八年级第二学期 第二次段考数学试题含答案

合集下载

山西省2018-2019学年第二学期八年级阶段二质量评估·数学(北师版)·试题+答案

山西省2018-2019学年第二学期八年级阶段二质量评估·数学(北师版)·试题+答案

21.(本题 8 分)牛奶是最古老的天然饮料之一,被誉为“白色血液”,对人体的重要性可想 而知,现已成为国家营养餐计划备选食品之一.为推行国家营养餐计划,某乳品公司向 某营养餐中心运输一批牛奶,由铁路运输每千克只需运费 0.58 元;由公路运输,每千 克需运费 0.28 元,还需其他费用 600 元.请探究选用哪种运输方式所需费用较少?
20. 解:(1)如图所示,直线 EF 即为线段 BD 的垂直平分线. 333333333 3 分
(2)DE⊥DP. 33333333333333333333333333 4 分 理由如下:∵PD=PA, ∴∠A=∠PDA. 33333333333333333333333333 5 分 ∵EF 是 BD 的垂直平分线, ∴BE=DE. 33333333333333333333333333333 6 分 ∴∠B=∠EDB. 33333333333333333333333333 7 分 ∵∠C=90°, ∴∠A+∠B=90°,∴∠PDA+∠EDB=90°. 3333333333333333 8 分 ∴∠PDE=180°-∠PDA-∠EDB=90°. 33333333333333333 9 分 ∴DE⊥DP. 333333333333333333333333333 10 分
22.( % 本题 11 分)探索与实践: 氢动力汽车是一种真正实现零排放的交通工具,排放出的是纯净水,其具有无污染,零 排放,储量丰富等优势,因此,氢动力汽车是传统汽车最理想的替代方案.某实验团队 进行氢动力汽车实验,在一条笔直的公路上有 A,B 两地,小张驾驶氢动力汽车从 B 地 去 A 地然后立即原路返回到 B 地,小陈驾驶观察车从 A 地驶向 B 地.如图是氢动力汽 车、观察车离 B 地的距离 y(km)和行驶时间 x(h)之间的函数图象,请根据图象回答下 列问题: (1)A,B 两地的距离是 _______ km,小陈驾驶观察车行驶的速度是 _______ km/h; (2)当小张驾驶氢动力汽车从 A 地原路返回 B 地时,有一段时间小陈驾驶的观察车与 氢动力汽车之间的距离不超过 30 千米,请探究此时行驶时间 x 在哪一范围内?

