粒子群优化算法

合集下载

粒子群优化算法介绍

粒子群优化算法介绍

粒子群优化算法介绍
粒子群优化算法(Particle Swarm Optimization,PSO)是一种
基于群体智能的优化方法,其中包含了一组粒子(代表潜在解决方案)在n维空间中进行搜索,通过找到最优解来优化某个问题。

在PSO的
过程中,每个粒子根据自身当前的搜索位置和速度,在解空间中不断
地寻找最优解。

同时,粒子也会通过与周围粒子交换信息来寻找更好
的解。

这种信息交换模拟了鸟群或鱼群中的信息交流行为,因此PSO
算法也被称为群体智能算法。

由于其并行搜索和对局部最优解的较好处理,PSO算法在多个领
域均得到了广泛应用。

其中最常用的应用之一是在神经网络和其他机
器学习算法中用来寻找最优解。

此外,PSO算法在图像处理、数据挖掘、机器人控制、电力系统优化等领域也有着广泛的应用。

PSO算法的核心是描述每个粒子的一组速度和位置值,通常使用
向量来表示。

在PSO的初始化阶段,每个粒子在解空间中随机生成一
个初始位置和速度,并且将其当前位置作为当前最优解。

然后,每个
粒子在每次迭代(即搜索过程中的每一次)中根据当前速度和位置,
以及粒子群体中的最优解和全局最优解,更新其速度和位置。

PSO算法的重点在于如何更新各个粒子的速度向量,以期望他们能够快速、准
确地达到全局最优解。

总之, PSO算法是一种群体智能算法,目的是通过模拟粒子在解
空间中的移动来优化某个问题。

由于其简单、有效且易于实现,因此PSO算法在多个领域得到了广泛应用。

粒子群优化算法概述

粒子群优化算法概述

粒子群优化算法概述粒子群优化算法(Particle Swarm Optimization,PSO)是一种基于群体智能的优化算法,最早由Eberhart和Kennedy于1995年提出。

它模拟了鸟群觅食的行为,并通过不断迭代,使得粒子(鸟)们逐渐找到目标点(食物)。

PSO算法的基本思想是通过模拟鸟群在解空间中的过程来寻找全局最优解。

在算法中,解被称为粒子,可以看作是在解空间中的一点。

每个粒子在解空间中的当前位置被认为是当前的解,并且每个粒子都有一个速度,用于指导粒子下一步的移动方向。

粒子的速度和位置的更新遵循以下规则:1.个体历史最优更新:每个粒子都有一个个体历史最优位置,它记录了粒子在过程中找到的最好解。

如果当前位置的适应度值好于个体历史最优位置的适应度值,则更新个体历史最优位置。

2.全局历史最优更新:整个粒子群有一个全局历史最优位置,即所有粒子中适应度值最好的位置。

如果当前位置的适应度值好于全局历史最优位置的适应度值,则更新全局历史最优位置。

3.速度更新:粒子的速度由个体历史最优位置和全局历史最优位置引导。

速度更新的公式为:V(t+1) = w * V(t) + c1 * r1 * (Pbest - X(t)) + c2 * r2 * (Gbest - X(t))其中,V(t+1)是下一时刻的速度,w是惯性权重,c1和c2是学习因子,r1和r2是随机数,Pbest是个体历史最优位置,Gbest是全局历史最优位置,X(t)是当前位置。

4.位置更新:粒子的位置由当前位置和速度决定。

位置更新的公式为:X(t+1)=X(t)+V(t+1)以上四个步骤不断重复迭代,直到满足停止准则为止,比如达到最大迭代次数或收敛到一个满意的解。

PSO算法具有以下一些特点和优势:1.简单易实现:PSO算法的原理和实现相对简单,不需要对目标函数的导数信息进行求解。

2.全局能力:由于粒子群中的信息共享和协作,PSO算法可以较好地避免陷入局部最优解,有较强的全局能力。

粒子群优化算法

粒子群优化算法

粒⼦群优化算法粒⼦群优化算法属于群智能(swarm intelligence)优化算法。

群智能分两种,⼀种是粒群优化,另⼀种是蚁群优化。

群智能概念假设你和你的朋友正在寻宝,每个⼈有个探测器,这个探测器可以知道宝藏到探测器的距离。

你们⼀群⼈在找,每个⼈都可以把信息共享出去,就跟打dota时你可以有你队友的视野,你可以知道其他所有⼈距离宝藏的距离,这样,你看谁离宝藏最近,就向谁靠近,这样会使你发现宝藏的机会变⼤,⽽且,这种⽅法⽐你单⼈找要快的多。

