第六章 食品中的超微粉碎技术
超微粉碎技术及其在食品加工中的应用

科技论坛众所周知,随着现阶段经济的快速发展,作为在社会实际应用中扮演不可或缺的角色的食品加工技术,已经得到国际上诸多相关学者的高度重视。
与此同时,食品加工技术在推动我国经济的发展进程上也显得至关重要。
我们应该清楚的认识到,食品加工技术在我国的社会实际应用中逐渐增加的同时,其最主要的目标是尽可能的为人们提供协调、舒适和优美的良性环境。
在整个建设食品资源的过程当中,做到健康与自然环境在空间上的有机结合显得至关重要,与此同时,更是食品发展的难点以及重点。
相应的,食品加工技术的涉及范围广泛,随之而来的相关技术问题也给食品工作的开展带来了很大的不便。
1超微粉碎概述1.1超微粉体的性质。
研究人员指出,由于颗粒大小向微细化发展,导致孔隙率和物料表面积极大地增加,使得超微粉体具有独特的化学、物理性质。
像超微粉体具有良好的化学活性、吸附性、分散性以及溶解性等。
研究结果显示:许多可食微生物、动植物等原料都能够借助超微粉碎设备加工成超微粉,甚至其不可食部分也能够利用超微化进一步加工而被人体吸收。
微细化的食品具有很强的亲和力、表面吸附力,所以,其具有很好的溶解性、分散性以及固香性。
1.2超微粉碎的形式。
现阶段,微粒化技术涉及到机械法、化学法。
机械粉碎法是制备超微粉体的主要手段,其特点是产量大、成本低,目前已大规模应用于工业生产。
化学粉碎法可以制得微米级、亚微米级或纳米级的粉体,然而应用范围窄、加工成本高以及产量低。
参照粉碎过程中机械的运动形式以及颗粒受力情况,机械法可以分为冲击粉碎、媒体搅拌粉碎以及气流粉碎。
超微粉碎一般分为湿法粉碎与干法粉碎。
湿法粉碎是将原料悬浮于载体液流中进行粉碎,其主要是用均质机或胶体磨粉碎。
此方法能够克服粉尘飞扬问题,同时能够借助离心分离、沉降、淘析等水力分级方法分离出所需的产品。
参照粉碎过程中出现粉碎力的原理不同,干法粉碎又分为自磨式、锤击式、旋转球磨式、高频振动式以及气流式等形式。
实践结果显示,湿法操作比干法操作消耗能量大,且设备的磨损也较严重。
食品加工中超微粉碎技术的运用研究

THEORY | 理论研究Dec. 2016 China Food Safety73超微粉碎技术属于一种食品加工尖端技术,在国内外都得到了极为广泛的应用,是现代化技术不断发展的产物。
在食品加工过程中应用该技术,一方面可进一步提高资源利用率,使得原本未得到利用的原料重新利用,配置出更加丰富多样的食品材料,另一方面还可促使食物口感增强,达到促进营养物质吸收的目的。
因此,对食品行业来说,对超微粉碎技术运用进行深入研究具有重大的现实意义。
超微粉碎技术主要是根据微米技术原理,通过使用粉碎设备并借助利用转子高速旋转所产生的湍流对物料进行剪切、击碎以及碾磨的一系列工艺流程。
与传统应用各种粉碎技术对比,经超微粉碎技术粉碎后的物料粒度更加微小,进而展现出产品的特殊功能以及界面活性。
伴随着物质趋于超微化,其电子结构和分子的排列也随之发生了变化,进而产生原本粒状无法产生的小尺寸效应,进而促使超微产品不管实在物理、化方面,还是在界面活性等方面都要优于宏观颗粒。
在软饮料加工中运用 当前,市面上很多软饮料就是通过利用气流微粉碎技术开发出来的。
