2011届高考数学人教A版一轮复习课时练习-第十章_第一节--随机抽样 (1)
山东高考数学一轮总复习学案设计-第十章第一讲随机抽样含答案解析

第十章 统计、统计案例 第一讲 随机抽样知识梳理·双基自测知识梳理知识点一 总体、个体、样本、样本容量的概念统计中所考察对象的全体构成的集合看做总体,构成总体的每个元素作为个体,从总体中抽取的__一部分个体__所组成的集合叫做样本,样本中个体的__数目__叫做样本容量.知识点二 简单随机抽样一般地,设一个总体含有N 个个体,从中逐个__不放回__地抽取n 个个体作为样本(n ≤N ),如果每次抽取时总体内的各个个体被抽到的__机会都相等__,就把这种抽样方法叫做简单随机抽样.最常用的简单随机抽样的方法有两种:__抽签法__和__随机数表法__. 知识点三 系统抽样当总体中的个体比较多且均衡时,首先把总体分成均衡的若干部分,然后__按照预先定出的规则__,从每一部分中抽取一个个体,得到所需要的样本,这种抽样方法叫做系统抽样.系统抽样的步骤一般地,假设要从容量为N 的总体中抽取容量为n 的样本. (1)先将总体的N 个个体__编号__;(2)确定__分段间隔k __,对编号进行__分段__.当N n (n 是样本容量)是整数时,取k =Nn ;(3)在第1段用__简单随机抽样__确定第一个个体编号l (k ≤k );(4)按照一定的规则抽取样本.通常是将l 加上间隔k 得到第2个个体编号__(l +k )__,再加k 得到第3个个体编号__(l +2k )__,依次进行下去,直到获取整个样本.知识点四 分层抽样一般地,在抽样时将总体分成互不交叉的层,然后按照__一定的比例__,从各层独立地抽取一定数量的个体,将各层取出的个体合在一起作为样本,这种抽样方法叫做分层抽样.分层抽样的应用范围:当总体是由__差异明显的几个部分__组成时,往往选用分层抽样的方法.重要结论1.不论哪种抽样方法, 总体中的每一个个体入样的概率都是相同的.2.系统抽样一般也称为等距抽样,入样个体的编号相差分段时间隔k的整数倍.3.分层抽样是按比例抽样,每一层入样的个体数为该层的个体数乘抽样比.双基自测题组一走出误区1.(多选题)下列结论中正确的是(AB)A.简单随机抽样是从总体中逐个不放回的抽取样本B.系统抽样在起始部分抽样时采用简单随机抽样C.要从1 002个学生中用系统抽样的方法选取一个容量为20的样本,需要剔除2个学生,这样对被剔除者不公平D.抽签法中,先抽的人抽中的可能性大题组二走进教材2.(P100A组T2)某公司有员工500人,其中不到35岁的有125人,35~49岁的有280人,50岁以上的有95人,为了调查员工的身体健康状况,从中抽取100名员工,则应在这三个年龄段分别抽取人数为(B)A.33,34,33 B.25,56,19C.30,40,30 D.30,50,20[解析]因为12528095=255619,所以抽取人数分别为25,56,19.3.(P59T2)某班共有52人,现根据学生的学号,用系统抽样的方法,抽取一个容量为4的样本,已知3号,29号,42号学生在样本中,那么样本中还有一个学生的学号是(D) A.10 B.11C.12 D.16[解析]从被抽中的3名学生的学号中可以看出学号间距为13,所以样本中还有一个学生的学号是16,故选D.题组三考题再现4.(2018·课标全国Ⅲ)某公司有大量客户,且不同年龄段客户对其服务的评价有较大差异.为了解客户的评价,该公司准备进行抽样调查,可供选择的抽样方法有简单随机抽样、分层抽样和系统抽样,则最合适的抽样方法是__分层抽样__.[解析]因为不同年龄段客户对其服务的评价有较大差异,所以根据三种抽样方法的特点可知最合适的抽样方法是分层抽样.5.(2019·课标全国Ⅰ)某学校为了解1 000名新生的身体素质,将这些学生编号为1,2,…,1 000,从这些新生中用系统抽样方法等距抽取100名学生进行体质测验.若46号学生被抽到,则下面4名学生中被抽到的是(C)A.8号学生B.200号学生C.616号学生D.815号学生[解析] 将1 000名学生分成100组,每组10人,则每组抽取的号码构成公差为10的等差数列{a n },由题意知a 5=46,则a n =a 5+(n -5)×10=10n -4,n ∈N *,易知只有C 选项满足题意.故选C .KAO DIAN TU PO HU DONG TAN JIU考点突破·互动探究考点一 简单随机抽样——自主练透例1 (1)(2019·陕西模拟)某班级有男生20人,女生30人,从中抽取10人作为样本,其中一次抽样结果是:抽到了4名男生、6名女生,则下列命题正确的是( A )A .这次抽样可能采用的是简单随机抽样B .这次抽样一定没有采用系统抽样C .这次抽样中每个女生被抽到的概率大于每个男生被抽到的概率D .这次抽样中每个女生被抽到的概率小于每个男生被抽到的概率(2)(2019·山西大同)用简单随机抽样的方法从含有10个个体的总体中,抽取一个容量为3的样本,其中某一个体a “第一次被抽到”的可能性与“第二次被抽到”的可能性分别是( A )A .110,110B .310,15C .15,310D .310,310(3)(2020·山西大学附中诊断)某工厂利用随机数表对生产的600个零件进行抽样测试,先将600个零件进行编号,编号分别为001,002,…,599,600从中抽取60个样本,如下提供随机数表的第4行到第6行:32 21 18 34 29 78 64 54 07 32 52 42 06 44 38 12 23 43 56 77 35 78 90 56 42;84 42 12 53 31 34 57 86 07 36 25 30 07 32 86 23 45 78 89 07 23 68 96 08 04;32 56 78 08 43 67 89 53 55 77 34 89 94 83 75 22 53 55 78 32 45 77 89 23 45若从表中第6行第6列开始向右依次读取3个数据,则得到的第6个样本编号( D ) A .522 B .324 C .535D .578[解析] (1)利用排除法求解.这次抽样可能采用的是简单随机抽样,A 正确;这次抽样可能采用系统抽样,男生编号为1~20,女生编号为21~50,间隔为5,依次抽取1号,6号,…,46号便可,B 错误;这次抽样中每个女生被抽到的概率等于每个男生被抽到的概率,C 和D 均错误,故选A .(2)在抽样过程中,个体a 每一次被抽中的概率是相等的,因为总体容量为10,故个体a “第一次被抽到”的可能性与“第二次被抽到”的可能性均为110.故选A .(3)从第6行第6列开始向右依次读取3个数,依次得到的样本为436,535,577,348,522,578,故选D .名师点拨 ☞(1)简单随机抽样满足:①抽取的个体数有限;②逐个抽取;③不放回抽取;④等可能抽取.(2)抽签法适用于总体中个体数较少的情况,随机数表法适用于总体中个体数较多的情况.考点二 系统抽样——师生共研例2 (1)(2019·甘肃张掖诊断)某校高三科创班共48人,班主任为了解学生高考前的心理状况,将学生按1至48的学号用系统抽样方法抽取8人进行调查若抽到的最大学号为48,则抽到的最小学号为__6__.(2)(2019·湖北模拟)将参加数学竞赛决赛的500名学生编号为:001,002,…,500,采用系统抽样的方法抽取一个容量为50的样本,分组后,在第一组采用简单随机抽样抽得的号码为003.这500名学生分别在三个考点考试,从001到200在第一考点,从201到355在第二考点,从356到500在第三考点,则第三考点被抽中的人数为( A )A .14B .15C .16D .21[解析] (1)系统抽样的抽取间隔为488=6,则48-6×7=6,则抽到的最小学号为6,故答案为6。
高三数学人教版A版数学(理)高考一轮复习教案:10.2 随机抽样 Word版含答案

