数学段考精选-南部(连比例)
四川省南部县第二中学2025届高三下学期联考数学试题含解析

四川省南部县第二中学2025届高三下学期联考数学试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。
用2B 铅笔将试卷类型(B )填涂在答题卡相应位置上。
将条形码粘贴在答题卡右上角"条形码粘贴处"。
2.作答选择题时,选出每小题答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。
答案不能答在试题卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。
不按以上要求作答无效。
4.考生必须保证答题卡的整洁。
考试结束后,请将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.己知46a =,544log 21b =, 2.913c ⎛⎫= ⎪⎝⎭,则( ) A .a b c >> B .a c b >> C .b c a >> D .c a b >>2.直角坐标系 xOy 中,双曲线2222 1x y a b -=(0a b ,>)与抛物线2 2?y bx =相交于 A 、B 两点,若△ OAB 是等边三角形,则该双曲线的离心率e =( ) A .43B .54C .65D .763.已知甲盒子中有m 个红球,n 个蓝球,乙盒子中有1m -个红球,+1n 个蓝球(3,3)m n ≥≥,同时从甲乙两个盒子中取出(1,2)i i =个球进行交换,(a )交换后,从甲盒子中取1个球是红球的概率记为(1,2)i p i =.(b )交换后,乙盒子中含有红球的个数记为(1,2)i i ξ=.则( ) A .1212,()()p p E E ξξ>< B .1212,()()p p E E ξξ C .1212,()()p p E E ξξ>>D .1212,()()p pE E ξξ<<4.数列{}n a 的通项公式为()n a n c n N *=-∈.则“2c <”是“{}na 为递增数列”的( )条件.A .必要而不充分B .充要C .充分而不必要D .即不充分也不必要5.《周易》历来被人们视作儒家群经之首,它表现了古代中华民族对万事万物的深刻而又朴素的认识,是中华人文文化的基础,它反映出中国古代的二进制计数的思想方法.我们用近代术语解释为:把阳爻“- ”当作数字“1”,把阴爻“--”当作数字“0”,则八卦所代表的数表示如下: 卦名 符号表示的二进制数 表示的十进制数 坤000震 001 1坎 010 2 兑0113依此类推,则六十四卦中的“屯”卦,符号“ ”表示的十进制数是( ) A .18B .17C .16D .156.设全集()(){}130U x Z x x =∈+-≤,集合{}0,1,2A =,则U C A =( ) A .{}1,3- B .{}1,0- C .{}0,3D .{}1,0,3-7.抛物线的准线与双曲线的两条渐近线所围成的三角形面积为,则的值为 ( )A .B .C .D .8.如图,已知直线:l ()()10y k x k =+>与抛物线2:4C y x =相交于A ,B 两点,且A 、B 两点在抛物线准线上的投影分别是M ,N ,若2AM BN =,则k 的值是( )A .13B .23C .223D .229.5()(2)x y x y +-的展开式中33x y 的系数为( ) A .-30B .-40C .40D .5010.函数()2ln xf x x x=-的图象大致为( ) A . B .C .D .11.函数()y f x =()x R ∈在(]1∞-,上单调递减,且(1)f x +是偶函数,若(22)(2)f x f -> ,则x 的取值范围是( ) A .(2,+∞) B .(﹣∞,1)∪(2,+∞) C .(1,2)D .(﹣∞,1)12.若集合{}|sin 21A x x ==,,42k B y y k Z ππ⎧⎫==+∈⎨⎬⎩⎭,则( ) A .A B A ⋃=B .R RC B C A ⊆C .AB =∅D .R R C A C B ⊆二、填空题:本题共4小题,每小题5分,共20分。
2022-2023学年四川省南充市南部县六年级数学第一学期期末监测模拟试题含解析

2022-2023学年六上数学期末模拟试卷一、认真填一填。
1.405立方厘米=(______)立方分米7.8升=(______)立方厘米3 4立方米=(______)立方分米23时=(______)分2.把27的分母扩大4倍,要使分数的大小不变,分子应加上(_____)。
3.一堆化肥有6吨,按1∶3∶4分给甲、乙、丙三个种粮户,则丙户应分化肥(______)吨。
4.如图,以体育馆为观测点,博物馆在(____)偏(____)(____)的方向上;以博物馆为观测点,体育馆在(____)偏(____)(____)的方向上.5.林场工作人员统计了两棵树木的生长情况,并制成了它们生长情况的统计图。
从图中可以看出:(1)从开始植树到第5年,两种树中生长速度较快的是(______)树;(2)生长到第(______)年,两种树的高度一样;(3)在同一年中,两树的高度最多相差(______)米。
6.如图,阴影部分的面积一共是25平方米.这个大正方形的面积是________空白部分的面积一共是________7.二亿六千零四万八千写作(____________),改写成用“万”作单位的数是(___________)万。
8.23分=_____秒;35kg=_____g.9.如果正方体的棱长扩大到原来的3倍,它的表面积就扩大到原来的(______)倍,它的体积就扩大到原来的(______)倍.10.一个圆的直径是8厘米,它的周长是________厘米,面积是________平方厘米。
二、是非辨一辨。
11.0.125的倒数和0.125的最简比是64︰1。
(__________)12.一个大于0的数乘真分数,积一定小于这个数.(_______)13.两个不同的质数一定互质.(____)14.60的相当于48的。
(_____)15.求比值。
1 8∶334∶0.516.正方体的棱长是a米,它的体积是a3立方米。
(____)三、细心选一选。
2022-2023学年四川省南部中学高考模拟检测(五)文科数学试卷含逐题详解

四川省南部中学高2023届高考模拟检测(五)数学(文科)试题第Ⅰ卷(选择题共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合2{|340}M x x x =--<,{|05}N x x =≤≤,则M N ⋂=A .(0,4]B.[0,4)C.[1,0)-D.(1,0]-2.设复数1z ,2z 在复平面内的对应点关于虚轴对称,12z i =+,则12z z =A.-5B.5C.-4+iD.-4-i3.在区间[]2,3-上随机选取一个数X ,则1X ≤的概率为A.45B.35C.25D.154.设变量x,y 满足约束条件360,{20,30,x y x y y +-≥--≤-≤则目标函数z =y -2x 的最小值为A.-7B.-4C.1D.25.奇函数()f x 的定义域为R ,若(2)f x +为偶函数,且(1)1f =,则(8)(9)f f +=A.2- B.1- C.0D.16.设n S 为等差数列{}n a 的前n 项和,83742S a a ==-,,则9a =()A.6B.4C.6- D.27.若sin 2,sin x x 分别是sin θ与cos θ的等差中项和等比中项,则cos2x 的值为()A.1338+ B.1338C.1338D.148.一艘海轮从A 处出发,以每小时40海里的速度沿东偏南50 方向直线航行,30分钟后到达B 处.在C 处有一座灯塔,海轮在A 处观察灯塔,其方向是东偏南20 ,在B 处观察灯塔,其方向是北偏东65 ,那么B 、C 两点间的距离是()A.海里B.C.D.海里9.函数2||2x y x e =-在[]–2,2的图象大致为()A.B.C. D.10.已知直三棱柱1116.34ABC A B C O AB AC -==的个顶点都在球的球面上若,,,AB AC ⊥112AA O =,则球的半径为 A.3172B. C.132D.11.已知双曲线()2222:10,0x y C a b a b-=>>的左焦点为F ,左、右顶点分别为,A B 点,P Q 是双曲线C 上关于x 轴对称的两点,且直线PQ 经过点F .如果M 是线段FQ 上靠近点Q 的三等分点,E 在y 轴的正半轴上,且E A M ,,三点共线,,,P E B 三点共线,则双曲线C 的离心率为()A.5B. C. D.612.已知函数f (x )=x (ln x -ax )有两个极值点,则实数a 的取值范围是()A.(-∞,0)B.C.(0,1)D.(0,+∞)第Ⅱ卷(非选择题共90分)二、填空题:本大题共4小题,每小题5分,共20分.13.已知向量a 与b 的夹角为60°,|a |=2,|b |=1,则|a+2b |=______.14.过点(3,1)作圆22(2)(2)4x y -+-=的弦,其中最短的弦长为__________.15.抛物线()220x py p =>的焦点为F ,其准线与22133y x -=相交于A ,B 两点,若ABF △为等边三角形,则p =___________.16.设()f x 与()g x 是定义在同一区间[],a b 上的两个函数,若对任意[],x a b ∈,都有()()1f x g x -≤成立,则称()f x 和()g x 在[],a b 上是“亲密函数”,区间[],a b 称为“亲密区间”.若()234f x x x =-+与()21g x x =-在[],a b 上是“亲密函数”,则b 的最大值______三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.17.南中数学教研室对高二学生的记忆力x 和判断力y 进行统计分析,所得数据如下表所示:x 681012y2356(1)请画出上表数据的散点图;(2)请根据上表提供的数据,用最小二乘法求出y 关于x 的线性回归方程ˆˆˆy bx a =+(3)根据(2)中求出的线性回归方程,预测记忆力为11的学生的判断力.(参考公式: 1221,ni i i n ii x y nx y b a y bx x nx==-==--∑∑)18.已知向量()()sin ,sin ,cos ,cos ,sin 2m A B n B A m n C ==⋅=,且、、A B C 分别为ABC 的三边,,a b c 所对的角.(1)求角C 的大小;(2)若sin ,sin ,sin A C B 成等差数列,且()18CA AB AC ⋅-=,求c 边的长.19.如图,在四棱锥P ABCD -中,AB CD ∥,且90BAP CDP ∠=∠=︒.(1)证明:平面PAB ⊥平面PAD ;(2)若PA PD AB DC ===,90APD ∠=︒,且四棱锥P ABCD -的体积为83,求该四棱锥的侧面积.20.已知函数()3211,32f x x ax a =-∈R .(I)当a =2时,求曲线()y f x =在点()()3,3f 处的切线方程;(II)设函数()()()cos sin g x f x x a x x =+--,讨论()g x 的单调性并判断有无极值,有极值时求出极值.21.在平面直角坐标系xOy 中,已知椭圆C :22221x y a b +=(a >b >0)的离心率为22,椭圆C 截直线y =1所得线段的长度为22(Ⅰ)求椭圆C 的方程;(Ⅱ)动直线l :y =kx +m (m ≠0)交椭圆C 于A ,B 两点,交y 轴于点M .点N 是M 关于O 的对称点,⊙N 的半径为|NO |.设D 为AB 的中点,DE ,DF 与⊙N 分别相切于点E ,F ,求∠EDF 的最小值.22.在直角坐标系中,以原点为极点,x 轴的正半轴为极轴建立极坐标系,已知曲线:4cos C ρθ=,直线l 的参数方程为:321x ty t=+⎧⎨=-+⎩(t 为参数),直线l 与曲线C 分别交于,M N 两点.(1)写出曲线C 和直线l 的普通方程;(2)若点(3,1)P -,求11||||PM PN -的值.23.已知函数()2f x m x m x =+--()0m >的最大值为6.(1)求m 的值;(2)若正数x ,y ,z 满足x y z m ++=,求证:xy xz m ≤.四川省南部中学高2023届高考模拟检测(五)数学(文科)试题第Ⅰ卷(选择题共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合2{|340}M x x x =--<,{|05}N x x =≤≤,则M N ⋂=A.