生活中普遍使用开水冲泡茶叶,然而一些难以溶解的成分仍残存在茶叶当中,如各种蛋白质以及丰富的维生素A、K、E 等,导致人体难以对茶内的营养物质进行完全吸收,促使茶叶原本的养生保健功能降低。
如果把干燥下的茶叶通过超微粉碎技术制作成粉茶,促使粉体的粒径小于5μm,把即冲即饮代替传统开水冲泡的方式,那么茶叶内各种丰富的营养物质就可被人体有效吸收。
在功能性食品加工中的应用 功能性食品具有调节人体生理规律、增强人体抵抗力的作用受到人们的喜爱,具有广阔的市场发展前景。
因此,超微粉碎技术在功能性食品加工如膳食纤维,脂肪替代品等功能性食品基料中发挥着重要的作用。
膳食纤维素,它不但具有平衡膳食结构的作用,还是有效预防现代“文明病”的一种重要物质。
膳食纤维素不能被人体直接吸收消化,但其可促进人体肠道蠕动,具备无能量填充剂以及作为有毒物质的载体的功能。
超微粉碎及其在食品中的应用-食品高新技术作业

超微粉碎及其在食品中的应用-食品高新技术作业本页仅作为文档封面,使用时可以删除This document is for reference only-rar21year.March超微粉碎及其在食品中的应用前言超微粉碎技术是近年来随着现代化工、电子、生物、材料及矿产开发等高新技术的不断发展而兴起的,是国内外食品加工的高科技尖端技术。
在国外,美国、日本市售的果味凉茶、冻干水果粉、超低温速冻龟鳖粉、海带粉、花粉和胎盘粉等,多是采用超微粉碎技术加工而成;而我国也于20世纪90年代将此技术应用于花粉破壁,随后一些口感好、营养配比合理、易消化吸收的功能性食品(如山楂粉、魔芋粉、香菇粉等)应运而生。
超微粉碎的前景应用广阔,并且对于科学、实际生产都具有指导意义,随着技术越来越成熟,应用的就会越来越广阔。
1 超微粉碎的原理超微粉碎的原理与普通粉碎相同,只是细度要求更高,它利用外加机械力, 使机械力转变成自由能,部分地破坏物质分子间的内聚力,来达到粉碎的目的。
超微粉碎技术是利用特殊的粉碎设备,通过一定的加工工艺流程,对物料进行碾磨、冲击、剪切等,将粒径3mm以上的物料粉碎至粒径10~ 25μm以下的微细颗粒,从而使产品具有界面活性,呈现出特殊的功能。
与传统的粉碎、破碎、碾碎等加工技术相比,超微粉碎产品的粒度更加微小。
超微粉碎技术是基于微米技术原理的.随着物质的超微化,其表面分子排列、电子分布结构及晶体结构均发生变化,产生块(粒)材料所不具备的表面小尺寸效应、量子效应和宏观量子隧道效应,从而使得超微粉碎产品与宏观颗粒相比具有优异的物理、化学及表界面性质。
2 超微粉碎技术的优点2.1 速度快,可低温粉碎超微粉碎技术采用超音速气流粉碎、冷浆粉碎等方法,在粉碎过程不会产生局部过热现象, 甚至可在低温状态下进行,粉碎瞬时即可完成,因而能最大限度地保留粉体的生物活性成分,有利于制成所需的高质量产品。
2.2 粒径细,分布均匀由于采用了气流超音速粉碎,使得原料外力的分布非常均匀。
超微粉碎技术在食品加工过程中的应用

《食品机械与设备》课程阅读资料系列(1)超微粉碎技术在食品加工过程中的应用资料整理:孔令明超微粉碎技术是国际上近几十年发展起来的一门新技术。
目前已成功的应用于化工、医药、机械等许多行业。