第二节随机抽样抽样方法(1)理解随机抽样的必要性和重要性.(2)会用简单随机抽样方法从总体中抽取样本.(3)了解分层抽样和系统抽样方法.知识点抽样方法类别各自特点相互联系适用范围共同点简单随机抽样从总体中逐个抽取最基本的抽样方法总体中的个体数较少抽样过程中每个个体被抽到的可能性相等系统抽样将总体平均分成几部分,按事先确定的规则分别在各部分中抽取在起始部分抽样时,采用简单随机抽样总体中的个体数较多分层抽样将总体分成几层,按各层个体数之比抽取各层抽样时采用简单随机抽样或系统抽样总体由差异明显的几部分组成易误提醒(1)简单随机抽样中易忽视样本是从总体中逐个抽取,是不放回抽样,且每个个体被抽到的概率相等.(2)系统抽样中,易忽视抽取的样本数也就是分段的段数,当Nn不是整数时,注意剔除,剔除的个体是随机的,各段入样的个体编号成等差数列.(3)分层抽样中,易忽视每层抽取的个体的比例是相同的,即都等于样本容量n总体个数N.[自测练习]1.为了了解参加知识竞赛的1 252名学生的成绩,决定采用系统抽样的方法抽取一个容量为50的样本,那么总体中应随机剔除的个体数目是()A.2B.3C.4 D.5解析:因为1 252=50×25+2,所以应随机剔除2个个体,应选A.答案:A2.从300名学生(其中男生180人,女生120人)中按性别用分层抽样的方法抽取50人参加比赛,则应该抽取男生人数为( )A .27B .30C .33D .36解析:本题考查分层抽样等基础知识.因为男生与女生的比例为180∶120=3∶2,所以应该抽取男生人数为50×33+2=30. 答案:B3.已知某商场新进3 000袋奶粉,为检查其三聚氰胺是否达标,现采用系统抽样的方法从中抽取150袋检查,若第一组抽出的号码是11,则第六十一组抽出的号码为________.解析:每组袋数:d =3 000150=20,由题意知这些号码是以11为首项,20为公差的等差数列.a 61=11+60×20=1 211. 答案:1 211考点一 简单的随机抽样|1.下列抽取样本的方式是简单随机抽样的有( ) ①从无限多个个体中抽取50个个体作为样本;②箱子里有100支铅笔,今从中选取10支进行检验,在抽样操作时,从中任意拿出一支检测后再放回箱子里;③从50个个体中一次性抽取5个个体作为样本. A .0个 B .1个 C .2个D .3个解析:①不满足样本的总体数较少的特点;②不满足不放回抽取的特点;③不满足逐个抽取的特点.答案:A2.(2015·唐山二模)用简单随机抽样的方法从含有100个个体的总体中抽取一个容量为5的样本,则个体M 被抽到的概率为( )A.1100B.199C.120D.150解析:一个总体含有100个个体,某个个体被抽到的概率为1100,用简单随机抽样方式从该总体中抽取容量为5的样本,则某个个体被抽到的概率为1100×5=120.答案:C一个抽样试验能否用抽签法,关键看两点一是抽签是否方便;二是号签是否易搅匀.一般地,当总体容量和样本容量都较小时可用抽签法.考点二 系统抽样|(2015·黑龙江哈尔滨六中模拟)哈六中2015届有840名学生,现采用系统抽样方法,抽取42人做问卷调查,将840人按1,2,…,840随机编号,则抽取的42人中,编号落入区间[481,720]的人数为( )A .11B .12C .13D .14[解析] 使用系统抽样方法,从840人中抽取42人,即从20人抽取1人.所以从编号1~480的人中,恰好抽取48020=24(人),接着从编号481~720共240人中抽取24020=12人.故选B.[答案] B解决系统抽样问题的两个关键步骤(1)分组的方法应依据抽取比例而定,即根据定义每组抽取一个样本.(2)起始编号的确定应用简单随机抽样的方法,一旦起始编号确定,其他编号便随之确定了.1.(2015·陕西师大附中模拟)采用系统抽样方法从960人中抽取32人做问卷调查,为此将他们随机编号为1,2,…,960,分组后在第一组采用简单随机抽样的方法抽到的号码为9.抽到的32人中,编号落入区间[1,450]的人做问卷A ,编号落入区间[451,750]的人做问卷B ,其余的人做问卷C .则抽到的人中,做问卷C 的人数为________.解析:设n 抽到的号码为a n ,则a n =9+30(n -1)=30n -21,由750<30n -21≤960, 得25.7<n ≤32.7,所以n 的取值为26,27,28,29,30,31,32,共7个, 因此做问卷C 的人数为7. 答案:7考点三 分层抽样|(1)(2015·高考福建卷)某校高一年级有900名学生,其中女生400名.按男女比例用分层抽样的方法,从该年级学生中抽取一个容量为45的样本,则应抽取的男生人数为________.[解析] 设应抽取的男生人数为x ,则x 900-400=45900,解得x =25.[答案] 25(2)(2015·郑州二检)最新高考改革方案已在上海和浙江实施,某教育机构为了解我省广大师生对新高考改革方案的看法,对某市部分学校500名师生进行调查,统计结果如下:赞成改革 不赞成改革无所谓 教师 120 y 40 学生xz130 ①现从全部500名师生中用分层抽样的方法抽取50名进行问卷调查,则应抽取“不赞成改革”的教师和学生人数各是多少?②在①中所抽取的“不赞成改革”的人中,随机选出3人进行座谈,求至少有1名教师被选出的概率.[解] ①由题意知x500=0.3,所以x =150,所以y +z =60,因为z =2y ,所以y =20,z =40,则应抽取教师人数为50500×20=2,应抽取学生人数为50500×40=4.②所抽取的“不赞成改革”的2名教师记为a ,b,4名学生记为1,2,3,4,随机选出3人的不同选法有(a ,b,1),(a ,b,2),(a ,b,3),(a ,b,4),(a,1,2),(a,1,3),(a,1,4),(a,2,3),(a,2,4),(a,3,4),(b,1,2),(b,1,3),(b,1,4),(b,2,3),(b,2,4),(b,3,4),(1,2,3),(1,2,4),(1,3,4),(2,3,4),共20种,至少有1名教师的选法有(a ,b,1),(a ,b,2),(a ,b,3),(a ,b,4),(a,1,2),(a,1,3),(a,1,4),(a,2,3),(a,2,4),(a,3,4),(b,1,2),(b,1,3),(b,1,4),(b,2,3),(b,2,4),(b,3,4),共16种,故至少有1名教师被选出的概率P =1620=45.进行分层抽样的相关计算时,常用到的关系式(1)样本容量n总体的个数N =该层抽取的个体数该层的个体数. (2)总体中某两层的个体数之比等于样本中这两层抽取的个体数之比.2.(2016·抚顺模拟)某商场有四类食品,其中粮食类、植物油类、动物性食品类及果蔬类分别有40种、10种、30种、20种,现从中抽取一个容量为20的样本进行食品安全检测.若采用分层抽样的方法抽取样本,则抽取的植物油类与果蔬类食品种数之和是( )A .4B .5C .6D .7解析:四类食品的每一种被抽到的概率为 2040+10+30+20=15,∴植物油类和果蔬类食品被抽到的种数之和为(10+20)×15=6.答案:C26.系统抽样中的易错点【典例】 某班运动队由足球运动员18人、篮球运动员12人、乒乓球运动员6人组成(每人只参加一项),现从这些运动员中抽取一个容量为n 的样本,若分别采用系统抽样法和分层抽样法,则都不用剔除个体;当样本容量为n +1时,若采用系统抽样法,则需要剔除1个个体,那么样本容量n 为________.[解析] 总体容量为6+12+18=36.当样本容量为n 时,由题意可知,系统抽样的抽样距为36n ,分层抽样的抽样比是n 36,则采用分层抽样法抽取的乒乓球运动员人数为6×n 36=n 6,篮球运动员人数为12×n 36=n 3,足球运动员人数为18×n 36=n2,可知n 应是6的倍数,36的约数,故n =6,12,18.当样本容量为n +1时,剔除1个个体,此时总体容量为35,系统抽样的抽样距为35n +1,因为35n +1必须是整数,所以n 只能取6,即样本容量n 为6.[答案] 6[易错点评] 解题易忽视系统抽样的抽样距必须是整数导致失误.[防范措施] 系统抽样中,易忽视抽取的样本数也就是分段的段数,当Nn 不是整数时,注意剔除,剔除的个体是随机的,各段入样的个体编号成等差数列.[跟踪练习] 某中学采用系统抽样方法,从该校高一年级全体800名学生中抽50名学生做牙齿健康检查.现将800名学生从1到800进行编号.已知从33~48这16个数中取的数是39,则在第1小组1~16中随机抽到的数是( )A .5B .7C .11D .13解析:间隔数k =80050=16,即每16人抽取一个人.由于39=2×16+7,所以第1小组中抽取的数为7.答案:BA 组 考点能力演练1.