(0,4] B.[0,4) C.[1,0)- D.(1,0]-【答案】B【详解】试题分析:()()234041014x x x x x --<⇒-+<⇒-<<,故M N ⋂=[0,4),故选B .考点:1.一元二次不等式的解法;2.集合的运算.2.设复数1z ,2z 在复平面内的对应点关于虚轴对称,12z i =+,则12z z =A.-5 B.5C.-4+iD.-4-i【答案】A【详解】试题分析:由题意,得22z i =-+,则12(2)(2)5z z i i =+-+=-,故选A .考点:1、复数的运算;2、复数的几何意义.3.在区间[]2,3-上随机选取一个数X ,则1X ≤的概率为A.45B.35C.25D.15【答案】B【详解】试题分析:在[]2,3-上符合1X ≤的区间为[]2,1-,因为区间[]2,3-的区间长度为5且区间[]2,1-的区间长度为3,所以根据几何概型的概率计算公式可得35P =,故选B.考点:几何概型4.设变量x,y 满足约束条件360,{20,30,x y x y y +-≥--≤-≤则目标函数z =y -2x 的最小值为A.-7B.-4C.1D.2【答案】A 【分析】画图分析【详解】画出原不等式组表示的平面区域如图所示阴影部分,由题意知,当目标函数2z y x =-表示的直线经过点A(5,3)时,z 取得最小值,所以z 的最小值为3257-⨯=-,故选A.【考点定位】本小题考查线性规划的基础知识,难度不大,线性规划知识在高考中一般以小题的形式出现,是高考的重点内容之一,几乎年年必考.5.奇函数()f x 的定义域为R ,若(2)f x +为偶函数,且(1)1f =,则(8)(9)f f +=A.2- B.1- C.0D.1【答案】D 【详解】【分析】试题分析:(2)f x +是偶函数,则()f x 的图象关于直线2x =对称,又()f x 是奇函数,则(0)0f =,且()f x 是周期函数,且周期为8,所以(8)(9)(0)(1)1f f f f +=+=.故选D .考点:函数的奇偶性,周期性.【名师点睛】解函数问题时,有些隐含性质需我们已知条件找出,特别是周期性.当函数具有两个对称时函数一般也是周期函数.当函数()f x 是奇函数,又有对称轴x m =时,则函数一定是周期函数,且周期为4T m =;若()f x 有两条对称轴x a =和x b =,则函数是周期函数,2b a -是函数的一个周期;同样若()f x 有两个对称中心(,0)a 和(,0)b ,则函数是周期函数,2b a -是函数的一个周期;6.设n S 为等差数列{}n a 的前n 项和,83742S a a ==-,,则9a =()A.6B.4C.6- D.2【答案】C【分析】根据题意求出首项和公差,再根据等差数列的通项即可得解.【详解】设等差数列{}n a 的公差为d ,由83742S a a ==-,,得()11187842262a d a d a d ⨯⎧+=+⎪⎨⎪+=-⎩,解得1102a d =⎧⎨=-⎩,所以9186a a d =+=-.7.若sin 2,sin x x 分别是sin θ与cos θ的等差中项和等比中项,则cos2x 的值为()A.1338+ B.1338C.1338D.124【答案】A【分析】根据条件可得2sin 2sin cos x θθ=+,2sin sin cos x θθ=,然后结合同角三角函数的关系,以及恒等变换公式化简,即可得到结果.【详解】依题意可得2sin 2sin cos x θθ=+,2sin sin cos x θθ=,且()22222sin cos sin cos 2sin cos 4sin 22sin 1x x θθθθθθ+=+-=-=,所以()241cos 2cos 220x x -+-=,即24cos 2cos 220x x --=,解得133cos 28x ±=又因为2sin sin cos x θθ=,所以2cos 212sin 1sin 20x x θ=-=-≥,所以133cos 28x +=故选:A8.一艘海轮从A 处出发,以每小时40海里的速度沿东偏南50 方向直线航行,30分钟后到达B 处.在C 处有一座灯塔,海轮在A 处观察灯塔,其方向是东偏南20 ,在B 处观察灯塔,其方向是北偏东65 ,那么B 、C 两点间的距离是()A.海里B.C.D.海里【答案】A【分析】根据给定条件,画出图形,再利用正弦定理解三角形作答.【详解】依题意,如图,在ABC中,5020304065105BAC ABC ∠=-=∠=+=,,则3045402060ACB AB ∠==⨯=,,由正弦定理得sin sin BC AB BAC ACB =∠∠,即20sin30sin45BC =,因此120222BC ⨯==(海里),所以B C 、两点间的距离是海里.9.函数2||2x y x e =-在[]–2,2的图象大致为()A. B.C. D.【答案】D【详解】试题分析:函数2||()2x f x x e =-|在[–2,2]上是偶函数,其图象关于y 轴对称,因为22(2)8e ,08e 1f =-<-<,所以排除,A B 选项;当[]0,2x ∈时,4x y x e '=-有一零点,设为0x ,当0(0,)x x ∈时,()f x 为减函数,当0(,2)x x ∈时,()f x 为增函数.故选:D.10.已知直三棱柱1116.34ABC A B C O AB AC -==的个顶点都在球的球面上若,,,AB AC ⊥112AA O =,则球的半径为A.B. C.132D.【答案】C【详解】因为直三棱柱中,AB =3,AC =4,AA 1=12,AB ⊥AC ,所以BC =5,且BC 为过底面ABC 的截面圆的直径.取BC 中点D ,则OD ⊥底面ABC ,则O 在侧面BCC 1B 1内,矩形BCC 1B 1的对角线长即为球直径,所以2R =13,即R =13211.已知双曲线()2222:10,0x y C a b a b-=>>的左焦点为F ,左、右顶点分别为,A B 点,P Q 是双曲线C 上关于x 轴对称的两点,且直线PQ 经过点F .如果M 是线段FQ 上靠近点Q 的三等分点,E 在y 轴的正半轴上,且E A M ,,三点共线,,,P E B 三点共线,则双曲线C 的离心率为()A.5B. C.D.6【分析】可设22,,b b P c Q c a a ---⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭,,根据E A M ,,三点共线和,,P E B 三点共线,得到a 、c 的关系,即可求出离心率【详解】解:设()()(),0,,0,,0F c A a B a --,点PQ 是双曲线C 上关于x 轴对称的两点,且直线PQ 经过点F ,可得PQ x ⊥轴,令x c =-可得22221c y a b-=,解得2b y a =±可设22,,b b P c Q c a a ---⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭,由M 是线段FQ 上靠近点Q 的三等分点,可得22,3b M c a ⎛⎫-- ⎪⎝⎭,由E 在y 轴的正半轴上,可设()0,E e ,由E A M ,,三点共线,可得AM EA k k =,即为223b e a a a c=-+①由,,P E B 三点共线,可得EB BP k k =,即为2b e a ac a-=--,②由①②可得()123a c c a =+-,即为3322c a c a -=+,即5c a =,所以5ce a==.故选:A.【点睛】求椭圆(双曲线)离心率的一般思路:(1)直接求出a 、b 、c ,计算离心率;(2)根据题目的条件,找到a 、b 、c 的关系,消去b ,构造离心率e 的方程或(不等式)即可求出离心率.12.已知函数f (x )=x (ln x -ax )有两个极值点,则实数a 的取值范围是()A.(-∞,0)B.C.(0,1)D.(0,+∞)【答案】B【详解】函数f (x )=x (lnx ﹣ax ),则f′(x )=lnx ﹣ax+x (﹣a )=lnx ﹣2ax+1,令f′(x )=lnx ﹣2ax+1=0得lnx=2ax ﹣1,函数f (x )=x (lnx ﹣ax )有两个极值点,等价于f′(x )=lnx ﹣2ax+1有两个零点,等价于函数y=lnx 与y=2ax ﹣1的图象有两个交点,在同一个坐标系中作出它们的图象(如图)当a=时,直线y=2ax ﹣1与y=lnx 的图象相切,由图可知,当0<a <时,y=lnx 与y=2ax ﹣1的图象有两个交点.则实数a 的取值范围是(0,).故选B .第Ⅱ卷(非选择题共90分)二、填空题:本大题共4小题,每小题5分,共20分.13.已知向量a 与b 的夹角为60°,|a |=2,|b |=1,则|a+2b |=______.【答案】【详解】∵平面向量a 与b 的夹角为060,21a b == ,∴021cos601a b ⋅=⨯⨯= .∴2a b +====故答案为点睛:(1)求向量的夹角主要是应用向量的数量积公式.(2)a =常用来求向量的模.14.过点(3,1)作圆22(2)(2)4x y -+-=的弦,其中最短的弦长为__________.【答案】【详解】最短弦为过点()3,1与圆心连线的垂线与圆相交而成,d ====【考点定位】本题考查直线和圆的位置关系,考查数形结合思想和运算能力.圆的半径、弦心距、半弦构成的直角三角形在解决直线和圆问题常常用到,本题只需要简单判断最短弦的位置就能轻松解答,有时候可能会出现点到直线的距离公式来求弦心距的长度.15.抛物线()220x py p =>的焦点为F ,其准线与22133y x -=相交于A ,B 两点,若ABF △为等边三角形,则p =___________.【答案】6【分析】求出抛物线的焦点和准线方程,求出AB 的长,根据ABF △为等边三角形,得到关于p 的方程,即可求得答案.【详解】抛物线()220x py p =>的焦点为(0,)2p F ,其准线为2p y =-,将2p y =-与22133y x -=联立,得221312x p -=,解得x =,则||AB =,由于ABF △为等边三角形,故||2AB p =,即32p ⋅=,解得6p =,故答案为:616.设()f x 与()g x 是定义在同一区间[],a b 上的两个函数,若对任意[],x a b ∈,都有()()1f x g x -≤成立,则称()f x 和()g x 在[],a b 上是“亲密函数”,区间[],a b 称为“亲密区间”.若()234f x x x =-+与()21g x x =-在[],a b 上是“亲密函数”,则b 的最大值______【答案】4【分析】首先表示出()()f x g x -,令()()1f x g x -≤,即2551x x -+≤,解得x 的取值范围,即可得解.【详解】解:因为()()()22342155f x g x x x x x x -=-+--=-+,若()234f x x x =-+与()21g x x =-在[],a b 上是“亲密函数”,则()()1f x g x -≤,即2551x x -+≤,即21551x x -≤-+≤,解得12x ≤≤或34x ≤≤,即[][]1,23,4x ∈⋃,所以b 的最大值为4.故答案为:4三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.17.南中数学教研室对高二学生的记忆力x 和判断力y 进行统计分析,所得数据如下表所示:x681012y 2356(1)请画出上表数据的散点图;(2)请根据上表提供的数据,用最小二乘法求出y 关于x 的线性回归方程ˆˆˆy bx a =+(3)根据(2)中求出的线性回归方程,预测记忆力为11的学生的判断力.(参考公式: 1221,n i ii n i i x y nx y b a y bx x nx==-==--∑∑ )【答案】(1)答案见解析(2)ˆ0.7 2.3yx =-(3)5.4【分析】(1)根据表格直接画出散点图即可;(2)根据公式分别计算出 ,ba ,即可得到线性回归防尘;(3)根据(2)中的回归方程,将11x =代入计算,即可得到结果.【小问1详解】散点图如下:【小问2详解】446283105126158i i i x y ==⨯+⨯+⨯+⨯=∑()()116810129,2356444x y =+++==+++=4222224*********i i x ==+++=∑2158494140.73444920b -⨯⨯∴===-⨯ ,则 40.79 2.3ay bx =-=-⨯=- ,故线性回归方程为ˆ0.7 2.3yx =-【小问3详解】由(2)中线性回归方程可知,当11x =时,0.711 2.3 5.4y =⨯-=,所以预测记忆力为11的同学的判断力约为5.418.