特别是采用振动方式生产的超微粉碎产品,具有粉碎粒度细,产品无分级,生产过程全密闭,无污染,营养成分无损失等优点,特别适合于对卫生质量、感官质量要求特别严格的食品行业。
以下就超微粉碎技术在食品行业中的应用做一简要介绍。
1、食物资源的充分利用小麦麸皮、燕麦皮、玉米皮、玉米胚芽渣、豆皮、米糠、甜菜渣和甘蔗渣等,含有丰富的维生素、微量元素等,具有很好的营养价值,但由于常规粉碎的纤维粒径大,影响食用的口感,从而使消费者难以接受。
通过对纤维的微粒化,能明显改善纤维食品的口感和吸收性,从而使食物资源得到了充分的利用,而且丰富了食品的营养。
果皮、果核经超微粉碎可以转变为食品。
蔬菜在低温下磨成微粉膏,既保存了全部的营养成分,纤维质也因微细化而增加了水溶性,口感更佳。
一些动植物体的不可食部分如骨、壳(蛋壳)、甲、虾皮等、也可以通过超微化而成为易被人体吸收利用的钙源和甲壳素。
各种畜、禽鲜骨中含有丰富的蛋白质和脂肪、磷脂质、磷蛋白,能促进儿童大脑神经的发育,有健脑增智之功效。
鲜骨中含有的骨胶原(氨基酸)、软骨素等,有滋润皮肤防衰老的作用。
鲜骨中还含有维生素A、B1、B2、B12等营养成分,钙、铁等在鲜骨中的含量也极高,如鲜猪骨中含有复合磷酸钙盐、脂质和蛋白质等主要成分。
一般是将鲜骨煮、熬之后食用,实际上鲜骨的营养成分绝大部分没有被人体吸收,造成了资源的浪费。
利用超微粉碎技术,将鲜骨多级粉碎加工成超细骨泥或经脱水制成骨粉,既能保持95%以上的营养成分,而且营养成分又易被人体吸收,吸收率可达90%以上。
鲜骨是肉类加工厂的大宗副产品,大多以低价处理出售。
因此,将鲜骨制成富钙产品,既具有营养意义,又具有经济效益。
另外,传统的饮茶方法是用开水冲泡茶叶,但人体并没有完全吸收茶叶的全部营养成分,一些不溶性或难溶的成分,诸如维生素A、K、E、以及绝大部分矿物质等,都大量留存于茶叶的渣中,大大影响了茶叶的营养及保健功能。
食品高新技术超微粉碎

五、在食品上应用
• • • • • 1、高水份高油脂的物质 2、高胶质高粘稠性物质 3、高活性高营养物质 4、热敏性物质 5、造粒或制成粉状产品
冷冻粉碎产品的处理参数
• 冷冻粉碎产品的处理参数.doc
设备
• 冷冻粉碎机.doc
第二章
食品超微粉碎与微胶囊造粒新技术
• 内容提要: • --微粉碎与超微粉碎 • --冷冻粉碎 • --微胶囊造粒技术
第一节
食品的超微粉碎
• 粉碎:利用机械或流体动力的方法克服固 体内部凝聚力使之破碎的单元操作 • 微粉碎:原料粒度5~10mm,成品粒度 100μm以下。 • 超微粉碎:原料粒度0.5~5mm,成品粒度 10~25μm以下。
2AB10型气流粉碎机
AB10型气流粉碎机
• 自20世纪40年代美国第一台工业气流粉 碎机诞生以来,现已有圆盘式、循环管 式、靶碎机, 比如
2AB10型气流粉碎机
AB10型气流粉碎机
• 气流粉碎机 .doc
气流式超微粉碎的特点
• 粉品细度可达2~40微米 • 粒度分布范围更窄,即粒度更均匀。
与物料的“低温脆性”与玻璃化转变现象密 切相关 先使物料低温冷冻到玻璃化转变温度或脆化 温度以下,再用粉碎机将其粉碎。 在食品和农产品快速降温过程中,会造成内 部各部位不均匀的收缩而产生内应力,在 内应力的作用下,物料内部薄弱部位微裂 纹,并导致内部的结合力降低。 在外部较小作用力就使内部裂纹迅速扩大而 破碎。