这是⼀个群⾏为(swarm behavior)的简单实例,群中各个体交互作⽤,使⽤⼀个⽐单⼀个体更有效的⽅法求解全局⽬标。

可以把群(swarm)定义为某种交互作⽤的组织或Agent之结构集合,在群智能计算研究中,群的个体组织包括蚂蚁,⽩蚁,蜜蜂,黄蜂,鱼群,鸟群等。

在这些群体中,个体在结构上是很简单的,⽽它们的集体⾏为却可能变得相当复杂。

研究⼈员发现,蚂蚁在鸟巢和⾷物之间的运输路线,不管⼀开始多随机,最后蚂蚁总能找到⼀条最短路径。

粒群优化概念粒群优化(particle swarm optimization,PSO)算法是⼀种基于群体搜索的算法,它建⽴在模拟鸟群社会的基础上。

粒群概念的最初含义是通过图形来模拟鸟群优美和不可预测的舞蹈动作,发现鸟群⽀配同步飞⾏和以最佳队形突然改变飞⾏⽅向并重新编队的能⼒。

这个概念已经被包含在⼀个简单有效的优化算法中。

在粒群优化中,被称为“粒⼦”(particle)的个体通过超维搜索空间“流动”。

粒⼦在搜索空间中的位置变化是以个体成功地超过其他个体的社会⼼理意向为基础的,因此,群中粒⼦的变化是受其邻近粒⼦(个体)的经验或知识影响的。

⼀个粒⼦的搜索⾏为受到群中其他粒⼦的搜索⾏为的影响。

由此可见,粒群优化是⼀种共⽣合作算法。

算法描述先通过⼀个形象的场景来描述⼀下:5只鸟觅⾷,每个鸟都知道⾃⼰与⾷物的距离,并将此信息与其他鸟共享。

⼀开始,5只鸟分散在不同的地⽅,假设没只鸟每秒钟更新⾃⼰的速度和⽅向,问题是怎么更新呢?每只鸟记下⾃⼰离⾷物最近的位置,称为pbest,pbest0,pbest1,..分别表⽰5只鸟的pbest,从这⾥⾯选⼀个gbest,组⾥最好的。

粒子群算法粒子维度

粒子群算法粒子维度

粒子群算法粒子维度粒子群优化算法(Particle Swarm Optimization,PSO)是一种基于群体智能的优化算法,源自对鸟群行为的模拟。

它通过模拟鸟群在食物等目标时的行为,利用群体协作和信息交流来优化问题的解。

在粒子群算法中,解空间被表示为多维空间,每个解被称为一个粒子,粒子的位置表示解在各个维度上的取值。

每个粒子都有自己的位置和速度,通过更新速度和位置来更优的解。

粒子的移动策略是受到个体历史最优位置和全局最优位置的影响,个体历史最优位置是粒子自身的最优解,全局最优位置是整个群体中历史最优解。

粒子群算法的基本过程如下:(1)初始化群体的位置和速度;(2)根据适应度函数评估每个粒子的适应度;(3)更新每个粒子的速度和位置;(4)更新个体历史最优位置和全局最优位置;(5)重复步骤(2)到(4),直到达到指定的迭代次数或满足停止条件。

更新速度和位置的过程可以通过以下公式实现:速度更新公式:V[i] = w * V[i] + c1 * rand( * (P_best[i] -X[i]) + c2 * rand( * (G_best[i] - X[i])位置更新公式:X[i]=X[i]+V[i]其中,V[i]表示粒子i的速度,X[i]表示粒子i的位置,w是惯性权重,P_best[i]是粒子i的个体历史最优位置,G_best[i]是粒子i周围邻域中最优的全局最优位置,c1和c2是学习因子,rand(是一个随机数。