八年级数学第二学期 第二次段考测试卷及解析

八年级数学第二学期 第二次段考测试卷及解析

一、选择题1.在数学拓展课上,小明发现:若一条直线经过平行四边形对角线的交点,则这条直线平分该平行四边形的面积. 如图是由5个边长为1的小正方形拼成的图形,P 是其中4个小正方形的公共顶点,小强在小明的启发下,将该图形沿着过点P 的某条直线剪一刀,把它剪成了面积相等的两部分,则剪痕的长度是( )A .22B .5C .352D .102.如图,锐角△ABC 中,AD 是高,E,F 分别是AB,AC 中点,EF 交AD 于G,已知GF=1,AC= 6,△DEG 的周长为10,则△ABC 的周长为( )A .27-32B .28-32C .28-42D .29-523.如图,在正方形ABCD 中,M 是对角线BD 上的一点,点E 在AD 的延长线上,连接AM 、EM 、CM ,延长EM 交AB 于点F ,若AM =EM ,30E ∠=︒,则下列结论:①MF ME =;②BFDE =;③MC EF ⊥;④2BF MD BC +=,其中正确的结论序号是( )A .①②③B .①②④C .②③④D .①②③④4.如图所示,在Rt ABC ∆中,90ABC ︒∠=,30BAC ︒∠=,分别以直角边AB 、斜边AC 为边,向外作等边ABD ∆和等边ACE ∆,F 为AC 的中点,DE 与AC 交于点O ,DF 与AB 交于点G .给出如下结论:①四边形ADFE 为菱形;②DF AB ⊥;③14AO AE =;④4CE FG =;其中正确的是( )A .①②③B .①②④C .①③④D .②③④5.在矩形ABCD 中,点E 、F 分别在AB 、AD 上,∠EFB=2∠AFE=2∠BCE ,CD=9,CE=20,则线段AF 的长为( ).A .32B .112C .19D .46.如图,在矩形ABCD 中,AB =6,BC =8,E 是BC 边上一点,将矩形沿AE 折叠,点B 落在点B '处,当△B 'EC 是直角三角形时,BE 的长为( )A .2B .6C .3或6D .2或3或67.如图,四边形ABCD 是平行四边形,点E 是边CD 上一点,且BC =EC ,CF ⊥BE 交AB 于点F ,P 是EB 延长线上一点,下列结论:①BE 平分∠CBF ;②CF 平分∠DCB ;③BC =FB ;④PF =PC .其中正确结论的个数为( )A .1B .2C .3D .48.如图,平行四边形ABCD 的对角线AC ,BD 相交于点O ,CE 平分DCB ∠交BD 于点F ,且60ABC ∠=︒,2AB BC =,连接OE ,下列结论:①30ACD ∠=︒;②·ABCD S AC BC =;③:1:4OE AC =.其中正确的有( )A .0个B .1个C .2个D .3个9.如图,在ABC 中,AB =AC =6,∠B =45°,D 是BC 上一个动点,连接AD ,以AD 为边向右侧作等腰ADE ,其中AD =AE ,∠ADE =45°,连接CE .在点D 从点B 向点C 运动过程中,CDE △周长的最小值是( )A .62B .626+C .92D .926+10.如图,在边长为6的正方形ABCD 中,E 是边CD 的中点,将ADE 沿AE 对折至AFE ,延长交BC 于点G ,连接AG.则BG 的长( )A .1B .2C .3D .3二、填空题11.在平行四边形ABCD 中,30,23,2A AD BD ∠=︒==,则平行四边形ABCD 的面积等于_____.12.如图,在△ABC 中,AB =3,AC =4,BC =5,P 为边BC 上一动点,PE ⊥AB 于E ,PF ⊥AC 于F ,则EF 的最小值为_____.13.如图,四边形ABCD 是菱形,∠DAB =48°,对角线AC ,BD 相交于点O ,DH ⊥AB 于H ,连接OH ,则∠DHO =_____度.14.如图,在平行四边形ABCD 中,AD=2AB .F 是AD 的中点,作CE ⊥AB, 垂足E 在线段AB 上,连接EF 、CF ,则下列结论:(1)∠DCF+12∠D =90°;(2)∠AEF+∠ECF =90°;(3)BEC S =2CEF S ; (4)若∠B=80︒,则∠AEF=50°.其中一定成立的是______ (把所有正确结论的字号都填在横线上).15.如图,已知在△ABC 中,AB=AC=13,BC=10,点M 是AC 边上任意一点,连接MB ,以MB 、MC 为邻边作平行四边形MCNB ,连接MN ,则MN 的最小值是______16.如图,矩形ABCD 中,CE CB BE ==,延长BE 交AD 于点M ,延长CE 交AD 于点F ,过点E 作EN BE ⊥,交BA 的延长线于点N ,23FE AN ==,,则BC =_________.17.如图,矩形纸片ABCD ,AB =5,BC =3,点P 在BC 边上,将△CDP 沿DP 折叠,点C 落在点E 处,PE ,DE 分别交AB 于点O ,F ,且OP =OF ,则AF 的值为______.18.如图,点E 、F 分别在平行四边形ABCD 边BC 和AD 上(E 、F 都不与两端点重合),连结AE 、DE 、BF 、CF ,其中AE 和BF 交于点G ,DE 和CF 交于点H .令AF n BC=,EC m BC=.若m n =,则图中有_______个平行四边形(不添加别的辅助线);若1m n +=,且四边形ABCD 的面积为28,则四边形FGEH 的面积为_______.19.如图,有一张长方形纸片ABCD ,4AB =,3AD =.先将长方形纸片ABCD 折叠,使边AD 落在边AB 上,点D 落在点E 处,折痕为AF ;再将AEF ∆沿EF 翻折,AF 与BC 相交于点G ,则FG 的长为___________.20.李刚和常明两人在数学活动课上进行折纸创编活动.李刚拿起一张准备好的长方形纸片对常明说:“我现在折叠纸片(图①),使点D 落在AB 边的点F 处,得折痕AE ,再折叠,使点C 落在AE 边的点G 处,此时折痕恰好经过点B ,如果AD=a ,那么AB 长是多少?”常明说;“简单,我会. AB 应该是_____”.常明回答完,又对李刚说:“你看我的创编(图②),与你一样折叠,可是第二次折叠时,折痕不经过点B ,而是经过了AB 边上的M 点,如果AD=a ,测得EC=3BM ,那么AB 长是多少?”李刚思考了一会,有点为难,聪明的你,你能帮忙解答吗?AB=_____.三、解答题21.如图,在正方形ABCD 中,点G 在对角线BD 上(不与点B ,D 重合),GE ⊥DC 于点E ,GF ⊥BC 于点F ,连结AG .(1)写出线段AG ,GE ,GF 长度之间的数量关系,并说明理由;(2)若正方形ABCD 的边长为1,∠AGF=105°,求线段BG 的长.22.已知正方形ABCD .(1)点P 为正方形ABCD 外一点,且点P 在AB 的左侧,45APB ∠=︒.①如图(1),若点P 在DA 的延长线上时,求证:四边形APBC 为平行四边形.②如图(2),若点P 在直线AD 和BC 之间,以AP ,AD 为邻边作APQD □,连结AQ .求∠PAQ 的度数.(2)如图(3),点F 在正方形ABCD 内且满足BC=CF ,连接BF 并延长交AD 边于点E ,过点E 作EH ⊥AD 交CF 于点H ,若EH=3,FH=1,当13AE CF =时.请直接写出HC 的长________.23.如图,在长方形ABCD 中,8,6AB AD ==. 动点P Q 、分别从点、D A 同时出发向点C B 、运动,点P 的运动速度为每秒2个单位,点Q 的运动速度为每秒1个单位,当点P 运动到点C 时,两个点都停止运动,设运动的时间为()t s .(1)请用含t 的式子表示线段PC BQ 、的长,则PC ________,BQ =________. (2)在运动过程中,若存在某时刻使得BPQ ∆是等腰三角形,求相应t 的值.24.直线1234,,,,l l l l 是同一平面内的一组平行线.(1)如图1.正方形ABCD 的4个顶点都在这些平行线上,若四条直线中相邻两条之间的距离都是1,其中点A ,点C 分别在直线1l 和4l 上,求正方形的面积;(2)如图2,正方形ABCD 的4个顶点分别在四条平行线上,若四条直线中相邻两条之间的距离依次为123h h h ,,.①求证:13h h =;②设正方形ABCD 的面积为S ,求证222211 2 2 S h h h h =++.25.如图,菱形纸片ABCD 的边长为2,60,BAC ∠=︒翻折,,B D ∠∠使点,B D 两点重合在对角线BD 上一点,,P EF GH 分别是折痕.设()02AE x x =<<.(1)证明:AG BE =;(2)当02x <<时,六边形AEFCHG 周长的值是否会发生改变,请说明理由; (3)当02x <<时,六边形AEFCHG 53吗?如果能,求此时x 的值;如果不能,请说明理由.26.在平面直角坐标中,四边形OCNM 为矩形,如图1,M 点坐标为(m ,0),C 点坐标为(0,n ),已知m ,n 550n m --=.(1)求m ,n 的值;(2)①如图1,P ,Q 分别为OM ,MN 上一点,若∠PCQ =45°,求证:PQ =OP+NQ ; ②如图2,S ,G ,R ,H 分别为OC ,OM ,MN ,NC 上一点,SR ,HG 交于点D .若∠SDG =135°,55HG 2=,则RS =______; (3)如图3,在矩形OABC 中,OA =5,OC =3,点F 在边BC 上且OF =OA ,连接AF ,动点P 在线段OF 是(动点P 与O ,F 不重合),动点Q 在线段OA 的延长线上,且AQ =FP ,连接PQ 交AF 于点N ,作PM ⊥AF 于M .试问:当P ,Q 在移动过程中,线段MN 的长度是否发生变化?若不变求出线段MN 的长度;若变化,请说明理由.27.如图,四边形ABCD 是边长为3的正方形,点E 在边AD 所在的直线上,连接CE ,以CE 为边,作正方形CEFG (点C 、E 、F 、G 按逆时针排列),连接BF.(1)如图1,当点E 与点D 重合时,BF 的长为 ;(2)如图2,当点E 在线段AD 上时,若AE=1,求BF 的长;(提示:过点F 作BC 的垂线,交BC 的延长线于点M ,交AD 的延长线于点N.)(3)当点E 在直线AD 上时,若AE=4,请直接写出BF 的长.28.如图,已知平面直角坐标系中,1,0A 、()0,2C ,现将线段CA 绕A 点顺时针旋转90︒得到点B ,连接AB .(1)求出直线BC 的解析式;(2)若动点M 从点C 出发,沿线段CB 以每分钟10个单位的速度运动,过M 作//MN AB 交y 轴于N ,连接AN .设运动时间为t 分钟,当四边形ABMN 为平行四边形时,求t 的值.(3)P 为直线BC 上一点,在坐标平面内是否存在一点Q ,使得以O 、B 、P 、Q 为顶点的四边形为菱形,若存在,求出此时Q 的坐标;若不存在,请说明理由.29.如图,四边形ABCD 为矩形,C 点在x 轴上,A 点在y 轴上,D(0,0),B(3,4),矩形ABCD 沿直线EF 折叠,点B 落在AD 边上的G 处,E 、F 分别在BC 、AB 边上且F(1,4).(1)求G 点坐标(2)求直线EF 解析式(3)点N 在坐标轴上,直线EF 上是否存在点M ,使以M 、N 、F 、G 为顶点的四边形是平行四边形?若存在,直接写出M 点坐标;若不存在,请说明理由30.已知,矩形ABCD 中,4,8AB cm BC cm ==,AC 的垂直平分EF 线分别交AD BC 、于点E F 、,垂足为O .(1)如图1,连接AF CE 、,求证:四边形AFCE 为菱形;(2)如图2,动点P Q 、分别从A C 、两点同时出发,沿AFB △和CDE △各边匀速运动一周,即点P 自A F B A →→→停止,点O 自C D E C →→→停止.在运动过程中,①已知点P 的速度为每秒5cm ,点Q 的速度为每秒4cm ,运动时间为t 秒,当A C P Q 、、、四点为顶点的四边形是平行四边形时,则t =____________.②若点P Q 、的运动路程分别为a b 、 (单位:,0cm ab ≠),已知AC P Q 、、、四点为顶点的四边形是平行四边形,则a 与b 满足的数量关系式为____________.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【分析】根据中心对称的性质即可作出剪痕,根据三角形全等的性质即可证得EM=DN ,利用勾股定理即可求得.【详解】如图,EF 为剪痕,过点F 作FG EM ⊥于G .∵EF 将该图形分成了面积相等的两部分,∴EF 经过正方形ABCD 对角线的交点,∴,AF CN BF DN ==.易证PME PDN ∆∆≌,∴EM DN =,而AF MG =,∴1EG EM MG DN AF DN CN DC =+=+=+==.在Rt FGE ∆中, 22223110FG EG EF +=+=故选:D.【点睛】本题考查了图形的剪拼,中心对称的性质,勾股定理的应用,熟练掌握中心对称的性质是解题的关键. 2.C解析:C【解析】【分析】由中点性质先得AF =3,再用勾股定理求出AG =2DG =AG =2,已知△DEG 的周长为10,所以求得EG+DE 的值,进一步证得AB=2DE,BD=2EG,从而求得△ABC 的周长.【详解】∵ E,F 分别是AB,AC 中点,EF 交AD 于G,∴EF ∥BC ,11AF AC 6322==⨯= ∵AD 是高∴∠ADC=∠AGF=90°在Rt △AGF 中 2222AG 3122AF FG =-=-=∵EF ∥BC∴1AG AF DG FC== ∴FG 是△ADC 的中位线∴DC=2GF=2∴DG=AG=22∵ △DEG 的周长为10,∴EG+DE=10-22在Rt △ADB 中,点E 是AB 边的中点,点G 是AD 的中点,∴AB=2DE ,BD=2EG∴AB+BD=2(EG+DE )=20-42∴△ABC 的周长为:AB+BD+DC+AC=20-42+2+6=28-42故答案为C【点睛】此题主要考查了直角三角形的性质、勾股定理、中位线性质等知识点.在直角三角形中,斜边上的中线等于斜边的一半.3.A解析:A【分析】①证明△AFM 是等边三角形,可判断; ②③证明△CBF ≌△CDE (ASA ),可作判断; ④设MN=x ,分别表示BF 、MD 、BC 的长,可作判断.【详解】解:①∵AM=EM ,∠AEM=30°, ∴∠MAE=∠AEM=30°,∴∠AMF=∠MAE+∠AEM=60°,∵四边形ABCD 是正方形, ∴∠FAD=90°,∴∠FAM=90°-30°=60°,∴△AFM 是等边三角形,∴FM=AM=EM , 故①正确;②连接CE 、CF , ∵四边形ABCD 是正方形, ∴∠ADB=∠CDM ,AD=CD ,在△ADM 和△CDM 中,∵ AD CD ADM CDM DM DM ⎧⎪∠∠⎨⎪⎩===,∴△ADM ≌△CDM (SAS ), ∴AM=CM ,∴FM=EM=CM , ∴∠MFC=∠MCF ,∠MEC=∠ECM ,∵∠ECF+∠CFE+∠FEC=180°, ∴∠ECF=90°,∵∠BCD=90°, ∴∠DCE=∠BCF ,在△CBF 和△CDE 中,∵ 90CBF CDE BC CD BCF DCE ∠∠︒⎧⎪⎨⎪∠∠⎩====,∴△CBF ≌△CDE (ASA ), ∴BF=DE ; 故②正确;③∵△CBF ≌△CDE , ∴CF=CE , ∵FM=EM , ∴CM ⊥EF , 故③正确;④过M 作MN ⊥AD 于N , 设MN=x ,则AM=AF=2x ,3AN x =,DN=MN=x , ∴331)x x x +=,∴DE=BF=AB-AF=31)231)x x x -=,∴22(31)26BF MD x x x +==,∵BC=AD= 31)6x x ≠, 故④错误; 所以本题正确的有①②③;故选:A .【点睛】 本题考查了正方形的性质,全等三角形的判定与性质,等腰三角形的性质和判定,熟记正方形的性质确定出△AFM 是等边三角形是解题的关键.4.D解析:D【分析】由题意得出条件证明△ABC ≌△DAF,根据对应角相等可推出②正确;由F 是AB 中点根据边长转换可以推出④正确;先推出△ECF ≌△DFA 得出对应边相等推出ADFE 为平行四边形且有组临边不等得出①错误;再由以上全等即可得出④正确.【详解】∵△ABD是等边三角形,∴∠BAD=60°,AB=AD,∵∠BAC=30°,知∴∠FAD=∠ABC=90°,AC=2BC,∵F为AC的中点道,∴AC=2AF,∴BC=AF,∴△ABC≌△DAF,∴FD=AC,∴∠ADF=∠BAC=30°,∴DF⊥AB,故②正确,∵EF⊥AC,∠ACB=90°,∴FG∥BC,∵F是AB的中点,∴GF=12 BC,∵BC=12AC,AC=CE,∴GF=14CE,故④说法正确;∵AE=CE,CF=AF,∴∠EFC=90°,∠CEF=30°,∵∠FAD=∠CAB+∠BAD=90°,∴∠EFC=∠DAF,∵DF⊥AB,∴∠ADF=30°,∴∠CEF=∠ADF,∴△ECF≌△DFA(AAS),∴AD=EF,∵FD=AC,∴四边形属ADFE为平行四边形,∵AD≠DF,∴四边形ADFE不是菱形;故①说法不正确;∴AO=12 AF,∴AO=12 AC,∵AE=AC,则AE=4AO,故③说法正确,故选D.【点睛】本体主要考查平行四边形的判定,等边三角形,三角形全等的判定,关键在于熟练掌握基础知识,根据图形结合知识点进行推导.5.C解析:C【分析】如图,取CE的中点H,连接BH,设∠EFB=2∠AFE=2∠ECB=2a,则∠AFB=3a,进而求出BH=CH=EH=10,∠HBC=∠HCB=a,再根据AD∥BC求出EF∥BH,进而得出△EFG和△BGH 均为等腰三角形,则BF=EH=10,再根据勾股定理即可求解.【详解】如图,取CE的中点H,连接BH,设∠EFB=2∠AFE=2∠ECB=2a,则∠AFB=3a,∵在矩形ABCD中有AD∥BC,∠A=∠ABC=90°,∴△BCE为直角三角形,∵点H为斜边CE的中点,CE=20,∴BH=CH=EH=10,∠HBC=∠HCB=a,∵AD∥BC,∴∠AFB=∠FBC=3a,∴∠GBH=3a-a=2a=∠EFB,∴EF∥BH,∴∠FEG=∠GHB=∠HBC+∠HCB=2a=∠EFB=∠GBH,∴△EFG和△BGH均为等腰三角形,∴BF=EH=10,∵AB=CD=9,∴2222=-=-=AF BF AB10919故选C.【点睛】本题考查直角三角形斜边上的中线等于斜边的一半、勾股定理等知识,解题的关键是根据题意正确作出辅助线.6.C解析:C【分析】分以下两种情况求解:①当点B′落在矩形内部时,连接AC,先利用勾股定理计算出AC =10,根据折叠的性质得∠AB′E=∠B=90°,而当△B′EC为直角三角形时,只能得到∠EB′C=90°,所以点A、B′、C共线,即∠B沿AE折叠,使点B落在对角线AC上的点B′处,则EB=EB′,AB=AB′=6,可计算出CB′=4,设BE=x,则EB′=x,CE=8﹣x,然后在Rt△CEB′中运用勾股定理可计算出x.②当点B′落在AD边上时.此时四边形ABEB′为正方形,求出BE的长即可.【详解】解:当△B′EC为直角三角形时,有两种情况:①当点B′落在矩形内部时,如图1所示.连结AC,在Rt△ABC中,AB=6,BC=8,∴AC=22=10,86∵∠B沿AE折叠,使点B落在点B′处,∴∠AB′E=∠B=90°,当△B′EC为直角三角形时,得到∠EB′C=90°,∴点A、B′、C共线,即∠B沿AE折叠,使点B落在对角线AC上的点B′处,如图,∴EB=EB′,AB=AB′=6,∴CB′=10﹣6=4,设BE=x,则EB′=x,CE=8﹣x,在Rt△B′EC中,∵EB′2+CB′2=CE2,∴x2+42=(8﹣x)2,解得x=3,∴BE=3;②当点B′落在AD边上时,如图2所示.此时ABEB′为正方形,∴BE=AB=6.综上所述,BE的长为3或6.故选:C.【点睛】本题考查了折叠变换的性质、直角三角形的性质、矩形的性质,正方形的判定等知识;熟练掌握折叠变换的性质,由勾股定理得出方程是解题的关键.7.D解析:D【分析】分别利用平行线的性质结合线段垂直平分线的性质以及等腰三角形的性质分别判断得出答案.【详解】证明:如图:∵BC=EC,∴∠CEB=∠CBE,∵四边形ABCD是平行四边形,∴DC∥AB,∴∠CEB=∠EBF,∴∠CBE=∠EBF,∴①BE平分∠CBF,正确;∵BC=EC,CF⊥BE,∴∠ECF=∠BCF,∴②CF平分∠DCB,正确;∵DC∥AB,∴∠DCF=∠CFB,∵∠ECF=∠BCF,∴∠CFB=∠BCF,∴BF=BC,∴③正确;∵FB=BC,CF⊥BE,∴B点一定在FC的垂直平分线上,即PB垂直平分FC,∴PF=PC,故④正确.【点睛】此题主要考查了平行四边形的性质以及线段垂直平分线的性质、等腰三角形的性质等知识,正确应用等腰三角形的性质是解题关键.8.C解析:C【分析】由四边形ABCD 是平行四边形,得到∠ABC=∠ADC=60°,∠BAD=120°,根据角平分线的定义得到∠DCE=∠BCE=60°推出△CBE 是等边三角形,证得∠ACB=90°,求出∠ACD=∠CAB=30°,故①正确;由AC ⊥BC ,得到S ▱ABCD =AC •BC ,故②正确,根据直角三角形的性质得到AC =,根据三角形的中位线的性质得到OE=12BC ,于是得到OE :∶6;故③错误;【详解】解:∵四边形ABCD 是平行四边形, 60ABC ADC ∴∠=∠=︒,120BCD ∠=︒∵CE 平分BCD ∠交AB 于点E ,∴60DCE BCE ∠=∠=︒,∴CBE △是等边三角形,∴BE BC CE ==.∵2AB BC =,∴AE BE CE ==,∴90ACB ∠=︒,∴30ACD CAB ∠=∠=︒,故①正确;∵AC BC ⊥,∴ABCD S AC BC =⋅,故②正确;在Rt ACB △中,90ACB ∠=︒,30CAB ∠=︒,∴AC =.AO OC =,AE BE =, ∴1OE BC 2=, 1::62OE AC BC ∴==,故③错误. 故选:C .【点睛】此题考查了平行四边形的性质、三角形中位线的性质以及等边三角形的判定与性质.注意证得△BCE 是等边三角形,OE 是△ABC 的中位线是关键.9.B【分析】 如图(见解析),先根据等腰直角三角形的判定与性质可得90,62,2BAC DAE BC DE AD ∠=∠=︒==,再根据三角形全等的判定定理与性质可得BD CE =,从而可得CDE △周长为2BC AD +,然后根据垂线段最短可求出AD 的最小值,由此即可得.【详解】在ABC 中,6,45AB AC B ==∠=︒,ABC ∴是等腰直角三角形,2290,62BAC BC AB AC ∠=︒=+=,在ADE 中,,45AD AE ADE =∠=︒,ADE ∴是等腰直角三角形,2290,2DAE DE AD AE AD ∠=︒=+=, 90BAD CAD CAE CAD ∴∠+∠=∠+∠=︒,BAD CAE ∴∠=∠,在ABD △和ACE △中,AB AC BAD CAE AD AE =⎧⎪∠=∠⎨⎪=⎩,()ABD ACE SAS ∴≅,BD CE ∴=,CDE ∴周长为622CD CE DE CD BD DE BC DE AD ++=++=+=+, 则当AD 取得最小值时,CDE △的周长最小,由垂线段最短可知,当AD BC ⊥时,AD 取得最小值,AD ∴是BC 边上的中线(等腰三角形的三线合一),1322AD BC ∴==(直角三角形斜边上的中线等于斜边的一半), CDE ∴周长的最小值为62232626+⨯=+,故选:B .【点睛】本题考查了等腰直角三角形的判定与性质、直角三角形斜边上的中线、三角形全等的判定定理与性质、垂线段最短等知识点,正确找出两个全等三角形是解题关键.10.B解析:B首先证明AB=AF=AD ,然后再证明∠AFG=90°,接下来,依据HL 可证明△ABG ≌△AFG ,得到BG=FG ,再利用勾股定理得出GE 2=CG 2+CE 2,进而求出BG 即可.【详解】解:在正方形ABCD 中,AD=AB=BC=CD ,∠D=∠B=∠BCD=90°,∵将△ADE 沿AE 对折至△AFE ,∴AD=AF ,DE=EF ,∠D=∠AFE=90°,∴AB=AF ,∠B=∠AFG=90°,又∵AG=AG ,在Rt △ABG 和Rt △AFG 中,AG AG AB AF ⎧⎨⎩== ∴△ABG ≌△AFG (HL );∴BG=FG (全等三角形对应边相等),设BG=FG=x ,则GC=6-x ,∵E 为CD 的中点,∴CE=EF=DE=3,∴EG=3+x ,∴在Rt △CEG 中,32+(6-x )2=(3+x )2(勾股定理),解得x=2,∴BG=2,故选B .【点睛】此题主要考查了勾股定理的综合应用、三角形全的判定和性质以及翻折变换的性质,根据翻折变换的性质得出对应线段相等是解题关键.二、填空题11.【分析】分情况讨论作出图形,通过解直角三角形得到平行四边形的底和高的长度,根据平行四边形的面积公式即可得到结论.【详解】解:过D 作DE AB ⊥于E ,在Rt ADE △中,30A ∠=︒,AD =12DE AD ∴==3AE AD ==, 在Rt BDE △中,2BD =,1BE ∴==,4AB ∴=,∴平行四边形ABCD 的面积4343AB DE ==⨯=, 如图2,2AB =,∴平行四边形ABCD 的面积2323AB DE ==⨯=, 如图3,过B 作BE AD ⊥于E ,在Rt ABE △中,设AE x =,则23DE x =-, 30A ∠=︒,33BE x =, 在Rt BDE △中,2BD =, 22232()(23)x x ∴=+-, 3x ∴=,23x =(不合题意舍去), 1BE ∴=,∴平行四边形ABCD 的面积12323AD BE ==⨯=, 如图4,当AD BD ⊥时,平行四边形ABCD 的面积43AD BD ==, 故答案为:323【点睛】本题考查了平行四边形的性质,平行四边形的面积公式的运用、30度角的直角三角形的性质,根据题意作出图形是解题的关键.12.4【分析】根据三个角都是直角的四边形是矩形,得四边形AEPF 是矩形,根据矩形的对角线相等,得EF =AP ,则EF 的最小值即为AP 的最小值,根据垂线段最短,知:AP 的最小值即等于直角三角形ABC 斜边上的高.【详解】解:连接AP ,∵在△ABC 中,AB =3,AC =4,BC =5,∴AB 2+AC 2=BC 2,即∠BAC =90°.又∵PE ⊥AB 于E ,PF ⊥AC 于F ,∴四边形AEPF 是矩形,∴EF =AP ,∵AP 的最小值即为直角三角形ABC 斜边上的高,设斜边上的高为h ,则S △ABC =1122BC h AB AC ⋅=⋅ ∴1153422h ⨯⋅=⨯⨯ ∴h=2.4,∴EF 的最小值为2.4,故答案为:2.4.【点睛】本题考查了矩形的性质和判定,勾股定理的逆定理,直角三角形的性质的应用,要能够把要求的线段的最小值转化为便于求的最小值得线段是解此题的关键.13.24【分析】由菱形的性质可得OD =OB ,∠COD =90°,由直角三角形的斜边中线等于斜边的一半,可得OH =12BD =OB ,可得∠OHB =∠OBH ,由余角的性质可得∠DHO =∠DCO ,即可求解. 【详解】 【解答】解:∵四边形ABCD 是菱形,∴OD =OB ,∠COD =90°,∠DAB =∠DCB =48°,∵DH ⊥AB ,∴OH=12BD=OB,∴∠OHB=∠OBH,又∵AB∥CD,∴∠OBH=∠ODC,在Rt△COD中,∠ODC+∠DCO=90°,在Rt△DHB中,∠DHO+∠OHB=90°,∴∠DHO=∠DCO=12∠DCB=24°,故答案为:24.【点睛】本题考查了菱形的性质,直角三角形斜边中线的性质,余角的性质,是几何综合题,判断出OH是BD的一半,和∠DHO=∠DCO是解决本题的关键.14.(1) (2) (4)【分析】由平行四边形的性质和等腰三角形的性质得出(1)正确;由ASA证明△AEF≌△DMF,得出EF=MF,∠AEF=∠M,由直角三角形斜边上的中线性质得出CF=12EM=EF,由等腰三角形的性质得出∠FEC=∠ECF,得出(2)正确;证出S△EFC=S△CFM,由MC>BE,得出S△BEC<2S△EFC,得出(3)错误;由平行线的性质和互余两角的关系得出(4)正确;即可得出结论.【详解】(1)∵F是AD的中点,∴AF=FD,∵在▱ABCD中,AD=2AB,∴AF=FD=CD=AB,∴∠DFC=∠DCF,∵AD∥BC,∴∠DFC=∠FCB,∠BCD+∠D=180°,∴∠DCF=∠BCF,∴∠DCF=12∠BCD,∴∠DCF+12∠D=90°,故(1)正确;(2)延长EF,交CD延长线于M,如图所示:∵四边形ABCD 是平行四边形,∴AB ∥CD ,∴∠A=∠MDF ,∵F 为AD 中点,∴AF=FD ,在△AEF 和△DMF 中,A FDM AF DF AFE DFM ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△AEF ≌△DMF(ASA),∴EF=MF ,∠AEF=∠M ,∵CE ⊥AB ,∴∠AEC=90°,∴∠AEC=∠ECD=90°,∵FM=EF ,∴CF=12EM=EF , ∴∠FEC=∠ECF ,∴∠AEF+∠ECF=∠AEF+∠FEC=∠AEC=90°,故(2)正确;(3)∵EF=FM ,∴S △EFC =S △CFM ,∵MC >BE ,∴S △BEC <2S △EFC ,故(3)错误;(4)∵∠B=80°,∴∠BCE=90°-80°=10°,∵AB ∥CD ,∴∠BCD=180°-80°=100°,∴∠BCF=12∠BCD=50°, ∴∠FEC=∠ECF=50°-10°=40°,∴∠AEF=90°-40°=50°,故(4)正确.故答案为:(1)(2)(4).【点睛】本题主要考查了平行四边形的性质、等腰三角形的性质和判定、全等三角形的判定与性质、直角三角形斜边上的中线性质等知识;本题综合性强,有一定难度,证明△AEF≌△DMF是解题关键.15.120 13【分析】设MN与BC交于点O,连接AO,过点O作OH⊥AC于H点,根据等腰三角形的性质和勾股定理可求AO和OH长,若MN最小,则MO最小即可,而O点到AC的最短距离为OH 长,所以MN最小值是2OH.【详解】解:设MN与BC交于点O,连接AO,过点O作OH⊥AC于H点,∵四边形MCNB是平行四边形,∴O为BC中点,MN=2MO.∵AB=AC=13,BC=10,∴AO⊥BC.在Rt△AOC中,利用勾股定理可得AO2222135AC CO-=-12.利用面积法:AO×CO=AC×OH,即12×5=13×OH,解得OH=60 13.当MO最小时,则MN就最小,O点到AC的最短距离为OH长,所以当M点与H点重合时,MO最小值为OH长是60 13.所以此时MN最小值为2OH=120 13.故答案为:120 13.【点睛】本题主要考查了平行四边形的性质、垂线段最短、勾股定理、等腰三角形的性质,解题的关键是分析出点到某线段的垂线段最短,由此进行转化线段,动中找静.16.663【分析】通过四边形ABCD是矩形以及CE CB BE==,得到△FEM是等边三角形,根据含30°直角三角形的性质以及勾股定理得到KM,NK,KE的值,进而得到NE的值,再利用30°直角三角形的性质及勾股定理得到BN,BE即可.【详解】解:如图,设NE交AD于点K,∵四边形ABCD是矩形,∴AD∥BC,∠ABC=90°,∴∠MFE=∠FCB,∠FME=∠EBC∵CE CB BE==,∴△BCE为等边三角形,∴∠BEC=∠ECB=∠EBC=60°,∵∠FEM=∠BEC,∴∠FEM=∠MFE=∠FME=60°,∴△FEM是等边三角形,FM=FE=EM=2,∵EN⊥BE,∴∠NEM=∠NEB=90°,∴∠NKA=∠MKE=30°,∴KM=2EM=4,NK=2AN=6,∴在Rt△KME中,KE=2223KM EM-=,∴NE=NK+KE=6+23,∵∠ABC=90°,∴∠ABE=30°,∴BN=2NE=12+43,∴BE=22663BN NE-=+,∴BC=BE=663,故答案为:663【点睛】本题考查了矩形,等边三角形的性质,以及含30°直角三角形的性质与勾股定理的应用,解题的关键是灵活运用30°直角三角形的性质.17.20 7【分析】根据折叠的性质可得出DC=DE、CP=EP,由“AAS”可证△OEF≌△OBP,可得出OE=OB、EF=BP,设EF=x,则BP=x、DF=5-x、BF=PC=3-x,进而可得出AF=2+x,在Rt△DAF中,利用勾股定理可求出x 的值,即可得AF 的长.【详解】解:∵将△CDP 沿DP 折叠,点C 落在点E 处,∴DC =DE =5,CP =EP .在△OEF 和△OBP 中,90EOF BOP B E OP OF ∠=∠⎧⎪∠=∠=⎨⎪=⎩, ∴△OEF ≌△OBP (AAS ),∴OE =OB ,EF =BP .设EF =x ,则BP =x ,DF =DE -EF =5-x ,又∵BF =OB +OF =OE +OP =PE =PC ,PC =BC -BP =3-x ,∴AF =AB -BF =2+x .在Rt △DAF 中,AF 2+AD 2=DF 2,∴(2+x )2+32=(5-x )2,∴x =67∴AF =2+67=207故答案为:207 【点睛】本题考查了翻折变换,矩形的性质,全等三角形的判定与性质以及勾股定理的应用,解题时常常设要求的线段长为x ,然后根据折叠和轴对称的性质用含x 的代数式表示其他线段的长度,选择适当的直角三角形,运用勾股定理列出方程求出答案.18.7【分析】①若m n =,则AF EC =,先根据平行四边形的性质得出//,AD BC AD BC =,再根据平行四边形的判定(一组对边平行且相等或两组对边分别平行)即可得;②先根据平行四边形的性质与判定得出四边形ABEF 、四边形CDFE 都是平行四边形,从而可得11,44EFG ABEF EFH CDFE S S S S ∆∆==,再根据28ABCD ABEF CDFE S S S =+= 和1144EFG EFH ABEF CDFE FGEH S S S S S ∆∆=+=+四边形即可得出答案.【详解】 四边形ABCD 是平行四边形//,AD BC AD BC ∴=,,AF EC n m BC BCm n ===AF EC ∴=AD AF BC EC ∴-=-,即DF BE =∴四边形AECF 、四边形BEDF 都是平行四边形//,//AE CF BF DE ∴∴四边形EGFH 是平行四边形综上,图中共有4个平行四边形如图,连接EF1,,AF EC n m BC B n Cm ==+= AF EC BC AD ∴+==AF DF AD +=EC DF ∴=AF BE ∴=∴四边形ABEF 、四边形CDFE 都是平行四边形11,44EFG ABEF EFH CDFE S S S S ∆∆∴== 28ABCD ABEF CDFE S S S =+=1144EFG EFH ABEF CDFE FGEH S S S S S ∆∆∴=+=+四边形 1()4ABEF CDFE S S =+12874=⨯= 故答案为:4;7.【点睛】本题考查了平行四边形的判定与性质,熟记平行四边形的判定与性质是解题关键. 192【解析】【分析】根据折叠的性质可得∠DAF=∠BAF=45°,再由矩形性质可得FC=ED=1,然后由勾股定理求出FG 即可.【详解】由折叠的性质可知,∠DAF=∠BAF=45°,∴AE=AD=3,EB=AB-AD=1,∵四边形EFCB 为矩形,∴FC=BE=1,∵AB ∥FC ,∴∠GFC=∠DAF=45°,∴GC=FC=1,∴FG ===.【点睛】本题考查了折叠变换,矩形的性质是一种对称变换,理解折叠前后图形的大小不变,位置变化,对应边和对应角相等是解决此题的关键.2012a 【分析】(1)根据折叠的性质可得出,四边形AFED 为正方形,CE=GE=BF ,AEB GBE ABE EBC ∠∠∠∠+=+,即AEB ABE ∠∠=,得出AB=AE ,继而可得解;(2)结合(1)可知,AE AM ==,因为EC=3BM ,所以有1BM 2FM =,求出BM ,继而可得解.【详解】解:(1)由折叠的性质可得,CE=GE=BF ,AEB GBE ABE EBC ∠∠∠∠+=+,即AEB ABE ∠∠=, ∴AB=AE ,∵AE ==∴AB =.(2)结合(1)可知,AE AM ==,∴FM a =-,∵EC=3BM , ∴1BM 2FM =∴BM =∴1AB 22a a -=+=.;12a . 【点睛】 本题是一道关于折叠的综合题目,主要考查折叠的性质,弄清题意,结合图形找出线段间的数量关系是解题的关键.三、解答题21.(1)AG 2=GE 2+GF 2,理由见解析;(2)6 【分析】(1)结论:AG 2=GE 2+GF 2.只要证明GA=GC ,四边形EGFC 是矩形,推出GE=CF ,在Rt △GFC 中,利用勾股定理即可证明;(2)作BN ⊥AG 于N ,在BN 上截取一点M ,使得AM=BM .设AN=x .易证AM=BM=2x ,,在Rt △ABN 中,根据AB 2=AN 2+BN 2,可得1=x 2+(x )2,解得x=4,推出BN=4,再根据BG=BN÷cos30°即可解决问题. 【详解】解:(1)结论:AG 2=GE 2+GF 2.理由:连接CG .∵四边形ABCD 是正方形,∴A 、C 关于对角线BD 对称,∵点G 在BD 上,∴GA=GC ,∵GE ⊥DC 于点E ,GF ⊥BC 于点F ,∴∠GEC=∠ECF=∠CFG=90°,∴四边形EGFC 是矩形,∴CF=GE ,在Rt △GFC 中,∵CG 2=GF 2+CF 2,∴AG 2=GF 2+GE 2.(2)作BN ⊥AG 于N ,在BN 上截取一点M ,使得AM=BM .设AN=x .∵∠AGF=105°,∠FBG=∠FGB=∠ABG=45°,∴∠AGB=60°,∠GBN=30°,∠ABM=∠MAB=15°,∴∠AMN=30°,∴AM=BM=2x,x ,在Rt △ABN 中,∵AB 2=AN 2+BN 2,∴1=x2+(x )2,解得x=4,∴BN=624+, ∴BG=BN÷cos30°=326+.【点睛】本题考查正方形的性质,矩形的判定和性质,勾股定理,直角三角形30度的性质.22.(1)①证明见详解;②45PAQ ∠=︒,见解析;(2)5.【分析】(1)①只要证明//PB AC 即可解决问题;②如图2中,连接QC ,作DT DQ ⊥交QC 的延长线于T ,利用全等三角形的性质解决问题即可;(2)如图3中,延长EH 交BC 于点G ,设AE=x ,由题意易得AB=BC=CF=EG=3x ,然后可得CG=2x ,HG=3x-3,CH=3x-1,利用勾股定理求解即可.【详解】(1)①证明:四边形ABCD 是正方形,∴//B DP C ,45DAC ∠=︒,∴135PAC ∠=︒45APB ∠=︒,∴+180APB PAC ∠∠=︒,∴//PB AC∴四边形APBC 是平行四边形;②四边形PADQ 是平行四边形,∴DQ//,//,AP AD PQ AD PQ BC ==, AD//B C ,∴,//PQ BC PQ BC =,∴四边形PQCB 是平行四边形,∴QC//BP ,∴45APQ DQC ∠=∠=︒,90ADC QDT ∠=∠=︒,∴DQ=DT ,45,T DQT ADQ CDT ∠=∠=︒∠=∠,AD=DC ,∴ADQ CDT ≌,∴45AQD T ∠=∠=︒,AP//DQ ,∴45PAQ DQA ∠=∠=︒;(3)CH=5,理由如下:如图3所示:延长EH 交BC 于点G ;四边形ABCD 是正方形,∴AB=BC ,90D ∠=︒, 又EH=3,FH=1,EH ⊥AD ,∴EH//CD ,∴90HGC ∠=︒设AE=x ,1,3AE CF BC CF ==,∴AB=BC=CF=EG=3x , ∴CG=2x ,HG=3x-3,CH=3x-1 在Rt HGC △中,()()22222243331CG HG CH x x x +=+-=-即,解得121,2x x ==当x=1时,AB=3(不符合题意,舍去);当x=2时,AB=6,∴CH=5.故答案为5.【点睛】本题主要考查正方形的综合问题、三角形全等及勾股定理,关键是利用已知条件及四边形的性质得到它们之间的联系,然后利用勾股定理求解线段的长即可.23.(1)8-2t ,8-t ;(2)83或74 【分析】(1)根据P 、Q 的运动速度以及AB 和CD 的长即可表示;(2)分PQ=PB 、BP=BQ 和QP=QB 三种情况进行分析即可.【详解】解:(1)由题意可得:DP=2t ,AQ=t ,∴PC=8-2t ,BQ=8-t ,故答案为:8-2t ,8-t ;(2)当PQ=PB 时,如图①,QH=BH ,则t+2t=8,解得,t=83, 当PQ=BQ 时,(2t-t )2+62=(8-t )2,解得,t=74, 当BP=BQ 时,(8-2t )2+62=(8-t )2,方程无解;∴当t=83或74时,△BPQ 为等腰三角形. 【点睛】 本题考查的是矩形的性质、等腰三角形的判定,掌握性质并灵活运用性质是解题的关键,注意分情况讨论思想的应用.24.(1)9或5;(2)①见解析,②见解析【分析】(1)分两种情况:①如图1-1,得出正方形ABCD 的边长为3,求出正方形ABCD 的面积为9;②如图1-2,过点B 作EF ⊥l 1于E ,交l 4于F ,则EF ⊥l 4,证明△ABE ≌△BCF (AAS ),得出AE=BF=2由勾股定理求出AB=225AE BE +=,即可得出答案;(2)①过点B 作EF ⊥l 1于E ,交l 4于F ,作DM ⊥l 4于M ,证明△ABE ≌△BCF (AAS ),得出AE=BF ,同理△CDM ≌△BCF (AAS ),得出△ABE ≌△CDM (AAS ),得出BE=DM 即可; ②由①得出AE=BF=h 2+h 3=h 2+h 1,得出正方形ABCD 的面积S=AB 2=AE 2+BE 2,即可得到答案.【详解】解:(1)①如图,当点B D ,分别在14,l l 上时,面积为:339⨯=;②如图,当点B D ,分别在23,l l 上时,过点B 作EF ⊥l 1于E ,交l 4于F ,则EF ⊥l 4,∵四边形ABCD 是正方形,∴AB=BC ,∠ABC=90°,∴∠ABE+∠CBF=180°-90°=90°,。