第二节
冷冻粉碎
一、定义: 系冷冻和粉碎相结合的技术,是在低温状 态下对易碎产品进行粉碎。 利用物料在低温状态下的“低温脆性”, 即物料随温度的降低,其硬度和脆性增 加,而塑性和韧性降低。在一定温度下 用一个很小的力就能将其粉碎。
超微粉碎技术

气流粉碎机
➢ 普通球磨机是用于超微粉碎的传统设
备,其特点是粉碎比大,结构简单, 机械可靠性强,磨损零件容易检查和 更换,工艺成熟,适应性强,产品粒 度小。但当产品粒度要达到201μm以 下时,效率低,耗能大,加工时间长。
球磨机
➢振动磨是用弹簧支撑磨机体,由 带有偏心块的主轴使其振动,运转 时通过介质和物料的起振动,将物 料进行粉碎,其特点是介质填充率 高,单位时间内的作用次数
工仅局限于其可食用的部分,但是,对于占牡蛎 质量分数占60%以上的牡蛎壳的加工却很少涉及。 利用贝壳制成钙添加剂应用于保健食品中,可以 缓解部分人群的缺钙问题
牡蛎
做成菜后的牡蛎
3、超微粉碎也可使一些食品加工工艺产 生显著变化。例如速溶茶生产,传统的方 法是通过萃取将茶叶中的有效成分提取出 来,然后浓缩、干燥制得粉状速溶茶。现 在采用超微粉碎仅需一步工序便得到粉茶 产品,既大大地简化了生产工艺,又大大 降低了生产成本。
➢ 气流粉碎机是以压缩空气或过热蒸汽通过喷嘴产 生的超音速高湍流气流作为颗粒的载体,颗粒与 颗粒之间或颗粒与固定板之间发生冲击性挤压, 摩擦和剪切等作用,从而达到粉碎的目的。气流 粉碎机可将产品粉碎得很细,粒度分布范围更窄, 即粒度更均匀;又因为气体在喷嘴处膨胀可降温, 粉碎过程没有伴生热量,所以粉碎温升很低。这 一特性对于低熔点和热敏性物料的超微粉碎特别 重要。但也存在一此问题:设备制造成本高,一 次性投资大,能耗高,能量利用率只有2%左右。
牛奶
89.9 3.0 3.2 104 73 0.3 0.43
大米
13.3 7.4 0.8 13 110 2.3 1.7
2、在农产品副产品加工中的应用
农产品的副产品如小麦麸皮(与其他 部位营养成分对比见表2)、燕麦皮、 玉米皮、玉米胚芽渣、豆皮、米糠、 甜菜渣、苹果皮和甘蔗渣等,含有丰 富维生素、微量元素,具有很好的营 养价值,但由于常规粉碎的纤维粒度 大,影响食品的口感,而是消费者难 于接受。采用超微粉碎技术,通过对 纤维的微粒化,能显著地改善纤维食 品的口感和吸收性,从而使食物资源 得到了充分的利用,而且丰富了食品 的营养,因此超微粉碎技术有利于食 物资源的充分利用。
超微粉碎技术的特点

8.具有一定的灭菌作用,污染小,提高产品 卫生水平,符合要求
9.超微粉碎可以使有些物料加工过程或工艺产生革命 性的变化 如许多可食动植物都可用超微粉碎技术加工成超微 粉,甚至动植物的不可食部分也可通过超微化而被 人体吸收。因此超微粉碎技术在农产资源的应用领 域十分广泛。有研究表明,经超微粉碎的食品等在 人体内的吸收较快。原料经超微粉碎后,细胞壁破 碎,细胞内的有效成分充分暴露出来,其释放速度 及释放量相比常规粉碎会大幅度提高,人体吸收更 为容易。
