移后可得到的图案是()A. B. C. D.2.(3分)下面的调查中,适宜采用全面调查方式的是()A.了解居民对废电池的处理情况B.为了制作校服,了解某班同学的身高情况C.检测杭州的空气质量D.了解某市居民的阅读情况3.(3分)计算:(﹣t)6•t2=()A.t8B.﹣t8 C.﹣t12D.t124.(3分)在下列图形中,∠1与∠2是同位角的是()A.B.C.D.5.(3分)下列因式分解正确的是()A.a2+8ab+16b2=(a+4b)2B.a4﹣16=(a2+4)(a2﹣4)C.4a2+2ab+b2=(2a+b)2D.a2+2ab﹣b2=(a﹣b)26.(3分)世界上最小的开花结果植物是澳大利亚的出水浮萍,它的果实像一粒微小的无花果,质量只有0.00000007g的,一个橘子质量约为70g,一个橘子的质量相当于澳大利亚出水浮萍果实质量的()倍.A.1010 B.109C.10﹣9 D.10﹣107.(3分)解方程组,下列四种方法中,最简便的是()A.代入消元法B.(1)×29﹣(2)×26,先消去xC.(1)×26﹣(2)×29,先消去y D.(1)+(2),两方程相加8.(3分)若x2+2(2p﹣3)x+4是完全平方式,则p的值等于()A.B.2 C.2或1 D.或9.(3分)已知关于x的分式方程+=0有增根,则m=()A.0 B.﹣4 C.2或1 D.0或﹣410.(3分)已知a1=x﹣1(x≠1且x≠2),a2=,a3=,…,a n=,则a2015等于()A. B.x+1 C.x﹣1 D.二、认真填一填(每小题4分,共24分)11.(4分)已知一组数据的频率为0.35,数据总数为500个,则这组数据的频数为.12.(4分)已知是方程mx+3y=1的一个解,则m的值是.13.(4分)关于x的代数式(3﹣ax)(x2+2x﹣1)的展开式中不含x2项,则a=.14.(4分)已知正实数a,b满足a﹣b=4,ab=21,则a2+b2=,+=.15.(4分)已知D是△ABC的边BC所在直线上的一点,与B,C不重合,过D 分别作DF∥AC交AB所在直线于F,DE∥AB交AC所在直线于E.若∠B+∠C=110°,则∠FDE的度数是.16.(4分)使是自然数的非负整数n的值为.三、全面答一答(本题有7个小题,共66分)17.(6分)(1)计算:(﹣2a3)÷a﹣(﹣2a)2(2)计算:(﹣2x﹣1)2﹣4(x﹣1)(x+2)18.(8分)(1)化简求值:÷﹣1,并选择一个自己喜欢的数代入求值;(2)解方程:﹣=0.19.(8分)我市开展的“增强学生体质,丰富学校生活”活动中,某校根据实际情况,决定主要开设A:羽毛球,B:篮球,C:跑步,D:跳绳,这四种运动项目.为了解学生喜欢哪一种项目,随机抽取了部分学生进行调查,并将调查结果绘制成如图所示的条形统计图和扇形统计图.请你结合图中的信息解答下列问题:(1)该校数学兴趣小组采取的调查方式是;(填”普查“或”抽样调查“),一共调查了名学生.(2)求样本中喜欢B项目的人数百分比,并补全条形统计图;(3)求扇形统计图中,C所对应扇形的圆心角的度数;(4)根据调查的结果,请你估计全校1200名学生喜欢羽毛球有多少人?20.(10分)如图,已知AB∥DE∥MN,AD平分∠CAB,CD⊥DE.(1)∠DAB=15°,求∠ACD的度数;(2)判断等式∠CDA=∠NCD+∠DAB是否成立,并说明理由.21.(10分)(1)①如图1,从边长为a的正方形纸片中剪去一个边长为b的小正方形,设图1中的阴影部分面积为s,则s=(用含a,b代数式表示)②若把图1中的图形,沿着线段AB剪开(如图2),把剪成的两张纸片拼成如图3的长方形,请写出上述过程你所发现的乘法公式.(2)下列纸片中有两张是边长为a的正方形,三张是长为a,宽为b的长方形纸片,一张是边长为b的正方形纸片,你能否将这些纸片拼成一个长方形,请你画出草图,并写出相应的等式.22.(12分)甲,乙两人两次同时在同一家超市购买糖果,两次购买糖果的价格分别是每千克a元和b元(a≠b),甲每次购买10千克糖果,乙每次花10元钱购买糖果.(1)甲两次购买糖果共付款元,乙两次共购买千克糖果(用含a,b的代数式表示);(2)请你判断甲,乙两人的购买方式哪一种购买的平均价格更低?请说明理由.23.(12分)下图是小红在某路口统计20分钟各种车辆通过情况制成的统计表,其中空格处的字迹已模糊,但小红还记得7:50~8:00时段内的电瓶车车辆与8:00~8:10时段内的货车车辆数之比是7:2电瓶车公交车货车小轿车合计7:50~8:005631388:00~8:1054577合计6730108(1)若在7:50~8:00时段,经过的小轿车数量正好是电瓶车数量的,求这个时段内的电瓶车通过的车辆数;(2)根据上述表格数据,求在7:50~8:00和8:00~8:10两个时段内电瓶车和货车的车辆数;(3)据估计,在所调查的7:50~8:00时段内,每增加1辆公交车,可减少8辆小轿车行驶,为了使该时段内小轿车流量减少到比公交车多13辆,则在该路口应再增加几辆公交车.2014-2015学年浙江省杭州市下城区七年级(下)期末数学试卷参考答案与试题解析一、仔细选一选(每小题3分,共30分)1.(3分)图中的小船通过平移后可得到的图案是()A. B. C. D.【解答】解:根据平移定义可得:图中的小船通过平移后可得到的图案是B.故选:B.2.(3分)下面的调查中,适宜采用全面调查方式的是()A.了解居民对废电池的处理情况B.为了制作校服,了解某班同学的身高情况C.检测杭州的空气质量D.了解某市居民的阅读情况【解答】解:A、了解居民对废电池的处理情况,应当采用抽样调查的方式,故本选项错误;B、为了制作校服,了解某班同学的身高情况,必须全面调查;C、检测杭州的空气质量,应当使用抽样调查,故本选项错误;D、了解某市居民的阅读情况,应当采用抽样调查的方式,故本选项错误.故选:B.3.(3分)计算:(﹣t)6•t2=()A.t8B.﹣t8 C.﹣t12D.t12【解答】解:(﹣t)6•t2=t8,故选:A.4.(3分)在下列图形中,∠1与∠2是同位角的是()A.B.C.D.【解答】解:根据同位角的定义可知答案是C.故选:C.5.(3分)下列因式分解正确的是()A.a2+8ab+16b2=(a+4b)2B.a4﹣16=(a2+4)(a2﹣4)C.4a2+2ab+b2=(2a+b)2D.a2+2ab﹣b2=(a﹣b)2【解答】解:A、原式=(a+4b)2,正确;B、原式=(a2+4)(a+2)(a﹣2),错误;C、原式=(2a+b)2,错误;D、原式不能分解,错误,故选:A.6.(3分)世界上最小的开花结果植物是澳大利亚的出水浮萍,它的果实像一粒微小的无花果,质量只有0.00000007g的,一个橘子质量约为70g,一个橘子的质量相当于澳大利亚出水浮萍果实质量的()倍.A.1010 B.109C.10﹣9 D.10﹣10【解答】解:70÷0.00000007=10000 0000 0=109,故选:B.7.(3分)解方程组,下列四种方法中,最简便的是()A.代入消元法B.(1)×29﹣(2)×26,先消去xC.(1)×26﹣(2)×29,先消去y D.(1)+(2),两方程相加【解答】解:解方程组,下列四种方法中,最简便的是(1)+(2),两方程相加,故选:D.8.(3分)若x2+2(2p﹣3)x+4是完全平方式,则p的值等于()A.B.2 C.2或1 D.或【解答】解:∵x2+2(2p﹣3)x+4是完全平方式,∴2p﹣3=±2,解得:p=或,故选:D.9.(3分)已知关于x的分式方程+=0有增根,则m=()A.0 B.﹣4 C.2或1 D.0或﹣4【解答】解:去分母得:2(x+2)+mx=0,由分式方程有增根,得到(x+2)(x﹣2)=0,即x=2或x=﹣2,把x=2代入整式方程得:m=﹣4,把x=﹣2代入整式方程得:m=0,故选:D.10.(3分)已知a1=x﹣1(x≠1且x≠2),a2=,a3=,…,a n=,则a2015等于()A. B.x+1 C.x﹣1 D.【解答】解:∵a1=x﹣1,a2=,a3==,a4==x﹣1,…∴x﹣1,,循环出现,∵2015÷3=671…2,∴a2015的值与a2的值相同,∴a2015=,故选:D.二、认真填一填(每小题4分,共24分)11.(4分)已知一组数据的频率为0.35,数据总数为500个,则这组数据的频数为175.【解答】解:∵一组数据的频率是0.35,数据总数为500个,∴这组数据的频数为500×0.35=175.故答案为:175.12.(4分)已知是方程mx+3y=1的一个解,则m的值是5.【解答】解:∵是方程mx+3y=1的一个解,∴2m﹣9=1,解得:m=5,故答案为:5.13.(4分)关于x的代数式(3﹣ax)(x2+2x﹣1)的展开式中不含x2项,则a=.【解答】解:(3﹣ax)(x2+2x﹣1)=(3﹣2a)x2+(a+6)x﹣3﹣ax3,由展开式中不含x2项,得到3﹣2a=0,解得:a=,故答案为:.14.(4分)已知正实数a,b满足a﹣b=4,ab=21,则a2+b2=58,+=.【解答】解:∵a﹣b=4,ab=21,∴(a﹣b)2=a2+b2﹣2ab=16,∴a2+b2=16+2ab=16+42=58,∴a+b====10,∴+==.故答案为:58,.15.(4分)已知D是△ABC的边BC所在直线上的一点,与B,C不重合,过D 分别作DF∥AC交AB所在直线于F,DE∥AB交AC所在直线于E.若∠B+∠C=110°,则∠FDE的度数是70°或110°.【解答】解:如图:分为三种情况:第一种情况:如图①,∵∠B+∠C=110°,∴∠A=180°﹣(∠B+∠C)=70°,∵DE∥AB,DF∥AC,∴∠A=∠DFB,∠FDE=∠DFB,∴∠FDE=∠A=70°;第二种情况:如图②,∵∠B+∠ACB=110°,∴∠BAC=180°﹣(∠B+∠ACB)=70°,∵DE∥AB,DF∥AC,∴∠BAC=∠E=70°,∠FDE+∠E=180°,∴∠FDE=110°;第三种情况:如图③,∵∠ABC+∠C=110°,∴∠BAC=180°﹣(∠ABC+∠C)=70°,∵DE∥AB,DF∥AC,∴∠BAC=∠E=70°,∠FDE+∠E=180°,∴∠FDE=110°;故答案为:70°或110°.16.(4分)使是自然数的非负整数n的值为0,4,12,28.【解答】解:∵==+=n﹣4+,要使是自然数,那么n+4是32的约数,即n+4=1、2、4、8、16,32,∴n=﹣3、﹣2、0、4、12,28,又n为非负整数,∴n=0、4、12,28.故答案为:0,4,12,28.三、全面答一答(本题有7个小题,共66分)17.(6分)(1)计算:(﹣2a3)÷a﹣(﹣2a)2(2)计算:(﹣2x﹣1)2﹣4(x﹣1)(x+2)【解答】解:(1)原式=﹣2a2﹣4a2=﹣6a2;(2)原式=4x2+4x+1﹣4(x2+x﹣2)=4x2+4x+1﹣4x2﹣4x+8=9.18.(8分)(1)化简求值:÷﹣1,并选择一个自己喜欢的数代入求值;(2)解方程:﹣=0.