八年级数学第二学期第二次质量检测测试卷含解析

八年级数学第二学期第二次质量检测测试卷含解析

一、选择题1.如图,菱形ABCD 中,∠BAD =60°,AC 与BD 交于点O ,E 为CD 延长线上的一点,且CD =DE ,连接BE ,分别交AC 、AD 于点F 、G ,连接OG ,则下列结论:①OG =12AB ;②图中与△EGD 全等的三角形共有5个;③以点A 、B 、D 、E 为项点的四边形是菱形;④ S 四边形ODGF = S △ABF .其中正确的结论是( )A .①③B .①③④C .①②③D .②②④2.如图,在四边形ABCD 中, AD//BC,且AD>BC,BC= 6cm, AD=9cm, P 、Q 分别从A 、C 同时出发,P 以1cm/s 的速度由A 向D 运动,Q 以2cm/s 的速度由C 向B 运动,多少s 时直线将四边形ABCD 截出一个平行四边形( )A .1B .2C .3D .2或33.如图,正方形ABCD 中,AB=12,点E 在边CD 上,且CD=3DE ,将△ADE 沿AE 对折至△AFE ,延长EF 交边BC 于点G ,连接AG 、CF ,下列结论: ①△ABG ≌△AFG ;②BG=GC ;③AG ∥CF ;④S △FGC =28.8. 其中正确结论的个数是( )A .4B .3C .2D .14.如图,是由两个正方形组成的长方形花坛ABCD ,小明从顶点A 沿着花坛间小路直到走到长边中点O ,再从中点O 走到正方形OCDF 的中心1O ,再从中心1O 走到正方形1O GFH 的中点2O ,又从中心2O 走到正方形2O IHJ 的中心3O ,再从中心3O 走到正方形3O KJP 的中心4O ,一共走了312,则长方形花坛ABCD 的周长是( )A .36mB .48mC .96mD .60m5.如图,在矩形ABCD 中,把矩形ABCD 绕点C 旋转,得到矩形FECG ,且点E 落在AD 上,连接BE ,BG ,BG 交CE 于点H ,连接FH ,若FH 平分EFG ,则下列结论:①AE CH EH +=;②2DEC ABE ∠=∠;③BH HG =;④2CH AB =,其中正确的个数是( )A .1个B .2个C .3个D .4个 6.如图,ABCD 的对角线AC 、BD 交于点O ,AE 平分BAD ∠交BC 于点E ,且60ADC ∠=︒,12AB BC =,连接OE .下列结论:①AE CE =;②ABCD S AB AC =⋅;③ABE AOE S S ∆∆=;④14OE BC =,成立的个数有( )A .1个B .2个C .3个D .4个7.如图,一张长方形纸片的长4=AD ,宽1AB =,点E 在边AD 上,点F 在边BC 上,将四边形ABFE 沿着EF 折叠后,点B 落在边AD 的中点G 处,则EG 等于( )A.3B.23C.178D.548.如图的△ABC中,AB>AC>BC,且D为BC上一点.现打算在AB上找一点P,在AC上找一点Q,使得△APQ与以P、D、Q为顶点的三角形全等,以下是甲、乙两人的作法:甲:连接AD,作AD的中垂线分别交AB、AC于P点、Q点,则P、Q两点即为所求;乙:过D作与AC平行的直线交AB于P点,过D作与AB平行的直线交AC于Q点,则P、Q两点即为所求;对于甲、乙两人的作法,下列判断何者正确()A.两人皆正确B.两人皆错误C.甲正确,乙错误D.甲错误乙正确9.下列命题中,真命题的个数有()①对角线相等的四边形是矩形;②三条边相等的四边形是菱形;③一组对边平行且相等的四边形是平行四边形.A.3个B.2个C.1个D.0个10.如图,在正方形ABCD中,E是BC边上的一点,BE=4,EC=8,将正方形边AB延AE折叠刀AF,延长EF交DC于G,连接AG,现在有如下结论:①∠EAG=45°;②GC=CF;③FC∥AG;④S△GFC=14.4;其中结论正确的个数是()A.1 B.2 C.3 D.4二、填空题11.如图,在平行四边形ABCD 中,AB =6,BC =4,∠A =120°,E 是AB 的中点,点F 在平行四边形ABCD 的边上,若△AEF 为等腰三角形,则EF 的长为_____.12.如图,在等边ABC 和等边DEF 中,FD 在直线AC 上,33,BC DE ==连接,BD BE ,则BD BE +的最小值是______.13.如图,菱形ABCD 的边长是4,60ABC ∠=︒,点E ,F 分别是AB ,BC 边上的动点(不与点A ,B ,C 重合),且BE BF =,若//EG BC ,//FG AB ,EG 与FG 相交于点G ,当ADG 为等腰三角形时,BE 的长为________.14.如图,在Rt △ABC 中,∠BAC =90°,AB =8,AC =6,以BC 为一边作正方形BDEC 设正方形的对称中心为O ,连接AO ,则AO =_____.15.如图,在平面直角坐标系中,直线112y x =+与x 轴、y 轴分别交于A ,B 两点,以AB 为边在第二象限内作正方形ABCD ,则D 点坐标是_______;在y 轴上有一个动点M ,当MDC △的周长值最小时,则这个最小值是_______.16.如图,▱ABCD 中,∠DAB =30°,AB =6,BC =2,P 为边CD 上的一动点,则2PB+ PD 的最小值等于______.17.如图,在正方形ABCD 中,点F 为CD 上一点,BF 与AC 交于点E ,若∠CBF=20°,则∠AED 等于__度.18.在平面直角坐标系xOy 中,点A 、B 分别在x 轴、y 轴的正半轴上运动,点M 为线段AB 的中点.点D 、E 分别在x 轴、y 轴的负半轴上运动,且DE =AB =10.以DE 为边在第三象限内作正方形DGFE ,则线段MG 长度的最大值为_____.19.已知:一组邻边分别为6cm 和10cm 的平行四边形ABCD ,DAB ∠和ABC ∠的平分线分别交CD 所在直线于点E ,F ,则线段EF 的长为________cm .20.如图所示,在四边形ABCD 中,顺次连接四边中点E 、F 、G 、H ,构成一个新的四边形,请你对四边形ABCD 添加一个条件,使四边形EFGH 成一个菱形,这个条件是__________.三、解答题21.如图,在正方形ABCD 中,点G 在对角线BD 上(不与点B ,D 重合),GE ⊥DC 于点E ,GF ⊥BC 于点F ,连结AG .(1)写出线段AG ,GE ,GF 长度之间的数量关系,并说明理由;(2)若正方形ABCD 的边长为1,∠AGF=105°,求线段BG 的长.22.如图,在矩形ABCD 中,点E 是AD 上的一点(不与点A ,D 重合),ABE ∆沿BE 折叠,得BEF ,点A 的对称点为点F .(1)当AB AD =时,点F 会落在CE 上吗?请说明理由.(2)设()01AB m m AD=<<,且点F 恰好落在CE 上. ①求证:CF DE =. ②若AE n AD=,用等式表示m n ,的关系. 23.如图,在菱形ABCD 中,AB =2cm ,∠ADC =120°.动点E 、F 分别从点B 、D 同时出发,都以0.5cm/s 的速度向点A 、C 运动,连接AF 、CE ,分别取AF 、CE 的中点G 、H .设运动的时间为ts (0<t <4).(1)求证:AF ∥CE ;(2)当t 为何值时,△ADF 的面积为32cm 2; (3)连接GE 、FH .当t 为何值时,四边形EHFG 为菱形.24.如下图1,在平面直角坐标系中xoy 中,将一个含30的直角三角板如图放置,直角顶点与原点重合,若点A 的坐标为()1,0-,30ABO ∠=︒.(1)旋转操作:如下图2,将此直角三角板绕点O 顺时针旋转30时,则点B 的坐标为 .(2)问题探究:在图2的基础上继续将直角三角板绕点O 顺时针60︒,如图3,在AB 边上的上方以AB 为边作等边ABC ,问:是否存在这样的点D ,使得以点A 、B 、C 、D 四点为顶点的四边形构成为菱形,若存在,请直接写出点D 所有可能的坐标;若不存在,请说明理由.(3)动点分析:在图3的基础上,过点O 作OP AB ⊥于点P ,如图4,若点F 是边OB 的中点,点M 是射线PF 上的一个动点,当OMB △为直角三角形时,求OM 的长.25.(1)如图①,在正方形ABCD 中,AEF ∆的顶点E ,F 分别在BC ,CD 边上,高AG 与正方形的边长相等,求EAF ∠的度数;(2)如图②,在Rt ABD ∆中,90,BAD AD AB ︒∠==,点M ,N 是BD 边上的任意两点,且45MAN ︒∠=,将ABM ∆绕点A 逆时针旋转90度至ADH ∆位置,连接NH ,试判断MN ,ND ,DH 之间的数量关系,并说明理由;(3)在图①中,连接BD 分别交AE ,AF 于点M ,N ,若正方形ABCD 的边长为12,GF=6,BM= 32,求EG ,MN 的长.26.已知四边形ABCD 是正方形,将线段CD 绕点C 逆时针旋转α(090α︒<<︒),得到线段CE ,联结BE 、CE 、DE . 过点B 作BF ⊥DE 交线段DE 的延长线于F .(1)如图,当BE =CE 时,求旋转角α的度数;(2)当旋转角α的大小发生变化时,BEF ∠的度数是否发生变化?如果变化,请用含α的代数式表示;如果不变,请求出BEF ∠的度数;(3)联结AF ,求证:2DE AF =.27.如图1,在OAB 中,OAB 90∠=,30AOB ∠=,8OB =,以OB 为边,在OAB Λ外作等边OBC Λ,D 是OB 的中点,连接AD 并延长交OC 于E .(1)求证:四边形ABCE 是平行四边形;(2)连接AC ,BE 交于点P ,求AP 的长及AP 边上的高BH ;(3)在(2)的条件下,将四边形OABC 置于如图所示的平面直角坐标系中,以E 为坐标原点,其余条件不变,以AP 为边向右上方作正方形APMN :①M 点的坐标为 .②直接写出正方形APMN 与四边形OABC 重叠部分的面积(图中阴影部分).28.如图1,在正方形ABCD (正方形四边相等,四个角均为直角)中,AB =8,P 为线段BC 上一点,连接AP ,过点B 作BQ ⊥AP ,交CD 于点Q ,将△BQC 沿BQ 所在的直线对折得到△BQC ′,延长QC ′交AD 于点N .(1)求证:BP =CQ ;(2)若BP =13PC ,求AN 的长; (3)如图2,延长QN 交BA 的延长线于点M ,若BP =x (0<x <8),△BMC '的面积为S ,求S 与x 之间的函数关系式.29.探究:如图①,△ABC 是等边三角形,在边AB 、BC 的延长线上截取BM =CN ,连结MC 、AN ,延长MC 交AN 于点P .(1)求证:△ACN ≌△CBM ;(2)∠CPN = °;(给出求解过程)(3)应用:将图①的△ABC 分别改为正方形ABCD 和正五边形ABCDE ,如图②、③,在边AB 、BC 的延长线上截取BM =CN ,连结MC 、DN ,延长MC 交DN 于点P ,则图②中∠CPN = °;(直接写出答案)(4)图③中∠CPN = °;(直接写出答案)(5)拓展:若将图①的△ABC 改为正n 边形,其它条件不变,则∠CPN = °(用含n 的代数式表示,直接写出答案).30.如图,四边形ABCD 为正方形.在边AD 上取一点E ,连接BE ,使60AEB ∠=︒.(1)利用尺规作图(保留作图痕迹):分别以点B 、C 为圆心,BC 长为半径作弧交正方形内部于点T ,连接BT 并延长交边AD 于点E ,则60AEB ∠=︒;(2)在前面的条件下,取BE 中点M ,过点M 的直线分别交边AB 、CD 于点P 、Q . ①当PQ BE ⊥时,求证:2BP AP =;②当PQ BE =时,延长BE ,CD 交于N 点,猜想NQ 与MQ 的数量关系,并说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【解析】【分析】由AAS 证明△ABG ≌△DEG ,得出AG=DG ,证出OG 是△ACD 的中位线,得出OG=12 CD=12AB ,①正确;先证明四边形ABDE 是平行四边形,证出△ABD 、△BCD 是等边三角形,得出AB=BD=AD ,因此OD=AG ,得出四边形ABDE 是菱形,③正确;由菱形的性质得得出△ABG ≌△BDG ≌△DEG ,由SAS 证明△ABG ≌△DCO ,得出△ABO ≌△BCO ≌△CDO ≌△AOD ≌△ABG ≌△BDG ≌△DEG ,得出②不正确;证出OG 是△ABD 的中位线,得出OG//AB ,OG=12AB ,得出△GOD ∽△ABD ,△ABF ∽△OGF ,由相似三角形的性质和面积关系得出S 四边形ODGF =S △ABF ;④不正确;即可得出结果.【详解】解:四边形ABCD 是菱形,,//,,,,AB BC CD DA AB CD OA OC OB OD AC BDBAG EDG ABO BCO CDO AOD CD DEAB DE∴=====⊥∴∠=∠∆≅∆≅∆=∴= 在△ABG 和△DEG 中,BAG EDG AGB DGE AB DE ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△ABG ≌△DEG (AAS ),∴.AG=DG ,∴OG 是△ACD 的中位线,∴OG=12CD=12AB ,①正确; ∵AB//CE ,AB=DE ,∴四边形ABDE 是平行四边形,∴∠BCD=∠BAD=60°,∴△ABD 、△BCD 是等边三角形,∴AB=BD=AD ,∠ODC=60°,∴OD=AG ,四边形ABDE 是菱形,③正确;∴AD ⊥BE ,由菱形的性质得:△ABG ≌△BDG ≌△DEG ,在△ABG 和△DCO 中,60OD AG ODC BAG AB DC ︒=⎧⎪∠=∠=⎨⎪=⎩∴△ABG ≌△DCO∴△ABO ≌△BCO ≌△CDO ≌△AOD ≌△ABG ≌△BDG ≌△DEG ,则②不正确。