(1)全局能力强:通过群体的协作和信息交流,可以在解空间中进行全局,避免陷入局部最优解;(2)收敛速度快:通过粒子的速度更新,可以有效地引导过程,加快算法的收敛速度;(3)不依赖问题的具体形式:粒子群算法不需要对问题进行求导或者建立模型,适用于不同类型的问题。

然而,粒子群算法也存在一些不足之处:(1)对参数设置敏感:学习因子和惯性权重的选择对算法的性能有重要影响,需要进行合理的参数设置;(2)易陷入局部最优解:粒子群算法在过程中容易陷入局部最优解,特别是在解空间比较复杂的问题中,需要采取一些措施来增强其全局能力。

粒子群优化算法

粒子群优化算法

粒子群优化算法算法介绍 v[] 是粒子的速度, persent[] 是当前粒子的位置. pbest[] and gbest[] 如前定义 rand () 是介于(0, 1)之间的随机数.c1, c2 是学习因子. 通常 c1 = c2 = 2. 程序的伪代码如下 For each particle ____Initialize particle END Do ____For each particle ________Calculate fitness value ________If the fitness value is better than the best fitness value (pBest) in history ____________set current value as the new pBest ____End ____Choose the particle with the best fitness value of all the particles as the gBest ____For each particle ________Calculate particle velocity according equation (a) ________Update particle position according equation (b) ____End While maximum iterations or minimum error criteria is not attained在每一维粒子的速度都会被限制在一个最大速度Vmax,如果某一维更新后的速度超过用户设定的Vmax,那么这一维的速度就被限定为Vmax。

遗传算法和PSO的比较人工神经网络和PSO 这里用一个简单的例子说明PSO训练神经网络的过程。

这个例子使用分类问题的基准函数 (Benchmark function)IRIS数据集。

优化算法-粒子群优化算法

优化算法-粒子群优化算法
步骤三:对于粒子i,将 pi(t ) 的适应值与全局最好位置进行比较 更新全局最好位置 G(t )。
步骤四:对于粒子的每一维,根据式(1)计算得到一个随机点 的位置。
步骤五:根据式(2)计算粒子的新的位置。
步骤六:判断是否满足终止条件。
粒子群优化算法
PSO算法在组合优化问题中的应用
典型的组合优化问题:TSP
粒子群优化算法
量子行为粒子群优化算法的基本模型
群智能中个体的差异是有限的,不是趋向于无穷大的。群体的聚 集性是由相互学习的特点决定的。
个体的学习有以下特点: 追随性:学习群体中最优的知识
记忆性:受自身经验知识的束缚
创造性:使个体远离现有知识
粒子群优化算法
聚集性在力学中,用粒子的束缚态来描述。产生束缚态的原因是 在粒子运动的中心存在某种吸引势场,为此可以建立一个量子化 的吸引势场来束缚粒子(个体)以使群体具有聚集态。
描述为: 给定n 个城市和两两城市之间的距离, 求一条访问各城市
一次且仅一次的最短路线. TSP 是著名的组合优化问题, 是NP难题, 常被用来验证智能启发式算法的有效性。
vid (t 1) wvid (t) c1r1 pid (t) xid (t) c2r2( pgd (t) xid (t))
xid (t 1) xid (t) vid (t 1)
粒子群优化算法
w 惯性权重 可以是正常数,也可以是以时间为变量的线性或非线性
正数。
粒子群优化算法
通常动态权重可以获得比固定值更好的寻优结果,动态权重可以在 pso搜索过程中呈线性变化,也可以根据pso性能的某个测度函数 而动态改变,目前采用的是shi建议的随时间线性递减权值策略。
粒子群优化算法