(2016·兰州质检)从一个容量为N 的总体中抽取一个容量为n 的样本,当选取简单随机抽样、系统抽样和分层抽样三种不同方法抽取样本时,总体中每个个体被抽中的概率分别为p 1、p 2、p 3,则( )A .p 1=p 2<p 3B .p 2=p 3<p 1C .p 1=p 3<p 2D .p 1=p 2=p 3解析:根据简单随机抽样、系统抽样和分层抽样的定义可知,无论哪种抽样,每个个体被抽中的概率都是相等的,所以p 1=p 2=p 3,故选D.答案:D2.某学校有男、女学生各500名,为了解男、女学生在学习兴趣与业余爱好方面是否存在显著差异,拟从全体学生中抽取100名学生进行调查,则宜采用的抽样方法是( )A .抽签法B .随机数法C .系统抽样法D .分层抽样法解析:从全体学生中抽取100名应用分层抽样法,按男、女学生所占的比例抽取,故选D.答案:D3.(2016·石家庄模拟)某学校高三年级一班共有60名学生,现采用系统抽样的方法从中抽取6名学生做“早餐与健康”的调查,为此将学生编号为1,2,…,60.选取的这6名学生的编号可能是( )A .1,2,3,4,5,6B .6,16,26,36,46,56C .1,2,4,8,16,32D .3,9,13,27,36,54解析:系统抽样是等间隔抽样,只有B 选项符合. 答案:B4.某工厂生产甲、乙、丙三种型号的产品,产品数量之比为3∶5∶7,现用分层抽样的方法抽出容量为n 的样本,其中甲种产品有18件,则样本容量n =( )A .54B .90C .45D .126解析:依题意得33+5+7×n =18,解得n =90,即样本容量为90.答案:B5.某工厂的三个车间在12月份共生产了3 600双皮靴,在出厂前要检查这批产品的质量,决定采用分层抽样的方法进行抽取,若第一、二、三车间抽取的产品数分别为a ,b ,c ,且a ,b ,c 构成等差数列,则第二车间生产的产品数为( )A .800B .1 000根据分层抽样的性质,160的样本,已知从学生中抽取的人数为150,那么该学校的教师人数是________.解析:本题属于分层抽样,设该学校的教师人数为x ,所以1603 200=160-150x ,所以x =200.答案:2007.(2016·武夷模拟)用系统抽样法要从160名学生中抽取容量为20的样本,将160名学生随机地从1~160编号,按编号顺序平均分成20组(1~8号,9~16号,…,153~160号),若第16组抽出的号码为126,则第1组中用抽签的方法确定的号码是________.解析:设第1组抽取的号码为b ,则第n 组抽取的号码为8(n -1)+b ,∴8×(16-1)+b =126,∴b =6,故第1组抽取的号码为6.答案:68.(2016·潍坊模拟)某高中在校学生有2 000人.为了响应“阳光体育运动”的号召,学校开展了跑步和登山比赛活动.每人都参与而且只参与其中一项比赛,各年级参与比赛的人数情况如下表:其中a ∶b ∶c =2∶3∶5,全校参与登山的人数占总人数的25.为了了解学生对本次活动的满意程度,从中抽取一个200人的样本进行调查,则从高二年级参与跑步的学生中应抽取________.解析:根据题意可知样本中参与跑步的人数为200×35=120,所以从高二年级参与跑步的学生中应抽取的人数为120×32+3+5=36.答案:369.一次数学模拟考试,共12道选择题,每题5分,共计60分,每道题有四个可供选择的答案,仅有一个是正确的.学生小张只能确定其中10道题的正确答案,其余2道题完全靠猜测回答.设抽取x 张选择题得60分的试卷,则2040=x4,则x =2,故应抽取2张选择题得60分的试卷.(2)设小张的试卷为a 1,另三名得60分的同学的试卷为a 2,a 3,a 4,所有抽取60分试卷的方法为:(a 1,a 2),(a 1,a 3),(a 1,a 4),(a 2,a 3),(a 2,a 4),(a 3,a 4)共6种,其中小张的试卷被抽到的抽法共有3种,故小张的试卷被抽到的概率为P =36=12.10.某校从参加高三模拟考试的学生中随机抽取60名学生,将其数学成绩(均为整数)分成六组[90,100),[100,110),…,[140,150]后得到如图所示的部分频率分布直方图.观察图中的信息,回答下列问题.(1)求分数在[120,130)内的频率;(2)若在同一组数据中,将该组区间的中点值作为这组数据的平均分,据此估计本次考试的平均分;(3)用分层抽样的方法在分数段为[110,130)的学生中抽取一个容量为6的样本,将该样本看成一个总体,从中任取2人,求至多有1人在分数段[120,130)内的概率.解:(1)分数在[120,130)内的频率为1-(0.1+0.15+0.15+0.25+0.05)=1-0.7=0.3. (2)估计平均分为x =95×0.1+105×0.15+115×0.15+125×0.3+135×0.25+145×0.05=121. (3)由题意,得[110,120)分数段的人数为60×0.15=9(人),[120,130)分数段的人数为60×0.3=18(人).∵用分层抽样的方法在分数段为[110,130)的学生中抽取一个容量为6的样本,∴需在[110,120)分数段内抽取2人,分别记为m ,n ;在[120,130)分数段内抽取4人,分别记为a ,b ,c ,d .设“从样本中任取2人,至多有1人在分数段[120,130)内”为事件A ,则基本事件有(m ,n ),(m ,a ),(m ,b ),(m ,c ),(m ,d ),(n ,a ),(n ,b ),(n ,c ),(n ,d ),(a ,b ),(a ,c ),(a ,d ),(b ,c ),(b ,d ),(c ,d ),共15种,其中事件A 包含9种.∴P (A )=915=35.即至多有1人在分数段[120,130)内的概率为35.B 组 高考题型专练1.(2015·高考北京卷)某校老年、中年和青年教师的人数见下表,采用分层抽样的方法调查教师的身体状况,在抽取的样本中,青年教师有320人,则该样本中的老年教师人数为( )类别 人数 老年教师 900 中年教师 1 800 青年教师 1 600 合计4 300A.90C.180 D.300解析:设样本中的老年教师人数为x,则3201 600=x900,解得x=180,选C.答案:C2.(2015·高考四川卷)某学校为了了解三年级、六年级、九年级这三个年级之间的学生视力是否存在显著差异,拟从这三个年级中按人数比例抽取部分学生进行调查,则最合理的抽样方法是()A.抽签法B.系统抽样法C.分层抽样法D.随机数法解析:因为要了解三个年级之间的学生视力是否存在显著差异,所以采用分层抽样的方法最合理.答案:C3.(2014·高考天津卷)某大学为了解在校本科生对参加某项社会实践活动的意向,拟采用分层抽样的方法,从该校四个年级的本科生中抽取一个容量为300的样本进行调查.已知科生中抽取________名学生.解析:设应从一年级本科生中抽取x名学生,则答案:604.(2014·高考湖北卷)甲、乙两套设备生产的同类型产品共方法从中抽取一个容量为80的样本进行质量检测.乙设备生产的产品总数为________件.解析:分层抽样中各层的抽样比相同.样本中甲设备生产的有50件,则乙设备生产的有30件.在4 800件产品中,甲、乙设备生产的产品总数比为5∶3,所以乙设备生产的产品的总数为1 800件.答案:1 800。
高考数学一轮复习讲解与练习 10.1随机抽样理 新人教A版.pdf