人教版八年级第二学期 第二次质量检测数学试卷含解析

人教版八年级第二学期 第二次质量检测数学试卷含解析

一、选择题1.对于题目:“如图1,平面上,正方形内有一长为12、宽为6的矩形,它可以在正方形的内部及边界通过移转(即平移或旋转)的方式,自由地从横放移转到竖放,求正方形边长的最小整数n .”甲、乙、丙作了自认为边长最小的正方形,先求出该边长x ,再取最小整数n .甲:如图2,思路是当x 为矩形对角线长时就可移转过去;结果取13n =. 乙:如图3,思路是当x 为矩形外接圆直径长时就可移转过去;结果取n =14. 丙:如图4,思路是当x 为矩形的长与宽之和的22倍时就可移转过去;结果取13n =. 下列正确的是( )A .甲的思路错,他的n 值对B .乙的思路和他的n 值都对C .甲和丙的n 值都对D .甲、乙的思路都错,而丙的思路对2.如图,在平行四边形ABCD 中,30, 6, 63,BCD BC CD E ︒∠===是AD 边上的中点,F 是AB 边上的一动点,将AEF ∆沿EF 所在直线翻折得到A EF '∆,连接A C ',则A C '的最小值为( )A .319B .313C .3193-D .633.点E 是正方形ABCD 对角线AC 上,且EC=2AE ,Rt △FEG 的两条直角边EF 、EG 分别交BC 、DC 于M 、N 两点,若正方形ABCD 的边长为a ,则四边形EMCN 的面积( )A .23a 2 B .14a 2 C .59a 2 D .49a 2 4.如图,点O (0,0),B (0,1)是正方形OBB 1C 的两个顶点,以它的对角线OB 1为一边作正方形OB 1B 2C 1,以正方形OB 1B 2C 1的对角线OB 2为一边作正方形OB 2B 3C 2,再以正方形OB 2B 3C 2的对角线OB 3为一边作正方形OB 3B 4C 3,…,依次进行下去,则点B 6的坐标是( )A .(42,0)B .(42,0)-C .(8,0)-D .(0,8)- 5.平行四边形的对角线分别为 x 、y ,一边长为 12,则 x 、y 的值可能是( ) A .8 与 14B .10 与 14C .18 与 20D .4 与 286.如图,在ABC 中,AB =AC =6,∠B =45°,D 是BC 上一个动点,连接AD ,以AD 为边向右侧作等腰ADE ,其中AD =AE ,∠ADE =45°,连接CE .在点D 从点B 向点C 运动过程中,CDE △周长的最小值是( )A .62B .626+C .92D .926+7.如图,ABCD 中,点E 是AD 上一点,BE ⊥AB ,△ABE 沿BE 对折得到△BEG ,过点D 作DF ∥EG 交BC 于点F ,△DFC 沿DF 对折,点C 恰好与点G 重合,则ABAD的值为( )A .12B .33C .22D .328.如图,正方形ABCD 中,AB =6,点E 在边CD 上,且CD =3DE .将△ADE 沿AE 对折至△AFE ,延长EF 交边BC 于点G ,连结AG 、CF .下列结论:①△ABG ≌△AFG ;②BG =GC ;③AG ∥CF ;④S △FGC =185.其中正确结论的个数是( )A .1B .2C .3D .49.如图,在边长为2的等边三角形ABC 中,D 为边BC 上一点,且12BD CD =.点E ,F 分别在边,AB AC 上,且90,EDF M ︒∠=为边EF 的中点,连接CM 交DF于点N .若//DF AB ,则CM 的长为( )A .233B .334C .536D .310.如图,正方形ABCD 中,延长CB 至E 使2CB EB =,以EB 为边作正方形EFGB ,延长FG 交DC 于M ,连接AM ,AF ,H 为AD 的中点,连接FH 分别与AB ,AM 交于点,N K .则下列说法:①ANH GNF △≌△;②DAM NFG ∠=∠;③2FN NK =;④:2:7AFN DMKH S S =△四边形.其中正确的有( )A .4个B .3个C .2个D .1个二、填空题11.如图,在矩形ABCD 中,4AB =,2AD =,E 为边CD 的中点,点P 在线段AB 上运动,F 是CP 的中点,则CEF ∆的周长的最小值是____________.12.如图,四边形ABCD ,四边形EBFG ,四边形HMPN 均是正方形,点E 、F 、P 、N 分别在边AB 、BC 、CD 、AD 上,点H 、G 、M 在AC 上,阴影部分的面积依次记为1S ,2S ,则12:S S 等于__________.13.已知:点B 是线段AC 上一点,分别以AB ,BC 为边在AC 的同侧作等边ABD △和等边BCE ,点M ,N 分别是AD ,CE 的中点,连接MN .若AC=6,设BC=2,则线段MN 的长是__________.14.如图,ABC ∆是边长为1的等边三角形,取BC 边中点E ,作//ED AB ,//EF AC ,得到四边形EDAF ,它的周长记作1C ;取BE 中点1E ,作11//E D FB ,11//E F EF ,得到四边形111E D FF ,它的周长记作2C .照此规律作下去,则2020C =______.15.如图,长方形纸片ABCD 中,AB =6 cm,BC =8 cm 点E 是BC 边上一点,连接AE 并将△AEB 沿AE 折叠, 得到△AEB′,以C ,E ,B′为顶点的三角形是直角三角形时,BE 的长为___________cm.16.如图,四边形纸片ABCD 中,AB BC =, 90ABC ADC ∠=∠=︒.若该纸片的面积为10 cm 2,则对角线BD =______cm .17.如图,在菱形ABCD 中,AC 交BD 于P ,E 为BC 上一点,AE 交BD 于F ,若AB=AE ,EAD 2BAE ∠∠=,则下列结论:①AF=AP ;②AE=FD ;③BE=AF .正确的是______(填序号).18.如图,矩形ABCD 的面积为36,BE 平分ABD ∠,交AD 于E ,沿BE 将ABE ∆折叠,点A 的对应点刚好落在矩形两条对角线的交点F 处.则ABE ∆的面积为________.19.如图,在△ABC 中,AB =AC ,E ,F 分别是BC ,AC 的中点,以AC 为斜边作Rt △ADC ,若∠CAD =∠BAC =45°,则下列结论:①CD ∥EF ;②EF =DF ;③DE 平分∠CDF ;④∠DEC =30°;⑤AB =2CD ;其中正确的是_____(填序号)20.如图,在Rt △ABC 中,∠ACB =90°,AC =8,BC =6,点D 为平面内动点,且满足AD =4,连接BD ,取BD 的中点E ,连接CE ,则CE 的最大值为_____.三、解答题21.在数学的学习中,有很多典型的基本图形.(1)如图①,ABC 中,90BAC ∠=︒,AB AC =,直线l 经过点A ,BD ⊥直线l ,CE ⊥直线l ,垂足分别为D 、E .试说明ABD CAE ≌;(2)如图②,ABC 中,90BAC ∠=︒,AB AC =,点D 、A 、F 在同一条直线上,BD DF ⊥,3AD =,4BD =.则菱形AEFC 面积为______.(3)如图③,分别以Rt ABC 的直角边AC 、AB 向外作正方形ACDE 和正方形ABFG ,连接EG ,AH 是ABC 的高,延长HA 交EG 于点I ,若6AB =,8AC =,求AI 的长度.22.如图,在ABC ∆中,BD 平分ABC ∠交AC 于点D ,EF 垂直平分BD ,分别交AB ,BC ,BD 于点E ,F ,G ,连接DE ,DF .(1)求证:四边形BEDF 是菱形;(2)若15BDE ∠=︒,45C ∠=︒,2DE =,求CF 的长; (3)在(2)的条件下,求四边形BEDF 的面积.23.如图1,AC 是平行四边形ABCD 的对角线,E 、H 分别为边BA 和边BC 延长线上的点,连接EH 交AD 、CD 于点F 、G ,且//EH AC . (1)求证:AEF CGH ∆≅∆(2)若ACD ∆是等腰直角三角形,90ACD ∠=,F 是AD 的中点,8AD =,求BE 的长:(3)在(2)的条件下,连接BD ,如图2,求证:22222()AC BD AB BC +=+24.在矩形ABCD 中,连结AC ,点E 从点B 出发,以每秒1个单位的速度沿着B A →的路径运动,运动时间为t (秒).以BE 为边在矩形ABCD 的内部作正方形BEHG .(1)如图,当ABCD 为正方形且点H 在ABC ∆的内部,连结,AH CH ,求证:AH CH =;(2)经过点E 且把矩形ABCD 面积平分的直线有______条;(3)当9,12AB BC ==时,若直线AH 将矩形ABCD 的面积分成1:3两部分,求t 的值.25.如图,ABC 是等腰直角三角形,90,ACB ∠=︒分别以,AB AC 为直角边向外作等腰直角ABD △和等腰直角,ACE G 为BD 的中点,连接,,CG BE ,CD BE 与CD 交于点F .(1)证明:四边形ACGD 是平行四边形;(2)线段BE 和线段CD 有什么数量关系,请说明理由; (3)已知2,BC =求EF 的长度(结果用含根号的式子表示).26.我们知道平行四边形有很多性质,现在如果我们把平行四边形沿着它的一条对角线翻折,会发现这其中还有更多的结论.(发现与证明..)ABCD 中,AB BC ≠,将ABC ∆沿AC 翻折至'AB C ∆,连结'B D . 结论1:'AB C ∆与ABCD 重叠部分的图形是等腰三角形; 结论2:'B DAC .试证明以上结论.(应用与探究)在ABCD 中,已知2BC =,45B ∠=,将ABC ∆沿AC 翻折至'AB C ∆,连结'B D .若以A 、C 、D 、'B 为顶点的四边形是正方形,求AC 的长.(要求画出图形)27.如图,M 为正方形ABCD 的对角线BD 上一点.过M 作BD 的垂线交AD 于E ,连BE ,取BE 中点O .(1)如图1,连AO MO 、,试证明90AOM ︒∠=;(2)如图2,连接AM AO 、,并延长AO 交对角线BD 于点N ,试探究线段DM MN NB 、、之间的数量关系并证明;(3)如图3,延长对角线BD 至Q 延长DB 至P ,连,CP CQ 若2,9PB PQ ==,且135PCQ ︒∠=,则PC.(直接写出结果)28.如图1,在矩形纸片ABCD 中,AB =3cm ,AD =5cm ,折叠纸片使B 点落在边AD 上的E 处,折痕为PQ ,过点E 作EF ∥AB 交PQ 于F ,连接BF .(1)求证:四边形BFEP 为菱形;(2)当E 在AD 边上移动时,折痕的端点P 、Q 也随着移动. ①当点Q 与点C 重合时, (如图2),求菱形BFEP 的边长;②如果限定P 、Q 分别在线段BA 、BC 上移动,直接写出菱形BFEP 面积的变化范围. 29.如图,四边形ABCD 为矩形,C 点在x 轴上,A 点在y 轴上,D(0,0),B(3,4),矩形ABCD 沿直线EF 折叠,点B 落在AD 边上的G 处,E 、F 分别在BC 、AB 边上且F(1,4). (1)求G 点坐标 (2)求直线EF 解析式(3)点N 在坐标轴上,直线EF 上是否存在点M ,使以M 、N 、F 、G 为顶点的四边形是平行四边形?若存在,直接写出M 点坐标;若不存在,请说明理由30.如图,在平行四边形ABCD 中,BAD ∠的平分线交BC 于点E ,交DC 的延长线于F ,以EC CF 、为邻边作平行四边形ECFG 。

山西省2018-2019学年第二学期八年级阶段二质量评估·数学(人教版)试题(pdf版,有答案)

山西省2018-2019学年第二学期八年级阶段二质量评估·数学(人教版)试题(pdf版,有答案)

11. 使二次根式 姨1-3x 有意义的 x 的取值范围是

12. 如图,每个小正方形的边长都为 1,△ABC 的顶点都在小正方形的顶点上,则该三角
形的最长边等于
.
(第 5 题图)
(第 6 题图)
八年级数学 (人教版) 第 1 页 (共 4 页)
(第 12 题图)
(第 13 题图)
13. 如图,在平行四边形 ABCD 中,AE⊥BC 于点 E,AF⊥CD 于点 F,若∠EAF=56°,则
个单位长度的速度沿折线 A-C-B-A 运动(回到点 A 停止运动),设运动时间为 t 秒.
(1)当点 P 在 BC 上时,且满足 PA=PB 时,求出此时 t 的值;
(2)当点 P 在 AB 上时,求出 t 为何值时,△ACP 为以 AC 为腰的等腰三角形.
23.(本题 14 分)综合与实践:
问题发现:

AB2+BC2+CD2+AD2 的值是

(2)如图 3,已知四边形 ABCD 是菱形,证明:AC2+BD2=AB2+BC2+CD2+AD2;
拓广探索:
(3)智慧小组看了创新小组交流后,提出了一个猜想,如图 4,在荀ABCD 中,AC2+BD2=
AB2+BC2+CD2+AD2,你认为这个猜想正确吗?请说明理由;
绳索有多长?(注:古代 5 尺为 1 步)
建立数学模型:如图,秋千绳索 OA 静止的时候,踏板离地高 1 尺(AC=1 尺),将它往 前推进两步(EB=10 尺),此时踏板升高离地 5 尺(BD=5 尺).已知 OC⊥CD 于点 C, BD⊥CD 于点 D,BE⊥OC 于点 E,点 A 在 OC 上,OA=OB,求秋千绳索(OA 或 OB)的 长度. 请解答下列问题: (1)直接写出四边形 ECDB 是哪种特殊的四边形; (2)求 OA 的长.