已知向量()()sin ,sin ,cos ,cos ,sin 2m A B n B A m n C ==⋅= ,且、、A B C 分别为ABC 的三边,,a b c 所对的角.(1)求角C 的大小;(2)若sin ,sin ,sin A C B 成等差数列,且()18CA AB AC ⋅-= ,求c 边的长.【答案】(1)π3C =;(2)6c =.【分析】(1)根据数量积的运算,有sin 2m n C ⋅= ,因为2sin cos m n C C ⋅= ,可求得1πcos ,23C C ==;(2)因为sin ,sin ,sin A C B 成等差数列,由正弦定理得2c ab =,因为()18CA AB AC ⋅-= ,所以可得cos 18,36ab C ab ==,由余弦定理()22222cos 3c a b ab C a b ab =+-=+-,即可解得c .【详解】(1)对于ABC ,π,0πA B C C +=-<<,∴()sin sin A B C +=;由()()sin ,sin ,cos ,cos m A B n B A == ,可得sin cos sin cos sin()sin m n A B B A A B C ⋅=+=+= ,又∵sin 2m n C ⋅= ,∴1sin 22sin cos sin ,cos 2C C C C C ==∴=,π(0,π),3C C ∈∴= .(2)由sin ,sin ,sinB A C 成等差数列,得2sin sin sin C A B =+;由正弦定理得2c a b =+,∵()18CA AB AC ⋅-= ,∴18CA CB ⋅= ,即cos 18,36ab C ab ==,由余弦定理()22222cos 3c a b ab C a b ab =+-=+-,∴2224336,36c c c =-⨯=,∴6c =.19.如图,在四棱锥P ABCD -中,AB CD ∥,且90BAP CDP ∠=∠=︒.(1)证明:平面PAB ⊥平面PAD ;(2)若PA PD AB DC ===,90APD ∠=︒,且四棱锥P ABCD -的体积为83,求该四棱锥的侧面积.【答案】(1)证明见解析;(2)623+.【详解】试题分析:(1)由90BAP CDP ∠=∠=︒,得AB AP ⊥,CD PD ⊥.从而得AB PD ⊥,进而而AB ⊥平面PAD ,由面面垂直的判定定理可得平面PAB ⊥平面PAD ;(2)设PA PD AB DC a ====,取AD 中点O ,连结PO ,则PO ⊥底面ABCD ,且22,2AD a PO a ==,由四棱锥P ABCD -的体积为83,求出2a =,由此能求出该四棱锥的侧面积.试题解析:(1)由已知90BAP CDP ∠=∠=︒,得AB AP ⊥,CD PD ⊥.由于AB CD ∥,故AB PD ⊥,从而AB ⊥平面PAD .又AB ⊂平面PAB ,所以平面PAB ⊥平面PAD .(2)在平面PAD 内作PE AD ⊥,垂足为E .由(1)知,AB ⊥面PAD ,故AB PE ⊥,可得PE ⊥平面ABCD .设AB x =,则由已知可得2AD =,22PE x =.故四棱锥P ABCD -的体积31133P ABCD V AB AD PE x -=⋅⋅=.由题设得31833x =,故2x =.从而2PA PD ==,22AD BC ==,22PB PC ==.可得四棱锥P ABCD -的侧面积为111222PA PD PA AB PD DC ⋅+⋅+⋅21sin606232BC +︒=+.20.已知函数()3211,32f x x ax a =-∈R .(I)当a =2时,求曲线()y f x =在点()()3,3f 处的切线方程;(II)设函数()()()cos sin g x f x x a x x =+--,讨论()g x 的单调性并判断有无极值,有极值时求出极值.【答案】(Ⅰ)390x y --=;(Ⅱ)见解析.【详解】试题分析:(Ⅰ)根据导数的几何意义,求出切线的斜率,再用点斜式写出切线方程;(Ⅱ)由()()(sin )g x x a x x =-'-,通过讨论确定()g x 的单调性,再由单调性确定极值.试题解析:(Ⅰ)由题意2()f x x ax '=-,所以,当2a =时,(3)0f =,2()2f x x x =-',所以(3)3f '=,因此,曲线()y f x =在点(3,(3))f 处的切线方程是3(3)y x =-,即390x y --=.(Ⅱ)因为()()()cos sin g x f x x a x x =+--,所以()()cos ()sin cos g x f x x x a x x ''=+---,()()sin x x a x a x=---()(sin )x a x x =--,令()sin h x x x =-,则()1cos 0h x x '=-≥,所以()h x 在R 上单调递增,因为(0)0h =,所以,当0x >时,()0h x >;当0x <时,()0h x <.(1)当a<0时,()()(sin )g x x a x x '=--,当(,)x a ∈-∞时,0x a -<,()0g x '>,()g x 单调递增;当(,0)x a ∈时,0x a ->,()0g x '<,()g x 单调递减;当(0,)x ∈+∞时,0x a ->,()0g x '>,()g x 单调递增.所以当x a =时()g x 取到极大值,极大值是31()sin 6g a a a =--,当0x =时()g x 取到极小值,极小值是(0)g a =-.(2)当0a =时,()(sin )g x x x x '=-,当(,)x ∈-∞+∞时,()0g x '≥,()g x 单调递增;所以()g x 在(,)∞∞-+上单调递增,()g x 无极大值也无极小值.(3)当0a >时,()()(sin )g x x a x x '=--,当(,0)x ∈-∞时,0x a -<,()0g x '>,()g x 单调递增;当(0,)x a ∈时,0x a -<,()0g x '<,()g x 单调递减;当(,)x a ∈+∞时,0x a ->,()0g x '>,()g x 单调递增.所以当0x =时()g x 取到极大值,极大值是(0)g a =-;当x a =时()g x 取到极小值,极小值是31()sin 6g a a a =--.综上所述:当a<0时,函数()g x 在(,)a -∞和(0,)+∞上单调递增,在(,0)a 上单调递减,函数既有极大值,又有极小值,极大值是31()sin 6g a a a =--,极小值是(0)g a =-;当0a =时,函数()g x 在(,)∞∞-+上单调递增,无极值;当0a >时,函数()g x 在(,0)-∞和(,)a +∞上单调递增,在(0,)a 上单调递减,函数既有极大值,又有极小值,极大值是(0)g a =-,极小值是31()sin 6g a a a =--.【考点】导数的几何意义及导数的应用【名师点睛】(1)求函数f (x )极值的步骤:①确定函数的定义域;②求导数f ′(x );③解方程f ′(x )=0,求出函数定义域内的所有根;④检验f ′(x )在f ′(x )=0的根x 0左右两侧值的符号,如果左正右负,那么f (x )在x 0处取极大值,如果左负右正,那么f (x )在x 0处取极小值.(2)若函数y =f (x )在区间(a ,b )内有极值,那么y =f (x )在(a ,b )内绝不是单调函数,即在某区间上单调函数没有极值.21.在平面直角坐标系xOy 中,已知椭圆C :22221x y a b +=(a >b >0)的离心率为22,椭圆C 截直线y =1所得线段的长度为(Ⅰ)求椭圆C 的方程;(Ⅱ)动直线l :y =kx +m (m ≠0)交椭圆C 于A ,B 两点,交y 轴于点M .点N 是M 关于O 的对称点,⊙N 的半径为|NO |.设D 为AB 的中点,DE ,DF 与⊙N 分别相切于点E ,F ,求∠EDF 的最小值.【答案】(Ⅰ)22142x y +=.(II)3π.【详解】试题分析:(Ⅰ)由2c a =得a =,由椭圆C 截直线y =1所得线段的长度为=,求得椭圆的方程为22142x y +=;(Ⅱ)由2224x y y kx m⎧+=⎨=+⎩,解得222(21)4240k x kmx m +++-=,确定222(,)2121km m D k k -++,DN =,结合22NDNF 的单调性求EDF ∠的最小值.试题解析:(Ⅰ)由椭圆的离心率为2,得2222()a a b =-,又当1y =时,2222a x a b =-,得2222a a b -=,所以224,2a b ==,因此椭圆方程为22142x y +=.(Ⅱ)设1122(,),(,)A x y B x y ,联立方程2224y kx m x y =+⎧⎨+=⎩,得222(21)4240k x kmx m +++-=,由0∆>得2242m k <+.(*)且122421km x x k +=+,因此122221m y y k +=+,所以222(,2121km m D k k -++,又(0,)N m -,所以222222(()2121km m ND m k k =-++++整理得2242224(13)(21)m k k ND k ++=+,因为NF m =,所以2422222224(31)831(21)(21)ND k k k k k NF +++==+++.令283,3t k t =+≥,故21214t k ++=,所以2221616111(1)2NDt t NF t t=+=++++.令1y t t=+,所以211y t '=-.当3t ≥时,0'>y ,从而1y t t =+在[3,)+∞上单调递增,因此1103t t +≥,等号当且仅当3t =时成立,此时0k =,所以22134ND NF ≤+=,由(*)得m <<且0m ≠.故12NF ND ≥,设2EDF θ∠=,则1sin 2NF ND θ=≥,所以θ的最小值为π6,从而EDF ∠的最小值为π3,此时直线l 的斜率是0.综上所述:当0k =,(m ∈⋃时,EDF ∠取到最小值π3.【考点】圆与椭圆的方程、直线与圆锥曲线的位置关系【名师点睛】圆锥曲线中的两类最值问题:①涉及距离、面积的最值以及与之相关的一些问题;②求直线或圆锥曲线中几何元素的最值以及这些元素存在最值时确定与之有关的一些问题.常见解法:①几何法,若题目的条件和结论能明显体现几何特征及意义,则考虑利用图形性质来解决;②代数法,若题目的条件和结论能体现一种明确的函数关系,则可先建立起目标函数,再求这个函数的最值,最值常用基本不等式法、配方法及导数法求解.22.在直角坐标系中,以原点为极点,x 轴的正半轴为极轴建立极坐标系,已知曲线:4cos C ρθ=,直线l 的参数方程为:321x t y t =+⎧⎨=-+⎩(t 为参数),直线l 与曲线C 分别交于,M N 两点.(1)写出曲线C 和直线l 的普通方程;(2)若点(3,1)P -,求11||||PM PN -的值.【答案】(1)22(2)4x y -+=;250x y --=(2)55【分析】(1)利用极坐标和直角坐标方程得转化公式即可得出曲线C 的普通方程,消去直线l 参数方程中的t 即可得直线l 的普通方程;(2)联立直线l 的参数方程和曲线C 的普通方程得出关于参数的一元二次方程,利用参数t '的几何意义和韦达定理即可求得11||||PM PN -的值.【小问1详解】将:4cos C ρθ=等号两边同时乘以ρ可得24cos ρρθ=,所以224x y x +=;即22(2)4x y -+=;所以曲线C 的普通方程为22(2)4x y -+=;将32:1x t l y t =+⎧⎨=-+⎩消去参数t 可得,32(1)x y =++,整理得250x y --=;即直线l 的普通方程为250x y --=【小问2详解】注意到(3,1)P -在直线l 上,直线l 倾斜角为1tan 2αα=,,cos 2sin αα∴=,22π(0,),sin 0,cos 0,sin cos 12ααααα∈>>+= ,解得525sin ,cos ,55αα==所以直线l 参数方程为2535(515x t t y ⎧=+⎪⎪⎨⎪=-+⎪⎩'''为参数),联立C 的直角坐标方程与l的参数方程得22(+1)1)455t ''+-=整理得225205t ''+-=,设方程的解为12,t t '',则125t t ''+=-,122t t ''=-,12,t t ''异号.不妨设1||PM t '=,2||PN t '=-,有12121211115||||5t t PM PN t t t t ''+-=+==''''.23.已知函数()2f x m x mx =+--()0m >的最大值为6.(1)求m 的值;(2)若正数x ,y ,z 满足x y z m ++=,求证:≤.【答案】(1)2;(2)证明见解析.【分析】(1)利用绝对值三角不等式求出()f x 的最大值,让最大值等于6即可得m 的值;(2)由(1)知,2x y z ++=,由222x x x y z y z ⎛⎫⎛⎫=++=+++ ⎪ ⎪⎝⎭⎝⎭利用基本不等式即可求证.【详解】(1)由题意得()2()(2)3f x x m x m x m x m m =+--≤+--=,因为函数()f x 的最大值为6,所以36m =,即2m =±.因为0m >,所以2m =;(2)由(1)知,2x y z ++=,因为0x >,0y >,0z >,所以222x x x y z y z ⎛⎫⎛⎫=++=+++≥+⎪ ⎪⎝⎭⎝⎭,当且仅当2x y z ==时,即1x =,12y z ==等号成立,22m ≤=≤,当且仅当11,2x y z ===时,等号成立.。