【解答】解:(1)原式=•﹣1=﹣1==,当a=0时,原式=﹣;(2)去分母得:x+1+2(x﹣1)=0,即x+1+2x﹣2=0,解得:x=,经检验x=是分式方程的解.19.(8分)我市开展的“增强学生体质,丰富学校生活”活动中,某校根据实际情况,决定主要开设A:羽毛球,B:篮球,C:跑步,D:跳绳,这四种运动项目.为了解学生喜欢哪一种项目,随机抽取了部分学生进行调查,并将调查结果绘制成如图所示的条形统计图和扇形统计图.请你结合图中的信息解答下列问题:(1)该校数学兴趣小组采取的调查方式是抽样调查;(填”普查“或”抽样调查“),一共调查了100名学生.(2)求样本中喜欢B项目的人数百分比,并补全条形统计图;(3)求扇形统计图中,C所对应扇形的圆心角的度数;(4)根据调查的结果,请你估计全校1200名学生喜欢羽毛球有多少人?【解答】解:(1)数学兴趣小组采取的调查方式是抽样调查.抽取的总人数:=100(人);(2)样本中喜欢B项目的人数百分比是:1﹣44%﹣28%﹣8%=20%;B类的人数是:100×20%=20(人),补图如下:;(3)扇形统计图中,C所对应扇形的圆心角的度数是:360°×8%=28.8°;(4)根据题意得:1200×44%=528(人),答:全校喜欢乒乓球的人数是528人.20.(10分)如图,已知AB∥DE∥MN,AD平分∠CAB,CD⊥DE.(1)∠DAB=15°,求∠ACD的度数;(2)判断等式∠CDA=∠NCD+∠DAB是否成立,并说明理由.【解答】解:(1)延长CD交AB于点F,∵AB∥DE∥MN,CD⊥DE,∴CF⊥AB.∵AD平分∠CAB,∠DAB=15°,∴∠CAF=30°,∴∠ACD=90°﹣30°=60°;(2)延长ED交AC于点G,∵AB∥DE∥MN,∴∠CDG=∠NCD,∠GDA=∠DAB,∴∠CDA=∠NCD+∠DAB.21.(10分)(1)①如图1,从边长为a的正方形纸片中剪去一个边长为b的小正方形,设图1中的阴影部分面积为s,则s=a2﹣b2(用含a,b代数式表示)②若把图1中的图形,沿着线段AB剪开(如图2),把剪成的两张纸片拼成如图3的长方形,请写出上述过程你所发现的乘法公式.(2)下列纸片中有两张是边长为a的正方形,三张是长为a,宽为b的长方形纸片,一张是边长为b的正方形纸片,你能否将这些纸片拼成一个长方形,请你【解答】解:(1)①阴影部分的面积s=a2﹣b2,故答案为:a2﹣b2;②∵图3中s=(a+b)(a﹣b),∴a2﹣b2=(a+b)(a﹣b);(2)拼接的长方形如图所示,长为(b+2a),宽为a+b,面积为b2+3ab+2a2,所以,得到的等式为(b+2a)(a+b)=b2+3ab+2a2.22.(12分)甲,乙两人两次同时在同一家超市购买糖果,两次购买糖果的价格分别是每千克a元和b元(a≠b),甲每次购买10千克糖果,乙每次花10元钱购买糖果.(1)甲两次购买糖果共付款10(a+b)元,乙两次共购买(+)千克糖果(用含a,b的代数式表示);(2)请你判断甲,乙两人的购买方式哪一种购买的平均价格更低?请说明理由.【解答】解:(1)∵两次购买糖果的价格分别是每千克a元和b元(a≠b),甲每次购买10千克糖果,∴甲两次购买糖果共付款:10(a+b)元,∵两次购买糖果的价格分别是每千克a元和b元(a≠b),乙每次花10元钱购买糖果,∴乙两次共购买(+)千克糖果;(2)根据题意得:甲买糖果的平均价格为=(元);乙买糖果的平均价格为=(元),∵﹣==≥0,∴乙买糖果的平均价格低.23.(12分)下图是小红在某路口统计20分钟各种车辆通过情况制成的统计表,其中空格处的字迹已模糊,但小红还记得7:50~8:00时段内的电瓶车车辆与8:00~8:10时段内的货车车辆数之比是7:2电瓶车公交车货车小轿车合计7:50~8:005631388:00~8:1054577合计6730108(1)若在7:50~8:00时段,经过的小轿车数量正好是电瓶车数量的,求这个时段内的电瓶车通过的车辆数;(2)根据上述表格数据,求在7:50~8:00和8:00~8:10两个时段内电瓶车和货车的车辆数;(3)据估计,在所调查的7:50~8:00时段内,每增加1辆公交车,可减少8辆小轿车行驶,为了使该时段内小轿车流量减少到比公交车多13辆,则在该路口应再增加几辆公交车.【解答】解:(1)63=63×=56(辆).答:7:50~8:00时段内,通过电瓶车56辆.(2)在8:00~8:10时段内通过货车56÷7×2=8×2+=16(辆);在7:50~8:00时段内通过货车30﹣16=14(辆);在8:00~8:10时段内通过电瓶车67﹣56=11(辆).通过货车56÷7×2=8×2=16辆,7:50~8:00时段内,通过电瓶车56辆,在8:00~8:10时段内通过电瓶车67﹣56=11辆.(3)设在该路口应再增加x辆公交车.63﹣8x﹣(5+x)=13,63﹣8x﹣5﹣x=13,58﹣9x=13,﹣9x=﹣45,x=5.答:在该路口应再增加5辆公交车.赠送初中数学几何模型【模型二】半角型:图形特征:45°4321DA1FDAB正方形ABCD 中,∠EAF =45° ∠1=12∠BAD 推导说明:1.1在正方形ABCD 中,点E 、F 分别在BC 、CD 上,且∠FAE =45°,求证:EF =BE +DF45°DEa +b-a45°A1.2在正方形ABCD 中,点E 、F 分别在BC 、CD 上,且EF =BE +DF ,求证:∠FAE =45°DEa+b-aa45°A BE 挖掘图形特征:a+bx-aa 45°DBa+b-a45°A运用举例:1.正方形ABCD的边长为3,E、F分别是AB、BC边上的点,且∠EDF=45°.将△DAE绕点D逆时针旋转90°,得到△DCM.(1)求证:EF=FM(2)当AE=1时,求EF的长.DE2.如图,△ABC是边长为3的等边三角形,△BDC是等腰三角形,且∠BDC=120°.以D为顶点作一个60°角,使其两边分别交AB于点M,交AC于点N,连接MN,求△AMN的周长.ND CABM3.如图,梯形ABCD中,AD∥BC,∠C=90°,BC=CD=2AD=4,E为线段CD上一点,∠ABE=45°.(1)求线段AB的长;(2)动点P从B出发,沿射线..BE运动,速度为1单位/秒,设运动时间为t,则t为何值时,△ABP为等腰三角形;(3)求AE-CE的值.变式及结论:4.在正方形ABCD中,点E,F分别在边BC,CD上,且∠EAF=∠CEF=45°.(1)将△ADF绕着点A顺时针旋转90°,得到△ABG(如图1),求证:△AEG≌△AEF;(2)若直线EF与AB,AD的延长线分别交于点M,N(如图2),求证:EF2=ME2+NF2;(3)将正方形改为长与宽不相等的矩形,若其余条件不变(如图3),请你直接写出线段EF,BE,DF之间的数量关系.DABFEDCF。
浙教版七年级下册数学期末试卷及参考答案

浙教版七年级下册数学期末试卷及参考答案一、填空题1、大于2、1/43、y=(10-3x)/2,x=(10-2y)/34、1x10^-75、x=1/46、4cm²7、x≠1,x=08、60°9、-1/210、x(y-9)11、吊桥、塔吊等12、x=-3,x=213、①、③、④14、B15、C16、C17、5㎝二、选择题14、B15、C16、C17、D18、B二、选择题。
(20分)14.选B。
由题意可知,当x=0时,y=1;当x=1时,y=0;当x=2时,y=-1;当x=3时,y=-2,可得出y=-x+1,故选B。
15.选C。
将y=2x-1代入2x-y=1中,得2x-(2x-1)=1,解得y=-1,故选C。
16.选D。
将y=2x+1代入x-y+1=0中,得x-(2x+1)+1=0,解得x=-2,故选D。
17.选D。
由题意可得,当x=1时,y=2;当x=2时,y=3;当x=3时,y=4,可得出y=x+1,故选D。
18.选D。
解方程组得x=1,y=4,将其代入选项中可得2x+3y=14,故选D。
19.选B。
由题意可得,x+3y=6,3x+5y=12,解得x=3,y=1,代入选项中可得3x+y=12,故选B。
20.选B。
将y=2x-1代入4x+3y=9中,得4x+3(2x-1)=9,解得x=2,代入y=2x-1中,得y=3,故选B。
21.选B。
解方程组得x=2,y=1,代入选项中可得x2+y2=5,故选B。
22.选A。
将y=-2x+1代入x2+y2=5中,得x2+(-2x+1)2=5,化简得5x2-4x-4=0,解得x=-1或x=0.8,代入y=-2x+1中,得y=3或y=-0.6,故选A。
23.选C。
将y=3x-1代入2x-y=1中,得2x-(3x-1)=1,解得x=2,代入y=3x-1中,得y=5,故选C。
三、计算题。
(23分)24.(1)解:将2x+1作为分母,得frac{3x-2}{2x+1}=\frac{2x+4}{2x+1}$$化简,得3x-2=2x+4$$解得x=3,将x=3代入原方程检验,左边=3*3-2=7,右边=2*3+1=7,故x=3是原方程的根。
浙教版七年级数学下册试题第二学期期末检测.docx

浙江锦绣·育才教育集团2015年第二学期期末检测初一数学试题卷考生须知:本试卷分试题卷和答题卷两部分,满分120分,考试时间100分钟. 答题时,不能使用计算器,在答题卷指定位置内写明校名、姓名和班级.所有答案都做在答题卡标定的位置上,请务必注意试题序号和答题序号相对应.一、仔细选一选(本题有10个小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的,请选出正确的选项.注意可以用多种不同的方法来选取正确答案. 1.下列各式的计算中,正确的是( )A .422-=--B .0)12(0=+C .27)31(3=-- D .1)1(02=+m2.如图,把一块含有45°角的直角三角板的两个顶点放在直尺的对边上,如果∠1=25°,那么∠2的度数是( ) A .30° B .25° C .20° D .15° 3.若a x=3,b y=3,则yx 23-等于( )A .2b a B .ab2 C .b a 2+ D .b a2 4.若分式方程424-+=-x ax x 有增根,则a 的值为( ) A .4 B .2 C .1 D .05.如图是近年来我国财政收入同比(与上一年比较)增长率的折线统计图,其中2008年我国财政收入约为61330亿元,下列命题: ①2007年我国财政收入约为61330(1-19.5%)亿元.; ②这四年中,2009年我国财政收入最少;③2010年我国财政收入约为61330(1—+11.7%)(1+21.3%)亿元. 其中正确的有( )A .3个B .2个C .1 个D .0个 6.计算)1(1112-•-++m mm的结果是( ) A .122+--m m B .122-+-m m C .122--m m D .12-m7.已知多项式b ax +与222+-x x 的乘积展开式中不含x 的一次项,且常数项为-4,则ba 的值为( ) A .-2 B .2 C .-1 D .18.为保证某高速公路在2013年底全线顺利通车,某路段规定在若干天内完成修建任务.已知甲队单独完成这项工程比规定时间多用10天,乙队单独完成这项工程比规定时间多用40天,如果甲、乙两队合作,可比规定时间提前14天完成任务,若设规定的时间为x 天,由题意列出方程是( )A .141401101-=+++x x x B .401141101-=++-x x x C .141401101-=+-+x x x D .141401101+=-+-x x x 9.下列不等式变形中,一定正确的是( )A .若bc ac >,则a >bB .若a >b ,则22bc ac > C .若22bc ac >,则a >b D .若a >0,b >0,且ba 11>,则a >b 10.不等式组⎩⎨⎧<<+<<-5321x a x a 的解集是3<x <a +2,则a 的取值范围是( )A .a >1B .a ≤3C .a <1或a >3D .1<a ≤3二、认真填一填(本题有6小题,每小题4分,共24分)要注意认真看清题目的条件和要填写的内容,尽量完整地填写答案.11.因式分解:2382xy x -= 。