[备考方向要明了] 考 什 么怎 么 考1.理解随机抽样的必要性和重要性. 2.会用简单随机抽样方法从总体中抽取样本,了解分层抽样和系统抽样. 对随机抽样(尤其是分层抽样)的考查,几乎年年都出现在高考试题中,题型以选择题和填空题为主,难度较低,如2012年天津T9,江苏T2等. [归纳·知识整合] 1.简单随机抽样 (1)抽取方式:不放回抽取; (2)每个个体被抽到的概率相等; (3)常用方法:抽签法和随机数法. [探究] 1.简单随机抽样有什么特点? 提示:(1)被抽取样本的总体个数N是有限的;(2)样本是从总体中逐个抽取的;(3)是一种不放回抽样;(4)是等可能的抽取. 2.系统抽样的步骤 假设要从容量为N的总体中抽取容量为n的样本. (1)先将总体的N个个体编号; (2)确定分段间隔k,对编号进行分段.当(n是样本容量)是整数时,取k=; (3)在第1段用简单随机抽样确定第一个个体编号l(l≤k); (4)按照一定的规则抽取样本,通常是将l加上间隔k得到第2个个体编号l+k,再加k得到第3个个体编号l+2k,依次进行下去,直到获取整个样本. [探究] 2.系统抽样有什么特点? 提示:适用于元素个数很多且均衡的总体;各个个体被抽到的机会均等;总体分组后,在起始部分抽样时,采用简单随机抽样. 3.分层抽样 (1)定义:在抽样时,将总体分成互不交叉的层,然后按照一定的比例,从各层独立地抽取一定数量的个体,将各层取出的个体合在一起作为样本,这种抽样方法是一种分层抽样. (2)分层抽样的应用范围: 当总体是由差异明显的几个部分组成时,往往选用分层抽样. [探究] 3.分层抽样有什么特点? 提示:适用于总体由差异明显的几部分组成的情况;分层后,在每一层抽样时可采用简单随机抽样或系统抽样. [自测·牛刀小试] 1.在抽样过程中,每次抽取的个体不再放回总体的为不放回抽样,在分层抽样、系统抽样、简单随机抽样三种抽样中,不放回抽样有( ) A.0个 B.1个 C.2个 D.3个 解析:选D 三种抽样都是不放回抽样. 2.(2013·温州模拟)某工厂生产A,B,C三种不同型号的产品,产品数量之比为34∶7,现在用分层抽样的方法抽出容量为n的样本,样本中A型号产品有15件,那么样本容量n为( ) A.50 B.60 C.70 D.80 解析:选C 由分层抽样的方法得×n=15, 解得n=70. 3.利用简单随机抽样,从n个个体中抽取一个容量为10的样本.若第二次抽取时,余下的每个个体被抽到的概率为,则在整个抽样过程中,每个个体被抽到的概率为( ) A. B. C. D. 解析:选B 由题意知=,解得n=28. 故P==. 4.某单位青年、中年、老年职员的人数之比为108∶7,从中抽取200名职员作为样本,若每人被抽到的概率为0.2,则该单位青年职员的人数为________. 解析:总人数为=1 000,该单位青年职员的人数为 1 000×=400. 答案:400 5.(2012·湖北高考)一支田径运动队有男运动员56人,女运动员42人.现用分层抽样的方法抽取若干人,若抽取的男运动员有8人,则抽取的女运动员有________人. 解析:分层抽样的特点是按照各层占总体的比抽取样本,设抽取的女运动员有x人,则=,解得x=6. 答案:6 简单随机抽样 [例1] 为了支援我国西部教育事业,决定从2011级学生报名的30名志愿者中,选取10人组成志愿小组,请用抽签法和随机数表法设计抽样方案. [自主解答] 抽签法: 第一步:将30名志愿者编号,编号为1,2,3, (30) 第二步:将30个号码分别写在30张外观完全相同的纸条上,并揉成团,制成号签. 第三步:将30个号签放入一个不透明的盒子中,充分搅匀. 第四步:从盒子中逐个抽取10个号签,并记录上面的编号. 第五步:所得号码对应的志愿者,就是志愿小组的成员. 随机数法: 第一步:将30名志愿者编号,编号为01,02,03, (30) 第二步:在随机数表中任选一数开始,按某一确定方向读数. 第三步:凡不在01~30中的数或已读过的数,都跳过去不作记录,依次记录下10个得数. 第四步:找出号码与记录的数相同的志愿者组成志愿小组. 把本例中“30名志愿者”改为“1800名志愿者”,仍抽取10人,应如何进行抽样? 解:因为总体数较大,若选用抽签法制签太麻烦,故应选用随机数法. 第一步:先将1 800名志愿者编号,可以编为0001,0002,0003, (1800) 第二步:在随机数表中任选一个数,例如选出第2行第1列的数9. 第三步:从选定的数开始向右读,依次可得以0736,0751,0732,1355,1410,1256,0503,1557,1210,1421为样本的10个号码,这样我们就得到一个容量为10的样本. ——————————————————— 应用简单随机抽样应注意的问题 (1)一个抽样试验能否用抽签法,关键看两点:一是抽签是否方便;二是号签是否易搅匀.一般地,当总体容量和样本容量都较小时可用抽签法. (2)在使用随机数表时,如遇到三位数或四位数时,可从选择的随机数表中的某行某列的数字计起,每三个或四个作为一个单位,自左向右选取,有超过总体号码或出现重复号码的数字舍去. 1.今用简单随机抽样从含有6个个体的总体中抽取一个容量为2的样本.问: (1)总体中的某一个体a在第一次抽取时被抽到的概率是多少? (2)个体a不是在第一次被抽到,而是在第二次被抽到的概率是多少? (3)在整个抽样过程中,个体a被抽到的概率是多少? 解:用简单随机抽样,从含有N个个体的总体中抽取一个容量为n的样本,每次抽取一个个体时任一个体被抽到的概率为;在整个抽样过程中各个个体被抽到的概率为;抽签有先后,但概率都是相同的. 故(1);(2);(3). 系统抽样 [例2] (2012·山东高考)采用系统抽样方法从960人中抽取32人做问卷调查,为此将他们随机编号为1,2,…,960,分组后在第一组采用简单随机抽样的方法抽到的号码为9.抽到的32人中,编号落入区间[1,450]的人做问卷A,编号落入区间[451,750]的人做问卷B,其余的人做问卷C,则抽到的人中,做问卷B的人数为( ) A.7 B.9 C.10 D.15 [自主解答] 第n个抽到的编号为9+(n-1)×30=30n-21,由题意得451≤30n-21≤750,解得 15≤n≤25.又nZ,故满足条件的共有10个. [答案] C ——————————————————— 解决系统抽样应注意的几个问题 (1)适合元素个数较多且均衡的总体; (2)各个个体被抽到的机会均等; (3)样本的第一个个体用简单随机抽样. 2.为规范学校办学,省教育厅督察组对某所高中进行了抽样调查.抽到的班级一共有52名学生,现将该班学生随机编号,用系统抽样的方法抽取一个容量为4的样本,已知7号、33号、46号同学在样本中,那么样本中还有一位同学的编号应是( ) A.13 B.19 C.20 D.51 解析:选C 由系统抽样的原理知抽样的间隔为=13,故抽取的样本的编号分别为7,7+13,7+13×2,7+13×3,从而可知选C. 分层抽样 [例3] 某学校共有教职工900人,分成三个批次进行教育培训,在三个批次中男、女教职工人数如下表所示.已知在全体教职工中随机抽取1名,抽到第二批次中女教职工的概率是0.16. 第一批次第二批次第三批次女教职工196xy男教职工204156z (1)求x的值; (2)现用分层抽样的方法在全体教职工中抽取54名做培训效果的调查,问应在第三批次中抽取教职工多少名? [自主解答] (1)由=0.16,解得x=144. (2)第三批次的人数为y+z=900-(196+204+144+156)=200, 设应在第三批次中抽取m名,则=,解得m=12. 故应在第三批次中抽取12名教职工. ——————————————————— 分层抽样的步骤 第一步:将总体按一定标准分层; 第二步:计算各层的个体数与总体数的比,按各层个体数占总体数的比确定各层应抽取的样本容量; 第三步:在每一层进行抽样(可用简单随机抽样或系统抽样). 3.(2012·天津高考)某地区有小学150所,中学75所,大学25所.现采用分层抽样的方法从这些学校中抽取30所学校对学生进行视力调查,应从小学中抽取____________所学校,中学中抽取____________所学校. 解析:从小学中抽取30×=18所学校;从中学中抽取30×=9所学校. 答案:18 9 1组比较——三种抽样方法的比较 类别共同点各自特点相互联系适用范围简单随机抽样抽样过程中每个个体被抽取的机会相等从总体中逐个抽取总体中的个体数较少系统抽样将总体均分成几部分,按事先确定的规则在各部分抽取在起始部分抽样时采用简单随机抽样总体中的个体数较多分层抽样将总体分成几层进行抽取各层抽样时采用简单随机抽样或系统抽样总体由差异明显的几部分组成 易误警示——抽样方法中的解题误区 [典例] (2012·江苏高考)某学校高一、高二、高三年级的学生人数之比是33∶4,现用分层抽样的方法从该校高中三个年级的学生中抽取容量为50的样本,则应从高二年级抽取________名学生. [解析] 由题意得高二年级的学生人数占该学校高中人数的,利用分层抽样的有关知识得应从高二年级抽取50×=15名学生. [答案] 15 1.因不能正确确认抽样的比例从而导致失误. 2.在求解过程中计算失误. 3.解答随机抽样问题时,还有以下几点容易造成失误: (1)分不清系统抽样中各段入样的个体编号成等差数列; (2)分层抽样中各层所占的比例不准确; (3)系统抽样时总体容量不能被样本容量整除时,不知随机从总体中剔除余数;分层抽样时所取各层个体数不是整数时,不会微调个体数目. 1.从2 006名学生中选取50名组成参观团,若采用下面的方法选取:先用简单随机抽样从2 006人中剔除6人,剩下的2 000人再按照系统抽样的方法进行,则每人入选的概率( ) A.