2.材料本身理化性质的改变 超微粉碎过程不仅是粒度减小的过程,同时还伴随 着被粉碎物料晶体结构和物理化学性质不同程度的 变化。而且随着材料的微细化,当达到微米或亚微 米级时,由于粉碎时间长,粉碎强度大,上述变化 将更为明显,将给超微粉体的应用带来影响,这种 材料本身理化性质的改变是超微粉碎过程的另一特 点,当发生了不希望的变性时,则必须对粉体颗粒 采用表面改性处理的方法加以克服。
ห้องสมุดไป่ตู้超微粉碎技术
农产品加工与贮藏工程 邢盼盼 201010972005
一、超微粉碎技术的概述 二、超微粉碎技术的原理及分类 三、超微粉碎技术的设备 ※四、超微粉碎过程的特点
概述
粉碎是食品工业中传统而又重要的单元操作之一, 超微粉碎是指将0.5~5mm的物料粒粉碎至10~ 25µm以下的过程。而一般的粉碎技术只能使物料粒 径达到45µm左右。当物料被加工到10µm以下后,微 粉体就具有巨大的比表面、空隙率和表面能,从而使 物料具有高溶解性、高吸附性、高流动性等多方面 的活性和物理化学方面的新特性,通过超微粉碎的材 料已被世界誉为“21世纪新材料”而这种新的物料 加工方法必将会推动我国食品、中药、农产品等行 业的快速发展,从而给人类的生活带来深远影响。
粮食工程技术《超微粉碎技术》

一超微粉碎与超微粉体简介超微粉碎技术是一种超微粉体的重要制备与应用技术,其研究内容包括:粉体的粉碎制备与分级,别离与枯燥技术,粉体测量与表征技术,粉体分散与外表改性技术,混合、均化、包装、贮运技术,以及制备和贮运中的平安问题。
超微粉碎技术是202160年代末70年代初随着现代化工、电子材料及矿产冶金等行业的开展而诞生的一项跨学科、跨行业的高新技术。
材料经物理或化学方法制成超微粉体后,由于颗粒的比外表积增大,外表能提高,外表活性增强,外表与界面性质将发生很大变化而且随着物质的超微化,材料外表的分子排列乃至电子排布、晶体结构等也都发生了变化,这将使超微粉体显示出与本体材料极为不同的物理、化学性质,并在应用中表现出独特的功能特性。
目前,制备超微粉体采用较多的物理方法有:辊压、撞击、离心、搅拌和球磨等机械粉碎法,利用高速气流、超声波、微波等流能、声能、热能的能量粉碎法,以及通过物质物理状态的变化(如气体蒸发、等离子体合成)而生成超微颗粒的构筑法。
化学制备方法包括:沉淀、水解、喷雾、氧化复原、激光合成、冻结枯燥和火花放电等。
由于超微粉体具有易团聚、分散性差、相溶性差等特点,给其制备与应用带来了诸多困难,科研人员为此开展了大量针对性研究,特别是在超微粉体颗粒外表改性方面,不仅建立了较完整的理论,而且研制出多种外表改性方法,如包覆、沉积(淀)、微胶囊技术、外表化学反响、机械化改性等多种方法,极大地拓展了超微粉体的应用领域,提高了粉体的使用价值,也使超微粉碎技术在石油、化工、冶金、电子、医药、生物和轻工等诸多领域,以及食品、保健品、日用化学品、化装品、农产品、饲料、涂料、陶瓷等大量产品的制造中得到了广泛应用。
超微粉体按大小可分为微米级、亚微米级和纳米级。
国际上通常将粒径为1-100um的粉体称为微米材料;粒径为0.1-10um的粉体称为亚微米材料;粒径为0.001-0.100um的粉体称为纳米材料。
广义的纳米材料是指三维尺寸中至少一维处于纳米量级,如薄膜、纤维微粒等,也包括纳米结晶材料。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