杭州七年级下册数学期末试卷测试卷 (word版,含解析)

杭州七年级下册数学期末试卷测试卷(word版,含解析)一、解答题1.如图1,已知直线m∥n,AB是一个平面镜,光线从直线m上的点O射出,在平面镜AB上经点P反射后,到达直线n上的点Q.我们称OP为入射光线,PQ为反射光线,镜面反射有如下性质:入射光线与平面镜的夹角等于反射光线与平面镜的夹角,即∠OPA=∠QPB.(1)如图1,若∠OPQ=82°,求∠OPA的度数;(2)如图2,若∠AOP=43°,∠BQP=49°,求∠OPA的度数;(3)如图3,再放置3块平面镜,其中两块平面镜在直线m和n上,另一块在两直线之间,四块平面镜构成四边形ABCD,光线从点O以适当的角度射出后,其传播路径为O→P→Q→R→O→P→…试判断∠OPQ和∠ORQ的数量关系,并说明理由.2.如图1,已AB∥CD,∠C=∠A.(1)求证:AD∥BC;(2)如图2,若点E是在平行线AB,CD内,AD右侧的任意一点,探究∠BAE,∠CDE,∠E之间的数量关系,并证明.(3)如图3,若∠C=90°,且点E在线段BC上,DF平分∠EDC,射线DF在∠EDC的内部,且交BC于点M,交AE延长线于点F,∠AED+∠AEC=180°,①直接写出∠AED与∠FDC的数量关系:.②点P在射线DA上,且满足∠DEP=2∠F,∠DEA﹣∠PEA=514∠DEB,补全图形后,求∠EPD的度数3.如图1,AB//CD,点E、F分别在AB、CD上,点O在直线AB、CD之间,且100EOF∠=︒.(1)求BEO OFD ∠+∠的值;(2)如图2,直线MN 分别交BEO ∠、OFC ∠的角平分线于点M 、N ,直接写出EMN FNM ∠-∠的值;(3)如图3,EG 在AEO ∠内,AEG m OEG ∠=∠;FH 在DFO ∠内,DFH m OFH ∠=∠,直线MN 分别交EG 、FH 分别于点M 、N ,且50FMN ENM ∠-∠=︒,直接写出m 的值.4.已知点C 在射线OA 上.(1)如图①,CD //OE ,若∠AOB =90°,∠OCD =120°,求∠BOE 的度数;(2)在①中,将射线OE 沿射线OB 平移得O ′E '(如图②),若∠AOB =α,探究∠OCD 与∠BO ′E ′的关系(用含α的代数式表示)(3)在②中,过点O ′作OB 的垂线,与∠OCD 的平分线交于点P (如图③),若∠CPO ′=90°,探究∠AOB 与∠BO ′E ′的关系.5.如图1,MN ∥PQ ,点C 、B 分别在直线MN 、PQ 上,点A 在直线MN 、PQ 之间. (1)求证:∠CAB =∠MCA +∠PBA ;(2)如图2,CD∥AB,点E在PQ上,∠ECN=∠CAB,求证:∠MCA=∠DCE;(3)如图3,BF平分∠ABP,CG平分∠ACN,AF∥CG.若∠CAB=60°,求∠AFB的度数.二、解答题6.问题情境:如图1,AB∥CD,∠PAB=130°,∠PCD=120°,求∠APC的度数.小明的思路是:如图2,过P作PE∥AB,通过平行线性质来求∠APC.(1)按小明的思路,易求得∠APC的度数为度;(2)如图3,AD∥BC,点P在射线OM上运动,当点P在A、B两点之间运动时,∠ADP=∠α,∠BCP=∠β.试判断∠CPD、∠α、∠β之间有何数量关系?请说明理由;(3)在(2)的条件下,如果点P在A、B两点外侧运动时(点P与点A、B、O三点不重合),请你直接写出∠CPD、∠α、∠β间的数量关系.7.综合与探究(问题情境)王老师组织同学们开展了探究三角之间数量关系的数学活动.(1)如图1,EF∥MN,点A、B分别为直线EF、MN上的一点,点P为平行线间一点,请直接写出∠PAF、∠PBN和∠APB之间的数量关系;(问题迁移)(2)如图2,射线OM与射线ON交于点O,直线m∥n,直线m分别交OM、ON于点A、D,直线n分别交OM、ON于点B、C,点P在射线OM上运动.①当点P在A、B(不与A、B重合)两点之间运动时,设∠ADP=∠α,∠BCP=∠β.则∠CPD,∠α,∠β之间有何数量关系?请说明理由;②若点P不在线段AB上运动时(点P与点A、B、O三点都不重合),请你画出满足条件的所有图形并直接写出∠CPD,∠α,∠β之间的数量关系.8.如图1,E 点在BC 上,∠A =∠D ,AB ∥CD . (1)直接写出∠ACB 和∠BED 的数量关系 ;(2)如图2,BG 平分∠ABE ,与∠CDE 的邻补角∠EDF 的平分线交于H 点.若∠E 比∠H 大60°,求∠E ;(3)保持(2)中所求的∠E 不变,如图3,BM 平分∠ABE 的邻补角∠EBK ,DN 平分∠CDE ,作BP ∥DN ,则∠PBM 的度数是否改变?若不变,请求值;若改变,请说理由.9.已知//a b ,直角ABC 的边与直线a 分别相交于O 、G 两点,与直线b 分别交于E 、F 点,90ACB ∠=.(1)将直角ABC 如图1位置摆放,如果46AOG ∠=,则CEF ∠=______; (2)将直角ABC 如图2位置摆放,N 为AC 上一点,180NEF CEF ︒∠+∠=,请写出NEF ∠与AOG ∠之间的等量关系,并说明理由.(3)将直角ABC 如图3位置摆放,若140GOC ∠=,延长AC 交直线b 于点Q ,点P 是射线GF 上一动点,探究POQ ∠,OPQ ∠与PQF ∠的数量关系,请直接写出结论.10.如图1,在平面直角坐标系中,()()02A a C b ,,,,且满足()240a b a b ++-+=,过C 作CB x ⊥轴于B(1)求三角形ABC 的面积.(2)发过B 作//BD AC 交y 轴于D ,且,AE DE 分别平分,CAB ODB ∠∠,如图2,若,90()CAB ACB a αββ∠=∠=+=︒,求AED ∠的度数.(3)在y 轴上是否存在点P ,使得三角形ABC 和三角形ACP 的面积相等?若存在,求出P 点坐标;若不存在;请说明理由.三、解答题11.(1)如图1,∠BAD 的平分线AE 与∠BCD 的平分线CE 交于点E ,AB ∥CD ,∠ADC =50°,∠ABC =40°,求∠AEC 的度数;(2)如图2,∠BAD 的平分线AE 与∠BCD 的平分线CE 交于点E ,∠ADC =α°,∠ABC =β°,求∠AEC 的度数;(3)如图3,PQ ⊥MN 于点O ,点A 是平面内一点,AB 、AC 交MN 于B 、C 两点,AD 平分∠BAC 交PQ 于点D ,请问ADPACB ABC∠∠-∠的值是否发生变化?若不变,求出其值;若改变,请说明理由.12.如图,已知直线a ∥b ,∠ABC =100°,BD 平分∠ABC 交直线a 于点D ,线段EF 在线段AB 的左侧,线段EF 沿射线AD 的方向平移,在平移的过程中BD 所在的直线与EF 所在的直线交于点P .问∠1的度数与∠EPB 的度数又怎样的关系?(特殊化)(1)当∠1=40°,交点P 在直线a 、直线b 之间,求∠EPB 的度数;(2)当∠1=70°,求∠EPB 的度数;(一般化)(3)当∠1=n°,求∠EPB 的度数(直接用含n 的代数式表示). 13.如图①,AD 平分BAC ∠,AE ⊥BC ,∠B=450,∠C=730. (1) 求DAE ∠的度数;(2) 如图②,若把“AE ⊥BC ”变成“点F 在DA 的延长线上,FE BC ⊥”,其它条件不变,求DFE ∠ 的度数;(3) 如图③,若把“AE ⊥BC ”变成“AE 平分BEC ∠”,其它条件不变,DAE ∠的大小是否变化,并请说明理由.14.如图,在ABC 中,ABC ∠与ACB ∠的角平分线交于O 点.(1)若40A ∠=︒,则BOC ∠= ︒; (2)若A n ∠=︒,则BOC ∠= ︒;(3)若A n ∠=︒,ABC ∠与ACB ∠的角平分线交于O 点,ABO ∠的平分线与ACO ∠的平分线交于点1O ,,2016O BD ∠的平分线与2016O CE ∠的平分线交于点2017O ,则2017O ∠=.15.已知,如图1,直线l2⊥l1,垂足为A,点B在A点下方,点C在射线AM上,点B、C 不与点A重合,点D在直线11上,点A的右侧,过D作l3⊥l1,点E在直线l3上,点D的下方.(1)l2与l3的位置关系是;(2)如图1,若CE平分∠BCD,且∠BCD=70°,则∠CED=°,∠ADC=°;(3)如图2,若CD⊥BD于D,作∠BCD的角平分线,交BD于F,交AD于G.试说明:∠DGF=∠DFG;(4)如图3,若∠DBE=∠DEB,点C在射线AM上运动,∠BDC的角平分线交EB的延长线于点N,在点C的运动过程中,探索∠N:∠BCD的值是否变化,若变化,请说明理由;若不变化,请直接写出比值.【参考答案】一、解答题1.(1)49°,(2)44°,(3)∠OPQ=∠ORQ【分析】(1)根据∠OPA=∠QPB.可求出∠OPA的度数;(2)由∠AOP=43°,∠BQP=49°可求出∠OPQ的度数,转化为(1)来解解析:(1)49°,(2)44°,(3)∠OPQ=∠ORQ【分析】(1)根据∠OPA=∠QP B.可求出∠OPA的度数;(2)由∠AOP=43°,∠BQP=49°可求出∠OPQ的度数,转化为(1)来解决问题;(3)由(2)推理可知:∠OPQ=∠AOP+∠BQP,∠ORQ=∠DOR+∠RQC,从而∠OPQ=∠ORQ.【详解】解:(1)∵∠OPA=∠QPB,∠OPQ=82°,∴∠OPA=(180°-∠OPQ)×12=(180°-82°)×12=49°,(2)作PC∥m,∵m∥n,∴m∥PC∥n,∴∠AOP=∠OPC=43°,∠BQP=∠QPC=49°,∴∠OPQ=∠OPC+∠QPC=43°+49°=92°,∴∠OPA=(180°-∠OPQ)×12=(180°-92°)×1244°,(3)∠OPQ=∠ORQ.