不全相等 B.均不相等 C.都相等,且为 D.都相等,且为 解析:选C 抽样过程中每个个体被抽取的机会均等,概率相等,剔除后的抽取过程与从2006人中抽取50人,每人入选的概率相同,其概率为=. 2.中央电视台在因特网上就观众对2013年春节晚会这一节目的喜爱程度进行调查,参加调查的总人数为12000,其中持各种态度的人数如表所示: 很喜爱喜爱一般不喜爱2 4354 6003 9261 039电视台为进一步了解观众的具体想法和意见,打算从中抽取60人进行更为详细的调查,其中持“喜爱”态度的观众应抽取________人. 解析:由于样本容量与总体容量的比为=, 故应抽取“喜爱”态度的观众人数为 4 600×=23(人). 答案:23 一、选择题(本大题共6小题,每小题5分,共30分) 1.下列抽取样本的方式是简单随机抽样的有( ) 从无限多个个体中抽取50个个体作为样本; 箱子里有100支铅笔,今从中选取10支进行检验.在抽样操作时,从中任意拿出一支检测后再放回箱子里; 从50个个体中一次性抽取5个个体作为样本. A.0个 B.1个 C.2个 D.3个 解析:选A 不满足样本的总体数较少的特点;不满足不放回抽取的特点;不满足逐个抽取的特点. 2.某校高三年级有男生500人,女生400人,为了解该年级学生的健康情况,从男生中任意抽取25人,从女生中任意抽取20人进行调查.这种抽样方法是( ) A.简单随机抽样法 B.抽签法 C.随机数表法 D.分层抽样法 解析:选D 由于总体容量较大,且男、女生健康差异明显,因此采用分层抽样方法抽取样本. 3.(2012·浙江高考改编)某个年级有男生560人,女生420人,用分层抽样的方法从该年级全体学生中抽取一个容量为280的样本,则此样本中男生人数为( ) A.80 B.120 C.160 D.240 解析:选C 设样本中男、女生分别为x,y,且xy=43,所以x=280×=160. 4.800名学生中抽50名学生做牙齿健康检查.现将800名学生从1到800进行编号,求得间隔数k==16,即每16人抽取一个人.在1~16中随机抽取一个数,如果抽到的是7,则从33~48这16个数中应取的数是( ) A.40 B.39 C.38 D.37 解析:选B 按系统抽样分组,33~48这16个数属第3组,则这一组应抽到的数是7+2×16=39. 5.某工厂有A,B,C三种不同型号的产品,这三种产品数量之比为23∶5,现用分层抽样从中抽出一个容量为n的样本,该样本中A种型号产品有8件,那么这次样本的容量n是( ) A.12 B.16 C.20 D.40 解析:选D 设三种产品的数量之和为2k+3k+5k=10k,依题意有=,解得n=40. 6.在100个零件中,有一级品20个,二级品30个,三级品50个,从中抽取20个作为样本: 采用随机抽样法,将零件编号为00,01,02,…,99,抽出20个; 采用系统抽样法,将所有零件分成20组,每组5个,然后每组中随机抽取1个; 采用分层抽样法,随机从一级品中抽取4个,二级品中抽取6个,三级品中抽取10个,则( ) A.不论采取哪种抽样方法,这100个零件中每个被抽到的概率都是 B.两种抽样方法,这100个零件中每个被抽到的概率都是,并非如此 C.两种抽样方法,这100个零件中每个被抽到的概率都是,并非如此 D.采用不同的抽样方法,这100个零件中每个被抽到的概率各不相同 解析:选A 由抽样方法的性质知,抽样过程中每个个体被抽到的概率都相等,这个比例只与样本容量和总体有关. 二、填空题(本大题共3小题,每小题5分,共15分) 7.某高中共有学生2 000名,已知在全校学生中随机抽取1名,抽到高三年级男生的概率是0.1现用分层抽样的方法在全校抽取若干名学生参加社区服务,相关信息如下表: 年级高一高二高三男生(人数)a310b女生(人数)cd200抽样人数x1510 则x=________. 解析:由=0.1,可得b=200.设在全校抽取n名学生参加社区服务,则有=. 解得n=50.故x=50-15-10=25. 答案:25 8.将参加夏令营的600名学生编号为:001,002,…,600.采用系统抽样方法抽取一个容量为50的样本,且随机抽得的号码为003.这600名学生分住在三个营区,从001到300在第营区,从301到495在第营区,从496到600在第营区,三个营区被抽中的人数依次为________. 解析:依题意及系统抽样的意义可知,将这600名学生按编号依次分成50组,每一组各有12名学生,第k(kN*)组抽中的号码为3+12(k-1). 令3+12(k-1)≤300得k≤, 因此第营区被抽中的人数是25, 令300<3+12(k-1)≤495,得0,a+b+c=600.当数据a,b,c的方差s2最大时,写出a,b,c的值(结论不要求证明),并求此时s2的值. (注:s2=[(x1-)2+(x2-)2+…+(xn-)2],其中为数据x1,x2,…,xn的平均数) 解:(1)厨余垃圾投放正确的概率约为 ==. (2)设“生活垃圾投放错误”为事件A,则事件表示“生活垃圾投放正确”. 事件的概率约为“厨余垃圾”箱里厨余垃圾量、“可回收物”箱里可回收物量与“其他垃圾”箱里其他垃圾量的总和除以生活垃圾总量,即P()约为=0.7,所以P(A)约为1-0.7=0.3. (3)当a=600,b=c=0时,s2取得最大值. 因为=(a+b+c)=200, 所以s2=×[(600-200)2+(0-200)2+(0-200)2]=80 000. 1.(2012·福建高考)一支田径队有男女运动员98人,其中男运动员有56人.按男女比例用分层抽样的方法,从全体运动员中抽出一个容量为28的样本,那么应抽取女运动员人数是________. 解析:应抽取女运动员的人数为×28=12. 答案:12 2.某学校在校学生2 000人,学校举行了跑步和登山比赛,每人都参加且每人只参加其中一项比赛,各年级参加比赛的人数情况如下表: 高一年级高二年级高三年级跑步人数abc登山人数xyz其中a:b:c=25∶3,全校参加登山的人数占总人数的.为了了解学生对本次活动的满意程度,按分层抽样的方式从中抽取一个200人的样本进行调查,则高三年级参加跑步的学生中应抽取( ) A.15人 B.30人 C.40人 D.45人 解析:选D 由题意,全校参加跑步的人数占总人数的,高三年级参加跑步的总人数为×2 000×=450,由分层抽样的特征,得高三年级参加跑步的学生中应抽取×450=45人.。
第10章 第1节 随机抽样-2023届高三一轮复习数学精品备课(新高考人教A版2019)

[巩固演练] 1.下列抽样试验中,适合用抽签法的有( B ) A.从某厂生产的 5000 件产品中抽取 600 件进行质量检验 B.从某厂生产的两箱(每箱 18 件)产品中抽取 6 件进行质 量检验 C.从甲、乙两厂生产的两箱(每箱 18 件)产品中抽取 6 件 进行质量检验 D.从某厂生产的 5000 件产品中抽取 10 件进行质量检验
解析 (2)该地区中小学生总人数为 3 500+2 000+4 500=10 000, 则样本容量为 10 000×2%=200, 其中抽取的高中生近视人数为 2 000×2%×50%=20.
课时三省
课堂回眸
思维升华
误区防范
1.抽样方法 有哪几种?
1.两种抽样方法的共同点都是等概 率抽样,体现了这两种抽样方法的
►规律方法 应用简单随机抽样应注意以下两点
(1)一个抽样试验能否用抽签法,关键看两点:一是抽 签是否方便;二是号签是否易搅匀.一般地,当总体容量和 样本容量都较小时可用抽签法.
(2)应用随机数表法的两个关键点:一是确定以表中的 哪个数(哪行哪列)为起点,以哪个方向为读数的方向;二是 读数时注意结合编号特点进行读取,若编号为两位数字,则 两位两位地读取,若编号为三位数字,则三位三位地读取.
(2)福利彩票“双色球”中红球的号码可以从 01,02, 03,…,32,33 这 33 个两位号码中选取,小明利用如下所 示的随机数表选取红色球的 6 个号码,选取方法是从第 1 行 第 9 列的数字开始,从左到右依次读取数据,则第四个被选 中的红色球号码为( C )
81 47 23 68 63 93 17 90 12 69 86 81 62 93 50 60 91 33 75
[自主解答] 因为高一年级抽取学生的比例为 1224000=15,所以k+5k+3=15,解得 k=2, 故高三年级抽取的人数为 1 200×2+35+3=360.