四川省南部县达标名校2024届中考数学模拟精编试卷含解析

四川省南部县达标名校2024届中考数学模拟精编试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.一次函数112y x=-+的图像不经过的象限是:()A.第一象限B.第二象限C.第三象限D.第四象限2.sin45°的值等于()A.2B.1 C.32D.223.如图,小明从A处出发沿北偏西30°方向行走至B处,又沿南偏西50°方向行走至C处,此时再沿与出发时一致的方向行走至D处,则∠BCD的度数为()A.100°B.80°C.50°D.20°4.某一超市在“五•一”期间开展有奖促销活动,每买100元商品可参加抽奖一次,中奖的概率为13.小张这期间在该超市买商品获得了三次抽奖机会,则小张( )A.能中奖一次B.能中奖两次C.至少能中奖一次D.中奖次数不能确定5.下列计算正确的是()A.a3•a2=a6B.(a3)2=a5C.(ab2)3=ab6D.a+2a=3a6.如图,一个可以自由转动的转盘被等分成6个扇形区域,并涂上了相应的颜色,转动转盘,转盘停止后,指针指向蓝色区域的概率是( )A .16B .13C .12D .23 7.在平面直角坐标系中,点,则点P 不可能在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限8.如图,在△ABC 中,点D 是边AB 上的一点,∠ADC =∠ACB ,AD =2,BD =6,则边AC 的长为( )A .2B .4C .6D .89.已知△ABC ,D 是AC 上一点,尺规在AB 上确定一点E ,使△ADE ∽△ABC ,则符合要求的作图痕迹是( ) A . B .C .D .10.若数a 使关于x 的不等式组()3x a 2x 11x 2x 2⎧-≥--⎪⎨--≥⎪⎩有解且所有解都是2x+6>0的解,且使关于y 的分式方程y 51y --+3=a y 1-有整数解,则满足条件的所有整数a 的个数是( ) A .5 B .4 C .3 D .2二、填空题(共7小题,每小题3分,满分21分)11.如图,一扇形纸扇完全打开后,外侧两竹条AB 和AC 的夹角为120°,AB 长为25cm ,贴纸部分的宽BD 为15cm ,若纸扇两面贴纸,则贴纸的面积为_____.(结果保留π)12.数学综合实践课,老师要求同学们利用直径为6cm 的圆形纸片剪出一个如图所示的展开图,再将它沿虚线折叠成一个无盖的正方体形盒子(接缝处忽略不计).若要求折出的盒子体积最大,则正方体的棱长等于________cm .13.已知a ,b 为两个连续的整数,且a <5<b ,则b a =_____.14.已知b 是a ,c 的比例中项,若a=4,c=16,则b=________.15.因式分解:2312x -=____________.16.如图,在正方形ABCD 中,O 是对角线AC 、BD 的交点,过O 点作OE ⊥OF ,OE 、OF 分别交AB 、BC 于点E 、点F ,AE=3,FC=2,则EF 的长为_____.17.从﹣2,﹣1,2,0这四个数中任取两个不同的数作为点的坐标,该点不在第三象限的概率是_____.三、解答题(共7小题,满分69分)18.(10分)台州市某水产养殖户进行小龙虾养殖.已知每千克小龙虾养殖成本为6元,在整个销售旺季的80天里,销售单价p(元/千克)与时间第t(天)之间的函数关系为:p=14t+16,日销售量y(千克)与时间第t(天)之间的函数关系如图所示:(1)求日销售量y 与时间t 的函数关系式?(2)哪一天的日销售利润最大?最大利润是多少?(3)该养殖户有多少天日销售利润不低于2400元?19.(5分)在平面直角坐标系中,一次函数34y x b =-+的图象与反比例函数k y x=(k≠0)图象交于A 、B 两点,与y 轴交于点C ,与x 轴交于点D ,其中A 点坐标为(﹣2,3).求一次函数和反比例函数解析式.若将点C 沿y 轴向下平移4个单位长度至点F ,连接AF 、BF ,求△ABF 的面积.根据图象,直接写出不等式34k x b x-+>的解集. 20.(8分)某商场将进价为2000元的冰箱以2400元售出,平均每天能售出8台,为了配合国家“家电下乡”政策的实施,商场决定采取适当的降价措施.调查表明:这种冰箱的售价每降低50元,平均每天就能多售出 4台.商场要想在这种冰箱销售中每天盈利 4800 元,同时又要使百姓得到实惠,每台冰箱应降价多少元?21.(10分)已知:如图,A 、C 、F 、D 在同一直线上,AF =DC ,AB =DE ,BC =EF ,求证:△ABC ≌△DEF .22.(10分)已知:如图1,抛物线的顶点为M ,平行于x 轴的直线与该抛物线交于点A ,B (点A 在点B 左侧),根据对称性△AMB 恒为等腰三角形,我们规定:当△AMB 为直角三角形时,就称△AMB 为该抛物线的“完美三角形”.(1)①如图2,求出抛物线2yx 的“完美三角形”斜边AB 的长; ②抛物线21y x +=与2y x 的“完美三角形”的斜边长的数量关系是 ;(2)若抛物线24y ax +=的“完美三角形”的斜边长为4,求a 的值;(3)若抛物线225y mx x+n =+-的“完美三角形”斜边长为n ,且225y mx x+n =+-的最大值为-1,求m ,n 的值.23.(12分)校车安全是近几年社会关注的重大问题,安全隐患主要是超速和超载.某中学数学活动小组设计了如下检测公路上行驶的汽车速度的实验:先在公路旁边选取一点C ,再在笔直的车道l 上确定点D ,使CD 与l 垂直,测得CD 的长等于21米,在l 上点D 的同侧取点A 、B ,使∠CAD=30︒,∠CBD=60︒.求AB 的长(精确到0.1米,参考数据:3 1.732 1.41≈≈,);已知本路段对校车限速为40千米/小时,若测得某辆校车从A 到B 用时2秒,这辆校车是否超速?说明理由.24.(14分)某商场用24000元购入一批空调,然后以每台3000元的价格销售,因天气炎热,空调很快售完,商场又以52000元的价格再次购入该种型号的空调,数量是第一次购入的2倍,但购入的单价上调了200元,每台的售价也上调了200元.商场第一次购入的空调每台进价是多少元?商场既要尽快售完第二次购入的空调,又要在这两次空调销售中获得的利润率不低于22%,打算将第二次购入的部分空调按每台九五折出售,最多可将多少台空调打折出售?参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、C【解题分析】试题分析:根据一次函数y=kx+b (k≠0,k 、b 为常数)的图像与性质可知:当k >0,b >0时,图像过一二三象限;当k >0,b <0时,图像过一三四象限;当k <0,b >0时,图像过一二四象限;当k <0,b <0,图像过二三四象限.这个一次函数的k=12-<0与b=1>0,因此不经过第三象限. 答案为C考点:一次函数的图像2、D【解题分析】根据特殊角的三角函数值得出即可.【题目详解】解:sin45°=22,故选:D.【题目点拨】本题考查了特殊角的三角函数的应用,能熟记特殊角的三角函数值是解此题的关键,难度适中.3、B【解题分析】解:如图所示:由题意可得:∠1=30°,∠3=50°,则∠2=30°,故由DC∥AB,则∠4=30°+50°=80°.故选B.点睛:此题主要考查了方向角的定义,正确把握定义得出∠3的度数是解题关键.4、D【解题分析】由于中奖概率为13,说明此事件为随机事件,即可能发生,也可能不发生.【题目详解】解:根据随机事件的定义判定,中奖次数不能确定.故选D.【题目点拨】解答此题要明确概率和事件的关系:()P A0=①,为不可能事件;()P A1=②为必然事件;()0P A1③<<为随机事件.5、D【解题分析】根据同底数幂的乘法、积的乘方与幂的乘方及合并同类项的运算法则进行计算即可得出正确答案.【题目详解】解:A.x4•x4=x4+4=x8≠x16,故该选项错误;B.(a3)2=a3×2=a6≠a5,故该选项错误;C.(ab2)3=a3b6≠ab6,故该选项错误;D.a+2a=(1+2)a=3a,故该选项正确;故选D.考点:1.同底数幂的乘法;2.积的乘方与幂的乘方;3.合并同类项.6、B【解题分析】试题解析:∵转盘被等分成6个扇形区域,而黄色区域占其中的一个,∴指针指向黄色区域的概率=16.故选A.考点:几何概率.7、B【解题分析】根据坐标平面内点的坐标特征逐项分析即可. 【题目详解】A. 若点在第一象限,则有:,解之得m>1,∴点P可能在第一象限;B. 若点在第二象限,则有:,解之得不等式组无解,∴点P不可能在第二象限;C. 若点在第三象限,则有:,解之得m<1,∴点P可能在第三象限;D. 若点在第四象限,则有:,解之得0<m<1,∴点P可能在第四象限;故选B.【题目点拨】本题考查了不等式组的解法,坐标平面内点的坐标特征,第一象限内点的坐标特征为(+,+),第二象限内点的坐标特征为(-,+),第三象限内点的坐标特征为(-,-),第四象限内点的坐标特征为(+,-),x轴上的点纵坐标为0,y 轴上的点横坐标为0.8、B【解题分析】证明△ADC∽△ACB,根据相似三角形的性质可推导得出AC2=AD•AB,由此即可解决问题.【题目详解】∵∠A=∠A,∠ADC=∠ACB,∴△ADC∽△ACB,∴AC AD AB AC,∴AC2=AD•AB=2×8=16,∵AC>0,∴AC=4,故选B.【题目点拨】本题考查相似三角形的判定和性质、解题的关键是正确寻找相似三角形解决问题.9、A【解题分析】以DA为边、点D为顶点在△ABC内部作一个角等于∠B,角的另一边与AB的交点即为所求作的点.【题目详解】如图,点E即为所求作的点.故选:A.【题目点拨】本题主要考查作图-相似变换,根据相似三角形的判定明确过点D作一角等于∠B或∠C,并熟练掌握做一个角等于已知角的作法式解题的关键.10、D【解题分析】由不等式组有解且满足已知不等式,以及分式方程有整数解,确定出满足题意整数a的值即可.【题目详解】不等式组整理得:13x ax≥-⎧⎨≤⎩,由不等式组有解且都是2x+6>0,即x>-3的解,得到-3<a-1≤3,即-2<a≤4,即a=-1,0,1,2,3,4,分式方程去分母得:5-y+3y-3=a,即y=22a-,由分式方程有整数解,得到a=0,2,共2个,故选:D.【题目点拨】本题考查了分式方程的解,解一元一次不等式,以及解一元一次不等式组,熟练掌握运算法则是解本题的关键.二、填空题(共7小题,每小题3分,满分21分)11、5253πcm1.【解题分析】求出AD,先分别求出两个扇形的面积,再求出答案即可.【题目详解】解:∵AB长为15cm,贴纸部分的宽BD为15cm,∴AD=10cm,∴贴纸的面积为S=S扇形ABC﹣S扇形ADE=22120π25120π10525π3603603⨯⨯-=(cm1),故答案为5253πcm1.【题目点拨】本题考查了扇形的面积计算,能熟记扇形的面积公式是解此题的关键.12、3105【解题分析】根据题意作图,可得AB=6cm ,设正方体的棱长为xcm ,则AC=x ,BC=3x ,根据勾股定理对称62=x 2+(3x )2,解方程即可求得.【题目详解】解:如图示,根据题意可得AB=6cm ,设正方体的棱长为xcm ,则AC=x ,BC=3x ,根据勾股定理,AB 2=AC 2+BC 2,即()22263x x =+,解得3105x =3105 【题目点拨】本题考查了勾股定理的应用,正确理解题意是解题的关键.13、1【解题分析】根据已知a 5b ,结合a 、b 是两个连续的整数可得a 、b 的值,即可求解.