理由如下:由(2)可知:∠OPQ=∠AOP+∠BQP,∠ORQ=∠DOR+∠RQC,∵入射光线与平面镜的夹角等于反射光线与平面镜的夹角,∴∠AOP=∠DOR,∠BQP=∠RQC,∴∠OPQ=∠ORQ.【点睛】本题主要考查了平行线的性质和入射角等于反射角的规定,解决本题的关键是注意问题的设置环环相扣、前为后用的设置目的.2.(1)见解析;(2)∠BAE+∠CDE=∠AED,证明见解析;(3)①∠AED-∠FDC=45°,理由见解析;②50°【分析】(1)根据平行线的性质及判定可得结论;(2)过点E作EF∥AB,根解析:(1)见解析;(2)∠BAE+∠CDE=∠AED,证明见解析;(3)①∠AED-∠FDC=45°,理由见解析;②50°【分析】(1)根据平行线的性质及判定可得结论;(2)过点E作EF∥AB,根据平行线的性质得AB∥CD∥EF,然后由两直线平行内错角相等可得结论;(3)①根据∠AED+∠AEC=180°,∠AED+∠DEC+∠AEB=180°,DF平分∠EDC,可得出2∠AED+(90°-2∠FDC)=180°,即可导出角的关系;②先根据∠AED=∠F+∠FDE,∠AED-∠FDC=45°得出∠DEP=2∠F=90°,再根据∠DEA-∠DEB,求出∠AED=50°,即可得出∠EPD的度数.∠PEA=514【详解】解:(1)证明:AB∥CD,∴∠A+∠D=180°,∵∠C=∠A,∴∠C+∠D=180°,∴AD∥BC;(2)∠BAE+∠CDE=∠AED,理由如下:如图2,过点E作EF∥AB,∵AB∥CD∴AB∥CD∥EF∴∠BAE=∠AEF,∠CDE=∠DEF即∠FEA+∠FED=∠CDE+∠BAE∴∠BAE+∠CDE=∠AED;(3)①∠AED-∠FDC=45°;∵∠AED+∠AEC=180°,∠AED+∠DEC+∠AEB=180°,∴∠AEC=∠DEC+∠AEB,∴∠AED=∠AEB,∵DF平分∠EDC∠DEC=2∠FDC∴∠DEC=90°-2∠FDC,∴2∠AED+(90°-2∠FDC)=180°,∴∠AED-∠FDC=45°,故答案为:∠AED-∠FDC=45°;②如图3,∵∠AED =∠F +∠FDE ,∠AED -∠FDC =45°, ∴∠F =45°, ∴∠DEP =2∠F =90°, ∵∠DEA -∠PEA =514∠DEB =57∠DEA ,∴∠PEA =27∠AED ,∴∠DEP =∠PEA +∠AED =97∠AED =90°,∴∠AED =70°, ∵∠AED +∠AEC =180°, ∴∠DEC +2∠AED =180°, ∴∠DEC =40°, ∵AD ∥BC , ∴∠ADE =∠DEC =40°,在△PDE 中,∠EPD =180°-∠DEP -∠AED =50°, 即∠EPD =50°. 【点睛】本题主要考查平行线的判定和性质,熟练掌握平行线的判定和性质,角平分线的性质等知识点是解题的关键.3.(1) ;(2)的值为40°;(3). 【分析】(1)过点O 作OG ∥AB ,可得AB ∥OG ∥CD ,利用平行线的性质可求解; (2)过点M 作MK ∥AB ,过点N 作NH ∥CD ,由角平分线的定义可设∠BEM解析:(1)260BEO DFO ∠+∠=︒ ;(2)EMN FNM ∠-∠的值为40°;(3)53.【分析】(1)过点O 作OG ∥AB ,可得AB ∥OG ∥CD ,利用平行线的性质可求解;(2)过点M 作MK ∥A B ,过点N 作NH ∥CD ,由角平分线的定义可设∠BEM =∠OEM =x ,∠CFN =∠OFN =y ,由∠BEO +∠DFO =260°可求x -y =40°,进而求解;(3)设直线FK 与EG 交于点H ,FK 与AB 交于点K ,根据平行线的性质即三角形外角的性质及50FMN ENM ∠-∠=︒,可得50KFD AEG ∠-∠=︒,结合260AEG n OEG DFK n OFK BEO DFO ∠=∠=∠∠+∠=︒,,,可得11180100AEG AEG KFD KFD n n∠+∠+︒-∠-∠=︒, 即可得关于n 的方程,计算可求解n 值.【详解】证明:过点O 作OG ∥AB ,∵AB ∥CD ,∴AB ∥OG ∥CD ,∴180180BEO EOG DFO FOG ∠+∠=︒∠+∠=︒,,∴360BEO EOG DFO FOG ∠+∠+∠+∠=︒,即360BEO EOF DFO ∠+∠+∠=︒,∵∠EOF =100°,∴∠260BEO DFO +∠=︒;(2)解:过点M 作MK ∥AB ,过点N 作NH ∥CD ,∵EM 平分∠BEO ,FN 平分∠CFO ,设BEM OEM x CFN OFN y ∠=∠=∠=∠=,,∵260BEO DFO ∠+∠=︒∴21802260BEO DFO x y ∠+∠=+︒-=︒,∴x -y =40°,∵MK ∥AB ,NH ∥CD ,AB ∥CD ,∴AB ∥MK ∥NH ∥CD ,∴EMK BEM x HNF CFN y KMN HNM ∠=∠=∠=∠=∠=∠,,,∴EMN FNM EMK KMN HNM HNF ∠+∠=∠+∠-∠+∠()x KMN HNM y =+∠-∠-=x -y=40°,故EMN FNM ∠-∠的值为40°;(3)如图,设直线FK 与EG 交于点H ,FK 与AB 交于点K ,∵AB ∥CD ,∴AKF KFD ∠=∠,∵AKF EHK HEK EHK AEG ∠=∠+∠=∠+∠,∴KFD EHK AEG ∠=∠+∠,∵50EHK NMF ENM ∠=∠-∠=︒,∴50KFD AEG ∠=︒+∠,即50KFD AEG ∠-∠=︒,∵AEG n OEG ∠=∠,FK 在∠DFO 内,DFK n OFK ∠=∠. ∴1180180CFO DFK OFK KFD KFD n∠=︒-∠-∠=︒-∠-∠ , 1AEO AEG OEG AEG AEG n∠=∠+∠=∠+∠, ∵260BEO DFO ∠+∠=︒,∴100AEO CFO ∠+∠=︒, ∴11180100AEG AEG KFD KFD n n∠+∠+︒-∠-∠=︒, 即(180)1KFD AEG n ⎛⎫ ⎪⎝∠⎭+-∠︒=, ∴115080n ⎛⎫ ⎪⨯⎭︒︒⎝+=,解得53n .经检验,符合题意,故答案为:53.【点睛】本题主要考查平行线的性质,角平分线的定义,灵活运用平行线的性质是解题的关键.4.(1)150°;(2)∠OCD+∠BO′E′=360°-α;(3)∠AOB=∠BO′E′【分析】(1)先根据平行线的性质得到∠AOE的度数,再根据直角、周角的定义即可求得∠BOE的度数;(2)解析:(1)150°;(2)∠OCD+∠BO′E′=360°-α;(3)∠AOB=∠BO′E′【分析】(1)先根据平行线的性质得到∠AOE的度数,再根据直角、周角的定义即可求得∠BOE的度数;(2)如图②,过O点作OF∥CD,根据平行线的判定和性质可得∠OCD、∠BO′E′的数量关系;(3)由已知推出CP∥OB,得到∠AOB+∠PCO=180°,结合角平分线的定义可推出∠OCD=2∠PCO=360°-2∠AOB,根据(2)∠OCD+∠BO′E′=360°-∠AOB,进而推出∠AOB=∠BO′E′.【详解】解:(1)∵CD∥OE,∴∠AOE=∠OCD=120°,∴∠BOE=360°-∠AOE-∠AOB=360°-90°-120°=150°;(2)∠OCD+∠BO′E′=360°-α.证明:如图②,过O点作OF∥CD,∵CD∥O′E′,∴OF∥O′E′,∴∠AOF=180°-∠OCD,∠BOF=∠E′O′O=180°-∠BO′E′,∴∠AOB=∠AOF+∠BOF=180°-∠OCD+180°-∠BO′E′=360°-(∠OCD+∠BO′E′)=α,∴∠OCD+∠BO′E′=360°-α;(3)∠AOB=∠BO′E′.证明:∵∠CPO′=90°,∴PO′⊥CP,∵PO′⊥OB,∴CP∥OB,∴∠PCO+∠AOB=180°,∴2∠PCO=360°-2∠AOB,∵CP是∠OCD的平分线,∴∠OCD=2∠PCO=360°-2∠AOB,∵由(2)知,∠OCD+∠BO′E′=360°-α=360°-∠AOB,∴360°-2∠AOB+∠BO′E′=360°-∠AOB,∴∠AOB=∠BO′E′.【点睛】此题考查了平行线的判定和性质,平移的性质,直角的定义,角平分线的定义,正确作出辅助线是解决问题的关键.5.(1)证明见解析;(2)证明见解析;(3)120°.【分析】(1)过点A作AD∥MN,根据两直线平行,内错角相等得到∠MCA=∠DAC,∠PBA=∠DAB,根据角的和差等量代换即可得解;(2)解析:(1)证明见解析;(2)证明见解析;(3)120°.【分析】(1)过点A作AD∥MN,根据两直线平行,内错角相等得到∠MCA=∠DAC,∠PBA=∠DAB,根据角的和差等量代换即可得解;(2)由两直线平行,同旁内角互补得到∴、∠CAB+∠ACD=180°,由邻补角定义得到∠ECM+∠ECN=180°,再等量代换即可得解;(3)由平行线的性质得到,∠FAB=120°﹣∠GCA,再由角平分线的定义及平行线的性质得到∠GCA﹣∠ABF=60°,最后根据三角形的内角和是180°即可求解.【详解】解:(1)证明:如图1,过点A作AD∥MN,∵MN∥PQ,AD∥MN,∴AD∥MN∥PQ,∴∠MCA=∠DAC,∠PBA=∠DAB,∴∠CAB=∠DAC+∠DAB=∠MCA+∠PBA,即:∠CAB=∠MCA+∠PBA;(2)如图2,∵CD∥AB,∴∠CAB+∠ACD=180°,∵∠ECM+∠ECN=180°,∵∠ECN=∠CAB∴∠ECM=∠ACD,即∠MCA+∠ACE=∠DCE+∠ACE,∴∠MCA=∠DCE;(3)∵AF∥CG,∴∠GCA+∠FAC=180°,∵∠CAB=60°即∠GCA+∠CAB+∠FAB=180°,∴∠FAB=180°﹣60°﹣∠GCA=120°﹣∠GCA,由(1)可知,∠CAB=∠MCA+∠ABP,∵BF平分∠ABP,CG平分∠ACN,∴∠ACN=2∠GCA,∠ABP=2∠ABF,又∵∠MCA=180°﹣∠ACN,∴∠CAB=180°﹣2∠GCA+2∠ABF=60°,∴∠GCA﹣∠ABF=60°,∵∠AFB+∠ABF+∠FAB=180°,∴∠AFB=180°﹣∠FAB﹣∠FBA=180°﹣(120°﹣∠GCA)﹣∠ABF=180°﹣120°+∠GCA﹣∠ABF=120°.【点睛】本题主要考查了平行线的性质,线段、角、相交线与平行线,准确的推导是解决本题的关键.二、解答题6.(1)110°;(2)∠CPD=∠α+∠β,见解析;(3)当P在BA延长线时,∠CPD=∠β-∠α;当P在AB延长线上时,∠CPD=∠α-∠β【分析】(1)过P作PE∥AB,通过平行线性质求∠A解析:(1)110°;(2)∠CPD=∠α+∠β,见解析;(3)当P在BA延长线时,∠CPD=∠β-∠α;当P在AB延长线上时,∠CPD=∠α-∠β【分析】(1)过P作PE∥AB,通过平行线性质求∠APC即可;(2)过P作PE∥AD交CD于E,推出AD∥PE∥BC,根据平行线的性质得出∠α=∠DPE,∠β=∠CPE,即可得出答案;(3)画出图形,根据平行线的性质得出∠α=∠DPE,∠β=∠CPE,即可得出答案.