八年级(下)学期 第二次段考数学试卷含解析

八年级(下)学期 第二次段考数学试卷含解析

一、选择题1.如图,矩形ABCD 中,AB=5,AD=4,M 是边CD 上一点,将△ADM 沿直线AM 对折,得△ANM ,连BN ,若DM=1,则△ABN 的面积是( )A .B .C .D .2.已知在直角梯形ABCD 中, AD ∥BC ,∠BCD =90°, BC =CD =2AD , E 、F 分别是BC 、CD 边的中点,连结BF 、DE 交于点P ,连结CP 并延长交AB 于点Q ,连结AF ,则下列结论不正确的是( )A .CP 平分∠BCDB .四边形 ABED 为平行四边形C .CQ 将直角梯形 ABCD 分为面积相等的两部分D .△ABF 为等腰三角形 3.如图,菱形ABCD 的周长为24,对角线AC 、BD 交于点O ,∠DAB =60°,作DH ⊥AB 于点H ,连接OH ,则OH 的长为( )A .2B .3C .23D .434.如图,是由两个正方形组成的长方形花坛ABCD ,小明从顶点A 沿着花坛间小路直到走到长边中点O ,再从中点O 走到正方形OCDF 的中心1O ,再从中心1O 走到正方形1O GFH 的中点2O ,又从中心2O 走到正方形2O IHJ 的中心3O ,再从中心3O 走到正方形3O KJP 的中心4O ,一共走了312,则长方形花坛ABCD 的周长是( )A .36mB .48mC .96mD .60m5.如图,在ABC 中,BD ,CE 是ABC 的中线,BD 与CE 相交于点O ,点F G ,分别是,BO CO 的中点,连接AO ,若要使得四边形DEFG 是正方形,则需要满足条件( )A .AO BC =B .AB AC ⊥ C .AB AC =且AB AC ⊥D .AO BC =且AO BC ⊥6.已知:如图,在正方形ABCD 外取一点E ,连接AE 、BE 、DE .过点A 作AE 的垂线交DE 于点P .若AE =AP =1,PD =2,下列结论:①EB ⊥ED ;②∠AEB =135°;③S 正方形ABCD =5+22;④PB =2;其中正确结论的序号是( )A .①③④B .②③④C .①②④D .①②③7.如图,平行四边形ABCD 的对角线AC ,BD 相交于点O ,CE 平分DCB ∠交BD 于点F ,且60ABC ∠=︒,2AB BC =,连接OE ,下列结论:①30ACD ∠=︒;②·ABCD S AC BC =;③:1:4OE AC =.其中正确的有( )A .0个B .1个C .2个D .3个8.如图,在边长为2的等边三角形ABC 中,D 为边BC 上一点,且12BD CD =.点E ,F 分别在边,AB AC 上,且90,EDF M ︒∠=为边EF 的中点,连接CM 交DF 于点N .若//DF AB ,则CM 的长为( )A .233B .334C .536D .39.如图,已知△ABC 的面积为12,点D 在线段AC 上,点F 在线段BC 的延长线上,且BF=4CF ,四边形DCFE 是平行四边形,则图中阴影部分的面积为( )A .2B .3C .4D .510.如图,己知正方形ABCD 的边长为4, P 是对角线BD 上一点,PE ⊥BC 于点E , PF ⊥CD 于点F ,连接AP , EF ,给出下列结论:①PD=2EC ;②四边形PECF 的周长为8;③△APD 一定是等腰三角形;④AP=EF ;⑤EF 的最小值为22;⑥AP ⊥EF ,其中正确结论的序号为( )A .①②④⑤⑥B .①②④⑤C .②④⑤D .②④二、填空题11.如图,在△ABC 中,∠BAC =90°,点D 是BC 的中点,点E 、F 分别是直线AB 、AC 上的动点,∠EDF =90°,M 、N 分别是EF 、AC 的中点,连结AM 、MN ,若AC =6,AB =5,则AM -MN 的最大值为________.12.在平行四边形ABCD 中,30,23,2A AD BD ∠=︒==,则平行四边形ABCD 的面积等于_____.13.如图所示,菱形ABCD ,在边AB 上有一动点E ,过菱形对角线交点O 作射线EO 与CD 边交于点F ,线段EF 的垂直平分线分别交BC 、AD 边于点G 、H ,得到四边形EGFH ,点E 在运动过程中,有如下结论:①可以得到无数个平行四边形EGFH ;②可以得到无数个矩形EGFH ;③可以得到无数个菱形EGFH ;④至少得到一个正方形EGFH .所有正确结论的序号是__.14.如图,在矩形ABCD 中,AD =2AB ,∠BAD 的平分线交BC 于点E ,DH ⊥AE 于点H ,连接BH 并延长交CD 于点F ,连接DE 交BF 于点O ,下列结论:①∠AED =∠CED ;②OE =OD ;③BH =HF ;④BC ﹣CF =2HE ;⑤AB =HF ,其中正确的有_____.15.如图,在矩形ABCD 中,AB =2,AD =3,E 为BC 边上一动点,作EF ⊥AE ,且EF =AE .连接DF ,AF .当DF ⊥EF 时,△ADF 的面积为_____.16.如图,四边形纸片ABCD 中,AB BC =, 90ABC ADC ∠=∠=︒.若该纸片的面积为10 cm 2,则对角线BD =______cm .17.如图,已知在△ABC 中,AB=AC=13,BC=10,点M 是AC 边上任意一点,连接MB ,以MB 、MC 为邻边作平行四边形MCNB ,连接MN ,则MN 的最小值是______18.已知:如图,在ABC 中,AD BC ⊥,垂足为点D ,BE AC ⊥,垂足为点E ,M 为AB 边的中点,连结ME 、MD 、ED ,设4AB =,30DAC ∠=︒则EM =______;EDM 的面积为______,19.如图,点E 、F 分别在平行四边形ABCD 边BC 和AD 上(E 、F 都不与两端点重合),连结AE 、DE 、BF 、CF ,其中AE 和BF 交于点G ,DE 和CF 交于点H .令AF n BC=,EC m BC=.若m n =,则图中有_______个平行四边形(不添加别的辅助线);若1m n +=,且四边形ABCD 的面积为28,则四边形FGEH 的面积为_______.20.定理:直角三角形斜边上的中线等于斜边的一半,即:如图1,在Rt△ABC中,∠ACB=90°,若点D是斜边AB的中点,则CD=12AB,运用:如图2,△ABC中,∠BAC=90°,AB=2,AC=3,点D是BC的中点,将△ABD沿AD翻折得到△AED连接BE,CE,DE,则CE的长为_____.三、解答题21.已知,四边形ABCD是正方形,点E是正方形ABCD所在平面内一动点(不与点D重合),AB=AE,过点B作DE的垂线交DE所在直线于F,连接CF.提出问题:当点E运动时,线段CF与线段DE之间的数量关系是否发生改变?探究问题:(1)首先考察点E的一个特殊位置:当点E与点B重合(如图①)时,点F与点B也重合.用等式表示线段CF与线段DE之间的数量关系:;(2)然后考察点E的一般位置,分两种情况:情况1:当点E是正方形ABCD内部一点(如图②)时;情况2:当点E是正方形ABCD外部一点(如图③)时.在情况1或情况2下,线段CF 与线段DE 之间的数量关系与(1)中的结论是否相同?如果都相同,请选择一种情况证明;如果只在一种情况下相同或在两种情况下都不相同,请说明理由;拓展问题:(3)连接AF ,用等式表示线段AF 、CF 、DF 三者之间的数量关系: .22.如图,ABC ∆是等腰直角三角形,AB AC =,D 是斜边BC 的中点,,E F 分别是,AB AC 边上的点,且DE DF ⊥,若12BE =,5CF =,求线段EF 的长.23.如图,在ABC ∆中,BD 平分ABC ∠交AC 于点D ,EF 垂直平分BD ,分别交AB ,BC ,BD 于点E ,F ,G ,连接DE ,DF .(1)求证:四边形BEDF 是菱形;(2)若15BDE ∠=︒,45C ∠=︒,2DE =,求CF 的长;(3)在(2)的条件下,求四边形BEDF 的面积.24.如图,点P 是正方形ABCD 内的一点,连接,CP 将线段CP 绕点C 顺时针旋转90,︒得到线段,CQ 连接,BP DQ .()1如图甲,求证:CBP CDQ ∠=∠;()2如图乙,延长BP 交直线DQ 于点E .求证:BE DQ ⊥;()3如图丙,若BCP 为等边三角形,探索线段,PD PE 之间的数量关系,并说明理由.25.已知正方形,ABCD 点F 是射线DC 上一动点(不与,C D 重合).连接AF 并延长交直线BC 于点E ,交BD 于,H 连接CH .在EF 上取一点,G 使ECG DAH ∠=∠. (1)若点F 在边CD 上,如图1,①求证:CH CG ⊥.②求证:GFC 是等腰三角形.(2)取DF 中点,M 连接MG .若3MG =,正方形边长为4,则BE = .26.如图,M 为正方形ABCD 的对角线BD 上一点.过M 作BD 的垂线交AD 于E ,连BE ,取BE 中点O .(1)如图1,连AO MO 、,试证明90AOM ︒∠=;(2)如图2,连接AM AO 、,并延长AO 交对角线BD 于点N ,试探究线段DM MN NB 、、之间的数量关系并证明;(3)如图3,延长对角线BD 至Q 延长DB 至P ,连,CP CQ 若2,9PB PQ ==,且135PCQ ︒∠=,则PC .(直接写出结果)27.如图平行四边形ABCD ,E ,F 分别是AD ,BC 上的点,且AE =CF ,EF 与AC 交于点O . (1)如图①.求证:OE =OF ;(2)如图②,将平行四边形ABCD (纸片沿直线EF 折叠,点A 落在A 1处,点B 落在点B 1处,设FB 交CD 于点G .A 1B 分别交CD ,DE 于点H ,P .请在折叠后的图形中找一条线段,使它与EP 相等,并加以证明;(3)如图③,若△ABO 是等边三角形,AB =4,点F 在BC 边上,且BF =4.则CF OF= (直接填结果).28.如图,四边形ABCD 是边长为3的正方形,点E 在边AD 所在的直线上,连接CE ,以CE 为边,作正方形CEFG (点C 、E 、F 、G 按逆时针排列),连接BF.(1)如图1,当点E 与点D 重合时,BF 的长为 ;(2)如图2,当点E 在线段AD 上时,若AE=1,求BF 的长;(提示:过点F 作BC 的垂线,交BC 的延长线于点M ,交AD 的延长线于点N.)(3)当点E 在直线AD 上时,若AE=4,请直接写出BF 的长.29.如图,四边形ABCD 为正方形.在边AD 上取一点E ,连接BE ,使60AEB ∠=︒.(1)利用尺规作图(保留作图痕迹):分别以点B 、C 为圆心,BC 长为半径作弧交正方形内部于点T ,连接BT 并延长交边AD 于点E ,则60AEB ∠=︒;(2)在前面的条件下,取BE 中点M ,过点M 的直线分别交边AB 、CD 于点P 、Q . ①当PQ BE ⊥时,求证:2BP AP =;②当PQ BE =时,延长BE ,CD 交于N 点,猜想NQ 与MQ 的数量关系,并说明理由.30.如图,在四边形OABC 是边长为4的正方形点P 为OA 边上任意一点(与点O A 、不重合),连接CP ,过点P 作PM CP ⊥,且PM CP =,过点M 作MN AO ∥,交BO 于点,N 联结BM CN 、,设OP x =.(1)当1x =时,点M 的坐标为( , )(2)设CNMB S y =四形边,求出y 与x 的函数关系式,写出函数的自变量的取值范围.(3)在x 轴正半轴上存在点Q ,使得QMN 是等腰三角形,请直接写出不少于4个符合条件的点Q 的坐标(用x 的式子表示)【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【分析】延长MN交AB延长线于点Q,由矩形的性质得出∠DMA=∠MAQ,由折叠性质得出∠DMA=∠AMQ,AN=AD=4,MN=MD=1,得出∠MAQ=∠AMQ,证出MQ=AQ,设NQ=x,则AQ=MQ=1+x,证出∠ANQ=90°,在Rt△ANQ中,由勾股定理得出方程,解方程求出NQ=7.5,AQ=8.5,即可求出△ABN的面积.【详解】解:延长MN交AB延长线于点Q,∵四边形ABCD是矩形,∴AB∥DC,∴∠DMA=∠MAQ,由折叠性质得:△ANM≌△ADM,∴∠DMA=∠AMQ,AN=AD=4,MN=MD=1,∴∠MAQ=∠AMQ,∴MQ=AQ,设NQ=x,则AQ=MQ=1+x,∵∠ANM=90°,∴∠ANQ=90°,在Rt△ANQ中,由勾股定理得:AQ2=AN2+NQ2,∴(x+1)2=42+x2,解得:x=7.5,∴NQ=7.5,AQ=8.5,∵AB=5,AQ=8.5,∴S△NAB=S△NAQ=×AN•NQ=××4×7.5=;故选:D.【点睛】本题考查折叠的性质勾股定理等知识;本题综合性强,难度较大,熟练掌握矩形和折叠的性质是解题的关键.2.C解析:C【解析】【分析】A.根据边角边”证明△BCF≌△DCE,然后利用“角边角”证明△BEP≌△DFP,再利用“边角边”证明△BCP≌△DCP全等,根据全等三角形对应角相等可得∠BCP=∠DCP;B.根据一组对边平行且相等的四边形是平行四边形可得四边形ABED为平行四边形;C.连接QD,利用“边角边”证明△BCQ和△DCQ全等,根据全等三角形的面积相等判断出S△BCQ=S△DCQ,判断出CQ将直角梯形ABCD分成的两部分面积不相等.D.根据平行四边形的对边相等可得AB=DE,再求出AB=BF,从而得到△ABF为等腰三角形;【详解】解:∵BC=CD,E、F分别是BC、CD边的中点,∴BE=CE=CF=DF,在△BCF和△DCE中,,∴△BCF≌△DCE(SAS),∴DE=BF,∠CBF=∠CDE,∠BFC=∠DEC,∴180°-∠BFC=180°-∠DEC,即∠BEP=∠DFP,在△BEP和△DFP中,,∴△BEP≌△DFP(ASA),∴BP=DP,在△BCP和△DCP中,,∴△BCP≌△DCP(SAS),∴∠BCP=∠DCP,∴CP平分∠BCD,故A选项结论正确;∵BC=2AD,E是BC的中点,∴BE=AD,又∵AD∥BC,∴四边形ABED为平行四边形,故B选项结论正确;∴AB=DE,又∵DE=BF(已证),∴AE=BF,∴△ABF为等腰三角形,故D选项结论正确;连接QD,在△BCQ和△DCQ中,,∴△BCQ≌△DCQ(SAS),∴S△BCQ=S△DCQ,∴CQ将直角梯形ABCD分成的两部分面积不相等,故C选项结论不正确.故选:C.【点睛】本题考查了直角梯形,全等三角形的判定与性质,平行四边形的判定与性质,等腰三角形的判定,熟记各图形的判定方法和性质并准确识图是解题的关键,难点在于多次证明三角形全等.3.B解析:B【解析】【分析】由菱形四边形相等、OD=OB,且每边长为6,再有∠DAB=60°,说明△DAB为等边三角形,由DH⊥AB,可得AH=HB(等腰三角形三线合一),可得OH就是AD的一半,即可完成解答。