新型功能食品或添加剂
在牛奶生产过程中,利用均质机能使脂肪明显细化。若98% 的脂肪球直径在2微米以下,则可达到优良的均质效果,口 感好,易于消化。植物蛋白饮料是以富含蛋白质的植物种子 和各种果核为原料,经浸泡、磨浆、均质等操作单元制成的 乳状制品。磨浆时用胶体磨磨至粒径5-8微米,再均质至1~2 微米。可使蛋白质固体颗粒、脂肪颗粒变小,从而防止蛋白 质下沉和脂肪上浮。调味品加工微粉食品的巨大孔隙造成集 合孔腔,可吸收并容纳香气经久不散,这是重要的固香方法 之一,因此作为调味品使用的超微粉,其香味和滋味更浓郁、 突出。超微粉碎技术作为一种新型的食品加工方法,可以使 传统调味料(主要是香辛料)细碎成粒度均一、分散性好的 优良超微颗粒。由于香辛料微粒粒径的不断减小,其流动性、 溶解速度和吸收率均有所增大,入味效果也得、甲壳素。蟹壳、虾壳、蛆、蛹等的超微粉
末可用作保鲜剂、持水剂、抗氧化剂等,改 性后还有其他许多功能性。
改变传统工艺
改善食品品质、降低生产成本超微粉碎,可以使部 分食品加工过程或工艺产生革命性的变化。如速溶 茶生产,传统的方法是通过萃取,将茶叶中的有效 成分提取出来,然后浓缩、干燥制得粉状速溶茶。 现在采用超微粉碎仅需一步工序便得到粉茶产品, 既大大简化生产工艺,又大大降低生产成本。再者 是豆粉的生产,传统的工艺是先将大豆浸泡,然后 破碎、去皮、细磨脱水、干燥,如果采用干法超微 粉碎技术,大豆毋须加水浸泡,便可直接破碎、超 微得到豆粉产品。这样,既保留了豆皮的营养,又 节省了能量,因为传统方法先加水,最后再脱水干 燥,浪费很多能量。
表1 粉碎的类型
粉碎类型 粗粉碎 细粉碎 微粉碎 超微粉碎 原料粒度 10-100 mm 5-50 mm 5-10 mm 0.5-5 mm 成品粒度 5-10 mm 0.1-5 mm <100 um <10-20 um
粉碎前后的粒度比称为粉碎比或粉碎度,它主要
指粉碎前后的粒度变化,同时近似反映出粉碎设备
超微粉碎技术的应用
各种畜、禽鲜骨中含有丰富的蛋白质和脂肪、 磷脂质、磷蛋白,能促进儿童大脑神经的发 育,有健脑增智之功效。鲜骨中含有的骨胶 原(氨基酸)、软骨素等,有滋润皮肤防衰老 的作用鲜骨中还含有维生素A、B,、B2、 B12等营养成分。钙、铁等在鲜骨中的含量 也极高,如猪骨中含有复合磷酸钙盐、脂质 和蛋白质等主要成分。
的表面积和孔隙率,很好的溶解性,很强的吸附性、流动性。
由于加工条件的优化,加工出来的产品在短时(甚至是瞬间)、 低温、干燥、密封的条件下获得,因而避免了营养成分的流失
和变化,避免了污染,同时可对物料进行最大限度的利用,也
给制造新型食品提供了极为方便的工艺条件。 本课程在此对食品工业中的超微粉碎技术的原理、分类、 方法、生产设备及其在食品工业中的应用进行阐述。
粉碎方法
磨介式粉碎 磨介式粉碎是借助与运动的研磨介质(磨介) 所产生的;中击,以及非;中击式的弯折、 挤压和剪切等作用力,达到物料颗粒粉碎的 过程。磨介式粉碎过程主要为研磨和摩擦, 即挤压和剪切。其效果取决于磨介的大小、 形状、配比、运动方式、物料的填充率、物 料的粉碎力学特性等。磨介式粉碎的典型设 备有球磨机、搅拌磨和振动磨3种。
新型功能食品或添加剂