高考数学总复习 第10章 第1节 随机抽样课时演练 新人教A版

课时作业随机抽样一、选择题1.(2012台州调研)现要完成下列3项抽样调查:①从10盒酸奶中抽取3盒进行食品卫生检查.②科技报告厅有32排,每排有40个座位,有一次报告会恰好坐满了听众,报告会结束后,为了听取意见,需要请32名听众进行座谈.③东方中学共有160名教职工,其中一般教师120名,行政人员16名,后勤人员24名.为了了解教职工对学校在校务公开方面的意见,拟抽取一个容量为20的样本.较为合理的抽样方法是( )A.①简单随机抽样,②系统抽样,③分层抽样B.①简单随机抽样,②分层抽样,③系统抽样C.①系统抽样,②简单随机抽样,③分层抽样D.①分层抽样,②系统抽样,③简单随机抽样解析:①总体较少,宜用简单随机抽样;②已分段,宜用系统抽样;③各层间差距较大,宜用分层抽样.答案:A2.下列抽样问题中最适合用系统抽样法抽样的是( )A.从全班48名学生中随机抽取8人参加一项活动B.一个城市有210家百货商店,其中大型商店20家,中型商店40家,小型商店150家.为了掌握各商店的营业情况,要从中抽取一个容量为21的样本C.从参加模拟考试的1 200名高中生中随机抽取100人分析试题作答情况D.从参加模拟考试的1 200名高中生中随机抽取10人了解某些情况解析:A项总体容量较小,样本容量也较小,可采用抽签法.B项总体中的个体有明显的层次,不适宜用系统抽样法.C项总体容量较大,样本容量也较大,可用系统抽样法.D项总体容量较大,样本容量较小,可用随机数表法.答案:C3.(金榜预测)某工厂的三个车间在12月份共生产了3 600双皮靴,在出厂前要检查这批产品的质量,决定采用分层抽样的方法进行抽取,若从一、二、三车间抽取的产品数分别为a、b、c,且a、b、c构成等差数列,则第二车间生产的产品数为( )A.800 B.1 000 C.1 200 D.1 500解析:因为a、b、c成等差数列,所以2b=a+c,即第二车间抽取的产品数占抽样产品总数的三分之一,根据分层抽样的性质可知,第二车间生产的产品数占总数的三分之一,即为1 200.答案:C4.(2012中山模拟)为了检查某超市货架上的奶粉是否含有三聚氰胺,要从编号依次为1到50的袋装奶粉中抽取5袋进行检验,用每部分选取的号码间隔一样的系统抽样方法确定所选取的5袋奶粉的编号可能是( )A.5,10,15,20,25 B.2,4,8,16,32C.1,2,3,4,5 D.7,17,27,37,47解析:利用系统抽样,把编号分为5段,每段10个,每段抽取一个,号码间隔为10,故选D.答案:D5.(2012杭州模拟)从某社区150户高收入家庭,360户中等收入家庭,90户低收入家庭中,用分层抽样法选出100户调查社会购买力的某项指标,则三种家庭应分别抽取的户数依次为( )A.25,56,19 B.25,60,15C.35,50,15 D.35,54,11解析:由已知,从600户中选100户,选取的比例为16,故三种家庭应分别抽取的户数依次为25,60,15.故选B.答案:B6.在100个零件中,有一级品20个,二级品30个,三级品50个,从中抽取20个作为样本.①采用随机抽样法:抽签取出20个样本;②采用系统抽样法:将零件编号为00,01,…,99,然后平均分组抽取20个样本;③采用分层抽样法:从一级品,二级品,三级品中抽取20个样本.下列说法中正确的是( )A.无论采用哪种方法,这100个零件中每一个被抽到的概率都相等B.①②两种抽样方法,这100个零件中每一个被抽到的概率都相等;③并非如此C.①③两种抽样方法,这100个零件中每一个被抽到的概率都相等;②并非如此D.采用不同的抽样方法,这100个零件中每一个零件被抽到的概率是各不相同的解析:上述三种方法均是可行的,每个个体被抽到的概率均等于20100=15.答案:A二、填空题7.某企业三月中旬生产A、B、C三种产品共3 000件,根据分层抽样的结果,该企业统计员制作了如下的统计表格:A产品的样本容量比C产品的样本容量多10,根据以上信息,可得C产品的数量是______件.解析:设C产品的数量为x,则A产品的数量为1 700-x,C产品的样本容量为a,则A产品的样本容量为10+a,由分层抽样的定义可知:1 700-xa+10=xa=1 300130,∴x=800.答案:8008.一个总体中有100个个体,随机编号0,1,2,…,99,依次小到大的编号顺序平均分成10个小组,组号依次为1,2,3,…,10.现用系统抽样方法抽取一个容量为10的样本,规定如果在第1组随机抽取的号码为m,那么在第k组中抽取的号码个位数字与m+k的个位数字相同,若m=8,则在第8组中抽取的号码是________.解析:由题意知:m=8,k=8,则m+k=16,也就是第8组的个位数字为6,十位数字为8-1=7,故抽取的号码为76.答案:769.某单位200名职工的年龄分布情况如下图,现要从中抽取40名职工作样本.用系统抽样法,将全体职工随机按1~200编号,并按编号顺序平均分为40组(1~5号,6~10号,…,196~200号).若5组抽出的号码为22,则第8组抽出的号码应是______.若用分层抽样方法,则40岁以下年龄段应抽取________人.解析:由系统抽样知识可知,将总体分成均等的若干部分指的是将总体分段,分段的间隔要求相等,这时间隔为k =[Nn].在第1段内采用简单随机抽样的方法确定一个起始编号,在此编号的基础上加上分段间隔的整数倍即为抽样编号.由题意,第5组抽出的号码为22,因为2+(5-1)×5=22,则第1组抽出的号码应该为2,第8组的号码应该为2+(8-1)×5=37.由分层抽样知识可知,40岁以下年龄段的职工占50%,按比例应抽取40×50%=20人.答案:37 20 三、解答题10.(2012聊城联考)某单位有2 000名职工,老年、中年、青年分布在管理、技术开发、营销、生产各部门中,如下表所示:年(1)(2)若要开一个25人的讨论单位发展与薪金调整方面的座谈会,则应怎样抽选出席人? (3)若要抽20人调查对北京奥运会筹备情况的了解,则应怎样抽样? 解:(1)用分层抽样,并按老年4人,中年12人,青年24人抽取.(2)用分层抽样,并按管理2人,技术开发4人,营销6人,生产13人抽取. (3)用系统抽样,对全部2 000人随机编号,号码从0001~2 000,每100号分为一组,从第一组中用随机抽样抽取一个号码,然后将这个号码分别加100,200,…,1 900,共20人组成一个样本.。
高三数学一轮复习课时作业9:11.1 随机抽样

§11.1随机抽样A组专项基础训练(时间:30分钟)1.为了了解某地区的中小学生视力情况,拟从该地区的中小学生中抽取部分学生进行调查,事先已了解到该地区小学、初中、高中三个学段学生的视力情况有较大差异,而男女生视力情况差异不大,在下面的抽样方法中,最合理的抽样方法是()A.简单随机抽样B.按性别分层抽样C.按学段分层抽样D.系统抽样2.某校选修乒乓球课程的学生中,高一年级有30名,高二年级有40名.现用分层抽样的方法在这70名学生中抽取一个样本,已知在高一年级的学生中抽取了6名,则在高二年级的学生中应抽取的人数为()A.6 B.8C.10 D.123.某初级中学有学生270人,其中一年级108人,二、三年级各81人,现要利用抽样方法抽取10人参加某项调查,考虑选用简单随机抽样、分层抽样和系统抽样三种方案,使用简单随机抽样和分层抽样时,将学生按一、二、三年级依次统一编号为1,2,…,270,使用系统抽样时,将学生统一随机编号为1,2,…,270,并将整个编号依次分为10段,如果抽得号码有下列四种情况:①7,34,61,88,115,142,169,196,223,250②5,9,100,107,111,121,180,195,200,265③11,38,65,92,119,146,173,200,227,254④30,57,84,111,138,165,192,219,246,270关于上述样本的下列结论中,正确的是()A.②、③都不能为系统抽样B.②、④都不能为分层抽样C.①、④都可能为系统抽样D.①、③都可能为分层抽样4.从编号为1~50的50枚最新研制的某种型号的导弹中随机抽取5枚来进行发射实验,若采用每部分选取的号码间隔一样的系统抽样方法,则所选取5枚导弹的编号可能是() A.5,10,15,20,25 B.3,13,23,33,43C.1,2,3,4,5 D.2,4,6,16,325.(2015·北京)某校老年、中年和青年教师的人数见下表,采用分层抽样的方法调查教师的身体状况,在抽取的样本中,青年教师有320人,则该样本中的老年教师人数为()A.90C.180 D.3006.某学校高一、高二、高三年级的学生人数之比为3∶3∶4,现用分层抽样的方法从该校高中三个年级的学生中抽取容量为50的样本,则应从高二年级抽取________名学生.7.某校共有学生2 000名,各年级男、女学生人数如下表.已知在全校学生中随机抽取1名,抽到二年级女生的概率是0.19.现用分层抽样的方法在全校抽取64名学生,则应在三年级抽取的学生人数为________.8.用系统抽样法从1601~160编号,按编号顺序平均分成20组(1~8号,9~16号,…,153~160号),若第16组抽出的号码为123,则第2组中应抽出个体的号码是________.9.