【题目详解】解:∵a ,b 为两个连续的整数,且a 5b ,∴a =2,b =3,∴b a =32=1.故答案为1.【题目点拨】此题考查的是如何根据无理数的范围确定两个有理数的值,5的取值范围,可以很容易得到其相邻两个整数,再结合已知条件即可确定a 、b 的值,14、±8 【解题分析】根据比例中项的定义即可求解.【题目详解】∵b 是a ,c 的比例中项,若a=4,c=16,∴b 2=ac=4×16=64,∴b=±8,故答案为±8 【题目点拨】此题考查了比例中项的定义,如果作为比例线段的内项是两条相同的线段,即a ∶b=b ∶c 或=a b b c,那么线段b 叫做线段a 、c 的比例中项.15、3(x -2)(x +2)【解题分析】先提取公因式3,再根据平方差公式进行分解即可求得答案.注意分解要彻底.【题目详解】原式=3(x 2﹣4)=3(x -2)(x +2).故答案为3(x -2)(x +2).【题目点拨】本题考查了提公因式法,公式法分解因式,提取公因式后利用平方差公式进行二次分解,注意分解要彻底. 16【解题分析】由△BOF ≌△AOE ,得到BE=FC=2,在直角△BEF 中,从而求得EF 的值.【题目详解】∵正方形ABCD 中,OB=OC ,∠BOC=∠EOF=90°,∴∠EOB=∠FOC , 在△BOE 和△COF 中,45{OCB OBE OB OC EOB FOC∠∠︒∠∠====,∴△BOE ≌△COF (ASA )∴BE=FC=2,同理BF=AE=3,在Rt△BEF中,BF=3,BE=2,∴EF=2223=13.故答案为13【题目点拨】本题考查了正方形的性质、三角形全等的性质和判定、勾股定理,在四边形中常利用三角形全等的性质和勾股定理计算线段的长.17、5 6【解题分析】列举出所有情况,看在第四象限的情况数占总情况数的多少即可.【题目详解】如图:共有12种情况,在第三象限的情况数有2种,故不再第三象限的共10种,不在第三象限的概率为105= 126,故答案为56.【题目点拨】本题考查了树状图法的知识,解题的关键是列出树状图求出概率.三、解答题(共7小题,满分69分)18、(1)y=﹣2t+200(1≤t≤80,t为整数);(2)第30天的日销售利润最大,最大利润为2450元;(3)共有21天符合条件.【解题分析】(1)根据函数图象,设解析式为y=kt+b,将(1,198)、(80,40)代入,利用待定系数法求解可得;(2)设日销售利润为w,根据“总利润=每千克利润×销售量”列出函数解析式,由二次函数的性质分别求得最值即可判断;(3)求出w=2400时t 的值,结合函数图象即可得出答案;【题目详解】(1)设解析式为y=kt+b ,将(1,198)、(80,40)代入,得:1988040k b k b +=⎧⎨+=⎩ ,解得:2200k b =-⎧⎨=⎩,∴y=﹣2t +200(1≤t≤80,t 为整数); (2)设日销售利润为w ,则w=(p ﹣6)y ,当1≤t≤80时,w=(14t+16﹣6)(﹣2t+200)=﹣12(t ﹣30)2+2450, ∴当t=30时,w 最大=2450;∴第30天的日销售利润最大,最大利润为2450元.(3)由(2)得:当1≤t≤80时,w=﹣12(t ﹣30)2+2450, 令w=2400,即﹣12 (t ﹣30)2+2450=2400, 解得:t 1=20、t 2=40,∴t 的取值范围是20≤t≤40,∴共有21天符合条件.【题目点拨】本题考查二次函数的应用,熟练掌握待定系数求函数解析式、由相等关系得出利润的函数解析式、利用二次函数的图象解不等式及二次函数的图象与性质是解题关键.19、(1)y =﹣34x +32,y =-6x ;(2)12;(3) x <﹣2或0<x <4. 【解题分析】(1)将点A 坐标代入解析式,可求解析式;(2)一次函数和反比例函数解析式组成方程组,求出点B 坐标,即可求△ABF 的面积;(3)直接根据图象可得.【题目详解】(1)∵一次函数y=﹣34x+b的图象与反比例函数y=kx(k≠0)图象交于A(﹣3,2)、B两点,∴3=﹣34×(﹣2)+b,k=﹣2×3=﹣6∴b=32,k=﹣6∴一次函数解析式y=﹣3342x+,反比例函数解析式y=6x-.(2)根据题意得:33426y xyx⎧+⎪⎪⎨-⎪⎪⎩=﹣=,解得:211242,332xxy y⎧=⎧=-⎪⎪⎨⎨==-⎪⎪⎩⎩,∴S△ABF=12×4×(4+2)=12(3)由图象可得:x<﹣2或0<x<4【题目点拨】本题考查了反比例函数图象与一次函数图象的交点问题,待定系数法求解析式,熟练运用函数图象解决问题是本题的关键.20、100或200【解题分析】试题分析:此题利用每一台冰箱的利润×每天售出的台数=每天盈利,设出每台冰箱应降价x元,列方程解答即可.试题解析:设每台冰箱应降价x元,每件冰箱的利润是:元,卖(8+x50×4)件,列方程得,(8+x50×4)=4800,x2﹣300x+20000=0,解得x1=200,x2=100;要使百姓得到实惠,只能取x=200,答:每台冰箱应降价200元.考点:一元二次方程的应用.21、证明见解析【解题分析】试题分析:首先根据AF=DC,可推得AF﹣CF=DC﹣CF,即AC=DF;再根据已知AB=DE,BC=EF,根据全等三角形全等的判定定理SSS 即可证明△ABC ≌△DEF .试题解析:∵AF=DC ,∴AF ﹣CF=DC ﹣CF ,即AC=DF ;在△ABC 和△DEF 中∴△ABC ≌△DEF (SSS )22、(1)AB=2;相等;(2)a=±12;(3)34m =-, 83n =. 【解题分析】(1)①过点B 作BN ⊥x 轴于N ,由题意可知△AMB 为等腰直角三角形,设出点B 的坐标为(n ,-n ),根据二次函数得出n 的值,然后得出AB 的值,②因为抛物线y=x 2+1与y=x 2的形状相同,所以抛物线y=x 2+1与y=x 2的“完美三角形”的斜边长的数量关系是相等;(2)根据抛物线的性质相同得出抛物线的完美三角形全等,从而得出点B 的坐标,得出a 的值;根据最大值得出mn -4m -1=0,根据抛物线的完美三角形的斜边长为n 得出点B 的坐标,然后代入抛物线求出m 和n 的值.(3)根据225y mx x+n =+-的最大值为-1,得到()45414m n m --=-化简得mn-4m-1=0,抛物线225y mx x+n =+-的“完美三角形”斜边长为n ,所以抛物线2y mx =2的“完美三角形”斜边长为n ,得出B 点坐标,代入可得mn 关系式,即可求出m 、n 的值.【题目详解】(1)①过点B 作BN ⊥x 轴于N ,由题意可知△AMB 为等腰直角三角形,AB ∥x 轴,易证MN=BN ,设B 点坐标为(n ,-n ),代入抛物线2y x ,得2n n =, ∴1n =,0n =(舍去),∴抛物线2y x 的“完美三角形”的斜边2AB =②相等;(2)∵抛物线2y ax =与抛物线24y ax =+的形状相同,∴抛物线2y ax =与抛物线24y ax =+的“完美三角形”全等,∵抛物线24y ax +=的“完美三角形”斜边的长为4,∴抛物线2y ax =的“完美三角形”斜边的长为4,∴B 点坐标为(2,2)或(2,-2),∴12a=±. (3)∵ 225y mx x+n =+-的最大值为-1,∴ ()45414m n m --=-,∴410mn m --= ,∵抛物线225y mx x+n =+-的“完美三角形”斜边长为n ,∴抛物线2y mx =的“完美三角形”斜边长为n ,∴B 点坐标为,22nn ⎛⎫- ⎪⎝⎭, ∴代入抛物线2y mx =,得222n n m ⎛⎫⋅=- ⎪⎝⎭, ∴ mn 2=-(不合题意舍去), ∴34m =-, ∴83n = 23、(1)24.2米(2) 超速,理由见解析【解题分析】(1)分别在Rt △ADC 与Rt △BDC 中,利用正切函数,即可求得AD 与BD 的长,从而求得AB 的长.(2)由从A 到B 用时2秒,即可求得这辆校车的速度,比较与40千米/小时的大小,即可确定这辆校车是否超速.【题目详解】解:(1)由題意得,在Rt △ADC 中,CD AD tan30︒==, 在Rt △BDC中,CD BD tan60===︒, ∴AB=AD -BD=14 1.73=24.2224.2-≈⨯≈(米). (2)∵汽车从A 到B 用时2秒,∴速度为24.2÷2=12.1(米/秒),∵12.1米/秒=43.56千米/小时,∴该车速度为43.56千米/小时.∵43.56千米/小时大于40千米/小时,∴此校车在AB 路段超速.24、(1)2400元;(2)8台.【解题分析】试题分析:(1)设商场第一次购入的空调每台进价是x 元,根据题目条件“商场又以52000元的价格再次购入该种型号的空调,数量是第一次购入的2倍,但购入的单价上调了200元,每台的售价也上调了200元”列出分式方程解答即可;(2)设最多将y 台空调打折出售,根据题目条件“在这两次空调销售中获得的利润率不低于22%,打算将第二次购入的部分空调按每台九五折出售”列出不等式并解答即可.试题解析:(1)设第一次购入的空调每台进价是x 元,依题意,得52000240002,200x x=⨯+ 解得2400.x = 经检验,2400x =是原方程的解.答:第一次购入的空调每台进价是2 400元.(2)由(1)知第一次购入空调的台数为24 000÷2 400=10(台),第二次购入空调的台数为10×2=20(台).设第二次将y 台空调打折出售,由题意,得()()()()30001030002000.95300020020122%2400052000y y ⨯++⨯⋅+⋅-≥+⨯+(),解得8y ≤.答:最多可将8台空调打折出售.。
2023-2024学年南部县小升初数学高频考点模拟卷含解析

2023-2024学年南部县小升初数学高频考点模拟卷一、用心思考,我会填。
(每小题2分,共22分)1.一个长方形被涂成了黑白相间的图案。
黑格与白格个数的比是________∶________,白格与黑格个数的比是________∶________。
2.如图是牛肉的成分统计图,如果这块牛肉重500克,蛋白质的重量比脂肪多_____克3.找规律填一填。
①83,78,73,68,________。
②1,2,4,8,________。
4.中国是世界上水土流失最严重的国家之一,每年流失的土壤总量达4998000000吨,给社会、经济和人民群众的生产、生活及生态安全带来多方面的危害。
横线上的数读作________,省略亿位后面的尾数约是________亿。
5.一本故事书有340页,第一周看了全书的,第二周看的是第一周的,第二周看了_____页.6.观察点子图填表。
序号①②③④⑤……⑧点子数 1 6 15 28 __ __7.121只鸽子飞回20个鸽舍,至少有________只鸽子要飞进同一个鸽舍里。
8.一个等腰三角形,顶角是30°,一个底角是________度.等边三角形每个内角是________度.9.甲、乙、丙三人储蓄钱数之比是1:3:4,他们储蓄钱数的平均数是32元,乙储蓄了(_____)元.10.在横线上填上“>”“<”或“=”。
0.375________37.5% 0.99________90% 0.3%________0.031 2________49% 87.5________8103.5%________351000011.填空题(1)0.3t+35kg=________kg(2)0.003L+30mL=________mL二、仔细推敲,我会选。
(每小题2分,共10分)12.一个整数,四舍五入到万位约是5万,那么这个数最大是()A.59999 B.50999 C.54449 D.5499913.5:3的前项增加15,要使比值不变,后项应该A.增加9 B.增加12 C.增加15 D.增加614.31÷7=4……3,如果被除数、除数都扩大10倍,那么它的结果是( )。
南充市南部县2024-2025学年数学六年级第一学期期末监测试题含解析

南充市南部县2024-2025学年数学六年级第一学期期末监测试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
3.考生必须保证答题卡的整洁。
考试结束后,请将本试卷和答题卡一并交回。
一、认真审题,细心计算(每题6分,共18分)1.求比值。