2、补钙食品。动物骨、壳、皮等通过超微粉 碎后得到的微粉属有机钙,比无机钙容易被 人体吸收、利用。这些有机钙可以作为添加 剂,制成高钙高铁的骨粉(泥)系列食品, 具有独到的营养保健功能,因此被誉为"21世 纪功能性食品"。当这些有机钙粉(包括珍珠 粉)的粒度小于5微米时,可用于某些缺钙食 品如豆奶等的富钙。
粉碎方法
气流式超微粉碎
气流磨可用于超微粉碎,是以压缩空气或过热蒸汽,通过喷 嘴产生的超音速高湍流气流作为颗粒的载体,颗粒与颗粒之 间或颗粒与固定板之间发生冲击性积压、磨擦和剪切等作用, 达到粉碎目的。 气流磨与普通机械式超微粉碎机相比,气流粉碎机可将产品 粉碎得很细(粉品细度可达2~40微米),粒度分布范围更 窄,即粒度更均匀。 气体在喷嘴处膨胀可降温,粉碎过程没有伴生热量,粉碎温 升很低。对于低熔点和热敏性物料的超微粉碎特别重要。 气流粉碎能耗大,能量利用率只有2%左右,一般认为要高 出其他粉碎方法数倍。
技术特点
节省原料 提高利用率
物体经超微粉碎后,近纳米细粒径的超细粉 一般可直接用于制剂生产,而常规粉碎的产 物仍需要一些中间环节,才能达到直接用语 生产的要求这样很可能造成原料浪费。因此, 该技术尤其适合珍贵稀少原料的粉碎。
技术特点
减少污染
超微粉碎是在封闭系统下进行,既避免了微 粉污染周围环境,又可防止空气中的灰尘污 染产品。故在食品及医疗保健品中运用该技 术,微生物含量及灰尘便得以控制。
粉碎方法
机械剪切是超微粉碎 现有大部分粉碎方法多为冲击式。对于脆性大、韧性 小的物料,这些方法是恒之有效。 基于农产品深加工的发展,特别是新鲜或含水最高的 高纤维物料(多为韧性物料和柔性物料)的粉碎,气 流冲击粉碎反而效果不好,反映在产品粒度大、能耗 高、这类物质的粉碎用剪切式比较合适。 超微粉碎的方法很多,但是目前在食品加工中应用较 多的是气流式中的超音速式超微粉碎方法。
超微粉碎技术是近20年来国际间发展起来的 新技术。所谓超微粉碎,是指利用机械或流 体动力的方法克服固体内部凝聚力使之破碎, 从而将3毫米以上的物料颗粒粉碎至10-25微 米,操作技术,是20世纪70年代以后,为适 应现代高新技术的发展而产生的一种物料加 工高新技术。
1 超微粉碎技术的定义
超微粉碎技术是指利用机械力的方法克服
粉碎技术是食品工业中一项重要的单元操作,既可满足 某些食品消费和生产的需要,又可增加固体表面积,以利于 后道处理程序的顺利进行。但随着现代食品工业的不断发展, 普通的粉碎手段已开始不能适应现代工业生产的需要,这就 使得超微粉碎技术得到了迅猛的发展。
超微粉碎是将各种物质粉碎成直径<20μm的微粒,其微粒具有 微粉的特征,这是七十年代以后为适应现代高新技术的发展而 派生的一种物料加工新技术。经过超微粉碎的物质,具有巨大
食品工业中的超微粉碎 技术
主讲人:林向阳 生物科学与工程学院
引 言
随着中国加入WTO, 同时进入第十个五年计划时期, 我国的食品工业正面临着前所未有的机遇与挑战,加强各项 现代高新技术在食品的研究、开发、生产过程中的应用,以 促进食品的升级换代,提高产品技术含量是当务之急。 粉碎技术是指利用机械力的方法来克服固体物料内部凝 聚力,以达到使之破碎的操作技术。
软饮料加工