人教版八年级数学第二学期 第二次质量检测测试卷含解析

人教版八年级数学第二学期 第二次质量检测测试卷含解析

一、选择题1.如图,将5个全等的阴影小正方形摆放得到边长为1的正方形ABCD ,中间小正方形的各边的中点恰好为另外4个小正方形的一个顶点,小正方形的边长为2a b-(a 、b 为正整数),则+a b 的值为( )A .10B .11C .12D .132.如图,点O (0,0),B (0,1)是正方形OBB 1C 的两个顶点,以它的对角线OB 1为一边作正方形OB 1B 2C 1,以正方形OB 1B 2C 1的对角线OB 2为一边作正方形OB 2B 3C 2,再以正方形OB 2B 3C 2的对角线OB 3为一边作正方形OB 3B 4C 3,…,依次进行下去,则点B 6的坐标是( )A .(42,0)B .(42,0)-C .(8,0)-D .(0,8)-3.矩形ABCD 中,AB =3,BC =4,点E 是BC 边上一点,连接AE ,把∠B 沿AE 折叠,使点B 落在点B′处,当△CEB′为直角三角形时,BE 的长为( )A .3B .32C .2或3D .3或324.如图,在平行四边形ABCD 中,120C ∠=︒,28AD AB ==,点H 、G 分别是边AD 、BC 上的动点.连接AH 、HG ,点E 为AH 的中点,点F 为GH 的中点,连接EF .则EF 的最大值与最小值的差为( )A .2B .232-C .3D .43-5.如图所示,正方形ABCD 中,E 为BC 边上一点,连接AE ,作AE 的垂直平分线交AB 于G ,交CD 于F ,若2DF =,4BG =,则AE 的长为( )A .47B .310C .10D .126.如图,在矩形ABCD 中,P 是边AD 上的动点,PE AC ⊥于E ,PF BD ⊥于F ,如果3, 4AB AD ==,那么( )A .125PE PF += B .121355PE PF <+< C .5PE PF += D .34PE PF <+<7.如图,正方形ABCD 的边长为10,8AG CH ==,6BG DH ==,连接GH ,则线段GH 的长为( )A .835B .2C .145D .1052-8.如图,在平行四边形ABCD 中,AE 平分∠BAD ,交BC 于点E 且AB =AE ,延长AB 与DE 的延长线相交于点F ,连接AC 、CF .下列结论:①△ABC ≌△EAD ;②△ABE 是等边三角形;③BF =AD ;④S △BEF =S △ABC ;⑤S △CEF =S △ABE ;其中正确的有( )A .2个B .3个C .4个D .5个9.如图,平行四边形ABCD 中,AB=18,BC =12,∠DAB =60°,E 在AB 上,且AE :EB =1:2,F 是BC 的中点,过D 分别作DP ⊥AF 于P ,DQ ⊥CE 于Q ,则下列结论正确的个数是( )(1)CE 平分∠BCD ;(2)AF=CE ;(3)连接DE 、DF ,则ADF CDE SS ∆=;(4)DP :DQ=23:13A .4个B .3个C .2个D .1个10.如图,正方形ABCD 的边长为2,Q 为CD 边上(异于C ,D ) 的一个动点,AQ 交BD 于点M .过M 作MN ⊥AQ 交BC 于点N ,作NP ⊥BD 于点P ,连接NQ ,下面结论:①AM=MN ;②MP=2;③△CNQ 的周长为3;④BD+2BP=2BM ,其中一定成立的是( )A .①②③④B .①②③C .①②④D .①④二、填空题11.如图,正方形ABCD 的边长为4,点E 为CD 边上的一个动点,以CE 为边向外作正方形ECFG ,连结BG ,点H 为BG 中点,连结EH ,则EH 的最小值为______12.如图,Rt △ABC 中,∠C=90°,AC=2,BC=5,点D 是BC 边上一点且CD=1,点P 是线段DB 上一动点,连接AP ,以AP 为斜边在AP 的下方作等腰Rt △AOP .当P 从点D 出发运动至点B 停止时,点O 的运动路径长为_____.13.如图,某景区湖中有一段“九曲桥”连接湖岸A,B两点,“九曲桥”的每一段与AC平行或BD平行,若AB=100m,∠A=∠B=60°,则此“九曲桥”的总长度为_____.14.如图,以Rt ABC的斜边AB为一边,在AB的右侧作正方形ABED,正方形对角线交于点O,连接CO,如果AC=4,CO=62,那么BC=______.15.在锐角三角形ABC中,AH是边BC的高,分别以AB,AC为边向外作正方形ABDE和正方形ACFG,连接CE,BG和EG,EG与HA的延长线交于点M,下列结论:①BG=CE;②BG⊥CE;③AM是△AEG的中线;④∠EAM=∠ABC.其中正确的是_________.16.如图,在Rt△ABC中,∠BAC=90°,AB=8,AC=6,以BC为一边作正方形BDEC设正方形的对称中心为O,连接AO,则AO=_____.17.菱形ABCD 的周长为24,∠ABC=60°,以AB 为腰在菱形外作底角为45°的等腰△ABE ,连结AC ,CE ,则△ACE 的面积为___________.18.如图,正方形ABCD 面积为1,延长DA 至点G ,使得AG AD =,以DG 为边在正方形另一侧作菱形DGFE ,其中45EFG ︒∠=,依次延长, , AB BC CD 类似以上操作再作三个形状大小都相同的菱形,形成风车状图形,依次连结点, , , ,F H M N 则四边形FHMN 的面积为___________.19.已知:如图,在ABC 中,AD BC ⊥,垂足为点D ,BE AC ⊥,垂足为点E ,M 为AB 边的中点,连结ME 、MD 、ED ,设4AB =,30DAC ∠=︒则EM =______;EDM 的面积为______,20.如图,在△ABC 中,AB =AC ,E ,F 分别是BC ,AC 的中点,以AC 为斜边作Rt △ADC ,若∠CAD =∠BAC =45°,则下列结论:①CD ∥EF ;②EF =DF ;③DE 平分∠CDF ;④∠DEC =30°;⑤AB =2CD ;其中正确的是_____(填序号)三、解答题21.如图1,AC 是平行四边形ABCD 的对角线,E 、H 分别为边BA 和边BC 延长线上的点,连接EH 交AD 、CD 于点F 、G ,且//EH AC .(1)求证:AEF CGH ∆≅∆(2)若ACD ∆是等腰直角三角形,90ACD ∠=,F 是AD 的中点,8AD =,求BE 的长:(3)在(2)的条件下,连接BD ,如图2,求证:22222()AC BD AB BC +=+22.如图,正方形ABCO 的边OA 、OC 在坐标轴上,点B 坐标为(6,6),将正方形ABCO 绕点C 逆时针旋转角度α(0°<α<90°),得到正方形CDEF ,ED 交线段AB 于点G ,ED 的延长线交线段OA 于点H ,连结CH 、CG .(1)求证:CG 平分∠DCB ;(2)在正方形ABCO 绕点C 逆时针旋转的过程中,求线段HG 、OH 、BG 之间的数量关系;(3)连结BD 、DA 、AE 、EB ,在旋转的过程中,四边形AEBD 是否能在点G 满足一定的条件下成为矩形?若能,试求出直线DE 的解析式;若不能,请说明理由.23.如图,点P 是正方形ABCD 内的一点,连接,CP 将线段CP 绕点C 顺时针旋转90,︒得到线段,CQ 连接,BP DQ .()1如图甲,求证:CBP CDQ ∠=∠;()2如图乙,延长BP 交直线DQ 于点E .求证:BE DQ ⊥;()3如图丙,若BCP 为等边三角形,探索线段,PD PE 之间的数量关系,并说明理由.24.已知正方形,ABCD 点F 是射线DC 上一动点(不与,C D 重合).连接AF 并延长交直线BC 于点E ,交BD 于,H 连接CH .在EF 上取一点,G 使ECG DAH ∠=∠. (1)若点F 在边CD 上,如图1,①求证:CH CG ⊥.②求证:GFC 是等腰三角形.(2)取DF 中点,M 连接MG .若3MG =,正方形边长为4,则BE = .25.如图所示,四边形ABCD 是正方形, M 是AB 延长线上一点.直角三角尺的一条直角边经过点D ,且直角顶点E 在AB 边上滑动(点E 不与点A B 、重合),另一直角边与CBM ∠的平分线BF 相交于点F .(1)求证: ADE FEM ∠=∠;(2)如图(1),当点E 在AB 边的中点位置时,猜想DE 与EF 的数量关系,并证明你的猜想;(3)如图(2),当点E 在AB 边(除两端点)上的任意位置时,猜想此时DE 与EF 有怎样的数量关系,并证明你的猜想.26.感知:如图①,在正方形ABCD 中,E 是AB 一点,F 是AD 延长线上一点,且DF BE =,求证:CE CF =;拓展:在图①中,若G 在AD ,且45GCE ∠︒=,则GE BE GD +=成立吗?为什么? 运用:如图②在四边形ABCD 中,()//AD BC BC AD >,90A B ∠∠︒==,16AB BC ==,E 是AB 上一点,且45DCE ∠︒=,4BE =,求DE 的长.27.如图1,在正方形ABCD (正方形四边相等,四个角均为直角)中,AB =8,P 为线段BC 上一点,连接AP ,过点B 作BQ ⊥AP ,交CD 于点Q ,将△BQC 沿BQ 所在的直线对折得到△BQC ′,延长QC ′交AD 于点N .(1)求证:BP =CQ ;(2)若BP =13PC ,求AN 的长; (3)如图2,延长QN 交BA 的延长线于点M ,若BP =x (0<x <8),△BMC '的面积为S ,求S 与x 之间的函数关系式.28.阅读下列材料,并解决问题:如图1,在Rt ABC ∆中,90C ∠=︒,8AC =,6BC =,点D 为AC 边上的动点(不与A 、C 重合),以AD ,BD 为边构造ADBE ,求对角线DE 的最小值及此时AD AC 的值是多少.在解决这个问题时,小红画出了一个以AD ,BD 为边的ADBE (如图2),设平行四边形对角线的交点为O ,则有AO BO =.于是得出当OD AC ⊥时,OD 最短,此时DE 取最小值,得出DE 的最小值为6.参考小红的做法,解决以下问题:(1)继续完成阅读材料中的问题:当DE 的长度最小时,AD AC=_______; (2)如图3,延长DA 到点F ,使AF DA =.以DF ,DB 为边作FDBE ,求对角线DE 的最小值及此时AD AC的值.29.如图①,在ABC 中,AB AC =,过AB 上一点D 作//DE AC 交BC 于点E ,以E 为顶点,ED 为一边,作DEF A ∠=∠,另一边EF 交AC 于点F .(1)求证:四边形ADEF 为平行四边形;(2)当点D 为AB 中点时,ADEF 的形状为 ;(3)延长图①中的DE 到点,G 使,EG DE =连接,,,AE AG FG 得到图②,若,AD AG =判断四边形AEGF 的形状,并说明理由.30.已知三角形纸片ABC 的面积为48,BC 的长为8.按下列步骤将三角形纸片ABC 进行裁剪和拼图:第一步:如图1,沿三角形ABC 的中位线DE 将纸片剪成两部分.在线段DE 上任意..取一点F ,在线段BC 上任意..取一点H ,沿FH 将四边形纸片DBCE 剪成两部分; 第二步:如图2,将FH 左侧纸片绕点D 旋转180°,使线段DB 与DA 重合;将FH 右侧纸片绕点E 旋转180°,使线段EC 与EA 重合,再与三角形纸片ADE 拼成一个与三角形纸片ABC 面积相等的四边形纸片.图1 图2(1)当点F ,H 在如图2所示的位置时,请按照第二步的要求,在图2中补全拼接成的四边形;(2)在按以上步骤拼成的所有四边形纸片中,其周长的最小值为_________.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】通过小正方形的边长表示出大正方形的边长,再利用a 、b 为正整数的条件分析求解.【详解】解:由题意可知,212a a AD b b=⨯+⨯=∴(42)(42a a b ---=∵a 、b 都是正整数∴4a - =0,4a-2=2b∴a=4,b=7∴a+b=11故选:B.【点睛】本题考查了正方形的性质以及有理数、无理数的性质,表示出大正方形的边长利用有理数、无理数的性质求出a 、b 是关键.2.C解析:C【解析】【分析】根据已知条件如图可得到B 1 ,B 2所在的正方形的对角线长为2,B 3所在的正方形的对角线长为3,依据规律可得B 6所在的正方形的对角线长为6=8,再根据B 6在x 轴的负半轴,就可得到B 6的坐标。