1∶25=50%∶0.5=22:950.27∶18=2.用简便方法计算.+++++3.解方程13.2x+9x=33.3 (x-5) ÷0.2 =0.75 0.48÷x=0.32二、认真读题,准确填写(每小题2分,共22分)4.在○里填上“>”,“<”或“=”.7 15○13301124○9160.65○13203.14○2275.甲数扩大10倍等于乙数,甲、乙两数的和是22,则甲数是(________).6.一杯纯牛奶,笑笑喝了半杯后,觉得有些凉,就兑满了热水,全部喝完后,就和妈妈出去散步了。
她一共喝了(________)杯纯牛奶,喝了(________)杯水。
7.六(5)班开展拓展活动,出勤50人,缺勤2人,本次活动出勤率是(________)。
8.的分数单位是_____,再加上_____个这样的分数单位就是最小的质数.9.的分母乘以3,要使分数值不变,分子应加上_____.10.一项工程需要10天完成,平均每天完成这项工程的______,3天______,7天______。
11.下图表示一辆汽车在公路上行驶的时间与路程的关系,这辆汽车行驶的时间与路程成(______)比例.照这样计算,该汽车5.5时行驶(______)km.12.在横线上填上“>“”<”或“=”。
24÷13________24712÷43________71256×14________565 8×23________58×1358÷23________58÷13815÷1________1÷81513.7184∶的比值是(________),化成最简单的整数比是(________)∶(________)。
四川省南充市南部县重点名校2024届中考考前最后一卷数学试卷含解析

四川省南充市南部县重点名校2024届中考考前最后一卷数学试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B 铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B 铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.下列运算正确的是 ( )A .22a +a=33aB .()32m =5mC .()222x y x y +=+D .63a a ÷=3a2.某小组在“用频率估计概率”的试验中,统计了某种结果出现的频率,绘制了如图所示的折线图,那么符合这一结果的试验最有可能的是( )A .在装有1个红球和2个白球(除颜色外完全相同)的不透明袋子里随机摸出一个球是“白球”B .从一副扑克牌中任意抽取一张,这张牌是“红色的”C .掷一枚质地均匀的硬币,落地时结果是“正面朝上”D .掷一个质地均匀的正六面体骰子,落地时面朝上的点数是63.当函数y=(x-1)2-2的函数值y 随着x 的增大而减小时,x 的取值范围是( )A .x 0>B .x 1<C .x 1>D .x 为任意实数4.如图,点E 是矩形ABCD 的边AD 的中点,且BE ⊥AC 于点F ,则下列结论中错误的是( )A .AF=12CFB .∠DCF=∠DFCC .图中与△AEF 相似的三角形共有5个D .tan ∠25.下列图形中,是正方体表面展开图的是()A.B.C. D.6.如图,在△ABC中,AD是BC边的中线,∠ADC=30°,将△ADC沿AD折叠,使C点落在C′的位置,若BC=4,则BC′的长为()A.23B.2 C.4 D.37.如图,在平面直角坐标系中,平行四边形OABC的顶点A的坐标为(﹣4,0),顶点B在第二象限,∠BAO=60°,BC交y轴于点D,DB:DC=3:1.若函数(k>0,x>0)的图象经过点C,则k的值为()A.B.C.D.8.下列说法正确的是( )A.对角线相等且互相垂直的四边形是菱形B.对角线互相平分的四边形是正方形C.对角线互相垂直的四边形是平行四边形D.对角线相等且互相平分的四边形是矩形9.如图,这是一个几何体的三视图,根据图中所示数据计算这个几何体的侧面积为()A.9πB.10πC.11πD.12π10.下列各式计算正确的是()A.a+3a=3a2B.(–a2)3=–a6C.a3·a4=a7D.(a+b)2=a2–2ab+b211.如图,小明为了测量河宽AB,先在BA延长线上取一点D,再在同岸取一点C,测得∠CAD=60°,∠BCA=30°,AC=15 m,那么河AB宽为()A.15 m B.53m C.103m D.123m12.为弘扬传统文化,某校初二年级举办传统文化进校园朗诵大赛,小明同学根据比赛中九位评委所给的某位参赛选手的分数,制作了一个表格,如果去掉一个最高分和一个最低分,则表中数据一定不发生变化的是()中位数众数平均数方差9.2 9.3 9.1 0.3A.中位数B.众数C.平均数D.方差二、填空题:(本大题共6个小题,每小题4分,共24分.)13.在一个不透明的空袋子里放入3个白球和2个红球,每个球除颜色外完全相同,小乐从中任意摸出1个球,摸出的球是红球,放回后充分摇匀,又从中任意摸出1个球,摸到红球的概率是 ____ .14.如图,在矩形ABCD中,对角线AC、BD相交于点O,点E、F分别是AO、AD的中点,若AB=6cm,BC=8cm,则EF=_____cm.15.写出经过点(0,0),(﹣2,0)的一个二次函数的解析式_____(写一个即可).16.如图,点E在正方形ABCD的边CD上.若△ABE的面积为8,CE=3,则线段BE的长为_______.17.12019的相反数是_____.18.如图,点A是直线y=3与反比例函数y=kx的图象在第二象限内的交点,OA=4,则k的值为_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,在平面直角坐标系中,已知抛物线y=x2+bx+c过A,B,C三点,点A的坐标是(3,0),点C的坐标是(0,-3),动点P在抛物线上.(1)b =_________,c =_________,点B的坐标为_____________;(直接填写结果)(2)是否存在点P,使得△ACP是以AC为直角边的直角三角形?若存在,求出所有符合条件的点P的坐标;若不存在,说明理由;(3)过动点P作PE垂直y轴于点E,交直线AC于点D,过点D作x轴的垂线.垂足为F,连接EF,当线段EF的长度最短时,求出点P的坐标.20.(6分)北京时间2019年3月10日0时28分,我国在西昌卫星发射中心用长征三号乙运载火箭,成功将中星6C 卫星发射升空,卫星进入预定轨道.如图,火星从地面C处发射,当火箭达到A点时,从位于地面雷达站D处测得DA 的距离是6km,仰角为42.4︒;1秒后火箭到达B点,测得DB的仰角为45.5︒.(参考数据:sin42.4°≈0.67,cos42.4°≈0.74,tan42.4°≈0.905,sin45.5°≈0.71,cos45.5°≈0.70,tan45.5°≈1.02)(Ⅰ)求发射台与雷达站之间的距离CD;(Ⅱ)求这枚火箭从A到B的平均速度是多少(结果精确到0.01)?21.(6分)如图,已知⊙O中,AB为弦,直线PO交⊙O于点M、N,PO⊥AB于C,过点B作直径BD,连接AD、BM、AP.(1)求证:PM∥AD;(2)若∠BAP=2∠M,求证:PA是⊙O的切线;(3)若AD=6,tan∠M=12,求⊙O的直径.22.(8分)小明在热气球A上看到正前方横跨河流两岸的大桥BC,并测得B、C两点的俯角分别为45°、35°.已知大桥BC与地面在同一水平面上,其长度为100m,求热气球离地面的高度.(结果保留整数)(参考数据:sin35°=0.57,cos35°=0.82,tan35°=0.70)23.(8分)在等边三角形ABC中,点P在△ABC内,点Q在△ABC外,且∠ABP=∠ACQ,BP=CQ.求证:△ABP≌△CAQ;请判断△APQ是什么形状的三角形?试说明你的结论.24.(10分)如图,正方形ABCD的边长为4,点E,F分别在边AB,AD上,且∠ECF=45°,CF的延长线交BA 的延长线于点G,CE的延长线交DA的延长线于点H,连接AC,EF.,GH.(1)填空:∠AHC∠ACG;(填“>”或“<”或“=”)(2)线段AC,AG,AH什么关系?请说明理由;(3)设AE=m,①△AGH 的面积S 有变化吗?如果变化.请求出S 与m 的函数关系式;如果不变化,请求出定值.②请直接写出使△CGH 是等腰三角形的m 值.25.(10分)已知抛物线y =ax 2﹣bx .若此抛物线与直线y =x 只有一个公共点,且向右平移1个单位长度后,刚好过点(3,1).①求此抛物线的解析式;②以y 轴上的点P (1,n )为中心,作该抛物线关于点P 对称的抛物线y',若这两条抛物线有公共点,求n 的取值范围;若a >1,将此抛物线向上平移c 个单位(c >1),当x =c 时,y =1;当1<x <c 时,y >1.试比较ac 与1的大小,并说明理由.26.(12分)如图1,在正方形ABCD 中,P 是对角线BD 上的一点,点E 在AD 的延长线上,且PA=PE ,PE 交CD 于F(1)证明:PC=PE ;(2)求∠CPE 的度数;(3)如图2,把正方形ABCD 改为菱形ABCD ,其他条件不变,当∠ABC=120°时,连接CE ,试探究线段AP 与线段CE 的数量关系,并说明理由.27.(12分)如图,安徽江淮集团某部门研制了绘图智能机器人,该机器人由机座、手臂和末端操作器三部分组成,底座AE ⊥直线L 且25AE cm =,手臂60AB BC cm ==,末端操作器35CD cm =,AF 直线L .当机器人运作时,45,75,60BAF ABC BCD ∠=︒∠=︒∠=︒,求末端操作器节点D 到地面直线L 的距离.(结果保留根号)参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1、D【解题分析】根据整式的混合运算计算得到结果,即可作出判断.【题目详解】A 、22a 与a 不是同类项,不能合并,不符合题意;B 、()32m =6m ,不符合题意;C 、原式=22x 2y xy ++,不符合题意;D 、63a a ÷=3a ,符合题意,故选D .【题目点拨】此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.2、D【解题分析】根据统计图可知,试验结果在0.16附近波动,即其概率P≈0.16,计算四个选项的概率,约为0.16者即为正确答案.【题目详解】根据图中信息,某种结果出现的频率约为0.16,在装有1个红球和2个白球(除颜色外完全相同)的不透明袋子里随机摸出一个球是“白球”的概率为23≈0.67>0.16,故A 选项不符合题意,从一副扑克牌中任意抽取一张,这张牌是“红色的”概率为1327≈0.48>0.16,故B 选项不符合题意, 掷一枚质地均匀的硬币,落地时结果是“正面朝上”的概率是12=0.5>0.16,故C 选项不符合题意, 掷一个质地均匀的正六面体骰子,落地时面朝上的点数是6的概率是16≈0.16,故D 选项符合题意, 故选D.【题目点拨】本题考查了利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:频率=所求情况数与总情况数之比.熟练掌握概率公式是解题关键.3、B【解题分析】分析:利用二次函数的增减性求解即可,画出图形,可直接看出答案.详解:对称轴是:x=1,且开口向上,如图所示,∴当x<1时,函数值y随着x的增大而减小;故选B.点睛:本题主要考查了二次函数的性质,解题的关键是熟记二次函数的性质.4、D【解题分析】由1122AE AD BC==,又AD∥BC,所以12AE AFBC FC==,故A正确,不符合题意;过D作DM∥BE交AC于N,得到四边形BMDE是平行四边形,求出BM=DE=12BC,得到CN=NF,根据线段的垂直平分线的性质可得结论,故B正确,不符合题意;根据相似三角形的判定即可求解,故C正确,不符合题意;由△BAE∽△ADC,得到CD与AD的大小关系,根据正切函数可求tan∠CAD的值,故D错误,符合题意.【题目详解】A.∵AD∥BC,∴△AEF∽△CBF,∴12 AE AFBC FC==,∵1122AE AD BC==,∴12AF FC =,故A 正确,不符合题意; B. 过D 作DM ∥BE 交AC 于N ,∵DE ∥BM ,BE ∥DM ,∴四边形BMDE 是平行四边形, ∴12BM DE BC ==, ∴BM =CM ,∴CN =NF ,∵BE ⊥AC 于点F ,DM ∥BE ,∴DN ⊥CF ,∴DF =DC ,∴∠DCF =∠DFC ,故B 正确,不符合题意;C. 图中与△AEF 相似的三角形有△ACD ,△BAF ,△CBF ,△CAB ,△ABE 共有5个,故C 正确,不符合题意;D. 设AD =a ,AB =b ,由△BAE ∽△ADC ,有2.ab a b= ∵tan ∠CAD ,2CD b AD a === 故D 错误,符合题意. 故选:D.