将某班的60名学生编号为01,02,…,60,采用系统抽样方法抽取一个容量为5的样本,且随机抽得的一个号码为04,则剩下的四个号码依次是______________.10.某政府机关有在编人员100人,其中副处级以上干部10人,一般干部70人,工人20人.上级机关为了了解政府机构改革意见,要从中抽取一个容量为20的样本,试确定用何种方法抽取,请具体实施抽取.B组专项能力提升(时间:25分钟)11.(2014·湖南)对一个容量为N的总体抽取容量为n的样本,当选取简单随机抽样、系统抽样和分层抽样三种不同方法抽取样本时,总体中每个个体被抽中的概率分别为p1,p2,p3,则()A.p1=p2<p3B.p2=p3<p1C.p1=p3<p2D.p1=p2=p312.采用系统抽样方法从960人中抽取32人做问卷调查,为此将他们随机编号为1,2,…,960,分组后在第一组采用简单随机抽样的方法抽到的号码为9.抽到的32人中,编号落入区间『1,450』的人做问卷A,编号落入区间『451,750』的人做问卷B,其余的人做问卷C.则抽到的人中,做问卷B的人数为()A.7 B.9C.10 D.1513.200名职工年龄分布如图所示,从中随机抽取40名职工作样本,采用系统抽样方法,按1~200编号,分为40组,分别为1~5,6~10,…,196~200,第5组抽取号码为22,第8组抽取号码为________.若采用分层抽样,40岁以下年龄段应抽取________人.14.一个总体中有90个个体,随机编号0,1,2,…,89,依从小到大的编号顺序平均分成9个小组,组号依次为1,2,3,…,9.现用系统抽样方法抽取一个容量为9的样本,规定如果在第1组随机抽取的号码为m,那么在第k组中抽取的号码个位数字与m+k的个位数字相同,若m=8,则在第8组中抽取的号码是________.15.某公路设计院有工程师6人,技术员12人,技工18人,要从这些人中抽取n个人参加市里召开的科学技术大会.如果采用系统抽样和分层抽样的方法抽取,不用剔除个体,如果参会人数增加1个,则在采用系统抽样时,需要在总体中先剔除1个个体,求n.答案解析1.C 『不同的学段在视力状况上有所差异,所以应该按照学段分层抽样.』 2.B 『设样本容量为N ,则N ×3070=6,∴N =14,∴高二年级所抽学生人数为14×4070=8.』3.D 『因为③为系统抽样,所以选项A 不对;因为②为分层抽样,所以选项B 不对;因为④不为系统抽样,所以选项C 不对,故选D.』4.B 『间隔距离为10,故可能的编号是3,13,23,33,43.』5.C 『由题意得,抽样比为3201 600=15,∴该样本的老年教师人数为900×15=180(人).』6.15解析 抽取比例与学生比例一致.设应从高二年级抽取x 名学生,则x ∶50=3∶10.解得x =15. 7.16解析 依题意可知二年级的女生有380人,那么三年级的学生人数应该是2 000-373-377-380-370=500,即总体中各个年级的人数比为3∶3∶2,故在分层抽样中应在三年级抽取的学生人数为64×28=16.8.11解析 由题意可知,系统抽样的组数为20,间隔为8,设第1组抽出的号码为x ,则由系统抽样的法则可知,第n 组抽出个体的号码应该为x +(n -1)×8,所以第16组应抽出的号码为x +(16-1)×8=123,解得x =3,所以第2组中应抽出个体的号码为3+(2-1)×8=11. 9.16,28,40,52解析 编号组数为5,间隔为605=12,因为在第一组抽得04号:4+12=16,16+12=28,28+12=40,40+12=52, 所以其余4个号码为16,28,40,52. 10.解 用分层抽样方法抽取.具体实施抽取如下:(1)∵20∶100=1∶5,∴105=2,705=14,205=4,∴从副处级以上干部中抽取2人,从一般干部中抽取14人,从工人中抽取4人. (2)副处级以上干部与工人的人数较少,他们分别按1~10编号与1~20编号,然后采用抽签法分别抽取2人和4人;对一般干部70人采用00,01,02,…,69编号,然后用随机数法抽取14人.(3)将2人,4人,14人的编号汇合在一起就取得了容量为20的样本.11.D 『由于三种抽样过程中,每个个体被抽到的概率都是相等的,因此p 1=p 2=p 3.』 12.C 『由系统抽样的特点知:抽取号码的间隔为96032=30,抽取的号码依次为9,39,69,…,939.落入区间『451,750』的有459,489,…,729,这些数构成首项为459,公差为30的等差数列,设有n 项,显然有729=459+(n -1)×30,解得n =10.所以做问卷B 的有10人.』 13.37 20解析 将1~200编号分为40组,则每组的间隔为5,其中第5组抽取号码为22,则第8组抽取的号码应为22+3×5=37;由已知条件200名职工中40岁以下的职工人数为200×50%=100,设在40岁以下年龄段中应抽取x 人,则40200=x100,解得x =20.14.76解析 由题意知:m =8,k =8,则m +k =16,也就是第8组抽取的号码个位数字为6,十位数字为8-1=7,故抽取的号码为76. 15.解 总体容量为6+12+18=36.当样本容量是n 时,由题意知,系统抽样的间隔为36n ,分层抽样的比例是n36,抽取的工程师人数为n 36×6=n 6,技术员人数为n 36×12=n 3,技工人数为n 36×18=n2,所以n 应是6的倍数,36的约数,即n =6,12,18.当样本容量为(n +1)时,总体容量是35人,系统抽样的间隔为35n +1,因为35n +1必须是整数,所以n 只能取6.即样本容量n =6.。
高考数学一轮复习 教师备选作业 第十章 第一节 随机抽样 理

第十章 第一节 随机抽样一、选择题1.某学校为调查高三年级的240名学生完成课后作业所需时间,采取了两种抽样调查的方式:第一种由学生会的同学随机抽取24名同学进行调查;第二种由教务处对高三年级的学生进行编号,从001到240,抽取学号最后一位为3的同学进行调查,则这两种抽样方法依次为 ( )A .分层抽样,简单随机抽样B .简单随机抽样,分层抽样C .分层抽样,系统抽样D .简单随机抽样,系统抽样2.利用简单随机抽样,从n 个个体中抽取一个容量为10的样本.若第二次抽取时,余下的每个个体被抽到的概率为13,则在整个抽样过程中,每个个体被抽到的概率为( )A.13 B.514C.14D.10273.某工厂生产A 、B 、C 三种不同型号的产品,产品数量之比为3∶4∶7,现在用分层抽样的方法抽出容量为n 的样本,样本中A 型号产品有15件,那么样本容量n 为 ( )A .50B .60C .70D .804.某学校在校学生2 000人,为了迎接“2011年深圳世界大学生运动会”,学校举行了“迎大运”跑步和登山比赛,每人都参加且每人只参加其中一项比赛,各年级参加比赛的人数情况如下表:其中a :b :c =2∶5∶3,全校参加登山的人数占总人数的14.为了了解学生对本次活动的满意程度,按分层抽样的方式从中抽取一个200人的样本进行调查,则高三年级参加跑步的学生中应抽取 ( )A .15人B .30人C .40人D .45人5.为规范学校办学,省教育厅督察组对某所高中进行了抽样调查.抽到的班级一共有52名学生,现将该班学生随机编号,用系统抽样的方法抽取一个容量为4的样本,已知7号、33号、46号同学在样本中,那么样本中还有一位同学的编号应是 ( ) A.13 B.19C.20 D.516.某工厂的三个车间在12月份共生产了3600双皮靴,在出厂前要检查这批产品的质量,决定采用分层抽样的方法进行抽取,若从一、二、三车间抽取的产品数分别为a、b、c,且a、b、c构成等差数列,则第二车间生产的产品数为( )A.800 B.1 000C.1 200 D.1 500二、填空题7.一支田径队有男运动员48人,女运动员36人,若用分层抽样的方法从该队的全体运动员中抽取一个容量为21的样本,则抽取男运动员的人数为________.8.某社区有500个家庭,其中高收入家庭125户,中等收入家庭280户,低收入家庭95户.为了调查社会购买力的某项指标,采用分层抽样的方法从中抽取1个容量为若干户的样本,若高收入家庭抽取了25户,则低收入家庭被抽取的户数为________.9.一个总体中有100个个体,随机编号为0,1,2,…,99,依编号顺序平均分成10个小组,组号分别为1,2,3,…,10.现用系统抽样方法抽取一个容量为10的样本,规定如果在第1组随机抽取的号码为m,那么在第k(2≤k≤10,k∈N*)组中抽取的号码个位数字与m+k的个位数字相同,若m=6,则在第7组中抽取的号码是________.三、解答题10.某学校共有教职工900人,分成三个批次进行教育培训,在三个批次中男、女教职工人数如下表所示.已知在全体教职工中随机抽取1名,抽到第二批次中女教职工的概率是0.16.(1)求x的值;(2)现用分层抽样的方法在全体教职工中抽取54名做培训效果的调查,问应在第三批次中抽取教职工多少名?11.某单位最近组织了一次健身活动,活动分为登山组和游泳组,且每个职工至多参加其中一组.在参加活动的职工中,青年人占42.5%,中年人占47.5%,老年人占10%.登山组的职工占参加活动总人数的14,且该组中,青年人占50%,中年人占40%,老年人占10%.