2020-2021学年度八年级下学期第二阶段考试数学试题含答案

2020-2021学年度八年级下学期第二阶段考试数学试题含答案

(全卷满分120分,考试时间100分钟)一、选择题(本大题5小题,每小题3分,共15分) 1、式子①x2 ;②5y x +;③a-21;④1-πx中,是分式的有 ( )A 、①②B 、③④C 、①③D 、①②③④2、如图是我们学过的反比例函数图象,它的函数解析式可能是( ) A 、2x y = B 、xy 4= C 、xy 3-= D 、x 213、下列各组数中,以a ,b ,c 为边长三角形不能组成直角三角形的是( )A 、a=1.5,b=2,c=3B 、a=5,b=12,c=13C 、a=6,b=8,c=10D 、a=3,b=4,c=54、下列条件不能判定四边形ABCD 为平行四边形的是( ) A 、AB=CD ,AD=BC B 、AB ∥CD ,AB=CD C 、AB=CD ,AD ∥BC D 、AB ∥CD ,AD ∥BC5、如图,四边形ABCD 是正方形,延长BC 至点E ,使CE=CA ,连接AE 交CD 于点F则∠AFC 的度数是( ).A 、150°B 、125°C 、135°D 、112.5° 二、填空题(本大题5小题,每小题4分,共20分) 6、当x=_____________时,分式13-+x x 的值等于07、若反比例函数xk y -=2的图象在第一、三象限,则k 的取值范围是____________8、木工做一个长方形桌面,量得桌面的长为15cm ,宽为8cm ,对角线长17cm ,则这个桌面_______(填“合格”或“不合格”) 9、在四边形ABCD 中AB ∥DC ,AD ∥BC ,如果∠B=30°,那么∠D=_____度10、如图,菱形ABCD 的对角线长分别为a 、b ,以菱形ABCD 各边的中点为顶点作矩形A1B1C1D1,然后再以矩形A1B1C1D1各边的中点为顶点作菱形A2B2C2D2,…,如此下去.则得到四边形A2009B2009C2009D2009的面积用含a 、b 的代数式表示为 _________ .三、解答题(本大题5小题,每小题6分,共30分)11、计算:323)2(ab ÷02)32(a b ·33)(-b 12、解方程:x x x --=-212113、如果函数3||-=k kx y 的图象是双曲线,且在第二、四象限内,求第 2 页 共 6 页k的值.14、如图,矩形ABCD中,AC与BD交于O点,AM∥BD,DM∥AC,AM、DM相交于点M,求证:四边形AODM是菱形15、如图,已知在△ABC中,已知∠B=45°,∠C=30°,AB=2,求AC的长.四、解答题(本大题4小题,每小题7分,共28分)16、农机厂职工到距该厂15千米的向阳村检修农机,一部分人骑自行车先走,过了40分钟,其余人乘汽车去,结果他们同时到达。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、选择题 1.已知PA 2PB 4==,,以AB 为一边作正方形ABCD ,使P 、D 两点落在直线AB 的两侧.当∠APB=45°时,PD 的长是( );A .25B .26C .32D .52.如图, ABCD 为正方形, O 为 AC 、 BD 的交点,在RT DCE 中,DEC ∠= 90︒, DCE ∠= 30︒,若OE =62+,则正方形的面积为( )A .5B .4C .3D .23.如图,矩形ABCD 中,O 为AC 中点,过点O 的直线分别与AB ,CD 交于点E ,F ,连结BF ,交AC 于点M ,连结DE ,BO .若60BOC ∠=︒,FO FC =,则下列结论:①AE CF =;②BF 垂直平分线段OC ;③EOB CMB ∆∆≌;④四边形是BFDE 菱形.其中正确结论的个数是( )A .1个B .2个C .3个D .4个4.如图,正方形纸片ABCD ,P 为正方形AD 边上的一点(不与点A ,点D 重合).将正方形纸片折叠,使点B 落在点P 处,点C 落在点G 处,PG 交DC 于点H ,折痕为EF ,连接,,BP BH BH 交EF 于点M ,连接PM .下列结论:①BE PE =;②BP EF =;③PB 平分APG ∠;④PH AP HC =+;⑤MH MF =,其中正确结论的个数是( )A .5B .4C .3D .25.如图,在正方形ABCD 中,点G 是对角线AC 上一点,且CG =CB ,连接BG ,取BG 上任意一点H ,分别作HM ⊥AC 于点M ,HN ⊥BC 于点N ,若正方形的边长为2,则HM +HN 的值为( )A .2B .1C .3D .226.如图,在Rt ABC 中,90ACB ∠=︒,若CD ,CM 分别是斜边AB 上的高和中线,则下列结论中错误的是( )A .MCB MCA ∠=∠B .MCB ACD ∠=∠C .B ACD ∠=∠D .MCA BCD ∠=∠ 7.如图,正方形ABCD 的边长为5,4AG CH ==,3BG DH ==,连接GH ,则线段GH 的长为( )A .435B .75 C .2 D .52-8.如图,平行四边形ABCD 的对角线AC ,BD 相交于点O ,CE 平分DCB ∠交BD 于点F ,且60ABC ∠=︒,2AB BC =,连接OE ,下列结论:①30ACD ∠=︒;②·ABCD S AC BC =;③:1:4OE AC =.其中正确的有( )A .0个B .1个C .2个D .3个9.如图,菱形ABCD 中,过顶点C 作CE BC ⊥交对角线BD 于E 点,已知134A ∠=︒,则BEC ∠的大小为( )A .23︒B .28︒C .62︒D .67︒10.如图,ABCD 的对角线AC 、BD 相较于点O ,AE 平分∠BAD 交BC 于点E ,∠ADC =60°,AB =12BC ,连接OE ,下列结论:①∠CAD =30°;②·ABCD A S AB C =;③OA =OB ;④OE =14B C .其中成立的个数是( )A .1B .2C .3D .4二、填空题11.如图,在平面直角坐标系中,矩形ABCO 的边CO 、OA 分别在x 轴、y 轴上,点E 在边BC 上,将该矩形沿AE 折叠,点B 恰好落在边OC 上的F 处.若OA =8,CF =4,则点E 的坐标是_____.12.如图,在矩形ABCD 中,4AB =,2AD =,E 为边CD 的中点,点P 在线段AB 上运动,F 是CP 的中点,则CEF ∆的周长的最小值是____________.13.如图,两张等宽的纸条交叉叠放在一起,若重合部分构成的四边形ABCD 中,3AB =,2AC =,则BD 的长为_______________.14.如图,长方形纸片ABCD 中,AB =6 cm,BC =8 cm 点E 是BC 边上一点,连接AE 并将△AEB 沿AE 折叠, 得到△AEB′,以C ,E ,B′为顶点的三角形是直角三角形时,BE 的长为___________cm.15.在锐角三角形ABC 中,AH 是边BC 的高,分别以AB ,AC 为边向外作正方形ABDE 和正方形ACFG ,连接CE ,BG 和EG ,EG 与HA 的延长线交于点M ,下列结论:①BG=CE ;②BG ⊥CE ;③AM 是△AEG 的中线;④∠EAM=∠ABC .其中正确的是_________.16.如图,有一张矩形纸条ABCD ,AB =10cm ,BC =3cm ,点M ,N 分别在边AB ,CD 上,CN =1cm .现将四边形BCNM 沿MN 折叠,使点B ,C 分别落在点B ',C '上.在点M 从点A 运动到点B 的过程中,若边MB '与边CD 交于点E ,则点E 相应运动的路径长为_____cm .17.如图,在菱形ABCD 中,AC 交BD 于P ,E 为BC 上一点,AE 交BD 于F ,若AB=AE ,EAD 2BAE ∠∠=,则下列结论:①AF=AP ;②AE=FD ;③BE=AF .正确的是______(填序号).18.已知:如图,在长方形ABCD 中,4AB =,6AD =.延长BC 到点E ,使2CE =,连接DE ,动点P 从点B 出发,以每秒2个单位的速度沿BC CD DA --向终点A 运动,设点P 的运动时间为t 秒,当t 的值为_____秒时,ABP ∆和DCE ∆全等.19.如图,矩形ABCD 中,CE CB BE ==,延长BE 交AD 于点M ,延长CE 交AD 于点F ,过点E 作EN BE ⊥,交BA 的延长线于点N ,23FE AN ==,,则BC =_________.20.如图,在Rt △ABC 中,∠ACB =90°,AC =8,BC =6,点D 为平面内动点,且满足AD =4,连接BD ,取BD 的中点E ,连接CE ,则CE 的最大值为_____.三、解答题21.如图,在矩形ABCD 中,点E 是AD 上的一点(不与点A ,D 重合),ABE ∆沿BE 折叠,得BEF ,点A 的对称点为点F .(1)当AB AD =时,点F 会落在CE 上吗?请说明理由.(2)设()01AB m m AD =<<,且点F 恰好落在CE 上. ①求证:CF DE =.②若AE n AD=,用等式表示m n ,的关系. 22.如下图1,在平面直角坐标系中xoy 中,将一个含30的直角三角板如图放置,直角顶点与原点重合,若点A 的坐标为()1,0-,30ABO ∠=︒.(1)旋转操作:如下图2,将此直角三角板绕点O 顺时针旋转30时,则点B 的坐标为 .(2)问题探究:在图2的基础上继续将直角三角板绕点O 顺时针60︒,如图3,在AB 边上的上方以AB 为边作等边ABC ,问:是否存在这样的点D ,使得以点A 、B 、C 、D 四点为顶点的四边形构成为菱形,若存在,请直接写出点D 所有可能的坐标;若不存在,请说明理由.(3)动点分析:在图3的基础上,过点O 作OP AB ⊥于点P ,如图4,若点F 是边OB 的中点,点M 是射线PF 上的一个动点,当OMB △为直角三角形时,求OM 的长.23.正方形ABCD 中,对角线AC 与BD 交于点O ,点P 是正方形ABCD 对角线BD 上的一个动点(点P 不与点B ,O ,D 重合),连接CP 并延长,分别过点D ,B 向射线作垂线,垂足分别为点M ,N .(1)补全图形,并求证:DM =CN ;(2)连接OM ,ON ,判断OMN 的形状并证明.24.如图,在长方形ABCD 中,8,6AB AD ==. 动点P Q 、分别从点、D A 同时出发向点C B 、运动,点P 的运动速度为每秒2个单位,点Q 的运动速度为每秒1个单位,当点P 运动到点C 时,两个点都停止运动,设运动的时间为()t s .(1)请用含t 的式子表示线段PC BQ 、的长,则PC ________,BQ =________. (2)在运动过程中,若存在某时刻使得BPQ ∆是等腰三角形,求相应t 的值.25.如图平行四边形ABCD ,E ,F 分别是AD ,BC 上的点,且AE =CF ,EF 与AC 交于点O . (1)如图①.求证:OE =OF ;(2)如图②,将平行四边形ABCD (纸片沿直线EF 折叠,点A 落在A 1处,点B 落在点B 1处,设FB 交CD 于点G .A 1B 分别交CD ,DE 于点H ,P .请在折叠后的图形中找一条线段,使它与EP 相等,并加以证明;(3)如图③,若△ABO 是等边三角形,AB =4,点F 在BC 边上,且BF =4.则CF OF= (直接填结果).26.已知在平行四边形ABCD 中,AB BC ≠,将ABC 沿直线AC 翻折,点B 落在点尽处,AD 与CE 相交于点O ,联结DE .(1)如图1,求证://AC DE ;(2)如图2,如果90B ∠=︒,3AB =,6=BC ,求OAC 的面积;(3)如果30B ∠=︒,23AB =,当AED 是直角三角形时,求BC 的长.27.如图1,在正方形ABCD (正方形四边相等,四个角均为直角)中,AB =8,P 为线段BC 上一点,连接AP ,过点B 作BQ ⊥AP ,交CD 于点Q ,将△BQC 沿BQ 所在的直线对折得到△BQC ′,延长QC ′交AD 于点N .(1)求证:BP =CQ ;(2)若BP =13PC ,求AN 的长; (3)如图2,延长QN 交BA 的延长线于点M ,若BP =x (0<x <8),△BMC '的面积为S ,求S 与x 之间的函数关系式.28.已知E ,F 分别为正方形ABCD 的边BC ,CD 上的点,AF ,DE 相交于点G ,当E ,F 分别为边BC ,CD 的中点时,有:①AF=DE ;②AF ⊥DE 成立.试探究下列问题:(1)如图1,若点E 不是边BC 的中点,F 不是边CD 的中点,且CE=DF ,上述结论①,②是否仍然成立?(请直接回答“成立”或“不成立”),不需要证明)(2)如图2,若点E,F分别在CB的延长线和DC的延长线上,且CE=DF,此时,上述结论①,②是否仍然成立?若成立,请写出证明过程,若不成立,请说明理由;(3)如图3,在(2)的基础上,连接AE和BF,若点M,N,P,Q分别为AE,EF,FD,AD的中点,请判断四边形MNPQ是“矩形、菱形、正方形”中的哪一种,并证明你的结论.29.如图,在平行四边形 ABCD中,AD=30 ,CD=10,F是BC 的中点,P 以每秒1 个单位长→→→路径以每秒3个度的速度从 A向 D运动,到D点后停止运动;Q沿着A B C D单位长度的速度运动,到D点后停止运动.已知动点 P,Q 同时出发,当其中一点停止后,另一点也停止运动.设运动时间为 t秒,问:(1)经过几秒,以 A,Q ,F ,P 为顶点的四边形是平行四边形(2)经过几秒,以A ,Q ,F , P为顶点的四边形的面积是平行四边形 ABCD面积的一半?30.如图,在长方形ABCD中,AB=CD=6cm,BC=10cm,点P从点B出发,以2cm/秒的速度沿BC向点C运动,设点P的运动时间为t秒:(1)PC=cm.(用t的代数式表示)(2)当t为何值时,△ABP≌△DCP?(3)当点P从点B开始运动,同时,点Q从点C出发,以vcm/秒的速度沿CD向点D运动,是否存在这样v的值,使得△ABP与△PQC全等?若存在,请求出v的值;若不存在,请说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【解析】【分析】过P作PB的垂线,过A作PA的垂线,两条垂线相于与E,连接BE,由∠APB=45°可得∠EPA=45°,可得△PAE是等腰直角三角形,即可求出PE的长,根据角的和差关系可得∠EAB=∠PAD,利用SAS可证明△PAD≌△EAB,可得BE=PD,利用勾股定理求出BE的长即可得PD的长.【详解】过P作PB的垂线,过A作PA的垂线,两条垂线相交与E,连接BE,∵∠APB=45°,EP⊥PB,∴∠EPA=45°,∵EA⊥PA,∴△PAE是等腰直角三角形,∴PA=AE,PE=2PA=2,∵四边形ABCD是正方形,∴∠EAP=∠DAB=90°,∴∠EAP+∠EAD=∠DAB+∠EAD,即∠PAD=∠EAB,又∵AD=AB,PA=AE,∴△PAD≌△EAB,∴PD=BE=22PE PB+=2224+=25,故选A.【点睛】本题考查正方形的性质、全等三角形的判定与性质、等腰直角三角形的判定与性质及勾股定理,熟练掌握相关性质并正确作出辅助线是解题关键.2.B解析:B【解析】【分析】过点O作OM⊥CE于M,作ON⊥DE交ED的延长线于N,判断出四边形OMEN是矩形,根据矩形的性质可得∠MON=90°,再求出∠COM=∠DON,根据正方形的性质可得OC=OD,然后利用“角角边”证明△COM和△DON全等,根据全等三角形对应边相等可得OM=ON,然后判断出四边形OMEN是正方形,设正方形ABCD的边长为2a,根据直角三角形30°角所对的直角边等于斜边的一半可得DE=12CD,再利用勾股定理列式求出CE,根据正方形的性质求出2a,然后利用四边形OCED的面积列出方程求出2a,再根据正方形的面积公式列式计算即可得解.【详解】解:如图,过点O作OM⊥CE于M,作ON⊥DE交ED的延长线于N,∵∠CED=90°,∴四边形OMEN 是矩形,∴∠MON=90°,∵∠COM+∠DOM=∠DON+∠DOM ,∴∠COM=∠DON ,∵四边形ABCD 是正方形,∴OC=OD ,在△COM 和△DON 中,==CMO=90COM DON N OC OD ∠∠⎧⎪∠∠⎨⎪=⎩,∴△COM ≌△DON (AAS ),∴OM=ON ,∴四边形OMEN 是正方形,设正方形ABCD 的边长为2a ,则222a a = ∵∠CED=90°,∠DCE=30°,∴DE=12CD=a , 由勾股定理得,2222(2)3CD DE a a a -=-= ,∴四边形OCED 的面积=2111623(2)(2)()222a a a a ++=⨯, 解得21a =,所以,正方形ABCD 的面积=22(2)4414a a ==⨯=.故选B .【点睛】本题考查了正方形的性质和判定,全等三角形的判定与性质,勾股定理,直角三角形30°角所对的直角边等于斜边的一半的性质,作辅助线构造出全等三角形是解题的关键,也是本题的难点. 3.C解析:C【分析】通过证△AEO ≌CFO 可判断①;利用矩形的性质证△OCB 是正三角形,可得②;因OB≠MB ,得到③错误;通过证△EOB ≌△FCB 得到EB=FB ,从而证④.【详解】∵四边形ABCD 是矩形∴AB ∥DC,AO=OC∴∠AEO=∠CFO,∠EAO=∠FCO∴△AEO ≌CFO(AAS)∴AE=FC ,①正确∵四边形ABCD 是矩形∴OC=OB∵∠BOC=60°∴△OCB 是正三角形,∴OB=OC∵FO=FC∴FB 是线段OC 的垂直平分线,②正确∵BM ⊥OC ,∴△OMB 是直角三角形,∴OB >BM∴EOB CMB ∆∆≌是错误的,即③错误∵四边形ABCD 是矩形∴EB ∥DF ,AB=DC∵AE=FC∴EB=DF∴四边形EBFD 是平行四边形∵△AEO ≌△CFO ,OF=FC ,∴AE=EO=OF=FC∵△OBC 是正三角形,∴∠BOC=60°=∠BCO ,BC=BO∴∠FCO=30°,∴∠FOC=30°∴∠FOB=30°+60°=90°∴∠EOB=90°=∠FCB∴△EOB ≌△FCB(SAS)∴EB=FB∴平行四边形EBFD 是菱形,④正确故选:C【点睛】本题考查矩形的性质和证明,解题关键是证明△AOE ≌△COF 和证明△BOC 是正三角形.4.B解析:B【分析】①③利用正方形的性质、翻折不变性即可解决问题;②构造全等三角形即可解决问题;④如图2,过B 作BQ ⊥PH ,垂足为Q .证明△ABP ≌△QBP (AAS ),以及△BCH ≌△BQH 即可判断;⑤利用特殊位置,判定结论即可;【详解】解:根据翻折不变性可知:PE=BE,故①正确;∴∠EBP=∠EPB.又∵∠EPH=∠EBC=90°,∴∠EPH−∠EPB=∠EBC−∠EBP.即∠PBC=∠BPH.又∵AD∥BC,∴∠APB=∠PBC.,故③正确;∴∠APB=∠BPH,即PB平分APG如图1中,作FK⊥AB于K.设EF交BP于O.∵∠FKB=∠KBC=∠C=90°,∴四边形BCFK是矩形,∴KF=BC=AB,∵EF⊥PB,∴∠BOE=90°,∵∠ABP+∠BEO=90°,∠BEO+∠EFK=90°,∴∠ABP=∠EFK,∵∠A=∠EKF=90°,∴△ABP≌△KFE(ASA),∴EF=BP,故②正确,如图2,过B作BQ⊥PH,垂足为Q.由(1)知∠APB =∠BPH ,在△ABP 和△QBP 中,∠APB =∠BPH ,∠A =∠BQP ,BP =BP ,∴△ABP ≌△QBP (AAS ).∴AP =QP ,AB =BQ .又∵AB =BC ,∴BC =BQ .又∵∠C =∠BQH =90°,BH =BH ,∴△BCH ≌△BQH (HL )∴QH=HC ,∴PH=PQ+QH=AP+HC ,故④正确;当点P 与A 重合时,显然MH >MF ,故⑤错误,故选:B .【点睛】本题考查正方形的性质、翻折变换、全等三角形的判定和性质、等腰直角三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题属于中考选择题中的压轴题.5.A解析:A【分析】连接CH ,过G 点作GP ⊥BC 于点P ,根据BHC GHC BCG S S S ∆∆∆+=将HM HN +转化为GP 的长,再由等腰直角三角形的性质进行求解即可得解.【详解】连接CH ,过G 点作GP ⊥BC 于点P ,如下图所示:由题可知:12HBC S BC HN ∆=⨯,12HGC S GC HM ∆=⨯,12BGC S BC GP ∆=⨯ ∵BHC GHC BCG S S S ∆∆∆+= ∴111222BC HN GC HM BC GP ⨯+⨯=⨯ ∵CG =CB ,∴HN HM GP += ∵四边形ABCD 是正方形,正方形的边长为2∴45BCA ∠=︒,22AC =∴222CB CG AC === ∵GP ⊥BC∴GPC ∆是等腰直角三角形 ∴222GP ==∴2HN HM +=,故选:A.【点睛】 本题主要考查了三角形的面积求法,正方形的性质,等腰直角三角形的性质等,熟练掌握相关知识点是解决本题的关键.6.A解析:A【分析】根据三角形的内角和定理,直角三角形的性质及判定,等腰三角形的性质,等腰三角形的判定逐项判断即可.【详解】解:A.不能推出MCB MCA ∠=∠,故本选项符合题意;B. ∵∠MCB=∠B=∠ACD ,故本选项不符合题意;C.∵∠ACB=90°,CD 是高,∴∠A+∠ACD=90°,∠A+∠B=90°,∴∠ACD=∠B ,故本选项不符合题意;D. ∵∠ACB=90°,CM 是斜边的中线,∴CM=BM ,∴∠MCB=∠B=∠ACD ,∴∠ACM=∠BCD ,故本选项不符合题意;故选:A .