【题目点拨】考查相似三角形的判定,矩形的性质,解直角三角形,掌握相似三角形的判定方法是解题的关键.5、C【解题分析】利用正方体及其表面展开图的特点解题.【题目详解】解:A 、B 、D 经过折叠后,下边没有面,所以不可以围成正方体,C 能折成正方体.故选C .【题目点拨】本题考查了正方体的展开图,解题时牢记正方体无盖展开图的各种情形.6、A【解题分析】连接CC′,∵将△ADC沿AD折叠,使C点落在C′的位置,∠ADC=30°,∴∠ADC′=∠ADC=30°,CD=C′D,∴∠CDC′=∠ADC+∠ADC′=60°,∴△DCC′是等边三角形,∴∠DC′C=60°,∵在△ABC中,AD是BC边的中线,即BD=CD,∴C′D=BD,∴∠DBC′=∠DC′B=12∠CDC′=30°,∴∠BC′C=∠DC′B+∠DC′C=90°,∵BC=4,∴BC′=BC•cos∠DBC′=4×32=23,故选A.【题目点拨】本题考查了折叠的性质、等边三角形的判定与性质、等腰三角形的性质、直角三角形的性质以及三角函数等知识,准确添加辅助线,掌握折叠前后图形的对应关系是解题的关键.7、D【解题分析】解:∵四边形ABCD是平行四边形,点A的坐标为(﹣4,0),∴BC=4,∵DB:DC=3:1,∴B(﹣3,OD),C(1,OD),∵∠BAO=60°,∴∠COD=30°,∴OD=,∴C(1,),∴k=,故选D.点睛:本题考查了平行四边形的性质,掌握平行四边形的性质以及反比例函数图象上点的坐标特征是解题的关键.8、D【解题分析】分析:根据菱形,正方形,平行四边形,矩形的判定定理,进行判定,即可解答.详解:A、对角线互相平分且垂直的四边形是菱形,故错误;B、四条边相等的四边形是菱形,故错误;C、对角线相互平分的四边形是平行四边形,故错误;D、对角线相等且相互平分的四边形是矩形,正确;故选D.点睛:本题考查了菱形,正方形,平行四边形,矩形的判定定理,解决本题的关键是熟记四边形的判定定理. 9、B【解题分析】【分析】由三视图可判断出几何体的形状,进而利用圆锥的侧面积公式求出答案.【题目详解】由题意可得此几何体是圆锥,底面圆的半径为:2,母线长为:5,故这个几何体的侧面积为:π×2×5=10π,故选B .【题目点拨】本题考查了由三视图判断几何体的形状以及圆锥侧面积求法,正确得出几何体的形状是解题关键. 10、C【解题分析】根据合并同类项、幂的乘方、同底数幂的乘法、完全平方公式逐项计算即可.【题目详解】A. a +3a =4a ,故不正确;B. (–a 2)3=(-a )6 ,故不正确;C. a 3·a 4=a 7 ,故正确; D. (a +b )2=a 2+2ab +b 2,故不正确;故选C.【题目点拨】本题考查了合并同类项、幂的乘方、同底数幂的乘法、完全平方公式,熟练掌握各知识点是解答本题的关键. 11、A【解题分析】过C 作CE ⊥AB ,Rt △ACE 中,∵∠CAD=60°,AC=15m ,∴∠ACE=30°,AE=12AC=12×15=7.5m ,CE=AC•cos30°=15×2=2, ∵∠BAC=30°,∠ACE=30°,∴∠BCE=60°,∴,∴AB=BE﹣AE=22.5﹣7.5=15m,故选A.【题目点拨】本题考查的知识点是解直角三角形的应用,关键是构建直角三角形,解直角三角形求出答案.12、A【解题分析】根据中位数:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数可得答案.【题目详解】如果去掉一个最高分和一个最低分,则表中数据一定不发生变化的是中位数.故选A.点睛:本题主要考查了中位数,关键是掌握中位数定义.二、填空题:(本大题共6个小题,每小题4分,共24分.)13、2 5【解题分析】【分析】袋子中一共有5个球,其中有2个红球,用2除以5即可得从中摸出一个球是红球的概率. 【题目详解】袋子中有3个白球和2个红球,一共5个球,所以从中任意摸出一个球是红球的概率为:25,故答案为2 5 .【题目点拨】本题考查了概率的计算,用到的知识点为:可能性等于所求情况数与总情况数之比.14、2.1【解题分析】根据勾股定理求出AC,根据矩形性质得出∠ABC=90°,BD=AC,BO=OD,求出BD、OD,根据三角形中位线求出即可.【题目详解】∵四边形ABCD是矩形,∴∠ABC=90°,BD=AC,BO=OD,∵AB=6cm,BC=8cm,∴由勾股定理得:BD=AC=2268=10(cm),∴DO=1cm,∵点E、F分别是AO、AD的中点,∴EF=12OD=2.1cm,故答案为2.1.【点评】本题考查了勾股定理,矩形性质,三角形中位线的应用,熟练掌握相关性质及定理是解题的关键.15、y=x2+2x(答案不唯一).【解题分析】设此二次函数的解析式为y=ax(x+2),令a=1即可.【题目详解】∵抛物线过点(0,0),(﹣2,0),∴可设此二次函数的解析式为y=ax(x+2),把a=1代入,得y=x2+2x.故答案为y=x2+2x(答案不唯一).【题目点拨】本题考查的是待定系数法求二次函数解析式,此题属开放性题目,答案不唯一.16、5.【解题分析】试题解析:过E作EM⊥AB于M,∵四边形ABCD是正方形,∴AD=BC=CD=AB,∴EM=AD,BM=CE,∵△ABE的面积为8,∴12×AB×EM=8,解得:EM=4,即AD=DC=BC=AB=4,∵CE=3,由勾股定理得:考点:1.正方形的性质;2.三角形的面积;3.勾股定理.17、12019- 【解题分析】根据只有符号不同的两个数互为相反数,可得答案.【题目详解】12019的相反数是−12019. 故答案为−12019. 【题目点拨】本题考查的知识点是相反数,解题的关键是熟练的掌握相反数.18、﹣【解题分析】作AN ⊥x 轴于N ,可设A (x ),在Rt △OAN 中,由勾股定理得出方程,解方程求出x=﹣2,得出A (﹣2,,即可求出k 的值.【题目详解】解:作AN ⊥x 轴于N ,如图所示:∵点A 是直线y=与反比例函数y=k x 的图象在第二象限内的交点,∴可设A (x )(x <0),在Rt △OAN 中,由勾股定理得:x 2+)2=42,解得:x=﹣2,∴A (﹣2,,代入y=k x得:k=﹣2×﹣故答案为﹣【题目点拨】本题考查了反比例函数与一次函数的图象得交点、勾股定理、反比例函数解析式的求法;求出点A 的坐标是解决问题的关键.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19、(1)2-,3-,(-1,0);(2)存在P 的坐标是(14)-,或(-25),;(1)当EF 最短时,点P 的坐标是:(2102+,32-)或(2102,32-) 【解题分析】(1)将点A 和点C 的坐标代入抛物线的解析式可求得b 、c 的值,然后令y =0可求得点B 的坐标;(2)分别过点C 和点A 作AC 的垂线,将抛物线与P 1,P 2两点先求得AC 的解析式,然后可求得P 1C 和P 2A 的解析式,最后再求得P 1C 和P 2A 与抛物线的交点坐标即可;(1)连接OD .先证明四边形OEDF 为矩形,从而得到OD =EF ,然后根据垂线段最短可求得点D 的纵坐标,从而得到点P 的纵坐标,然后由抛物线的解析式可求得点P 的坐标.【题目详解】解:(1)∵将点A 和点C 的坐标代入抛物线的解析式得:3930c b c =-⎧⎨++=⎩, 解得:b =﹣2,c =﹣1,∴抛物线的解析式为223y x x =--.∵令2230x x --=,解得:11x =-,23x =,∴点B 的坐标为(﹣1,0).故答案为﹣2;﹣1;(﹣1,0).(2)存在.理由:如图所示:①当∠ACP 1=90°.由(1)可知点A 的坐标为(1,0).设AC 的解析式为y =kx ﹣1.∵将点A 的坐标代入得1k ﹣1=0,解得k =1,∴直线AC 的解析式为y =x ﹣1,∴直线CP 1的解析式为y =﹣x ﹣1.∵将y =﹣x ﹣1与223y x x =--联立解得11x =,20x =(舍去),∴点P 1的坐标为(1,﹣4).②当∠P 2AC =90°时.设AP 2的解析式为y =﹣x +b .∵将x =1,y =0代入得:﹣1+b =0,解得b =1,∴直线AP 2的解析式为y =﹣x +1.∵将y =﹣x +1与223y x x =--联立解得1x =﹣2,2x =1(舍去),∴点P 2的坐标为(﹣2,5).综上所述,P 的坐标是(1,﹣4)或(﹣2,5).(1)如图2所示:连接OD .由题意可知,四边形OFDE 是矩形,则OD =EF .根据垂线段最短,可得当OD ⊥AC 时,OD 最短,即EF 最短. 由(1)可知,在Rt △AOC 中,∵OC =OA =1,OD ⊥AC ,∴D 是AC 的中点.又∵DF ∥OC ,∴DF =12OC =32, ∴点P 的纵坐标是32-, ∴23232x x --=-,解得:x 210±, ∴当EF 最短时,点P 的坐标是:210+,32-210-,32-). 20、 (Ⅰ)发射台与雷达站之间的距离CD 约为4.44km ;(Ⅱ)这枚火箭从A 到B 的平均速度大约是0.51/km s .【解题分析】(Ⅰ)在Rt △ACD 中,根据锐角三角函数的定义,利用∠ADC 的余弦值解直角三角形即可;(Ⅱ)在Rt △BCD 和Rt △ACD 中,利用∠BDC 的正切值求出BC 的长,利用∠ADC 的正弦值求出AC 的长,进而可得AB 的长,即可得答案.【题目详解】(Ⅰ)在Rt ACD 中,6DA km =,42.4A CD ADC cos DC AD∠∠=︒=,≈0.74, ∴()642.4 4.44km CD AD cos ADC cos ∠=⋅=⨯︒≈.答:发射台与雷达站之间的距离CD 约为4.44km . (Ⅱ)在Rt BCD 中, 4.44km 45.5,BC CD BDC tan BDC CD∠∠==︒=,, ∴()4.4445.5 4.44 1.02 4.5288km BC CD tan BDC tan ∠=⋅=⨯︒≈⨯=.∵在Rt ACD 中,AC sin ADC AD∠=, ∴()642.4 4.02km AC AD sin ADC sin ∠=⋅=⨯︒≈.∴()4.5288 4.020.50880.51km AB BC AC =-=-=≈.答:这枚火箭从A 到B 的平均速度大约是0.51/km s .【题目点拨】本题考查解直角三角形的应用,熟练掌握锐角三角函数的定义是解题关键.21、(1)证明见解析;(2)证明见解析;(3)1;【解题分析】(1)根据平行线的判定求出即可;(2)连接OA ,求出∠OAP=∠BAP+∠OAB=∠BOC+∠OBC=90°,根据切线的判定得出即可;(3)设BC=x ,CM=2x ,根据相似三角形的性质和判定求出NC=12x ,求出MN=2x+12x=2.1x ,OM=12MN=1.21x ,OC=0.71x ,根据三角形的中位线性质得出0.71x=12AD=3,求出x 即可. 【题目详解】(1)∵BD 是直径,∴∠DAB=90°,∵PO ⊥AB ,∴∠DAB=∠MCB=90°,∴PM ∥AD ;(2)连接OA ,∵OB=OM ,∴∠M=∠OBM ,∴∠BON=2∠M ,∵∠BAP=2∠M ,∴∠BON=∠BAP ,∵PO ⊥AB ,∴∠ACO=90°,∴∠AON+∠OAC=90°,∵OA=OB ,∴∠BON=∠AON ,∴∠BAP=∠AON ,∴∠BAP+∠OAC=90°,∴∠OAP=90°,∵OA是半径,∴PA是⊙O的切线;(3)连接BN,则∠MBN=90°.∵tan∠M=12,∴BCCM=12,设BC=x,CM=2x,∵MN是⊙O直径,NM⊥AB,∴∠MBN=∠BCN=∠BCM=90°,∴∠NBC=∠M=90°﹣∠BNC,∴△MBC∽△BNC,∴BC MC NC BC,∴BC2=NC×MC,∴NC=12x,∴MN=2x+12x=2.1x,∴OM=12MN=1.21x,∴OC=2x﹣1.21x=0.71x,∵O是BD的中点,C是AB的中点,AD=6,∴OC=0.71x=12AD=3,解得:x=4,∴MO=1.21x=1.21×4=1,∴⊙O的半径为1.【题目点拨】本题考查了圆周角定理,切线的性质和判定,相似三角形的性质和判定等知识点,能灵活运用知识点进行推理是解此题的关键,此题有一定的难度.22、热气球离地面的高度约为1米.【解题分析】作AD ⊥BC 交CB 的延长线于D ,设AD 为x ,表示出DB 和DC ,根据正切的概念求出x 的值即可.【题目详解】解:作AD ⊥BC 交CB 的延长线于D ,设AD 为x ,由题意得,∠ABD=45°,∠ACD=35°,在Rt △ADB 中,∠ABD=45°,∴DB=x ,在Rt △ADC 中,∠ACD=35°,∴tan ∠ACD=AD CD, ∴ 100x x = 710 , 解得,x≈1.