【详解】解:(1)过点P作PE∥AB,∵AB∥CD,∴PE∥AB∥CD,∴∠A+∠APE=180°,∠C+∠CPE=180°,∵∠PAB=130°,∠PCD=120°,∴∠APE=50°,∠CPE=60°,∴∠APC=∠APE+∠CPE=110°.故答案为110°;(2)∠CPD=∠α+∠β,理由是:如图3,过P作PE∥AD交CD于E,∵AD∥BC,∴AD∥PE∥BC,∴∠α=∠DPE,∠β=∠CPE,∴∠CPD=∠DPE+∠CPE=∠α+∠β;(3)当P在BA延长线时,∠CPD=∠β-∠α,理由是:如图4,过P作PE∥AD交CD于E,∵AD∥BC,∴AD∥PE∥BC,∴∠α=∠DPE,∠β=∠CPE,∴∠CPD =∠CPE-∠DPE =∠β-∠α;当P 在AB 延长线时,∠CPD =∠α-∠β,理由是:如图5,过P 作PE ∥AD 交CD 于E ,∵AD ∥BC ,∴AD ∥PE ∥BC ,∴∠α=∠DPE ,∠β=∠CPE ,∴∠CPD =∠DPE -∠CPE =∠α-∠β.【点睛】本题考查了平行线的性质和判定的应用,主要考查学生的推理能力,题目是一道比较典型的题目,分类讨论是解题的关键.7.(1)∠PAF +∠PBN +∠APB =360°;(2)①,见解析;②或【分析】(1)作PC ∥EF ,如图1,由PC ∥EF ,EF ∥MN 得到PC ∥MN ,根据平行线的性质得∠PAF +∠APC =180°,∠解析:(1)∠PAF +∠PBN +∠APB =360°;(2)①CPD αβ∠=∠+∠,见解析;②CPD βα∠=∠-∠或CPD αβ∠=∠-∠【分析】(1)作PC ∥EF ,如图1,由PC ∥EF ,EF ∥MN 得到PC ∥MN ,根据平行线的性质得∠PAF +∠APC =180°,∠PBN +∠CPB =180°,即有∠PAF +∠PBN +∠APB =360°;(2)①过P 作PE ∥AD 交ON 于E ,根据平行线的性质,可得到EPD α∠=∠,CPE β∠=∠,于是CPD αβ∠=∠+∠;②分两种情况:当P 在OB 之间时;当P 在OA 的延长线上时,仿照①的方法即可解答.【详解】解:(1)∠PAF +∠PBN +∠APB =360°,理由如下:作PC ∥EF ,如图1,∵PC ∥EF ,EF ∥MN ,∴PC ∥MN ,∴∠PAF +∠APC =180°,∠PBN +∠CPB =180°,∴∠PAF +∠APC +∠PBN +∠CPB =360°,∴∠PAF +∠PBN +∠APB =360°;(2)①CPD αβ∠=∠+∠,理由如下:如答图,过P 作PE ∥AD 交ON 于E ,∵AD ∥BC ,∴PE ∥BC ,∴EPD α∠=∠,CPE β∠=∠,∴CPD αβ∠=∠+∠②当P 在OB 之间时,CPD αβ∠=∠-∠,理由如下:如备用图1,过P 作PE ∥AD 交ON 于E ,∵AD ∥BC ,∴PE ∥BC ,∴EPD α∠=∠,CPE β∠=∠,∴CPD αβ∠=∠-∠;当P 在OA 的延长线上时,CPD βα∠=∠-∠,理由如下:如备用图2,过P 作PE ∥AD 交ON 于E ,∵AD ∥BC ,∴PE ∥BC ,∴EPD α∠=∠,CPE β∠=∠,∴CPD βα∠=∠-∠;综上所述,∠CPD ,∠α,∠β之间的数量关系是CPD βα∠=∠-∠或CPD αβ∠=∠-∠.【点睛】本题考查了平行线的性质:两直线平行,同位角相等,内错角相等,同旁内角互补.难点是分类讨论作平行辅助线.8.(1)∠ACB+∠BED=180°;(2)100°;(3)40°【分析】(1)如图1,延长DE 交AB 于点F ,根据ABCD 可得∠DFB=∠D ,则∠DFB=∠A ,可得ACDF ,根据平行线的性质得∠A解析:(1)∠ACB +∠BED =180°;(2)100°;(3)40°【分析】(1)如图1,延长DE 交AB 于点F ,根据AB //CD 可得∠DFB =∠D ,则∠DFB =∠A ,可得AC //DF ,根据平行线的性质得∠ACB +∠CEF =180°,由对顶角相等可得结论;(2)如图2,作EM //CD ,HN //CD ,根据AB //CD ,可得AB //EM //HN //CD ,根据平行线的性质得角之间的关系,再根据∠DEB 比∠DHB 大60°,列出等式即可求∠DEB 的度数; (3)如图3,过点E 作ES //CD ,设直线DF 和直线BP 相交于点G ,根据平行线的性质和角平分线定义可求∠PBM 的度数.【详解】解:(1)如图1,延长DE 交AB 于点F ,//AB CD ,DFB D ∴∠=∠,A D ∠=∠,A DFB ∴∠=∠,//AC DF ∴,180ACB CEF ∴∠+∠=︒,180ACB BED ∴∠+∠=︒,故答案为:180ACB BED ∠+∠=︒;(2)如图2,作//EM CD ,//HN CD ,//AB CD ,//////AB EM HN CD ∴,1180EDF ∴∠+∠=︒,MEB ABE ∠=∠, BG 平分ABE ∠, 12ABG ABE ∴∠=∠, //AB HN ,2ABG ∴∠=∠,//CF HN ,23β∴∠+∠=∠,∴132ABE β∠+∠=∠, DH 平分EDF ∠,132EDF ∴∠=∠, ∴1122ABE EDF β∠+∠=∠,1()2EDF ABE β∴∠=∠-∠, 2EDF ABE β∴∠-∠=∠,设DEB α∠=∠,1180180()1802MEB EDF ABE EDF ABE αβ∠=∠+∠=︒-∠+∠=︒-∠-∠=︒-∠, DEB ∠比DHB ∠大60︒,60αβ∴∠-︒=∠,1802(60)αα∴∠=︒-∠-︒,解得100α∠=︒.DEB ∴∠的度数为100︒;(3)PBM ∠的度数不变,理由如下:如图3,过点E 作//ES CD ,设直线DF 和直线BP 相交于点G ,BM 平分EBK ∠,DN 平分CDE ∠,12EBM MBK EBK ∴∠=∠=∠, 12CDN EDN CDE ∠=∠=∠, //ES CD ,//AB CD ,////ES AB CD ∴,DES CDE ∴∠=∠,180BES ABE EBK ∠=∠=︒-∠,G PBK ∠=∠,由(2)可知:100DEB ∠=︒,180100CDE EBK ∴∠+︒-∠=︒,80EBK CDE ∴∠-∠=︒,//BP DN ,CDN G ∴∠=∠,12PBK G CDN CDE ∴∠=∠=∠=∠, PBM MBK PBK ∴∠=∠-∠1122EBK CDE =∠-∠ 1()2EBK CDE =∠-∠ 1802=⨯︒ 40=︒.【点睛】本题考查了平行线的性质,解决本题的关键是掌握平行线的性质.9.(1)136°;(2)∠AOG+∠NEF =90°,理由见解析;(3)当点P 在GF 上时,∠OPQ =140°﹣∠POQ+∠PQF ;当点P 在线段GF 的延长线上时,140°﹣∠POQ =∠OPQ+∠PQF .解析:(1)136°;(2)∠AOG +∠NEF =90°,理由见解析;(3)当点P 在GF 上时,∠OPQ =140°﹣∠POQ +∠PQF ;当点P 在线段GF 的延长线上时,140°﹣∠POQ =∠OPQ +∠PQF .【分析】(1)如图1,作CP ∥a ,则CP ∥a ∥b ,根据平行线的性质可得∠AOG =∠ACP ,∠BCP +∠CEF =180°,然后利用∠ACP +∠BCP =90°即可求得答案;(2)如图2,作CP ∥a ,则CP ∥a ∥b ,根据平行线的性质可得∠AOG =∠ACP ,∠BCP +∠CEF =180°,然后结合已知条件可得∠BCP =∠NEF ,然后利用∠ACP +∠BCP =90°即可得到结论;(3)分两种情况,如图3,当点P 在GF 上时,过点P 作PN ∥OG ,则NP ∥OG ∥EF ,根据平行线的性质可推出∠OPQ =∠GOP +∠PQF ,进一步可得结论;如图4,当点P 在线段GF 的延长线上时,同上面方法利用平行线的性质解答即可.【详解】解:(1)如图1,作CP∥a,a b,∵//∴CP∥a∥b,∴∠AOG=∠ACP,∠BCP+∠CEF=180°,∴∠BCP=180°﹣∠CEF,∵∠ACP+∠BCP=90°,∴∠AOG+180°﹣∠CEF=90°,∵∠AOG=46°,∴∠CEF=136°,故答案为136°;(2)∠AOG+∠NEF=90°.理由如下:如图2,作CP∥a,则CP∥a∥b,∴∠AOG=∠ACP,∠BCP+∠CEF=180°,而∠NEF+∠CEF=180°,∴∠BCP=∠NEF,∵∠ACP+∠BCP=90°,∴∠AOG+∠NEF=90°;(3)如图3,当点P在GF上时,过点P作PN∥OG,∴NP∥OG∥EF,∴∠GOP=∠OPN,∠PQF=∠NPQ,∴∠OPQ=∠GOP+∠PQF,∴∠OPQ=140°﹣∠POQ+∠PQF;如图4,当点P在线段GF的延长线上时,过点P作PN∥OG,∴NP∥OG∥EF,∴∠GOP=∠OPN,∠PQF=∠NPQ,∵∠OPN=∠OPQ+∠QPN,∴∠GOP=∠OPQ+∠PQF,∴140°﹣∠POQ=∠OPQ+∠PQF.【点睛】本题考查了平行线的性质以及平行公理的推论等知识,属于常考题型,正确添加辅助线、灵活应用平行线的判定和性质是解题的关键.10.(1)4;(2)45°;(3)P(0,-1)或(0,3)【分析】(1)根据非负数的性质得到a=−b,a−b+4=0,解得a=−2,b=2,则A (−2,0),B(2,0),C(2,2),即可计算出解析:(1)4;(2)45°;(3)P(0,-1)或(0,3)【分析】(1)根据非负数的性质得到a=−b,a−b+4=0,解得a=−2,b=2,则A(−2,0),B (2,0),C(2,2),即可计算出三角形ABC的面积=4;(2)由于CB ∥y 轴,BD ∥AC ,则∠CAB =∠ABD ,即∠3+∠4+∠5+∠6=90°,过E 作EF ∥AC ,则BD ∥AC ∥EF ,然后利用角平分线的定义可得到∠3=∠4=∠1,∠5=∠6=∠2,所以∠AED =∠1+∠2=12×90°=45°;(3)先根据待定系数法确定直线AC 的解析式为y =12x +1,则G 点坐标为(0,1),然后利用S △PAC =S △APG +S △CPG 进行计算.【详解】解:(1)由题意知:a =−b ,a−b +4=0,解得:a =−2,b =2,∴ A (−2,0),B (2,0),C (2,2),∴S △ABC =1AB BC=42⋅; (2)∵CB ∥y 轴,BD ∥AC ,∴∠CAB =∠ABD ,∴∠3+∠4+∠5+∠6=90°,过E 作EF ∥AC ,∵BD ∥AC ,∴BD ∥AC ∥EF ,∵AE ,DE 分别平分∠CAB ,∠ODB ,∴∠3=∠4=∠1,∠5=∠6=∠2,∴∠AED =∠1+∠2=12×90°=45°;(3)存在.