【点睛】本题主要考查了对三角形的内角和定理,直角三角形的性质及判定,等腰三角形的性质,等腰三角形的判定等考点的理解.7.C解析:C【分析】延长BG 交CH 于点E ,根据正方形的性质证明△ABG ≌△CDH ≌△BCE ,可得GE=BE-BG=1,HE=CH-CE=1,∠HEG=90°,由勾股定理可得GH 的长.【详解】解:如图,延长BG 交CH 于点E ,在△ABG 和△CDH 中,AB CD AG CH BG DH =⎧⎪=⎨⎪=⎩,∴△ABG ≌△CDH (SSS ),AG 2+BG 2=AB 2,∴∠1=∠5,∠2=∠6,∠AGB=∠CHD=90°,∴∠1+∠2=90°,∠5+∠6=90°,又∵∠2+∠3=90°,∠4+∠5=90°,∴∠1=∠3=∠5,∠2=∠4=∠6,在△ABG 和△BCE 中,1324AB BC ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△ABG ≌△BCE (ASA ),∴BE=AG=4,CE=BG=3,∠BEC=∠AGB=90°,∴GE=BE -BG=4-3=1,同理可得:HE=1,在Rt △GHE 中,=故选:C.【点睛】本题主要考查正方形的性质、全等三角形的判定与性质、勾股定理及其逆定理的综合运用,通过证三角形全等得出△GHE 为等腰直角三角形是解题的关键.8.C解析:C【分析】由四边形ABCD 是平行四边形,得到∠ABC=∠ADC=60°,∠BAD=120°,根据角平分线的定义得到∠DCE=∠BCE=60°推出△CBE 是等边三角形,证得∠ACB=90°,求出∠ACD=∠CAB=30°,故①正确;由AC ⊥BC ,得到S ▱ABCD =AC •BC ,故②正确,根据直角三角形的性质得到AC =,根据三角形的中位线的性质得到OE=12BC ,于是得到OE :∶6;故③错误;【详解】解:∵四边形ABCD 是平行四边形, 60ABC ADC ∴∠=∠=︒,120BCD ∠=︒∵CE 平分BCD ∠交AB 于点E ,∴60DCE BCE ∠=∠=︒,∴CBE △是等边三角形,∴BE BC CE ==.∵2AB BC =,∴AE BE CE ==,∴90ACB ∠=︒,∴30ACD CAB ∠=∠=︒,故①正确;∵AC BC ⊥,∴ABCD S AC BC =⋅,故②正确;在Rt ACB △中,90ACB ∠=︒,30CAB ∠=︒,∴AC =.AO OC =,AE BE =, ∴1OE BC 2=, 1::62OE AC BC ∴==,故③错误. 故选:C .【点睛】此题考查了平行四边形的性质、三角形中位线的性质以及等边三角形的判定与性质.注意证得△BCE 是等边三角形,OE 是△ABC 的中位线是关键.9.D解析:D【分析】先说明ABD=∠ADC=∠CBD ,然后再利用三角形内角和180°求出即可∠CBD 度数,最后再用直角三角形的内角和定理解答即可.【详解】解:∵菱形ABCD∴AB=AD∴∠ABD=∠ADC∴∠ABD=∠CBD又∵134A ∠=︒∴∠CBD=∠BDC=∠ABD=∠ADB=12(180°-134°)=23° ∴BEC ∠=90°-23°=67°故答案为D.【点睛】本题主要考查了菱形的性质,解题的关键是掌握菱形的对角线平分每一组对角和三角形内角和定理. 10.C解析:C【分析】①先根据平行四边形的性质可得120,60,BAD ABC OA OC ∠=︒∠=︒=,再根据角平分线的定义可得60=︒∠BAE ,然后根据等边三角形的判定与性质可得AB AE BE ==,60AEB ∠=︒,又根据等腰三角形的性质、三角形的外角性质可得30ACE CAE ∠=∠=︒,最后根据角的和差即可得;②由①已推得90BAC ∠=︒,再根据2ABCD ABC S S =即可得;③在Rt AOB 中,根据直角边小于斜边即可得;④在ABC 中,利用三角形中位线定理可得12OE AB =,再根据12AB BC =即可得. 【详解】 四边形ABCD 是平行四边形,60ADC ∠=︒,120,60,BAD ABC OA OC ∴∠=︒∠=︒=,AE ∵平分BAD ∠,1602BAE BAD ∴∠=∠=︒, ABE ∴是等边三角形,,60AB AE BE AEB ∴==∠=︒, 12AB BC =, AB AE BE CE ∴===,ACE CAE ∴∠=∠,60AEB ACE CAE ∠=∠+∠=︒,30ACE CAE ∴∠=∠=︒,90,30BAC BAE CAE CAD BAD BAC ∴∠=∠+∠=︒∠=∠-∠=︒,则结论①成立, AB AC ∴⊥,122··2ABCD ABC AB AC AB AC S S ==⨯=∴,则结论②成立, 在Rt AOB 中,OA 是直角边,OB 是斜边, OA OB ∴<,则结论③不成立,,OA OC BE CE ==,OE ∴是ABC 的中位线,11112224OE AB BC BC ∴==⨯=,则结论④成立, 综上,结论成立的个数是3个,故选:C .【点睛】本题考查了平行四边形的性质、三角形中位线定理、等边三角形的判定与性质等知识点,熟练掌握并灵活运用各判定定理与性质是解题关键.二、填空题11.(-10,3)【解析】试题分析:根据题意可知△CEF∽△OFA,可根据相似三角形的性质对应边成比例,可求得OF=2CE ,设CE=x ,则BE=8-x ,然后根据折叠的性质,可得EF=8-x ,根据勾股定理可得2224(8)x x +=-,解得x =3,则OF=6,所以OC=10,由此可得点E 的坐标为(-10,3). 故答案为:(-10,3)12.2【分析】由题意根据三角形的中位线的性质得到EF=12PD ,得到C △CEF =CE+CF+EF=CE+12(CP+PD )=12(CD+PC+PD )=12C △CDP ,当△CDP 的周长最小时,△CEF 的周长最小;即PC+PD 的值最小时,△CEF 的周长最小;并作D 关于AB 的对称点D ′,连接CD ′交AB 于P ,进而分析即可得到结论.【详解】解:∵E为CD中点,F为CP中点,∴EF=12 PD,∴C△CEF=CE+CF+EF=CE+12(CP+PD)=12(CD+PC+PD)=12C△CDP∴当△CDP的周长最小时,△CEF的周长最小;即PC+PD的值最小时,△CEF的周长最小;如图,作D关于AB的对称点T,连接CT,则PD=PT,∵AD=AT=BC=2,CD=4,∠CDT=90°,∴22224442CT CD DT++=∵△CDP的周长=CD+DP+PC=CD+PT+PC,∵PT+PC≥CT,∴PT+PC≥42∴PT+PC的最小值为2,∴△PDC的最小值为4+42∴C△CEF=12C△CDP=222.故答案为:222.【点睛】本题考查轴对称-最短距离问题以及三角形的周长的计算等知识,解题的关键是学会利用轴对称解决最值问题.13.2【分析】首先由对边分别平行可判断四边形ABCD为平行四边形,连接AC和BD,过A点分别作DC 和BC的垂线,垂足分别为F和E,通过证明△ADF≌△ABC来证明四边形ABCD为菱形,从而得到AC与BD相互垂直平分,再利用勾股定理求得BD长度.【详解】解:连接AC和BD,其交点为O,过A点分别作DC和BC的垂线,垂足分别为F和E,∵AB ∥CD ,AD ∥BC ,∴四边形ABCD 为平行四边形,∴∠ADF=∠ABE ,∵两纸条宽度相同,∴AF=AE ,∵90ADF ABE AFD AEB AF AE ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩∴△ADF ≌△ABE ,∴AD=AB ,∴四边形ABCD 为菱形,∴AC 与BD 相互垂直平分,∴BD=22242AB AO -=故本题答案为:42【点睛】本题考察了菱形的相关性质,综合运用了三角形全等和勾股定理,注意辅助线的构造一定要从相关条件以及可运用的证明工具入手,不要盲目作辅助线.14.3或6【详解】①∠B′EC=90°时,如图1,∠BEB′=90°,由翻折的性质得∠AEB=∠AEB′=12×90°=45°, ∴△ABE 是等腰直角三角形,∴BE=AB=6cm ;②∠EB′C=90°时,如图2, 由翻折的性质∠AB′E=∠B=90°,∴A、B′、C在同一直线上,AB′=AB,BE=B′E,由勾股定理得,AC=2222+=+=10cm,68AB BC∴B′C=10-6=4cm,设BE=B′E=x,则EC=8-x,在Rt△B′EC中,B′E2+B′C2=EC2,即x2+42=(8-x)2,解得x=3,即BE=3cm,综上所述,BE的长为3或6cm.故答案为3或6.15.①②③④【分析】根据正方形的性质和SAS可证明△ABG≌△AEC,然后根据全等三角形的性质即可判断①;设BG、CE相交于点N,AC、BG相交于点K,如图1,根据全等三角形对应角相等可得∠ACE=∠AGB,然后根据三角形的内角和定理可得∠CNG=∠CAG=90°,于是可判断②;过点E作EP⊥HA的延长线于P,过点G作GQ⊥AM于Q,如图2,根据余角的性质即可判断④;利用AAS即可证明△ABH≌△EAP,可得EP=AH,同理可证GQ=AH,从而得到EP =GQ,再利用AAS可证明△EPM≌△GQM,可得EM=GM,从而可判断③,于是可得答案.【详解】解:在正方形ABDE和ACFG中,AB=AE,AC=AG,∠BAE=∠CAG=90°,∴∠BAE+∠BAC=∠CAG+∠BAC,即∠CAE=∠BAG,∴△ABG≌△AEC(SAS),∴BG=CE,故①正确;设BG、CE相交于点N,AC、BG相交于点K,如图1,∵△ABG≌△AEC,∴∠ACE=∠AGB,∵∠AKG=∠NKC,∴∠CNG=∠CAG=90°,∴BG ⊥CE ,故②正确;过点E 作EP ⊥HA 的延长线于P ,过点G 作GQ ⊥AM 于Q ,如图2,∵AH ⊥BC ,∴∠ABH +∠BAH =90°,∵∠BAE =90°,∴∠EAP +∠BAH =90°,∴∠ABH =∠EAP ,即∠EAM =∠ABC ,故④正确;∵∠AHB =∠P =90°,AB =AE ,∴△ABH ≌△EAP (AAS ),∴EP =AH ,同理可得GQ =AH ,∴EP =GQ ,∵在△EPM 和△GQM 中,90P MQG EMP GMQ EP GQ ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩,∴△EPM ≌△GQM (AAS ),∴EM =GM ,∴AM 是△AEG 的中线,故③正确.综上所述,①②③④结论都正确.故答案为:①②③④.【点睛】本题考查了正方形的性质、三角形的内角和定理以及全等三角形的判定和性质,作辅助线构造出全等三角形是难点,熟练掌握全等三角形的判定和性质是关键.16101【分析】探究点E 的运动轨迹,寻找特殊位置解决问题即可.【详解】如图1中,当点M 与A 重合时,AE =EN ,设AE =EN =xcm ,在Rt △ADE 中,则有x 2=32+(9﹣x )2,解得x =5,∴DE =10﹣1-5=4(cm ),如图2中,当点M 运动到MB ′⊥AB 时,DE ′的值最大,DE ′=10﹣1﹣3=6(cm ),如图3中,当点M 运动到点B ′落在CD 时, 22221310NB C N C B ''''=+=+=DB ′(即DE ″)=10﹣1﹣10=(9﹣10)(cm ),∴点E 的运动轨迹E →E ′→E ″,运动路径=EE ′+E ′B ′=6﹣4+6﹣(910101)(cm ).101.【点睛】本题考查翻折变换,矩形的性质,解直角三角形等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考填空题中的压轴题.17.②③【分析】根据菱形的性质可知AC ⊥BD ,所以在Rt △AFP 中,AF 一定大于AP ,从而判断①;设∠BAE=x ,然后根据等腰三角形两底角相等表示出∠ABE ,再根据菱形的邻角互补求出∠ABE ,根据三角形内角和定理列出方程,求出x 的值,求出∠BFE 和∠BE 的度数,从而判断②③.【详解】解:在菱形ABCD 中,AC ⊥BD ,∴在Rt △AFP 中,AF 一定大于AP ,故①错误;∵四边形ABCD 是菱形,∴AD ∥BC ,∴∠ABE+∠BAE+∠EAD=180°,设∠BAE=x°,则∠EAD=2x°,∠ABE=180°-x°-2x°,∵AB=AE ,∠BAE=x°,∴∠ABE=∠AEB=180°-x°-2x°,由三角形内角和定理得:x+180-x-2x+180-x-2x=180,解得:x=36,即∠BAE=36°,∠BAE=180°-36°-2×36°=70°,∵四边形ABCD 是菱形,∴∠BAD=∠CBD=12∠ABE=36°, ∴∠BFE=∠ABD+∠BAE=36°+36°=72°,∴∠BEF=180°-36°-72°=72°,∴BE=BF=AF .故③正确∵∠AFD=∠BFE=72°,∠EAD=2x°=72°∴∠AFD=∠EAD∴AD=FD又∵AD=AB=AE∴AE=FD ,故②正确∴正确的有②③故答案为:②③【点睛】本题考查了菱形的性质,等腰三角形的性质,熟记各性质并列出关于∠BAE 的方程是解题的关键,注意:菱形的对边平行,菱形的对角线平分一组对角.18.1或7.【分析】存在2种情况满足条件,一种是点P 在BC 上,只需要BP=CE 即可得全等;另一种是点P 在AD 上,只需要AP=CE 即可得全等【详解】设点P 的运动时间为t 秒,当点P 在线段BC 上时,则2BP t ,∵四边形ABCD 为长方形,∴AB CD =,90B DCE ∠=∠=︒,此时有ABP DCE ∆∆≌,∴BP CE =,即22t =,解得1t =;当点P 在线段AD 上时,则2BC CD DP t ++=,∵4AB =,6AD =,∴6BC =,4CD =,∴()()6462162AP BC CD DA BC CD DP t t =++-++=++-=-,∴162AP t =-,此时有ABP CDE ∆∆≌,∴AP CE =,即1622t -=,解得7t =;综上可知当t 为1秒或7秒时,ABP ∆和CDE ∆全等.故答案为:1或7.【点睛】本题考查动点问题,解题关键是根据矩形的性质可得,要证三角形的全等,只需要还得到一条直角边相等即可19.663【分析】通过四边形ABCD 是矩形以及CE CB BE ==,得到△FEM 是等边三角形,根据含30°直角三角形的性质以及勾股定理得到KM ,NK ,KE 的值,进而得到NE 的值,再利用30°直角三角形的性质及勾股定理得到BN ,BE 即可.【详解】解:如图,设NE 交AD 于点K ,∵四边形ABCD 是矩形,∴AD ∥BC ,∠ABC=90°,∴∠MFE=∠FCB ,∠FME=∠EBC∵CE CB BE ==,∴△BCE 为等边三角形,∴∠BEC=∠ECB=∠EBC=60°,∵∠FEM=∠BEC ,∴∠FEM=∠MFE=∠FME=60°,∴△FEM 是等边三角形,FM=FE=EM=2,∵EN ⊥BE ,∴∠NEM=∠NEB=90°,∴∠NKA=∠MKE=30°,∴KM=2EM=4,NK=2AN=6,∴在Rt △KME 中,=∴NE=NK+KE=6+∵∠ABC=90°,∴∠ABE=30°,∴BN=2NE=12+43,∴BE=22663BN NE-=+,∴BC=BE=663,故答案为:663【点睛】本题考查了矩形,等边三角形的性质,以及含30°直角三角形的性质与勾股定理的应用,解题的关键是灵活运用30°直角三角形的性质.20.【分析】作AB的中点E,连接EM、CE,根据直角三角形斜边上的中线等于斜边的一半以及三角形的中位线定理求得CE和EM的长,然后确定CM的范围.【详解】解:作AB的中点M,连接EM、CM.在Rt△ABC中,AB=22AC BC+=2286+=10,∵M是直角△ABC斜边AB上的中点,∴CM=12AB=5.∵E是BD的中点,M是AB的中点,∴ME=12AD=2.∴5﹣2≤CE≤5+2,即3≤CE≤7.∴最大值为7,故答案为:7.【点睛】本题考查了三角形的中位线定理,勾股定理,直角三角形斜边中线的性质等知识,掌握基本性质定理是解题的关键.三、解答题21.(1)不会,理由见解析;(2)①见解析;②²²20m n n =+-【分析】(1)根据BEF BEA ≅得到BF BA =,根据三角形的三边关系得到BC BF BA >=,与已知矛盾;(2)①根据90BFC BFE ∠=∠=︒、DEC FCB ∠=∠和BF=CD ,利用AAS 证得BCF CED ≅,根据全等三角形的性质即可证明;②设1AD =,则可表示出AE 和AB ,然后根据等角对等边证得CE=CB ,然后在Rt CDE ∆中应用勾股定理即可求解.【详解】(1) 由折叠知BEF BEA ≅ ,所以90BF BA BFE A =∠=∠=︒, .若点F 在CE 上,则90BFC ∠=︒,BC BF BA >=,与AB AD =矛盾,所以点F 不会落在CE 上.(2)①因为()01AB m m AD=<<,则AB AD < , 因为点F 落在CE 上,所以90BFC BFE ∠=∠=︒ ,所以BF BA CD == .因为//AD BC ,所以DEC FCB ∠=∠ ,所以BCF CED ≅ ,所以CF DE =.②若AE n AD=,则AE nAD =. 设1AD =,则AE n AB m ==,.因为//AD BC ,所以BEA EBC ∠=∠ .因为BEF BEA ∠=∠ ,所以EBC BEC ∠=∠ ,所以1CE CB AD === .在Rt CDE ∆中,11DE n CE CD m ===一,, ,所以22211()n m -+= ,所以²²20m n n =+-.故答案为(1)不会,理由见解析;(2)①见解析;②²²20m n n =+-.【点睛】本题考查了三角形全等的性质和判定,和等边对等角,此题属于矩形的折叠问题类综合题,熟练掌握三角形全等的性质,和做出示意图是本题的关键.22.(1)(32,32);(2)存在,点D 的坐标为(0,3)或(23,1)或(0,-1);(3)OM=32或212 【分析】(1)过点B 作BD ⊥y 轴于D ,利用30°所对的直角边是斜边的一半和勾股定理求出OB ,再利用30°所对的直角边是斜边的一半和勾股定理求出BD 和OD 即可得出结论;(2)根据题意和等边三角形的性质分别求出点A 、B 、C 的坐标,然后根据菱形的顶点顺序分类讨论,分别画出对应的图形,根据菱形的对角线互相平分即可分别求出结论; (3)利用30°所对的直角边是斜边的一半和勾股定理求出OP 和BP ,然后根据直角三角形的直角顶点分类讨论,分别画出对应的图形,利用直角三角形斜边上的中线等于斜边的一半、平行四边形的判定及性质、等腰三角形的判定及性质求解即可.【详解】解:(1)如图2,过点B 作BD ⊥y 轴于D由图1中,点A 的坐标为()1,0-,30ABO ∠=︒,∠AOB=90°∴OA=1,AB=2OA=2由勾股定理可得223AB OA -=∵将此直角三角板绕点O 顺时针旋转30∴∠BOD=30°∴BD=132OB =∴OD=223 2OB BD-=∴点B的坐标为(32,32)故答案为:(32,32);(2)在图2的基础上继续将直角三角板绕点O顺时针60︒,此时点A落在y轴上,点B 落在x轴上∴点A的坐标为(0,1),点B的坐标为(3,0)∵△ABC为等边三角形∴∠ABC=60°,AB=BC=AC=2∴∠OBC=90°∴点C的坐标为(3,2)设点D的坐标为(a,b)如图所示,若四边形ABCD为菱形,连接BD,与AC交于点O∴点O既是AC的中点,也是BD的中点∴03322 12022ab⎧++=⎪⎪⎨++⎪=⎪⎩解得:3 ab=⎧⎨=⎩∴此时点D的坐标为(0,3);当四边形ABDC为菱形时,连接AD,与BC交于点O ∴点O既是AD的中点,也是BC的中点∴03322 12022ab⎧++=⎪⎪⎨++⎪=⎪⎩解得:231ab⎧=⎪⎨=⎪⎩∴此时点D的坐标为(23,1);当四边形ADBC为菱形时,连接CD,与AB交于点O∴点O既是AB的中点,也是CD的中点∴0332210222ab⎧++=⎪⎪⎨++⎪=⎪⎩解得:1ab=⎧⎨=-⎩∴此时点D的坐标为(0,-1);综上:点D的坐标为(0,3)或(23,1)或(0,-1);(3)∵OB=3,∠ABO=30°∴OP=12OB=32∴BP=2232OB OP-=当∠OMB=90°时,如下图所示,连接BM∵F为OB的中点∴PF=12OB,MF=12OB,OF=BF∴PF=MF∴四边形OPBM为平行四边形∴OM=BP=32;当∠OBM=90°时,如下图所示,连接OM,∴∠PBM=∠PBO+∠OBM=120°∵点F为OB的中点∴FP=FB∴∠FPB=∠FBP=30°∴∠BMP=180°-∠PBM-∠FPB=30°∴∠BMP=∠BPM∴BM=BP=3 2在Rt△OBM中,2221OB BM+=;综上:OM=32或212.【点睛】此题考查的是直角三角形的性质、菱形的性质、平行四边形的判定及性质、等边三角形的性质,掌握30°所对的直角边是斜边的一半、勾股定理、直角三角形斜边上的中线等于斜边的一半、菱形的性质、平行四边形的判定及性质、等边三角形的性质是解决此题的关键.23.(1)见解析;(2)MON为等腰直角三角形,见解析【分析】(1)如图1,由正方形的性质得CB=CD,∠BCD=90°,再证明∠BCN=∠CDM,然后根据“AAS”证明△CDM≌△CBN,从而得到DM=CN;(2)如图2,利用正方形的性质得OD=OC,∠ODC=∠OCB=45°,∠DOC=90°,再利用∠BCN=∠CDM得到∠OCN=∠ODM,则根据“SAS”可判断△OCN≌△ODM,从而得到ON=OM,∠CON=∠DOM,所以∠MON=∠DOC=90°,于是可判断△MON为等腰直角三角形.。

相关文档
最新文档