粒子群优化算法

粒子群优化算法

好地求解各类优化问题。
03
多目标优化
多目标优化是未来粒子群优化算法的一个重要研究方向,可以解决实
际优化问题中多个目标之间的权衡和取舍。
THANKS
谢谢您的观看
粒子群优化算法
xx年xx月xx日
目录
• 粒子群优化算法简介 • 粒子群优化算法的基本原理 • 粒子群优化算法的改进 • 粒子群优化算法的应用案例 • 粒子群优化算法的总结与展望
01
粒子群优化算法简介
什么是粒子群优化算法
粒子群优化算法是一种群体智能优化算法,通过模拟鸟群、 鱼群等动物群体的社会行为,利用群体中个体之间的相互作 用和信息共享,寻找问题的最优解。
动态调整约束参数
通过动态调整约束参数,使算法在不同阶段都能保持较好的优化效果。同时 ,可以设置一些参数的自适应调整策略,如根据迭代次数、最优解的位置和 速度等信息来自适应调整。
04
粒子群优化算法的应用案例
函数优化问题
求解函数最大值
粒子群优化算法可以用于求解各类连续或离散函数的最大值,例如非线性函数、 多峰函数等。通过不断迭代寻优,能够找到函数的局部最大值或全局最大值。
03
粒子群优化算法的参数包括粒子群的规模、惯性权重、加速常数和学习因子等 ,这些参数对算法的性能和收敛速度有着重要影响。
粒子群优化算法的应用领域
粒子群优化算法被广泛应用于各种优化问题中,包括函 数优化、路径规划、电力系统优化、机器学习、图像处 理、控制工程、模式识别、人工智能等领域。
具体应用包括:函数优化问题的求解、神经网络训练的 优化、控制系统参数的优化、机器人路径规划、图像处 理中的特征提取和分类等。
空间搜索的改进
引入高斯分布
通过引入高斯分布,使粒子速度更新过程中更侧重于向当前 最优解方向靠拢,提高算法的局部搜索能力。

粒子群优化算法(详细易懂-很多例子)

粒子群优化算法(详细易懂-很多例子)

粒子群算法的构成要素 -权重因子 权重因子:惯性因子 、学习因子
vikd =wvikd-1
c1r1( pbestid
xk 1 id
)
c2
r2
(
gbestd
xk 1 id
)
粒子的速度更新主要由三部分组成:
前次迭代中自身的速度 vk
学习因子
自我认知部分
c1r1( pbestid
xk 1 id
)
自我认知型粒子群算法
前次迭代中自身的速度 vk
自我认知部分
c1r1( pbestid
xk 1 id
)
社会经验部分c2r2 (gbestd
xk 1 id
)
c1,c2都不为0,称为 完全型粒子群算法
完全型粒子群算法更容易保持收敛速度和搜索效 果的均衡,是较好的选择.
粒子群算法的构成要素-最大速度
作用: 在于维护算法的探索能力与开发能力的平衡能力增强, 但 容易陷入局部最优.
粒子群优化算法(PS0)
Particle Swarm Optimization
智能算法
• 向大自然学习 遗传算法(GA) 物竞天择,设计染色体编码, 根据适应值函数进行染色体 选择、交叉和变异操作,优 化求解
人工神经网络算法(ANN) 模仿生物神经元,透过神经 元的信息传递、训练学习、 联想,优化求解
max
或者最佳适应度值的增量小于
粒子群优化算法流程图
开始 初始化粒子群 计算每个粒子的适应度
根据适应度更新pbest、gbest,更新粒子位置速度
no
达到最大迭代次数或
全局最优位置满足最小界限?
yes
结束
2維簡例
區域
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