利用气流微粉碎技术,可开发出的软饮料有 粉茶、豆类固体饮料、超细骨粉配制富钙饮 料和速溶绿豆精等。如果将茶叶在常温、干 燥状态下制成茶粉、使粉体的粒径小于5微米, 则茶叶的全部营养成分易被人体肠胃直接吸 收,可以即冲即饮。乌龙茶、红茶、绿茶、 的茶粉还可加入到各种食品中,从而加工出 一种全新的茶制品。
新型功能食品或添加剂
1、纤维食品膳贪。纤维素被现代营养学界称 为"第七营养素" ,它可作为食物填充剂或生 理活性物质,是防治现代"文明病"和平衡膳 食结构的重要功能性基料食品。因此,增加 膳食纤维的摄入是提高人体健康的重要措施。 借助现代超微粉碎技术,使食物纤维微粒 化, 能明显改善纤维食品的口感和吸收性。
超微粉碎技术的应用
人们的生活水平不断提高,对食品的要求也 愈来愈重视。这就对食品的加工技术提出了 更高的要求,既要保证食品良好的口感,又 要保证营养成分不被破坏,而且还要更有利 于人体的吸收。超微粉碎技术根据其特点, 应用于食品加工领域,恰恰可以达到上述的 一些效果。对食品进行微粒超微化处理,可 以使其比表面积成倍增长,提高某些成分的 活性、吸收率,并使食品的表面电荷、粘力 发生奇妙的变化。
超微粉碎技术的应用
传统的饮茶方法是用开水冲泡茶叶,但是人体并没 有完全吸收茶叶的全部营养成分,一些不溶性或难 溶的成分,诸如维生素A、K、E及绝大部分蛋白质、 碳水化合物、胡罗卜素以及部分矿物质等,都大量 留存于茶渣中大大影响了茶叶的营养及保健功能。 如果将茶叶在常温、干燥状态下制成粉茶,使粉体 的粒径小于5微米,则茶叶的全部营养成分易被人 体肠胃直接吸收,用水冲饮时成为溶液状,无沉淀。
粉碎方法
值得指出的是,一般认为产品粒度与喂料速度成正 比,即喂料速度愈大,产品粒度也愈大这种理解不 全面。当喂料速度或粉碎机内颗粒浓度达到一定值 后,这个说法是合理的。喂料速度增大,粉碎机内 颗粒浓度也增加,发生颗粒拥挤现象,甚至颗粒流 动像柱塞一样,只有在"柱塞"前沿的颗粒,才有发 生有效碰撞的可能,在后面的颗粒只有相互之间低 速的碰撞和摩擦、发热。这并不是说颗粒浓度愈小, 产品粒度愈小,或者粉碎效率愈高。恰恰相反,当 颗粒浓度低到一定程度,颗粒之间将缺少碰撞机会 而降低粉碎效率。
的工作情况。一般粉碎设备的粉碎比为3-30,而
超微粉碎设备粉碎比大于300。对于一定性质的物
料来说,粉碎比主要与确定粉碎作业程度、选择设
备类型和尺寸等方面有关。
超微细粉末的应用
超微细粉末是超微粉碎的最终产品,具有一 般颗粒所没有的特殊理化性质,如良好的溶 解性、分散性、吸附性、化学反应活性等。 因此超微细粉末已广泛应用于食品、化工、 医药、化妆品农药、染料、涂料、电子及航 空航天等许多领域上。
技术特点
速度快可低温粉碎 超微粉碎技术是采用超音速气流粉碎、冷浆 粉碎等方法,与以往的纯机械粉碎方法完全 不同。在粉碎过程中不会产生局部过热现象, 甚至可在低温状态下进行粉碎,速度快,瞬 间即可完成,因而最大限度地保留粉体的生 物活性成分,以利于制成所需的高质量产品。
技术特点
粒径细且分布均匀 由于采用超音速气流粉碎,其在原料上力的 分布相当均匀。分级系统的设置,既严格限 制了大颗粒,有避免出现过碎,得到粒径分 布均匀的超细粉,同时很大程度上增加了微 粉的比表面积,使吸附性、溶解性等亦相应 增大。