理由如下:设P 点坐标为(0,t ),直线AC 的解析式为y =kx +b ,把A (−2,0)、C (2,2)代入得: -2k+b=02k+b=2⎧⎨⎩,解得1k=2b=1⎧⎪⎨⎪⎩, ∴直线AC 的解析式为y =12x +1,∴G 点坐标为(0,1),∴S △PAC =S △APG +S △CPG =12|t−1|•2+12|t−1|•2=4,解得t =3或−1,∴P 点坐标为(0,3)或(0,−1).【点睛】本题考查了绝对值、平方的非负性,平行线的判定与性质:内错角相等,两直线平行;同旁内角互补,两直线平行;两直线平行,内错角相等.三、解答题11.(1)∠E=45°;(2)∠E=;(3)不变化,【分析】(1)由三角形内角和定理,可得∠D+∠ECD=∠E+∠EAD ,∠B+∠EAB=∠E+∠ECB ,由角平分线的性质,可得∠ECD=∠ECB=∠解析:(1)∠E =45°;(2)∠E =2βα-;(3)不变化,12【分析】(1)由三角形内角和定理,可得∠D+∠ECD=∠E+∠EAD ,∠B+∠EAB=∠E+∠ECB ,由角平分线的性质,可得∠ECD=∠ECB=12∠BCD ,∠EAD=∠EAB=12∠BAD ,则可得∠E= 12(∠D+∠B ),继而求得答案;(2)首先延长BC 交AD 于点F ,由三角形外角的性质,可得∠BCD=∠B+∠BAD+∠D ,又由角平分线的性质,即可求得答案.(3)由三角形内角和定理,可得90ADP ACB DAC ∠+︒=∠+∠ADP DFO ABC OEB ∠+∠=∠+∠,利用角平分线的性质与三角形的外角的性质可得答案.【详解】解:(1)∵CE 平分∠BCD ,AE 平分∠BAD∴∠ECD=∠ECB=12∠BCD ,∠EAD=∠EAB=12∠BAD , ∵∠D+∠ECD=∠E+∠EAD ,∠B+∠EAB=∠E+∠ECB ,∴∠D+∠ECD+∠B+∠EAB=∠E+∠EAD+∠E+∠ECB∴∠D+∠B=2∠E ,∴∠E=12(∠D+∠B ), ∵∠ADC=50°,∠ABC=40°,∴∠AEC=12×(50°+40°)=45°;(2)延长BC 交AD 于点F ,∵∠BFD=∠B+∠BAD ,∴∠BCD=∠BFD+∠D=∠B+∠BAD+∠D ,∵CE 平分∠BCD ,AE 平分∠BAD∴∠ECD=∠ECB=12∠BCD ,∠EAD=∠EAB=12∠BAD , ∵∠E+∠ECB=∠B+∠EAB ,∴∠E=∠B+∠EAB -∠ECB=∠B+∠BAE -12∠BCD =∠B+∠BAE -12(∠B+∠BAD+∠D ) = 12(∠B -∠D ), ∠ADC =α°,∠ABC =β°,即∠AEC=.2βα-(3)ADP ACB ABC ∠∠-∠的值不发生变化,1.2ADP ACB ABC ∠∴=∠-∠ 理由如下:如图,记AB 与PQ 交于E ,AD 与CB 交于F ,,PQ MN ⊥90,DOC BOE ∴∠=∠=︒90ADP ACB DAC ∠+︒=∠+∠①,ADP DFO ABC OEB ∠+∠=∠+∠②,∴ ①-②得:90,DFO ACB ABC DAC OEB ︒-∠=∠-∠+∠-∠90,DFO OEB DAC ACB ABC ∴︒-∠+∠-∠=∠-∠90,,ADP DFO OEB EAD ADP ∠=︒-∠∠-∠=∠AD 平分∠BAC ,,BAD CAD ∴∠=∠,OEB CAD ADP ∴∠-∠=∠2,ADP ACB ABC ∠=∠-∠ 1.2ADP ACB ABC ∠∴=∠-∠【点睛】此题考查了三角形内角和定理、三角形外角的性质以及角平分线的定义.此题难度较大,注意掌握整体思想与数形结合思想的应用.12.(1)∠EPB =170°;(2)①当交点P 在直线b 的下方时:∠EPB =20°,②当交点P 在直线a ,b 之间时:∠EPB =160°,③当交点P 在直线a 的上方时:∠EPB =∠1﹣50°=20°;(3)①当解析:(1)∠EPB =170°;(2)①当交点P 在直线b 的下方时:∠EPB =20°,②当交点P 在直线a ,b 之间时:∠EPB =160°,③当交点P 在直线a 的上方时:∠EPB =∠1﹣50°=20°;(3)①当交点P 在直线a ,b 之间时:∠EPB =180°﹣|n°﹣50°|;②当交点P 在直线a 上方或直线b 下方时:∠EPB =|n°﹣50°|.【分析】(1)利用外角和角平分线的性质直接可求解;(2)分三种情况讨论:①当交点P 在直线b 的下方时;②当交点P 在直线a ,b 之间时;③当交点P 在直线a 的上方时;分别画出图形求解;(3)结合(2)的探究,分两种情况得到结论:①当交点P 在直线a ,b 之间时;②当交点P在直线a上方或直线b下方时;【详解】解:(1)∵BD平分∠ABC,∠ABC=50°,∴∠ABD=∠DBC=12∵∠EPB是△PFB的外角,∴∠EPB=∠PFB+∠PBF=∠1+(180°﹣50°)=170°;(2)①当交点P在直线b的下方时:∠EPB=∠1﹣50°=20°;②当交点P在直线a,b之间时:∠EPB=50°+(180°﹣∠1)=160°;③当交点P在直线a的上方时:∠EPB=∠1﹣50°=20°;(3)①当交点P在直线a,b之间时:∠EPB=180°﹣|n°﹣50°|;②当交点P在直线a上方或直线b下方时:∠EPB=|n°﹣50°|;【点睛】考查知识点:平行线的性质;三角形外角性质.根据动点P的位置,分类画图,结合图形求解是解决本题的关键.数形结合思想的运用是解题的突破口.13.(1)∠DAE =14°;(2)∠DFE =14°;(3)∠DAE 的大小不变,∠DAE=14°,证明详见解析.【分析】(1)求出∠ADE的度数,利用∠DAE=90°-∠ADE即可求出∠DAE解析:(1)∠DAE =14°;(2)∠DFE =14°;(3)∠DAE 的大小不变,∠DAE =14°,证明详见解析.【分析】(1)求出∠ADE的度数,利用∠DAE=90°-∠ADE即可求出∠DAE的度数.(2)求出∠ADE的度数,利用∠DFE=90°-∠ADE即可求出∠DAE的度数.(3)利用AE平分∠BEC,AD平分∠BAC,求出∠DFE=15°即是最好的证明.【详解】(1)∵∠B=45°,∠C=73°,∴∠BAC=62°,∵AD平分∠BAC,∴∠BAD=∠CAD=31°,∴∠ADE=∠B+∠BAD=45°+31°=76°,∵AE⊥BC,∴∠AEB=90°,∴∠DAE=90°-∠ADE=14°.(2)同(1),可得,∠ADE=76°,∵FE⊥BC,∴∠FEB=90°,∴∠DFE=90°-∠ADE=14°.(3)DAE∠的大小不变.DAE∠=14°理由:∵ AD平分∠ BAC,AE平分∠BEC∴∠BAC=2∠BAD,∠BEC=2∠AEB∵∠BAC+∠B+∠BEC+∠C =360°∴2∠BAD+2∠AEB=360°-∠B-∠C=242°∴∠BAD+∠AEB=121°∵∠ADE=∠B+∠BAD∴∠ADE=45°+∠BAD∴∠DAE=180°-∠AEB-∠ADE=180°-∠AEB-45°-∠BAD=135°-(∠AEB+∠BAD)=135°-121°=14°【点睛】本题考查了三角形内角和定理和三角形外角的性质,熟练掌握性质是解题的关键. 14.(1)110(2)(90 +n)(3)×90°+n°【分析】(1)根据角平分线的性质,结合三角形的内角和定理可得到角之间的关系,然后求解即可;(2)根据BO、CO分别是∠ABC与∠ACB的角平解析:(1)110(2)(90 +12n)(3)201712×90°+20182018212-n°【分析】(1)根据角平分线的性质,结合三角形的内角和定理可得到角之间的关系,然后求解即可;(2)根据BO 、CO 分别是∠ABC 与∠ACB 的角平分线,用n °的代数式表示出∠OBC 与∠OCB 的和,再根据三角形的内角和定理求出∠BOC 的度数;(3)根据规律直接计算即可.【详解】解:(1)∵∠A=40°,∴∠ABC+∠ACB=140°,∵点O 是∠AB 故答案为:110°;C 与∠ACB 的角平分线的交点,∴∠OBC+∠OCB=70°,∴∠BOC=110°.(2)∵∠A=n°,∴∠ABC+∠ACB=180°-n°,∵BO 、CO 分别是∠ABC 与∠ACB 的角平分线,∴∠OBC +∠OCB =12∠ABC +12∠ACB =12(∠ABC +∠ACB ) =12(180°﹣n °)=90°﹣12n °,∴∠BOC =180°﹣(∠OBC +∠OCB )=90°+12n °.故答案为:(90+12n );(3)由(2)得∠O =90°+12n °,∵∠ABO 的平分线与∠ACO 的平分线交于点O 1, ∴∠O 1BC =34∠ABC ,∠O 1CB =34∠ACB , ∴∠O 1=180°﹣34(∠ABC +∠ACB )=180°﹣34(180°﹣∠A )=14×180°+34n °, 同理,∠O 2=18×180°+78n °, ∴∠O n =112n +×180°+11212n n ++- n °, ∴∠O 2017=201812×180°+20182018212-n °, 故答案为:201712×90°+20182018212-n °. 【点睛】 本题考查了三角形内角和定理,角平分线定义的应用,注意:三角形的内角和等于180°. 15.(1)互相平行;(2)35,20;(3)见解析;(4)不变,【分析】(1)根据平行线的判定定理即可得到结论;(2)根据角平分线的定义和平行线的性质即可得到结论;(3)根据角平分线的定义和平行解析:(1)互相平行;(2)35,20;(3)见解析;(4)不变,12【分析】(1)根据平行线的判定定理即可得到结论;(2)根据角平分线的定义和平行线的性质即可得到结论;(3)根据角平分线的定义和平行线的性质即可得到结论;(4)根据角平分线的定义,平行线的性质,三角形外角的性质即可得到结论.【详解】解:(1)直线l2⊥l1,l3⊥l1,∴l2∥l3,即l2与l3的位置关系是互相平行,故答案为:互相平行;(2)∵CE平分∠BCD,∴∠BCE=∠DCE=1BCD,2∵∠BCD=70°,∴∠DCE=35°,∵l2∥l3,∴∠CED=∠DCE=35°,∵l2⊥l1,∴∠CAD=90°,∴∠ADC=90°﹣70°=20°;故答案为:35,20;(3)∵CF平分∠BCD,∴∠BCF=∠DCF,∵l2⊥l1,∴∠CAD=90°,∴∠BCF+∠AGC=90°,∵CD⊥BD,∴∠DCF+∠CFD=90°,∴∠AGC=∠CFD,∵∠AGC=∠DGF,∴∠DGF=∠DFG;;理由如下:(4)∠N:∠BCD的值不会变化,等于12∵l2∥l3,∴∠BED=∠EBH,∵∠DBE=∠DEB,∴∠DBE=∠EBH,∴∠DBH=2∠DBE,∵∠BCD+∠BDC=∠DBH,∴∠BCD+∠BDC=2∠DBE,∵∠N+∠BDN=∠DBE,∴∠BCD+∠BDC=2∠N+2∠BDN,∵DN平分∠BDC,∴∠BDC=2∠BDN,∴∠BCD=2∠N,∴∠N:∠BCD=1.2【点睛】本题考查了三角形的综合题,三角形的内角和定理,三角形外角的性质,平行线的判定和性质,角平分线的定义,正确的识别图形进行推理是解题的关键.。