什么是粒子群优化算法
粒子群优化算法(Particle Swarm optimization,PSO)又翻译为粒子群算法、微粒群算法、或微粒群优化算法。

是通过模拟鸟群觅食行为而发展起来的一种基于群体协作的随机搜索算法。

通常认为它是群集智能(Swarm intelligence, SI) 的一种。

它可以被纳入多主体优化系统(Multiagent Optimization System, MAOS). 是由Eberhart博士和kennedy博士发明。

PSO模拟鸟群的捕食行为。

一群鸟在随机搜索食物,在这个区域里只有一块食物。

所有的鸟都不知道食物在那里。

但是他们知道当前的位置离食物还有多远。

那么找到食物的最优策略是什么呢。

最简单有效的就是搜寻目前离食物最近的鸟的周围区域。

PSO从这种模型中得到启示并用于解决优化问题。

PSO中,每个优化问题的解都是搜索空间中的一只鸟。

我们称之为“粒子”。

所有的粒子都有一个由被优化的函数决定的适应值(fitnessvalue),每个粒子还有一个速度决定他们飞翔的方向和距离。

然后粒子们就追随当前的最优粒子在解空间中搜索。

PSO初始化为一群随机粒子(随机解),然后通过叠代找到最优解,在每一次叠代中,粒子通过跟踪两个“极值”来更新自己。

第一个就是粒子本身所找到的最优解,这个解叫做个体极值pBest,另一个极值是整个种群目前找到的最优解,这个极值是全局极值gBest。

另外也可以不用整个种群而只是用其中一部分最优粒子的邻居,那么在所有邻居中的极值就是局部极值。

[编辑]
PSO算法介绍[1]
如前所述,PSO模拟鸟群的捕食行为。

设想这样一个场景:一群鸟在随机搜索食物。

在这个区域里只有一块食物。

所有的鸟都不知道食物在那里。

但是他们知道当前的位置离食物还有多远。

那么找到食物的最优策略是什么呢。

最简单有效的就是搜寻目前离食物最近的鸟的周围区域。

PSO从这种模型中得到启示并用于解决优化问题。

PSO中,每个优化问题的解都是搜索空间中的一只鸟。

我们称之为“粒子”。

所有的例子都有一个由被优化的函数决定的适应值(fitness value),每个粒子还有一个速度决定他们飞翔的方向和距离。

然后粒子们就追随当前的最优粒子在解空间中搜索
PSO初始化为一群随机粒子(随机解)。

然后通过叠代找到最优解。

在每一次叠代中,粒子通过跟踪两个"极值"来更新自己。

第一个就是粒子本身所找到的最优解。

这个解叫做个体极值pBest. 另一个极值是整个种群目前找到的最优解。

这个极值是全局极值gBest。

另外也可以不用整个种群而只是用其中一部分最为粒子的邻居,那么在所有邻居中的极值就是局部极值。

在找到这两个最优值时, 粒子根据如下的公式来更新自己的速度和新的位置
程序的伪代码如下
在每一维粒子的速度都会被限制在一个最大速度Vmax,如果某一维更新后的速度超过用户设定的Vmax,那么这一维的速度就被限定为Vmax.
[编辑]
遗传算法和PSO的比较[1]
①种群随机初始化。