为了了解各组不同年龄层次的职工对本次活动的满意程度,现用分层抽样方法从参加活动的全体职工中抽取一个容量为200的样本.试确定(1)游泳组中,青年人、中年人、老年人分别所占的比例; (2)游泳组中,青年人、中年人、老年人分别应抽取的人数.12.某公路设计院有工程师6人,技术员12人,技工18人,要从这些人中抽取n 个人参加市里召开的科学技术大会.如果采用系统抽样和分层抽样的方法抽取,不用剔除个体,如果参会人数增加1个,则在采用系统抽样时,需要在总体中先剔除1个个体,求n .详解答案一、选择题1.解析:结合简单随机抽样、系统抽样与分层抽样的定义可知D 项正确. 答案:D2.解析:由题意知9n -1=13,∴n =28,∴P =1028=514. 答案:B3.解析:由分层抽样的方法得33+4+7×n =15,解得n =70.答案:C4.解析:由题意,全校参加跑步的人数占总人数的34,高三年级参加跑步的总人数为34×2 000×310=450,由分层抽样的特征,得高三年级参加跑步的学生中应抽取 110×450=45(人) 答案:D5.解析:由系统抽样的原理知抽样的间隔为524=13,故抽取的样本的编号分别为7、7+13、7+13×2、7+13×3,从而可知选C. 答案:C6.解析:因为a 、b 、c 成等差数列,所以2b =a +c ,即第二车间抽取的产品数占抽样产品总数的三分之一,根据分层抽样的性质可知,第二车间生产的产品数占总数的三分之一,即为1 200.答案:C 二、填空题7.解析:抽取的男运动员的人数为2148+36×48=12.答案:128.解析:设低收入家庭被抽取的户数为x ,由每个家庭被抽取的概率相等得25125=x95,解得x =19.答案:199.解析:因第7组抽取的号码个位数字应是3,所以抽取的号码是63. 答案:63 三、解答题10.解:(1)由x900=0.16,解得x =144.(2)第三批次的人数为y +z =900-(196+204+144+156)=200,设应在第三批次中抽取m 名,则m 200=54900,解得m =12.∴应在第三批次中抽取12名教职工.11.解:(1)设登山组人数为x ,游泳组中青年人、中年人、老年人各占比例分别为a 、b 、c ,则有x ·40%+3xb4x =47.5%,x ·10%+3xc4x=10%,解得b =50%,c =10%,则a =40%,即游泳组中,青年人、中年人、老年人各占比例分别为40%、50%、10%. (2)游泳组中,抽取的青年人人数为 200×34×40%=60(人);抽取的中年人人数为200×34×50%=75(人);抽取的老年人人数为200×34×10%=15(人).12.解:总体容量为6+12+18=36.当样本容量是n 时,由题意知,系统抽样的间隔为36n,分层抽样的比例是n 36,抽取的工程师人数为n 36·6=n 6,技术员人数为n 36·12=n3,技工人数为n 36·18=n2,所以n 应是6的倍数,36的约数,即n =6,12,18,36.当样本容量为(n +1)时,总体容量是35人,系统抽样的间隔为35n +1, 因为35n +1必须是整数, 所以n 只能取6. 即样本容量n =6.。
(人教A版)高考数学一轮复习精品学案:随机抽样

2019年高考数学一轮复习精品学案(人教版A 版) 随机抽样一.【课标要求】1.能从现实生活或其他提出具有一定价值的统计问题;2.结合具体的实际问题情境,理解随机抽样的必要性和重要性;3.在参与解决统计问题的过程中,学会用简单随机抽样方法从总体中抽取样本;通过对实例的分析,了解分层抽样和系统抽样方法;4.能通过试验、查阅资料、设计调查问卷等方法收集数据.二.【命题走向】统计是在初中数学统计初步的深化和扩展,本讲的主要内容是随机抽样的方法在总体中抽取样本。
预测2019年高考对本讲的考察是:(1)以基本题(中、低档题为主),多以选择题、填空题的形式出现,以实际问题为背景,综合考察学生学习基础的知识、应用基础知识、解决实际问题的能力;(2)热点是随机抽样方法中的分层抽样、系统抽样方法.三.【要点精讲】 三种常用抽样方法:1.简单随机抽样:设一个总体的个数为N 。
如果通过逐个抽取的方法从中抽取一个样本,且每次抽取时各个个体被抽到的概率相等,就称这样的抽样为简单随机抽样。
实现简单随机抽样,常用抽签法和随机数表法.(1)抽签法制签:先将总体中的所有个体编号(号码可以从1到N ),并把号码写在形状、大小相同的号签上,号签可以用小球、卡片、纸条等制作,然后将这些号签放在同一个箱子里,进行均匀搅拌;抽签:抽签时,每次从中抽出1个号签,连续抽取n 次;成样:对应号签就得到一个容量为n 的样本。
抽签法简便易行,当总体的个体数不多时,适宜采用这种方法.(2)随机数表法 编号:对总体进行编号,保证位数一致;数数:当随机地选定开始读数的数后,读数的方向可以向右,也可以向左、向上、向下等等。
在读数过程中,得到一串数字号码,在去掉其中不合要求和与前面重复的号码后,其中依次出现的号码可以看成是依次从总体中抽取的各个个体的号码。
成样:对应号签就得到一个容量为n 的样本. 结论:① 用简单随机抽样,从含有N 个个体的总体中抽取一个容量为n 的样本时,每次抽取一个个体时任一个体被抽到的概率为N1;在整个抽样过程中各个个体被抽到的概率为N n ; ② 基于此,简单随机抽样体现了抽样的客观性与公平性;③ 简单随机抽样的特点:它是不放回抽样;它是逐个地进行抽取;它是一种等概率抽样。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
随机抽样
一、选择题
1.(2009·湖南高考)一个总体分为A,B两层,用分层抽样方法从总体中抽取一个容量为10
的样本.已知B层中每个个体被抽到的概率都为1
12,则总体中的个体数为() A.40B.60 C.80 D.120 2.(2010·辽宁育才中学模拟)用系统抽样法(按等距离的规则)要从160名学生中抽取容量为20的样本,将160名学生从1~160编号.按编号顺序平均分成20组(1~8号,9~16号,…,153~160号),若第16组应抽出的号码为125,则第一组中按此抽签方法确定的号码是()
A.7 B.5 C.4 D.3
3.具有A、B、C三种性质的总体,其容量为63,将A、B、C三种性质的个体按1∶2∶4的比例进行分层抽样调查,如果抽取的样本容量为21,则A、B、C三种元素分别抽取
() A.12,6,3 B.12,3,6 C.3,6,12 D.3,12,6
4.某市将大、中、小学生的视力进行抽样分析,其中大、中、小学生的人数比为2∶3∶5,若已知中学生被抽到的人数为150人,则应抽取的样本容量n等于()
A.1 500 B.1 000 C.500 D.150
5.下面的抽样方法是简单随机抽样的是() A.在某年明信片销售活动中,规定每100万张为一个开奖组,通过随机抽取的方式确定号码的后四位为2709的为三等奖
B.某车间包装一种产品,在自动包装的传送带上,每隔30分钟抽一包产品,称其重量是否合格
C.某学校分别从行政人员、教师、后勤人员中抽取2人、14人、4人了解学校机构改革的意见
D.用抽签法从10件产品中选取3件进行质量检验
6.(2010·东城模拟)在100个零件中,有一级品20个,二级品30个,三级品50个,从中抽取20个作为样本.
①采用随机抽样法:抽签取出20个样本;
②采用系统抽样法:将零件编号为00,01,……,99,然后平均分组抽取20个样本
③采用分层抽样法:从一级品,二级品,三级品中抽取20个样本.
下列说法中正确的是() A.无论采用哪种方法,这100个零件中每一个被抽到的概率都相等
B.①②两种抽样方法,这100个零件中每一个被抽到的概率都相等;③并非如此
C.①③两种抽样方法,这100个零件中每一个被抽到的概率都相等;②并非如此D.采用不同的抽样方法,这100个零件中每一个零件被抽到的概率是各不相同的二、填空题
7.某班级共有52名学生,现将学生随机编号,用系统抽样方法,抽取一个容量为4的样本,已知6号,32号,45号学生在样本中,那么在样本中还有一个学生的编号是________号.
8.某校有老师200人,男学生1 200人,女学生1 000人.现用分层抽样的方法从所有师生中抽取一个容量为n的样本;已知从女学生中抽取的人数为80人,则n=________. 9.某学校共有教师490人,其中不到40岁的有350人,40岁及以上的有140人.为了了解普通话在该校中的推广普及情况,用分层抽样的方法,从全体教师中抽取一个容量为70人的样本进行普通话水平测试,其中在不到40岁的教师中应抽取的人数为________.
三、解答题
10.某学校为了了解2009年高考语文课的考试成绩,计划在高考后对1 200名学生进行抽样调查,其中文科300名考生,理科600名考生,艺术类考生200人,体育类考生70人,外语类考生30人,如果要抽120人作为调查分析对象,则按科目分别应抽多少考生?
11.一个单位有职工160人,其中有业务人员112人,管理人员16人,后勤服务人员32人,为了了解职工的某种情况,要从中抽取一个容量为20的样本,用分层抽样的方法抽取样本,并写出过程.
12.某单位有工程师6人,技术员12人,技工18人,要从这些人中抽取一个容量为n的样本.如果采用系统抽样法和分层抽样方法抽取,不用剔除个体;如果样本容量增加一个,则在采用系统抽样时,需要在总体中先剔除1个个体.求样本容量n.。