2015初一下册西湖区数学期末考试试卷答案

西湖区2014学年第二学期七年级期末教学质量调研数学试题卷考生须知:1.本试卷分试题卷和答题卷两部分,满分120分,考试时间100分钟.2.答题时,不能使用计算器,在答题卷指定位置内写明校名,姓名和班级.3.所有答案都必须做在答题卷标定的位置上,请务必注意试题序号和答题序号相对应.4.考试结束后,只需上交答题卷.一、仔细选一选(本题有10个小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的,请把正确选项前的字母填在答题卷中相应格子内.注意可以用多种不同的方法来选取正确答案.1.下列计算正确的是A .()339a a = B .224a a a += C .()2211a a +=+ D .121a a+= 答案:A2.为了解全校学生的课外作业量,你认为抽样方法比较合适的是A .调查全体女生B .调查全体男生C .调查九年级学生D .调查七、八、九年级各50名学生答案:D3.【易】(西湖区2015下学期期末)下列代数式变形中,是因式分解的是A .()211222ab b ab ab -=-B .()36332x y x y -+=-C .()23131x x x x -+=-+ D .()22211x x x -+-=-- 答案:(3-4-1)D4.【易】(西湖区2015下学期期末)如图,能判定EB AC ∥的条件是A .C ABE =∠∠B .A EBD =∠∠C .C ABC =∠∠D .A ABE =∠∠答案:(17-2-2)D 5.【易】(西湖区2015下学期期末)化简22x y y x y x---的结果是 A .x y -- B .y x - C .x y - D .x y +答案:(4-1)A 6.【易】(西湖区2015下学期期末)38080-能被()整除A .76B .78C .79D .82答案:(3-3-1)C7.与方程529x y +=-构成的方程组,其解为212x y =-⎧⎪⎨=⎪⎩的是 A .21x y += B .328x y +=- C .348x y -=- D .543x y +=- 答案:C E D CB A8.计算()()()22a b a b a b -+-的结果是A .42242a a b b -+B .42242a a b b ++C .44a b +D .44a b - 答案:A9.【易】(西湖区2015下学期期末)如图,将边长为5cm 的等边ABC △沿边BC 向右平移4cm 得到A B C '''△,则四边形AA C B ''的周长为A .22cmB .23cmC .24cmD .25cm 答案:(24-1)B10.【易】(西湖区2015下学期期末)小明在拼图时,发现8个一样大小的长方形,恰好可以拼成一个大的长方形(如图甲):小红看见了,说:“我也来试一试.”结果小红七拼八凑,拼成了如图乙那样的正方形,中间还留下了一个洞,恰好是边长为3mm 的小正方形,则每个小长方形的面积为A .2120mmB .2135mmC .2108mmD .296mm 答案:(7-2)B二、认真填一填(本题有6个小题,每小题4分,共24分)要注意认真看清题目的条件和要填写的内容,尽量完整地填写答案.11.(1)用科学记数法表示0.000061为;(2)计算:()01π22---=.答案:⑴6.1×10-5;⑵0.512.【易】(西湖区2015下学期期末)已知某组数据的频数为56,频率为0.7,则样本容量为. 答案:(25-1)80.13.因式分解:(1)34x x -=;(2)21881x x -+=.答案:⑴ x (x+2)(x-2);⑵(x-9)214.【易】(西湖区2015下学期期末)如图,直线AB CD EF ∥∥,如果218A ADF +=︒∠∠,那么F =∠︒.答案:(17-2-3)3815.【易】(西湖区2015下学期期末)已知1x -=()()21414x x +-++的值为.答案:(3-4-3)3 16.【易】(西湖区2015下学期期末)给定下面的一列公式:2x y ,43x y -,65x y ,87x y-,……,根据这列分式的规律,请写出第7个分式,第n 个分式.C'B'A'C BA 甲 乙FE D C B A答案:(27-4)1413x y,()21211n n n x y +-- 三、全面答一答(本题7个小题,共66分)解答应写出文字说明,证明过程或推演步骤.如果觉得有的题目有点困难,那么把自己能写出的解答写出一部分也可以.17.(本小题满分6分)化简:(1)【易】(西湖区2015下学期期末)()()42223a a ÷ (2)()()()113a a a a +-+-答案:⑴(3-2-1)6163a ;⑵ 1-3a 18.(本小题满分8分)(1)解方程1122x x x -=-- (2)已知210x x +-=,求()22111121x x x x x x x x -++÷---+的值. 答案:⑴32x =;⑵211x x -=- 19.(本小题满分8分)【易】(西湖区2015下学期期末)今年3月5日,某中学组织全校学生参加了“走出校门,服务社会”的活动,活动分为打扫街道、走敬老院服务和到社区文艺演出三项.从七年级参加活动的同学中抽取了部分同学,对打扫街道、去敬老院服务和到社区文艺演出的人数进行了统计,并绘制了如下直方图和扇形统计图.请解决以下问题:(1)求抽取的部分同学的人数;(2)补全直方图的空缺部分;(3)若七年级有200名学生,估计该年级去敬老院的人数.答案:⑴15÷30%=50(人);⑵略;⑶50251550--×200=40(人) 20.(本小题满分10分)【易】(西湖区2015下学期期末)甲、乙两人同时分别从相距30千米的A 、B 两地匀速相向而行,经过3小时后相距3千米,再经过2小时,甲到B 地所剩路程是乙到A 地所剩路程的2倍.设甲、乙两人的速度分别为x 千米/小时、y 千米/小时,请列方程组求甲、乙两人的速度.答案:(7-2)3()3033052(305)x y x y +=-⎧⎨-=-⎩解得45x y =⎧⎨=⎩或3()3033052(305)x y x y +=+⎧⎨-=-⎩解得163173x y ⎧=⎪⎪⎨⎪=⎪⎩21.(本小题满分10分)【易】(西湖区2015下学期期末)已知7a b -=,12ab =-.占30%打扫街道去敬老院服务社区文艺演出艺演出院服务街道活动类别(1)22a b ab -的值;(2)求22a b +的值;(3)求a b +的值.答案:(3-5-6)⑴-84;⑵ 25;⑶ ±122.(本小题满分12分)【易】(西湖区2015下学期期末)(1)有一条纸带如图甲所示,怎样检验纸带的两条边是否平行?说明你的方法和理由;(2)如图乙,将一条上下两边互相平行的纸带折叠,设1∠为x 度,请用x 的代数式表示a ∠的度数.答案:(24-3)⑴画线,量取对比内错角的度数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2014-2015学年浙江省杭州市西湖区七年级(下)期末数学试卷一、仔细选一选(本题有10个小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的,请把正确选项前的字母填在答题卷中相应格子内.注意可以用多种不同的方法来选取正确答案.1.(3分)下列计算正确的是()A.(a3)3=a9B.a2+a2=a4 C.(a+1)2=a2+1 D.1+=2.(3分)要了解全校学生的课外作业负担情况,你认为以下抽样方法中比较合理的是()A.调查全体女生B.调查全体男生C.调查九年级全体学生D.调查七、八、九年级各50名学生3.(3分)下列代数式变形中,是因式分解的是()A.ab(b﹣2)=ab2﹣ab B.3x﹣6y+3=3(x﹣2y)C.x2﹣3x+1=x(x﹣3)+1 D.﹣x2+2x﹣1=﹣(x﹣1)24.(3分)如图,能判定EB∥AC的条件是()A.∠C=∠ABE B.∠A=∠EBD C.∠C=∠ABC D.∠A=∠ABE5.(3分)化简的结果是()A.﹣x﹣y B.y﹣x C.x﹣y D.x+y6.(3分)803﹣80能被()整除.A.76 B.78 C.79 D.827.(3分)与方程5x+2y=﹣9构成的方程组,其解为的是()A.x+2y=1 B.3x+2y=﹣8 C.3x﹣4y=﹣8 D.5x+4y=﹣38.(3分)计算(a﹣b)(a+b)(a2﹣b2)的结果是()A.a4﹣2a2b2+b4B.a4+2a2b2+b4C.a4+b4D.a4﹣b49.(3分)如图,将边长为5cm的等边△ABC沿边BC向右平移4cm得到△A′B′C′,则四边形AA′C′B的周长为()A.22cm B.23cm C.24cm D.25cm10.(3分)小明在拼图时,发现8个一样大小的长方形,恰好可以拼成一个大的长方形如图(1);小红看见了,说:“我也来试一试.”结果小红七拼八凑,拼成了如图(2)那样的正方形,中间还留下了一个洞,恰好是边长为3mm的小正方形,则每个小长方形的面积为()A.120mm2 B.135mm2 C.108mm2 D.96mm2二、认真填一填(本题有6小题,每小题4分,共24分)要注意认真看清题目的条件和要填写的内容,尽量完整地填写答案.11.(4分)(1)用科学记数法表示0.000061为;(2)计算:(π﹣2)0﹣2﹣1=.12.(4分)已知某组数据的频数为56,频率为0.7,则样本容量为.13.(4分)因式分解:(1)x3﹣4x=;(2)x2﹣18x+81=.14.(4分)如图,直线AB∥CD∥EF,如果∠A+∠ADF=218°,那么∠F=.15.(4分)已知x=+1,则代数式(x+1)2﹣4(x+1)+4的值是.16.(4分)给定下面一列分式:,﹣,,﹣…,根据这列分式的规律,请写出第7个分式,第n个分式.三、全面答一答(本题有7个小题,共66分)解答应写出文字说明,证明过程或推演步骤,如果觉得有的题目有点困难,那么把自己能写出的解答写出一部分也可以.17.(6分)化简:(1)(2a2)4÷3a2(2)(1+a)(1﹣a)+a(a﹣3)18.(8分)(1)解方程:﹣1=;(2)已知x2+x﹣1=0,求÷﹣的值.19.(8分)今年3月5日,某中学组织全体学生参加了“走出校门,服务社会”的活动,活动分为打扫街道,去敬老院服务和到社区文艺演出三项.从七年级参加活动的同学中抽取了部分同学,对打扫街道,去敬老院服务和到社区文艺演出的人数进行了统计,并绘制了如下直方图和扇形统计图.请解决以下问题:(1)求抽取的部分同学的人数;(2)补全直方图的空缺部分;(3)若七年级有200名学生,估计该年级去敬老院的人数.20.(10分)甲、乙两人同时分别从相距30千米的A,B两地匀速相向而行,经过三小时后相距3千米,再经过2小时,甲到B地所剩路程是乙到A地所剩路程的2倍,设甲、乙两人的速度分别为x千米/小时、y千米/小时,请列方程组求甲、乙两人的速度.21.