②对种群内的每一个个体计算适应值(fitness value)。

适应值与最优解的距离直接有关。

③种群根据适应值进行复制。

④如果终止条件满足的话,就停止,否则转步骤②。

从以上步骤,我们可以看到PSO和遗传算法有很多共同之处。

两者都随机初始化种群,而且都使用适应值来评价系统,而且都根据适应值来进行一定的随机搜索。

两个系统都不是保证一定找到最优解。

但是,PSO没有遗传操作如交叉(crossover)和变异(mutation),而是根据自己的速度来决定搜索。

粒子还有一个重要的特点,就是有记忆。

与遗传算法比较,PSO的信息共享机制是很不同的。

在遗传算法中,染色体(chromosomes)互相共享信息,所以整个种群的移动是比较均匀的向最优区域移动。

在PSO中, 只有gBest (orlBest) 给出信息给其他的粒子,这是单向的信息流动。

整个搜索更新过程是跟随当前最优解的过程。

与遗传算法比较, 在大多数的情况下,所有的粒子可能更快的收敛于最优解。

[编辑]
人工神经网络和PSO[1]
人工神经网络(ANN)是模拟大脑分析过程的简单数学模型,反向转播算法是最流行的神经网络训练算法。

进来也有很多研究开始利用演化计算(evolutionary computation)技术来研究人工神经网络的各个方面。

演化计算可以用来研究神经网络的三个方面:网络连接权重,网络结构(网络拓扑结构,传递函数),网络学习算法。

不过大多数这方面的工作都集中在网络连接权重,和网络拓扑结构上。

在GA中,网络权重和/或拓扑结构一般编码为染色体(Chromosome),适应函数(fitness function)的选择一般根据研究目的确定。

例如在分类问题中,错误分类的比率可以用来作为适应值
演化计算的优势在于可以处理一些传统方法不能处理的例子例如不可导的节点传递函数或者没有梯度信息存在。

但是缺点在于:1、在某些问题上性能并不是特别好。

2. 网络权重的编码而且遗传算子的选择有时比较麻烦。

最近已经有一些利用PSO来代替反向传播算法来训练神经网络的论文。

研究表明PSO 是一种很有潜力的神经网络算法。

PSO速度比较快而且可以得到比较好的结果。

而且还没有遗传算法碰到的问题。

这里用一个简单的例子说明PSO训练神经网络的过程。

这个例子使用分类问题的基准函数(Benchmark function)IRIS数据集。

(Iris 是一种鸢尾属植物) 在数据记录中,每组数据包含Iris 花的四种属性:萼片长度,萼片宽度,花瓣长度,和花瓣宽度,三种不同的花各有50组数据. 这样总共有150组数据或模式。

我们用3层的神经网络来做分类。

现在有四个输入和三个输出。

所以神经网络的输入层有4个节点,输出层有3个节点我们也可以动态调节隐含层节点的数目,不过这里我们假定隐含层有6个节点。

我们也可以训练神经网络中其他的参数。

不过这里我们只是来确定网络权重。

粒子就表示神经网络的一组权重,应该是4*6+6*3=42个参数。

权重的范围设定为[-100,100] (这只是一个例子,在实际情况中可能需要试验调整).在完成编码以后,我们需要确定适应函数。

对于分类问题,我们把所有的数据送入神经网络,网络的权重有粒子的参数决定。

然后记录所有的错误分类的数目作为那个粒子的适应值。

现在我们就利用PSO来训练神经网络来获得尽可能低的错误分类数目。

PSO本身并没有很多的参数需要调整。

所以在实验中只需要调整隐含层的节点数目和权重的范围以取得较好的分类效果。

[编辑]
PSO的参数设置[1]
从上面的例子我们可以看到应用PSO解决优化问题的过程中有两个重要的步骤: 问题解的编码和适应度函数PSO的一个优势就是采用实数编码, 不需要像遗传算法一样是二进制编码(或者采用针对实数的遗传操作.例如对于问题f(x) = x1^2 + x2^2+x3^2 求解, 粒子可以直接编码为(x1, x2, x3), 而适应度函数就是f(x). 接着我们就可以利用前面的过程去寻优.这个寻优过程是一个叠代过程, 中止条件一般为设置为达到最大循环数或者最小错误
PSO中并没有许多需要调节的参数,下面列出了这些参数以及经验设置
粒子数: 一般取20–40. 其实对于大部分的问题10个粒子已经足够可以取得好的结果, 不过对于比较难的问题或者特定类别的问题, 粒子数可以取到100 或200
粒子的长度: 这是由优化问题决定, 就是问题解的长度
粒子的范围: 由优化问题决定,每一维可是设定不同的范围
Vmax: 最大速度,决定粒子在一个循环中最大的移动距离,通常设定为粒子的范围宽度,例如上面的例子里,粒子(x1, x2, x3) x1 属于[-10, 10], 那么Vmax 的大小就是20
学习因子: c1 和c2 通常等于 2. 不过在文献中也有其他的取值. 但是一般c1 等于c2 并且范围在0和4之间
中止条件: 最大循环数以及最小错误要求. 例如, 在上面的神经网络训练例子中, 最小错误可以设定为1个错误分类, 最大循环设定为2000, 这个中止条件由具体的问题确定.
全局PSO和局部PSO: 我们介绍了两种版本的粒子群优化算法: 全局版和局部版. 前者速度快不过有时会陷入局部最优. 后者收敛速度慢一点不过很难陷入局部最优. 在实际应用中, 可以先用全局PSO找到大致的结果,再有局部PSO进行搜索.
另外的一个参数是惯性权重, 由Shi 和Eberhart提出, 有兴趣的可以参考他们1998年的论文(题目: A modified particle swarm optimizer)。

相关文档
最新文档