答:热气球离地面的高度约为1米.【题目点拨】考查的是解直角三角形的应用,理解仰角和俯角的概念、掌握锐角三角函数的概念是解题的关键,解答时,注意正确作出辅助线构造直角三角形.23、 (1)证明见解析;(2) △APQ 是等边三角形.【解题分析】(1)根据等边三角形的性质可得AB =AC ,再根据SAS 证明△ABP ≌△ACQ ;(2)根据全等三角形的性质得到AP =AQ ,再证∠PAQ = 60°,从而得出△APQ 是等边三角形.【题目详解】证明:(1)∵△ABC 为等边三角形, ∴AB =AC ,∠BAC =60°,在△ABP和△ACQ中,AB ACABP ACQBP CQ=⎧⎪∠=∠⎨⎪=⎩∴△ABP≌△ACQ(SAS),(2)∵△ABP≌△ACQ,∴∠BAP=∠CAQ,AP=AQ,∵∠BAP+∠CAP=60°,∴∠PAQ=∠CAQ+∠CAP=60°,∴△APQ是等边三角形.【题目点拨】本题考查了全等三角形的判定,考查了全等三角形对应边相等的性质,考查了正三角形的判定,本题中求证,△ABP≌△ACQ是解题的关键.24、(1)=;(2)结论:AC2=AG•AH.理由见解析;(3)①△AGH的面积不变.②m的值为83或2或8﹣..【解题分析】(1)证明∠DAC=∠AHC+∠ACH=43°,∠ACH+∠ACG=43°,即可推出∠AHC=∠ACG;(2)结论:AC2=AG•AH.只要证明△AHC∽△ACG即可解决问题;(3)①△AGH的面积不变.理由三角形的面积公式计算即可;②分三种情形分别求解即可解决问题.【题目详解】(1)∵四边形ABCD是正方形,∴AB=CB=CD=DA=4,∠D=∠DAB=90°∠DAC=∠BAC=43°,∴AC∵∠DAC=∠AHC+∠ACH=43°,∠ACH+∠ACG=43°,∴∠AHC=∠ACG.故答案为=.(2)结论:AC2=AG•AH.理由:∵∠AHC=∠ACG,∠CAH=∠CAG=133°,∴△AHC∽△ACG,∴AH AC AC AG=,∴AC2=AG•AH.(3)①△AGH的面积不变.理由:∵S△AGH=12•AH•AG=12AC2=12×(2=1.∴△AGH的面积为1.②如图1中,当GC=GH时,易证△AHG≌△BGC,可得AG=BC=4,AH=BG=8,∵BC∥AH,∴12 BC BEAH AE==,∴AE=23AB=83.如图2中,当CH=HG时,易证AH=BC=4,∵BC∥AH,∴BE BCAE AH==1,∴AE=BE=2.如图3中,当CG=CH时,易证∠ECB=∠DCF=22.3.在BC 上取一点M ,使得BM =BE ,∴∠BME =∠BEM =43°,∵∠BME =∠MCE +∠MEC ,∴∠MCE =∠MEC =22.3°,∴CM =EM ,设BM =BE =m ,则CM =EM 2m ,∴m +2m =4,∴m =4(2﹣1),∴AE =4﹣42﹣1)=8﹣2,综上所述,满足条件的m 的值为83或2或8﹣2. 【题目点拨】本题属于四边形综合题,考查了正方形的性质,全等三角形的判定和性质,相似三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题.25、(1)①212y x x =-+;②n≤1;(2)ac≤1,见解析. 【解题分析】 (1)①△=1求解b =1,将点(3,1)代入平移后解析式,即可;②顶点为(1,12)关于P (1,n )对称点的坐标是(﹣1,2n ﹣12),关于点P 中心对称的新抛物线y'=12(x+1)2+2n ﹣12=12x 2+x+2n ,联立方程组即可求n 的范围; (2)将点(c ,1)代入y =ax 2﹣bx+c 得到ac ﹣b+1=1,b =ac+1,当1<x <c 时,y >1.b 2a ≥c ,b≥2ac ,ac+1≥2ac ,ac≥1;【题目详解】解:(1)①ax 2﹣bx =x ,ax 2﹣(b+1)x =1,△=(b+1)2=1,b =﹣1,平移后的抛物线y =a (x ﹣1)2﹣b (x ﹣1)过点(3,1),∴4a ﹣2b =1,∴a =﹣12,b =﹣1, 原抛物线:y =﹣12x 2+x , ②其顶点为(1,12)关于P (1,n )对称点的坐标是(﹣1,2n ﹣12),∴关于点P 中心对称的新抛物线y'=12(x+1)2+2n ﹣12=12x 2+x+2n . 由221y=x +x+2n 21y=-x +x 2⎧⎪⎪⎨⎪⎪⎩得:x 2+2n =1有解,所以n≤1.(2)由题知:a >1,将此抛物线y =ax 2﹣bx 向上平移c 个单位(c >1),其解析式为:y =ax 2﹣bx+c 过点(c ,1),∴ac 2﹣bc+c =1 (c >1),∴ac ﹣b+1=1,b =ac+1,且当x =1时,y =c ,对称轴:x =b 2a,抛物线开口向上,画草图如右所示. 由题知,当1<x <c 时,y >1.∴b 2a≥c ,b≥2ac , ∴ac+1≥2ac ,ac≤1;【题目点拨】本题考查二次函数的图象及性质;掌握二次函数图象平移时改变位置,而a 的值不变是解题的关键.26、(1)证明见解析(2)90°(3)AP=CE【解题分析】(1)、根据正方形得出AB=BC ,∠ABP=∠CBP=45°,结合PB=PB 得出△ABP ≌△CBP ,从而得出结论;(2)、根据全等得出∠BAP=∠BCP ,∠DAP=∠DCP ,根据PA=PE 得出∠DAP=∠E ,即∠DCP=∠E ,易得答案;(3)、首先证明△ABP和△CBP 全等,然后得出PA=PC ,∠BAP=∠BCP ,然后得出∠DCP=∠E ,从而得出∠CPF=∠EDF=60°,然后得出△EPC 是等边三角形,从而得出AP=CE.【题目详解】(1)、在正方形ABCD 中,AB=BC ,∠ABP=∠CBP=45°,在△ABP 和△CBP 中,又∵ PB=PB ∴△ABP ≌△CBP (SAS ), ∴PA=PC ,∵PA=PE ,∴PC=PE ;(2)、由(1)知,△ABP ≌△CBP ,∴∠BAP=∠BCP ,∴∠DAP=∠DCP ,∵PA=PE , ∴∠DAP=∠E , ∴∠DCP=∠E , ∵∠CFP=∠EFD (对顶角相等),∴180°﹣∠PFC ﹣∠PCF=180°﹣∠DFE ﹣∠E , 即∠CPF=∠EDF=90°;(3)、AP =CE理由是:在菱形ABCD 中,AB=BC ,∠ABP=∠CBP ,在△ABP 和△CBP 中, 又∵ PB=PB ∴△ABP ≌△CBP (SAS ),∴PA=PC ,∠BAP=∠DCP ,∵PA=PE ,∴PC=PE ,∴∠DAP=∠DCP , ∵PA=PC ∴∠DAP=∠E , ∴∠DCP=∠E∵∠CFP=∠EFD (对顶角相等), ∴180°﹣∠PFC ﹣∠PCF=180°﹣∠DFE ﹣∠E ,即∠CPF=∠EDF=180°﹣∠ADC=180°﹣120°=60°, ∴△EPC 是等边三角形,∴PC=CE ,∴AP=CE考点:三角形全等的证明27、(30220+)cm.【解题分析】作BG ⊥CD ,垂足为G ,BH ⊥AF ,垂足为H ,解Rt CBG ∆和Rt ABH ∆,分别求出CG 和BH 的长,根据D 到L 的距离()BH AE CD CG =+--求解即可.【题目详解】如图,作BG ⊥CD ,垂足为G ,BH ⊥AF ,垂足为H ,在Rt CBG ∆中,∠BCD=60°,BC=60cm ,∴cos6030CG BC =⋅︒=,在Rt ABH ∆中,∠BAF=45°,AB=60cm ,∴sin45302BH AB =⋅︒=,∴D 到L 的距离()302255(30220)BH AE CD CG cm =+--=-=.【题目点拨】本题考查解直角三角形,解题的关键是构造出适当辅助线,从而利用锐角三角函数的定义求出相关线段.。
数学段考精选二-南部试题(标尺作图)

一.选择题(每题6分,共30分)( )1. 如图,利用标尺作图,作∠ABC 的角平分线,有下列步骤:(甲)以B 为圆心,适当长为其半径画弧,交BA 、BC 于D 、E 两点。
(乙)连接BP ,则BP su u r即为所求的角平分线(丙)分别以D 、E 为圆心大于 21DE 长为半径画弧,设两弧交于P 点。
则适当的作图步骤为下列何者??(A) (甲)(乙)(丙) (B) (甲)(丙)(乙)(C)(丙)(甲)(乙) (D)(丙)(乙)(甲)( )2. 已知∠BAC =160°。
若只利用角平分线标尺作图,将∠BAC 分成130°与30°,则至少须作图几次?(A) 3次 (B) 4次 (C) 5次 (D) 6次( )3. 如图,已知一线段AB ,以标尺作图作AB 中点P ,再作AP 中点Q ,最后作PQ 中点R ,则QR :QB =?(A) 1:6 (B) 2:5(C) 1:5 (D) 3:4( )4. 若直线M 垂直平分AB 于C 点,则下列叙述何者錯誤? (A) C 为AB 中点 (B) C 为垂足(C) AB 是直线M 的中垂线 (D) AC =12AB ( )5. 如图,△ABC 中,D 点为∠ABC 的角平分线和BC 中垂线的交点, ―→ A D 交BC 于E 点,―→ B D 交AC 于F 点,则下列何者正确?(A) AD =CD(B) D 点到AB 、BC 等距离(C) △ABF 的面积=△BCF 的面积(D) △ABE 的面积=△ACE 的面积2 八下 数学段考精选 第次2-3标尺作图(南部试题)二.填充题(每格8分,共40分)1. 若P为AB垂直平分在线的一点,PA=3x+4,PB=5x-2,则x=。
2. 如图,直线L为PQ的垂直平分线,M为PQ的中点。
若RM=5,PQ=24,SQ=15,则PR+SR=。
3. 若有一已知角120°,今想用标尺作图来得到角平分线,作出两角为45°,75°,则至少需作图次。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一.选择题(每题5分,共30分)
( )1. 若a :b =2:5,b :c =2:7,则a :b :c =?
(A) 2:5:7 (B) 5:2:7 (C) 4:10:35 (D) 7:10:4
( )2. 若x :y =5:2,y :z =1:3,则(x -y +z ):z 的比值为何?
(A) 23 (B) 136 (C) 32 (D) 613
( )3. x 、y 、z 皆不等于0,若2yz =3xy =4xz ,则22x y z x y
+--=? (A) -1 (B) 0 (C) 1 (D) 2
( )4. x 、y 、z 皆不等于0,若6yz =5xz =3xy ,且x 、y 、z 的最小公倍数为
180,则x +y +z =?
(A) 14 (B) 28 (C) 42 (D) 84
( )5. 浓度分别为3%、4%、5%的食盐水,依照3:4:5的重量比例可混
合成浓度约x %的食盐水,则x =?
(A) 2 (B) 3 (C) 4 (D) 5
( )6. 已知三角形ABC 的三边长为a 、b 、c ,其对应的高分别为h a 、h b 、h c ,
若a :b :c =4:5:6,则h a :h b :h c =?
(A) 4:5:6 (B) 6:5:4 (C) 10:12:15 (D) 15:12:10
二.填充题(每格5分,共40分)
1. 若a :b =1:2,b :c =4:3,若a :b :c =x :6:y ,则2y -x = 。
2. 若2x :3=y :1=3z :5,则(x +y +3z ):(4x -y +2z )的比值为 。
3. 若(a +b ):(b +c ):(a +c )=5:12:13,则a :b :c = 。
4. 存钱筒中有壹元硬币a 枚,伍元硬币b 枚,拾元硬币c 枚,若a :b :c = 1:2:3,且总共有615元,则壹元硬币有 枚,伍元硬币有 枚,拾元硬币有 枚。
5. x 、y 、z 皆不等于0,若2x =3y =4z ,则:
(1) x :y :z = 。
(2) 2x 2:3yz = 。
2 七下 数学段考精选 第
3-2连比例(南部试题) 次
三.计算题(每题10分,共30分)
1. x、y、z皆不等于0,若(x+1):(y-2):(z+3)=5:4:3,
且x+y+z=70,求x、y、z的值。
2. 甲、乙、丙三台车各自以固定的速度同时、同向驶入隧道中,结果三台车在
隧道内同时抛锚停下不动。
若甲车离隧道出口处尚有1
3
的路程;乙车离隧道
出口处尚有1
4
的路程;丙车离隧道出口处尚有
1
5
的路程,求甲、乙、丙三台
车的速度比。
3. 薯条四兄弟大薯、二薯、三薯、小薯,已知大薯年龄的2倍是二薯年龄的3
倍,又二薯年龄的3倍是三薯年龄的4倍,若4人的年龄和为60岁,且小薯年龄最小,假设年龄都是以整数计算,则二薯的年龄为多少岁?。