(10分)已知a﹣b=7,ab=﹣12.(1)求a2b﹣ab2的值;(2)求a2+b2的值;(3)求a+b的值.22.(12分)(1)有一条纸带如图甲所示,怎样检验纸带的两条边线是否平行?说明你的方法和理由.(2)如图乙,将一条上下两边互相平行的纸带折叠,设∠1为x度,请用x的代数式表示∠α的度数.23.(12分)已知关于x、y的方程组,给出下列结论:①当a=1时,方程组的解也是方程x+y=2的解;②当x=y时,a=﹣;③不论a取什么实数,2x+y的值始终不变;④若z=﹣xy,则z的最小值为﹣1.请判断以上结论是否正确,并说明理由.2014-2015学年浙江省杭州市西湖区七年级(下)期末数学试卷参考答案与试题解析一、仔细选一选(本题有10个小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的,请把正确选项前的字母填在答题卷中相应格子内.注意可以用多种不同的方法来选取正确答案.1.(3分)下列计算正确的是()A.(a3)3=a9B.a2+a2=a4 C.(a+1)2=a2+1 D.1+=【解答】解:A、(a3)3=a9,故选项正确;B、a2+a2=2a2,故选项错误;C、(a+1)2=a2+2a+1,故选项错误;D、1+=,故选项错误.故选:A.2.(3分)要了解全校学生的课外作业负担情况,你认为以下抽样方法中比较合理的是()A.调查全体女生B.调查全体男生C.调查九年级全体学生D.调查七、八、九年级各50名学生【解答】解:A、调查全体女生,B、调查全体男生,C、调查九年级全体学生都不具有代表性,D、调查七、八、九年级各50名学生具有代表性.故选:D.3.(3分)下列代数式变形中,是因式分解的是()A.ab(b﹣2)=ab2﹣ab B.3x﹣6y+3=3(x﹣2y)C.x2﹣3x+1=x(x﹣3)+1 D.﹣x2+2x﹣1=﹣(x﹣1)2【解答】解:A、是整式的乘法,故A错误;B、左边不等于右边,故B错误;C、没把一个多项式转化成几个整式乘积的形式,故C错误;D、把一个多项式转化成几个整式乘积的形式,故D正确;故选:D.4.(3分)如图,能判定EB∥AC的条件是()A.∠C=∠ABE B.∠A=∠EBD C.∠C=∠ABC D.∠A=∠ABE【解答】解:A、∠C=∠ABE不能判断出EB∥AC,故A选项不符合题意;B、∠A=∠EBD不能判断出EB∥AC,故B选项不符合题意;C、∠C=∠ABC只能判断出AB=AC,不能判断出EB∥AC,故C选项不符合题意;D、∠A=∠ABE,根据内错角相等,两直线平行,可以得出EB∥AC,故D选项符合题意.故选:D.5.(3分)化简的结果是()A.﹣x﹣y B.y﹣x C.x﹣y D.x+y【解答】解:.故选:A.6.(3分)803﹣80能被()整除.A.76 B.78 C.79 D.82【解答】解:∵803﹣80=80×(802﹣1)=80×(80+1)×(80﹣1)=80×81×79.∴803﹣80能被79整除.故选:C.7.(3分)与方程5x+2y=﹣9构成的方程组,其解为的是()A.x+2y=1 B.3x+2y=﹣8 C.3x﹣4y=﹣8 D.5x+4y=﹣3【解答】解:A、将代入x+2y=1,得左边=﹣2+1=﹣1,右边=1,左边≠右边,所以本选项错误;B、将代入3x+2y=﹣8,得左边=﹣6+1=﹣5,右边=﹣8,左边≠右边,所以本选项错误;C、将代入3x﹣4y=﹣8,得左边=﹣6﹣2=﹣8,右边=﹣8,左边=右边,所以本选项正确;D、将代入5x+4y=﹣3,得左边=﹣10+2=﹣8,右边=﹣3,左边≠右边,所以本选项错误;故选:C.8.(3分)计算(a﹣b)(a+b)(a2﹣b2)的结果是()A.a4﹣2a2b2+b4B.a4+2a2b2+b4C.a4+b4D.a4﹣b4【解答】解:(a﹣b)(a+b)(a2﹣b2)=a4﹣2a2b2+b4,故选:A.9.(3分)如图,将边长为5cm的等边△ABC沿边BC向右平移4cm得到△A′B′C′,则四边形AA′C′B的周长为()A.22cm B.23cm C.24cm D.25cm【解答】解:∵平移距离是4个单位,∴AA′=BB′=4,∵等边△ABC的边长为5,∴B′C′=BC=5,∴BC′=BB′+B′C′=4+5=9,∵四边形AA′C′B的周长=4+5+9+5=23.故选:B.10.(3分)小明在拼图时,发现8个一样大小的长方形,恰好可以拼成一个大的长方形如图(1);小红看见了,说:“我也来试一试.”结果小红七拼八凑,拼成了如图(2)那样的正方形,中间还留下了一个洞,恰好是边长为3mm的小正方形,则每个小长方形的面积为()A.120mm2 B.135mm2 C.108mm2 D.96mm2【解答】解:设每个长方形的长为xmm,宽为ymm,由题意,得,解得:.9×15=135(mm2).故选:B.二、认真填一填(本题有6小题,每小题4分,共24分)要注意认真看清题目的条件和要填写的内容,尽量完整地填写答案.11.(4分)(1)用科学记数法表示0.000061为 6.1×10﹣5;(2)计算:(π﹣2)0﹣2﹣1=.【解答】解:(1)0.000061=6.1×10﹣5,故答案为:6.1×10﹣5.(2)原式=1﹣=,故答案为:.12.(4分)已知某组数据的频数为56,频率为0.7,则样本容量为80.【解答】解:样本容量为56÷0.7=80.故答案是:80.13.(4分)因式分解:(1)x3﹣4x=x(x+2)(x﹣2);(2)x2﹣18x+81=(x﹣9)2.【解答】解:(1)x3﹣4x=x(x2﹣4)=x(x+2)(x﹣2);(2)x2﹣18x+81=(x﹣9)2.故答案为:(1)x(x+2)(x﹣2);(2)(x﹣9)2.14.(4分)如图,直线AB∥CD∥EF,如果∠A+∠ADF=218°,那么∠F=38°.【解答】解:延长AC,∵AB∥CD,∴∠A+∠ADH=180°.∵∠A+∠ADF=218°,∴∠HDF=218°﹣180°=38°.∵CD∥EF,∴∠F=∠HDF=38°.故答案为:38°.15.(4分)已知x=+1,则代数式(x+1)2﹣4(x+1)+4的值是3.【解答】解:(x+1)2﹣4(x+1)+4=(x+1﹣2)2=(x﹣1)2,当x=+1时,原式=(+1﹣1)2=3.故答案为:3.16.(4分)给定下面一列分式:,﹣,,﹣…,根据这列分式的规律,请写出第7个分式,第n个分式(﹣1)n+1.【解答】解:这列分式中的第7个分式为,第n个分式为(﹣1)n+1.故答案为:,(﹣1)n+1.三、全面答一答(本题有7个小题,共66分)解答应写出文字说明,证明过程或推演步骤,如果觉得有的题目有点困难,那么把自己能写出的解答写出一部分也可以.17.(6分)化简:(1)(2a2)4÷3a2(2)(1+a)(1﹣a)+a(a﹣3)【解答】解:(1)原式=24a8÷3a2=.(2)原式=1﹣a2+a2﹣3a=1﹣3a.18.(8分)(1)解方程:﹣1=;(2)已知x2+x﹣1=0,求÷﹣的值.【解答】解:(1)方程的两边同乘(x﹣2),得1﹣(x﹣2)=x,解得x=.检验:把x=代入(x﹣2)≠0.所以原方程的解为:x=.(2)÷﹣=•﹣=﹣=﹣.由x2+x﹣1=0得x﹣1=﹣x2,所以,原式=1.19.(8分)今年3月5日,某中学组织全体学生参加了“走出校门,服务社会”的活动,活动分为打扫街道,去敬老院服务和到社区文艺演出三项.从七年级参加活动的同学中抽取了部分同学,对打扫街道,去敬老院服务和到社区文艺演出的人数进行了统计,并绘制了如下直方图和扇形统计图.请解决以下问题:(1)求抽取的部分同学的人数;(2)补全直方图的空缺部分;(3)若七年级有200名学生,估计该年级去敬老院的人数.【解答】解:(Ⅰ)由题意,可得抽取的部分同学的人数为:15÷=50(人);(2)去敬老院服务的学生有:50﹣25﹣15=10(人).条形统计图补充如下:(3)根据题意得:200×=40(人),答:该年级去敬老院的人数是40人.20.(10分)甲、乙两人同时分别从相距30千米的A,B两地匀速相向而行,经过三小时后相距3千米,再经过2小时,甲到B地所剩路程是乙到A地所剩路程的2倍,设甲、乙两人的速度分别为x千米/小时、y千米/小时,请列方程组求甲、乙两人的速度.【解答】解:设甲的速度为xkm/h,乙的速度为ykm/h,则有两种情况:(1)当甲和乙还没有相遇相距3千米时,依题意得,解得;(2)当甲和乙相遇了相距3千米时,依题意得,解得.答:甲乙两人的速度分别为4km/h、5km/h或km/h,km/h.21.(10分)已知a﹣b=7,ab=﹣12.(1)求a2b﹣ab2的值;(2)求a2+b2的值;(3)求a+b的值.【解答】解:(1)∵a﹣b=7,ab=﹣12,∴a2b﹣ab2=ab(a﹣b)=﹣12×7=﹣84;(2)∵a﹣b=7,ab=﹣12,∴(a﹣b)2=49,∴a2+b2﹣2ab=49,∴a2+b2=25;(3)∵a2+b2=25,∴(a+b)2=25+2ab=25﹣24=1,∴a+b=±1.22.(12分)(1)有一条纸带如图甲所示,怎样检验纸带的两条边线是否平行?说明你的方法和理由.(2)如图乙,将一条上下两边互相平行的纸带折叠,设∠1为x度,请用x的代数式表示∠α的度数.【解答】解:(1)如图甲,将纸条如图折叠,测的∠1=∠2,于是得到纸带的两条边线是平行的;(2)如图乙,∵AB∥CD,∴∠2=∠1=x,∠3=∠α,∵将一条上下两边互相平行的纸带折叠,∴∠3=∠4=(180°﹣∠2)=90°﹣2=90°﹣x,∴∠α=∠3=90°﹣x.23.(12分)已知关于x、y的方程组,给出下列结论:①当a=1时,方程组的解也是方程x+y=2的解;②当x=y时,a=﹣;③不论a取什么实数,2x+y的值始终不变;④若z=﹣xy,则z的最小值为﹣1.请判断以上结论是否正确,并说明理由.【解答】解:关于x、y的方程组,解得:.①将a=1代入,得:,将x=4,y=﹣4代入方程左边得:x+y=0,右边=2,左边≠右边,本选项错误;②将x=y代入,得:,即当x=y时,a=﹣,本选项正确;③将原方程组中第一个方程×3,加第二个方程得:4x+2y=8,即2x+y=4,不论a取什么实数,2x+y的值始终不变,本选项正确;④z=﹣xy=﹣(a+3)(﹣2a﹣2)=a2+4a+3=(a+2)2﹣1≥﹣1,即若z=﹣xy,则z的最小值为﹣1,此选项正确.故正确的选项有:②、③、④.赠送初中数学几何模型【模型五】垂直弦模型:图形特征:运用举例:1.已知A 、B 、C 、D 是⊙O 上的四个点.(1)如图1,若∠ADC =∠BCD =90°,AD =CD ,求证AC ⊥BD ; (2)如图2,若AC ⊥BD ,垂足为E ,AB =2,DC =4,求⊙O 的半径.ODABCEAODCB2.如图,已知四边形ABCD 内接于⊙O ,对角线AC ⊥BD 于P ,设⊙O 的半径是2。